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Abstract
Measurements of nitrous oxide (N2O) emissions from agriculture are essential
for understanding the complex soil–crop–climate processes, but there are prac-
tical and economic limits to the spatial and temporal extent over which mea-
surements can be made. Therefore, N2O models have an important role to play.
As models are comparatively cheap to run, they can be used to extrapolate field
measurements to regional or national scales, to simulate emissions over long
time periods, or to run scenarios to compare mitigation practices. Process-based
models can also be used as an aid to understanding the underlying processes,
as they can simulate feedbacks and interactions that can be difficult to distin-
guish in the field. However, when applyingmodels, it is important to understand
the conceptual process differences in models, how conceptual understanding
changed over time in various models, and the model requirements and limita-
tions to ensure that the model is well suited to the purpose of the investigation
and the type of system being simulated. The aim of this paper is to give the reader
a high-level overview of some of the important issues that should be considered
whenmodeling. This includes conceptual understanding of widely usedmodels,

Abbreviations: GLMM, generalized linear mixed model; IPCC, Intergovernmental Panel on Climate Change; ML, maximum likelihood; PDF,
probability distribution function; REML, restricted maximum likelihood.
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common modeling techniques such as calibration and validation, assessing
model fit, sensitivity analysis, and uncertainty assessment.We also review exam-
ples of N2O modeling for different purposes and describe three commonly used
process-based N2O models (APSIM, DayCent, and DNDC).

1 INTRODUCTION

A model is a numerical representation of a real-world sys-
tem. The aim of a model developer is to create a model
that can approximate the behaviors of interest of this sys-
tem.Models always involve some simplifying assumptions,
but they enable the exploration of system behavior over a
wide range of conditions much faster and cheaper than is
possible by direct observation. The purpose of the model
will determine which aspects of the real-world system the
model developer chooses to represent and how. Therefore,
when selecting a model, it is important to understand the
underlying model assumptions to determine whether it is
fit for a purpose.
Chambers are valuable for measuring the impacts of

soils, climate, and management on nitrous oxide (N2O)
emissions from a range of sources. However, for pragmatic
reasons, observational study periods usually cover only a
few years under a narrow range of conditions and are often
not continuous over that time. The ability of models to
operate on longer timescales, and under more manipula-
tions, than chamber studies allows for climate variation
to be accounted for in simulations, ensuring that a sin-
gle anomaly year captured in a chamber study is not too
heavily weighted. Models can also be used to broaden the
range of climate conditions, soil–environmental drivers,
and management practices that can be assessed.
Models can either be empirical (derived from observed

statistical or mathematical relationships) or process based
(simulation) seeking to emulate the underlying processes.
Empirical models tend to be simpler to run and have
fewer data requirements, but they have less flexibility in
the range of conditions they can model (and their limita-
tions are often unclear), and are unable to simulate feed-
backs between processes. However, they may perform bet-
ter than process-based models for the specific situations
under which they were developed. A typical schematic for
a process-based model and an empirical model is included
in the Supplemental Figure S1.
A large number of N2O models are available. However,

not all models are equally suitable for all purposes. The
aim of this paper is to give the reader a basic understand-
ing of modeling principles and current practices to help
them determine which approaches would be most useful
for their purposes. A number of textbooks on environmen-

tal modeling (such as Smith & Smith, 2007) are available
for readers seeking further information on general model-
ing topics.
We begin by discussing differentmodel applications and

types ofN2Omodelswith examples of how these have been
implemented in published studies. Next, we discuss model
uncertainty, sensitivity analysis, and the fundamental pro-
cesses of calibration, validation, and assessing model fit. A
list of some commonly usedmodeling terminology is avail-
able in Supplemental Material 1.

2 PURPOSE OFMODEL USE

When selecting amodel for a particular use, the purpose of
themodeling exercise needs to be considered. For example,
if the purpose is to determine the effectiveness of a miti-
gation option, then it is important that this mitigation is
adequately simulated by the selected model (Hillier et al.,
2016). In the sections below, we describe a number of com-
monmodeling purposes and identify someof the key issues
that modelers will need to consider.

2.1 Assessing effectiveness ofmitigation

Chambers measurements may identify potential prac-
tices that could mitigate N2O emissions. Validated mod-
els can be used to interpolate N2O emissions into continu-
ous assessments, verify the impacts of soil–environmental
drivers on emissions, and extrapolate observational assess-
ments in order to quantify the mitigation potential across
a wider range of soil properties and climate variability.

2.2 Running scenarios

Well-developed, calibrated, and validated models can be
used to facilitate new investigations of N2O emissions
under varying scenarios. These may include management
interactions or may extend to different crops and manage-
ment practices and could include the impacts of climate
variability and climate change (Table 1). The use of sev-
eral models (i.e., a model ensemble) to simulate the same
scenarios can provide both a measure of uncertainty and
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a degree of confidence if the simulated results are aligned
(Tian et al., 2019). However, only a few models exist that
are capable of simulating certain practices (e.g., urease and
nitrification inhibitors, intercropping, tile drainage), so full
comparisons between models are not always feasible.

2.3 Estimating cumulative emissions

Methods that sampleN2O concentrations continuously are
becoming more common, yet the majority of field studies
still do not sample on a continuous basis. Even for con-
tinuous measurement systems, gaps in data due to mal-
function, resource issues, or adversemeteorological condi-
tions are still frequent. As amicrobially produced gas, N2O
is highly variable, and gap-filling techniques (see Dorich,
Conant, & Grace, 2020) are needed to approximate missed
sampling time periods and estimate the cumulative annual
emissions (Barton et al., 2015; Savage, Phillips, & David-
son, 2014). The most common practice currently used is
area under the curve (AUC) using linear interpolation (i.e.,
drawing a straight line between consecutive N2O sam-
ples) and integrating to obtain the cumulative emission.
There are known limitations to this method. Nitrous oxide
emissions largely occur during peak events and not on a
steady basis (Barton et al., 2015; Davidson, Keller, Erickson,
Verchot, & Veldkamp, 2000; Wagner-Riddle et al., 2017).
Unsurprisingly, sites that are sampled at higher frequen-
cies have shown better results in linear interpolationmeth-
ods compared with less frequently sampled sites (Barton
et al., 2015). Further methods, such as look-up tables or
regional-level estimates, have beenused to estimate annual
emissions as well (Berdanier & Conant, 2012; Mishurov &
Kiely, 2011). Recently, advanced methods, such as artificial
neural networks (ANN), have started to be tested and show
promise to improve estimates beyond that of simple lin-
ear interpolations (Taki, Wagner-Riddle, Parkin, Gordon,
& VanderZaag, 2018).
Validated biogeochemical models represent another

means for estimating annual cumulative emissions. Daily
time step models can approximate the processes occur-
ring in the soil with respect to water, carbon (C), nitro-
gen (N), and microbial dynamics to estimate daily N2O
emissions (del Grosso et al., 2006; Li et al., 2012; Thor-
burn, Biggs, Collins, & Probert, 2010). The sum ofmodeled
emissions over a year is therefore an estimate of cumu-
lative annual emissions. Although these models may not
be ideal for representing daily N2O fluxes, they are formu-
lated from mechanistic understanding and field data and
are composed of well-understood soil processes, allowing
them to more reliably represent emissions over time than
other empirical methods. The cumulative annual emis-
sions reported by a validated model are often a reliable

Core Ideas

∙ Models are used for different purposes, which
affects the choice of model used.

∙ We review several commonly used N2Omodels.
∙ Model uncertainty, fitting, sensitivity analysis,
and upscaling are also discussed.

comparison with the field data (del Grosso et al., 2009;
Ehrhardt et al., 2018). One of the strongest motives for
using models to estimate annual emissions is their abil-
ity to be run for long periods of time, and across many
treatments. Unlike empirical models, process-based mod-
els characterize the effect of soil C and N feedbacks over
time on emissions.

2.4 Using models for scaling up

Validated models are useful for scaling up N2O emissions
estimates to larger regions. Such estimates are needed for
exploring mitigation options that may reduce greenhouse
gas emissions from a region, or for estimating national
greenhouse gas inventories. Scaling up assessments need
to be managed with regards to the spatial scale (land unit),
temporal scale, and management options under investiga-
tion. This will depend on the project objectives, the time
and resource costs of running at a small spatial scale, data
resolution and quality, and the feasibility and reliability
of models being contemplated. If the quality of the model
input data and resolution between soils, crops, climate,
andmanagement are not of sufficient detail, then a simpler
empirical modeling approach may provide a good average
estimate.
Models vary greatly in complexity, from very simple

emissions factors (i.e., Tier I IPCC [Intergovernmental
Panel on Climate Change]) to empirical algorithms based
on statistical synthesis of regional observations (i.e., Tier
II IPCC, Cool Farm Tool; Hillier et al., 2011), meta-models
(Giltrap & Ausseil, 2016), and process-based models that
attempt to simulate interacting soil–plant–climate pro-
cesses (Table 2). As models become more mechanistic, in
principle, they should be better suited for simulating the
impacts of site-specific climate, soil drivers, and manage-
ment on N2O emissions. These improvements, however,
come at the cost of requiring more detailed inputs, which
maynot be available for larger regions ormay containmore
error. Mechanistic models also require rigorous validation
procedures.
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The quality and resolution of input data available for
scaling up are of great importance. National databases are
often based on aggregated or estimated data, scaled up
from limited measurements taken decades earlier. Gaps
in weather data are also common but can be addressed
using estimates derived from international databases (e.g.,
POWER Project datasets, https://power.larc.nasa.gov/).
Most studies require some degree of input estimation
or gap filling to meet the modeling requirements. For
instance, Fitton et al. (2017) found that several param-
eters were not available, and thus values from generic
site-specific calibrations were sometimes used. Due to
data limitations of running the NZ-DNDC (New Zealand
Denitrification–Decomposition) model, Giltrap and Aus-
seil (2016) ran Monte Carlo simulations to develop a
regression-based meta-model that produced simplified
emissions factors for N2O.
The advantages of using process-based models for scal-

ing up are that they can avoid double counting of N losses
that may occur if each source of N loss (e.g., gaseous
emissions and nitrate leaching) is calculated indepen-
dently. As the mass balances of nutrients are considered,
process-based models can simulate emissions from inte-
grated management and often simulate a larger range of
outcomes in addition to N2O emissions. It is warranted to
use biogeochemical models when sufficient data quality,
resolution, and modeler expertise are available.

2.5 Using models for understanding
and expanding on drivers and mechanisms

Process-based models describe the main processes of N
cycles in ecosystems and synthesize our current under-
standings from experimental results at different scales.
In a complex system like soil, departures between model
predictions and observations are rather common for N2O
emissions because of the complicated interactions between
soil microbiological, chemical, and physical processes and
plant processes (Butterbach-Bahl, Baggs, Dannenmann,
Kiese, & Zechmeister-Boltenstern, 2013). Because of the
complexity, models that simulate N2O emissions are often
limited to specific climates and ecosystems.
Models are particularly useful for integrating knowledge

acquired from experiments at the laboratory, plot, or site
scale to high spatial levels (Haas et al., 2013). Nitrogen
transfers and transformations across different landscapes,
such as agricultural land, natural grasslands, forests, and
urban regions through atmospheric and hydrological pro-
cesses could potentially affect the N inputs and outputs
of a given system, further changing the N2O emissions
(Sutton et al., 2007). The Nitroscape model (Duretz et al.,
2011) showed that 10% of the total N2O emissions in a

https://power.larc.nasa.gov/
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landscape composed of pig–crop farms interspersed with
unmanaged ecosystems were indirect emissions from N
transferred across landscapes. This indirect component is
not usually captured by site-level measurements. In this
case, Nitroscape provided new insights for the estimation
of greenhouse gas emissions at the landscape scale.
Developments in measurement techniques with instru-

ments that provide continuous measurements of N2O
fluxes at high temporal scale (minute to hour interval)
have demonstrated a clear diurnal pattern of N2O fluxes
(Liang, Campbell, Wall, & Schipper, 2018; Shurpali et al.,
2016), suggesting that the temperature variation and inter-
actions between plants and soil microbial activities likely
play important roles in regulating the N2O fluxes at a daily
scale. Therefore, neglecting these diurnal variations could
introduce errors in the estimation of N2O emissions.
Pulse emissions of N2O after rain, frost–thaw, and rewet-

ting events have also been found to make significant
contributions to the annual N2O emissions (de Bruijn,
Butterbach-Bahl, Blagodatsky, & Grote, 2009; Grant & Pat-
tey, 1999; Liang et al., 2018). Several studies have inves-
tigated methods of incorporating frost–thaw effects on
N2O emissions in DNDC (Denitrification–Decomposition;
Dutta et al., 2018; Kariyapperuma,Wagner-Riddle, Furona,
& Li, 2011, Wolf et al., 2012). The high temporal and spa-
tial variations of N2O fluxes present a great challenge for
model developments to account for reactions and pro-
cesses happening at different temporal and spatial scales.
Adequately describing the complexity of N2O emissions
requires collaboration among modelers, plant physiolo-
gists, soil scientists, hydrologists, GIS experts, and scien-
tists frommeasuring communities. Such collaborations are
beneficial for model development and expanding under-
standing of the mechanisms for N2O emissions.

3 EMPIRICALMODELING

In this section, we describe the development of an empir-
ical model to calculate country- and region-specific emis-
sions factors for direct emissions frommanaged soils. Such
models are often developed using chamber measurements
(Rochette et al., 2018), since they are the most common set
of N2O observations readily available. These models can
also be used to determine the effectiveness of mitigation
strategies such as fertilizer rate but are often not robust
enough to empirically describe the effects of the full range
of management practices on N2O emissions.
The variables included in the model formulation must

be available at the national or regional scale. Data must
be collected from a representative range of soils and cli-
mates within the country or region. The data required
include the site information outlined in de Klein et al.

(2020) and appropriate rainfall and temperature data. A
categorical variable is sometimes used to represent land
use (e.g., grassland or arable land). Themodel is developed
from a set of cumulative N2O emission values measured
over a consistent length of time (ideally a 12-mo period
to ensure direct compatibility with the IPCC default Tier
1 emissions factors). Developing the model from the plot
data as opposed to the treatment-level data allows a bet-
ter understanding of the variation.Data exploration should
be carried out to assess if there are discontinuities in the
relationships between the emissions and the key drivers. A
mixed-effect model (e.g., generalized linear mixed model
[GLMM]; Harrison et al., 2018) permits the definition of
random terms (nuisance terms such as site and year), as
well as fixed effects. The GLMM can be fitted using either
restrictedmaximum likelihood (REML) or maximum like-
lihood (ML) algorithms. The REML algorithm produces
unbiased estimates of variances, but biased estimates of
the fixed effects, whereas the reverse is true for ML. For
a much more detailed explanation, see Gelman and Hill
(2007). The data should be checked to ensure that they
meet the assumption of the statistical technique chosen
and transformed if necessary (N2O data typically require a
log transformation). The residual plots should be checked
for outliers, which, if they are biologically implausible, can
be removed from the analysis.
Separate models should be fitted individually for each

N source (e.g. dung, urine, farmyard manure, slurry, man-
ufactured fertilizer, etc.). This can be further disaggre-
gated (e.g., animal type) if sufficient data are available. It is
important to note that with GLMM approaches, the order
of the variables in the model fitting can affect their sig-
nificance level. The model selection can be based on the
deviance (Madden, Turechek, & Nita, 2002), Akaike infor-
mation criterion (AIC) or Bayesian Information criterion
(BIC) coefficients (Spiegelhalter, Best, Carlin, & Van der
Linde, 2014).
In order to predict the emissions, in addition to N appli-

cation rates, regional data for the model parameters and
long-term climate data are required. The emissions should
be predicted over several years for the typical N fertilizer
rates and a 0 N control. Thus, the average emission factor
for that region can be determined.

4 PROCESS-BASEDMODELS

Process-based models are designed to simulate the mul-
tiple impacts of biophysical processes and management
practices. They have an advantage over empirical mod-
els for assessing integrated management impacts (which
can be nonadditive in behavior) and implicitly account
for the mass balance of N. However, they are significantly
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more data intensive, less transparent, and require exper-
tise to apply. Due to their complexity, and because some
site-specific parameters are not usually measured (e.g.,
microbial activity), there is always some uncertainty in
the outputs from process-based models. This uncertainty
can be reduced, by calibration and validation, not only for
N2O emission but also for important drivers of emissions
such as soil temperature, water content, soil N, and crop
biomass. When available, these additional measurements
are valuable for understanding the drivers and processes
that affect N2O emissions.
The impacts of nutrient management on N2O emission

mitigation have been successfully assessed in several large-
scale studies, and in each of these cases, extensive calibra-
tion was performed (Abalos et al., 2016; Molina-Herrera
et al., 2016; Sándor et al., 2018). In addition to simulat-
ing N2O emissions, it is important that a model effectively
simulates crop N uptake, management actions, and other
N loss pathways that can strongly affect N2O emissions.
When amodel is used to assess mitigation strategies across
contrasting crops, soils, and climate, it is not uncommon to
find weaknesses in model structure and processes that are
then targeted for future development.
In addition to simulating N2O emissions, process-based

models are valuable for estimating other outcomes, such as
crop biomass, soil organic C change, nitrate leaching and
runoff, ammonia volatilization, and methane emissions,
in order to examine the tradeoffs in mitigation potential
of management practices. This is particularly important
when examining the overall climatic impact of the emis-
sions. Model simulations of soil processes can be used as
inputs for life cycle assessments at the farm gate to include
a more holistic assessment of mitigation potential (Goglio
et al., 2018).

4.1 Overview of current process-based
models

There are many different process-based models of N2O,
eachwith different emphases and approaches to these pro-
cesses. However, there are a few major models that are
widely used. A search on Web of Science for “process-
based model” (no quotes) and “nitrous oxide” resulted in
47 relevant papers published since 2014 (date of search:
28 Jan. 2019). A total of 28 different models were refer-
enced across these papers. The two most commonly refer-
enced papers were DNDC (Li, Frolking, & Frolking, 1992a,
1992b; 21 references) and DayCent (Parton, Ojima, Cole,
& Schimel, 1994; 11 references). Almost 60% of publica-
tions referenced at least one of these two models. Three

models shared third place with three references each:
APSIM (Agricultural Production Systems sIMulator; Holz-
worth et al., 2014), SPACSYS (Wu, McGechan, McRoberts,
Baddeley, &Watson, 2007;Wu et al., 2015), and IFSM (Inte-
grated Farm System Model; Rotz et al., 2018). In this sec-
tion, we describe three of these models in more detail:
DNDC, DayCent, and APSIM. All three models have a
structure similar to that in Supplemental Figure S1a.

4.1.1 DNDC

The DNDC model (Li et al., 1992a, 1992b; Li, Frolking,
& Harriss, 1994) is a biogeochemical model originally
developed for quantifying C sequestration and N2O emis-
sions from croplands. It has since been expanded to sim-
ulate C and N dynamics in different ecosystems (Gilh-
espy et al., 2014; Giltrap, Li, & Saggar, 2010; Li, Aber,
Stange, Butterbach-Bahl, & Papen, 2000; Li et al., 2012;
Zhang, Li, Trettin, Li, & Sun, 2002). The model has incor-
porated a relatively complete suite of biogeochemical pro-
cesses governing C and N cycling, including decomposi-
tion, fermentation, ammonia volatilization, nitrification,
and denitrification. The DNDC model is composed of two
components. The first component consists of the soil cli-
mate, crop growth, and decomposition submodels and
converts primary drivers, such as climate, soil properties,
vegetation, and anthropogenic activity, into soil environ-
mental factors. The second component consists of the
nitrification, denitrification, and fermentation submodels
and simulates C and N transformations that are medi-
ated by soil microbes. In DNDC, soil N primarily exists
in several pools—organic N, ammonium, ammonia, and
nitrate. Dynamics of soil N in each pool are simulated
at an hourly or daily time step through a series of bio-
geochemical reactions: decomposition, microbial assimi-
lation, plant uptake, ammonia volatilization, ammonium
adsorption, nitrification, denitrification, and nitrate leach-
ing. Fluxes ofN gases (i.e., nitric oxide [NO],N2O, anddini-
trogen [N2]) are predicted as either products or intermedi-
ate products by simulating the relevant N transformation
processes, primarily nitrification and denitrification.
The DNDC model has been successfully applied in dif-

ferent ecosystem types, including cropland, forest, grass-
land, wetland, peatland, and livestock farms (Deng et al.,
2014; Gilhespy et al., 2014; Giltrap et al., 2010; Li et al.,
2012). The model simulations have been extensively evalu-
ated against datasets of N2O as well as methane fluxes that
were measured worldwide (Gilhespy et al., 2014; Giltrap
et al., 2010). The DNDC model is freely available at http://
www.dndc.sr.unh.edu/.

http://www.dndc.sr.unh.edu/
http://www.dndc.sr.unh.edu/
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4.1.2 DayCent

DayCent is a biogeochemical model that simulates the C
and N fluxes between the soil, atmosphere, and vegeta-
tion for forest, grassland, and cropland ecosystems. Based
on the CENTURY model (Parton, Hartman, Ojima, &
Schimel, 1998), DayCent (del Grosso et al., 2001, 2006;
Parton et al., 2001) operates on a daily times step and
includes subroutines that control soil organicmatter pools,
soil water content, soil temperature, methane oxidation,
and N emissions via nitrification and denitrification. Day-
Cent also includes a plant growth submodel with dynamic
C allocation among the above- and belowground biomass
pools, where plant growth is dependent on temperature
and water or nutrient limitations. Soil C is distributed into
a microbial pool and three soil organic matter pools with
distinct decomposition rates.
To date, the model has been successfully used in a wide

range of ecosystem types (cropland, grassland, and forest)
in a number of different countries (Abdalla, Jones, Ambus,
& Williams, 2010; Cameron et al., 2013; Fitton et al., 2014;
Sansoulet et al., 2014). However, there are a number of lim-
itations to the model structure, including a relatively sim-
plistic grazing submodel, as well an inability to simulate
multiple plant species, meaning that for grassland ecosys-
tems, in particular, there is an underrepresentation of the
more complex speciesmixtures ormanagement types asso-
ciated with them.
The DayCent model, example simulations, and a pub-

lication list is freely available via the Natural Resource
Ecology Laboratory (NREL)website (www2.nrel.colostate.
edu/projects/daycent-home.html)

4.1.3 APSIM

The APSIM model is a process-based model of the soil–
plant–atmosphere system with a strong emphasis on the
effect of management on the production system. It can run
in single- or multi-point mode (e.g., multiple paddocks on
a farm) and is designed to run overmany years with chang-
ingmanagement. TheAPSIMmodel’s originswere in crop-
ping rotations, but it has been continually developed and
successfully used in pasture (Snow, Smale, & Dodd, 2013),
pasture mixtures (Fitton et al., 2019), agroforestry (Dilla,
Smethurst, Barry, Parsons, & Denboba, 2018; Huth, Car-
berry, Poulton, Brennan, & Keating, 2002), and tree crops
such as oil palm (Elaeis guineensis Jacq.; Huth, Banabasb,
Nelsonc, & Webb, 2014). Holzworth et al. (2014) detailed
the complex lineage of APSIM’s development. The APSIM
model primarily uses a daily time step, but some inter-
nal models use shorter steps. The model includes many

dynamic crop (including trees and pasture) models with
dynamic partitioning of C and N to above- and below-
ground pools. A particular strength of APSIM is its inclu-
sion of responsive rule-based management (Moore et al.,
2014) where management practices can be dynamically
determined by crop or soil conditions. The soil C and N
processes operate on a daily time step (Probert, Dimes,
Keating, Dalal, & Strong, 1998) with denitrification and
N2Oemissions (frombothnitrification anddenitrification)
based on DayCent methods (Thorburn et al., 2010). The
APSIM model’s origins are in low-input agriculture, so
it emphasizes the role of decomposition of plant litter in
replenishing soil pools (Probert et al., 1998).
Recent advances include better representation of

nutrient returns from grazing animals (Snow, Cichota,
McAuliffe, Hutchings, & Vejlin, 2017). Limitations of the
model include lack of freeze–thaw processes, transport
processes through the soil for generated N2O, soil CH4
emissions or uptake, and the relatively (e.g., compared
with DayCent) simple pool structure for humic soil
organic matter.
The APSIM model is free for noncommercial pur-

poses from https://www.apsim.info/, and that website
includes links to documentation and training material.
The source code for APSIM 7.x (development of this code
base ceased in 2017) is available from https://github.com/
APSIMInitiative/APSIMClassic, and the code for APSIM
Next Generation (Holzworth et al., 2018) is available from
https://github.com/APSIMInitiative/ApsimX.

4.2 Modeling networks and online
resources

Online resources and networks have been developed to
facilitate collaboration between international researchers
using some of the more common N2O models. These
include the Global Research Alliance Modeling Platform
(GRAMP) and the Global DNDC Network, which are
described below.

4.2.1 Global Research Alliance
Modeling Platform (GRAMP)

The GRAMP platform (http://www.gramp.org.uk/) is a
platform for modelers to share information and con-
nect with each other (Yeluripati et al., 2015). The web-
site currently features two biogeochemical models: DNDC
and ECOSSE (Estimation of Carbon in Organic Soils—
Sequestration and Emissions; Smith et al., 2010). The web-
site includes forums, publication lists, and field data.

http://www2.nrel.colostate.edu/projects/daycent-home.html
http://www2.nrel.colostate.edu/projects/daycent-home.html
https://www.apsim.info/
https://github.com/APSIMInitiative/APSIMClassic
https://github.com/APSIMInitiative/APSIMClassic
https://github.com/APSIMInitiative/ApsimX
http://www.gramp.org.uk/
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4.2.2 Global DNDC Network

The Global DNDCNetwork (http://www.globaldndc.net/)
is an international network of researchers and model
developers using the process-basedDNDCmode. Theweb-
site contains a list of relevant publications and news of
upcoming events. There is also an email discussion group
for model users.

4.3 Comparisons of models

Worldwide, various simulation models have been devel-
oped and applied to predict N2O emissions. However,
these models vary in the level of detail and how the
processes are described. Brilli et al. (2017) identified
almost 200 different processes and approaches across nine
different agroecosystem C and N flux models. On the
basis of published modeling studies, the most common
weaknesses in the models tended to be in the simula-
tion of pedoclimatic conditions, rather than management
practices.
Table 3 compares three models (DNDC, DayCent, and

APSIM) and presents the key differences and similar-
ities with respect to their simulation of nitrification,
denitrification, and N2O emissions. Important considera-
tions when selecting a process-based model include the
input data requirements, whether the model produces
all the output data needed, and whether it is capable
of simulating the climate, management practices, and
crop types of interest. Depending on the research ques-
tion, it may be necessary to examine the modeled pro-
cesses in more detail (e.g., to investigate the effect of
increased atmospheric carbon dioxide [CO2] onN2O emis-
sions, a model that accounts for the effect of atmo-
spheric CO2 on plant growth should be selected). Review-
ing recent literature will also help identify models that
have been used in similar studies and how well they
performed.

5 UNCERTAINTY INMODELS

5.1 Sources of uncertainty

There are two main types of errors that can affect a
model: model errors and propagation of input uncertain-
ties. Although random errors and sampling errors are
common in measured data, most models are determin-
istic and have no variability in their output for a given
input.

5.1.1 Model errors

Model errors are the result of differences between reality
and the way it is represented in the model. These differ-
ences could be due to simplifying assumptions, missing
processes, or misconceptions about how the systemworks.
In many cases, model errors cannot be quantified. How-
ever, there are a few instances where it may be possible to
estimate the effects of known simplifications (e.g., when a
simplified version of a more complex equation is used).

5.1.2 Propagation of input uncertainties

The input data used to run a model simulation will always
have some uncertainty attached to it. Likewise, there can
be uncertainty in the model parameters. These uncertain-
ties propagate through themodel, leading to uncertainty in
themodel output. The impact of uncertainties in themodel
input on the model output can be investigated using the
methods described in Section 5.1.3.

5.2 Uncertainty and sensitivity analysis

Sensitivity analysis and uncertainty analysis are related
concepts. However, whereas uncertainty analysis is con-
cerned with the propagation of uncertainty from model
inputs and parameters up to the model output, sensitivity
analysis is the assessment of the relative importance of the
sources of uncertainty in the output uncertainty (Crosetto
& Tarantola, 2001).

5.2.1 One-at-a-time

Most models have multiple inputs, and frequently multi-
ple outputs. The simplest form of uncertainty or sensitiv-
ity analysis is to look at the effect of varying a single input
variable on a single output variable assuming that all other
inputs are held constant. For an uncertainty assessment,
one might use the extreme values of the input variable or
a probability distribution function (PDF).
A dimensionless “sensitivity” value can be calculated to

compare the relative effects of changes in different inputs
on the model output. Some methods for calculating model
sensitivity are described in Supplemental Material 2. As
many process-based models have a large number of input
variables, sensitivity analysis can be a useful tool to deter-
mine which variables will have the most effect on model
uncertainty and which can be safely neglected. Morris

http://www.globaldndc.net/


1178 GILTRAP et al.

T
A
B
L
E

3
D
iff
er
en
ce
sa
nd

si
m
ila
rit
ie
sb
et
w
ee
n
th
re
e
po
pu
la
re
co
sy
st
em

m
od
el
s:
D
N
D
C
,D

ay
C
en
t,
an
d
A
PS
IM

Pa
ra
m
et
er

D
N
D
C

D
ay
C
en
t

A
PS
IM

D
oc
um

en
ta
tio
n

ht
tp
://
w
w
w
.d
nd
c.
sr
.u
nh
.e
du

ht
tp
://
w
w
w
.n
re
l.c
ol
os
ta
te
.e
du
/p
ro
je
ct
s/
da
yc
en
t/

Re
fe
re
nc
e

Li
et
al
.(
19
92
a,
19
92
b)

Pa
rt
on

et
al
.(
19
94
)

H
ol
zw
or
th
et
al
.(
20
14
,2
01
8)

A
cc
es
si
bi
lit
y

Ex
ec
ut
ab
le
fil
es
av
ai
la
bl
e
to

do
w
nl
oa
d,
so
ur
ce
co
de

on
re
qu
es
t

O
n
re
qu
es
t

Fr
ee
fo
rn
on
co
m
m
er
ci
al
us
e,

do
w
nl
oa
d
fr
om

G
itH

ub
,

re
gi
st
ra
tio
n
re
qu
ire
d

K
ey
in
pu
td
at
a

D
ai
ly
m
et
eo
ro
lo
gi
ca
ld
at
a
(m
ax
.a
nd

m
in
.a
ir
te
m
pe
ra
tu
re
s,

pr
ec
ip
ita
tio
n)
;s
oi
lp
ro
pe
rt
ie
s(
so
il

te
xt
ur
e,
bu
lk
de
ns
ity
,c
la
y
co
nt
en
t,

or
ga
ni
c
m
at
te
rc
on
te
nt
,a
nd

pH
);

pl
an
tg
ro
w
th
pa
ra
m
et
er
s;

m
an
ag
em

en
tp
ra
ct
ic
es
(e
.g
.,

pl
an
tin
g
an
d
ha
rv
es
t,
til
la
ge
,

fe
rt
ili
za
tio
n,
m
an
ur
e
am

en
dm

en
t,

irr
ig
at
io
n,
flo
od
in
g,
an
d
re
si
du
e

m
an
ag
em

en
t)

D
ai
ly
m
et
eo
ro
lo
gi
ca
ld
at
a
(m
ax
.a
nd

m
in
.t
em

pe
ra
tu
re
,

pr
ec
ip
ita
tio
n;
so
il
te
xt
ur
e;
pl
an
tg
ro
w
th
pa
ra
m
et
er
s;

m
an
ag
em

en
tp
ra
ct
ic
es
(ti
m
in
g
an
d
in
te
ns
ity

of
ev
en
ts
su
ch

as
ha
rv
es
to
rf
er
til
iz
at
io
n)

D
ai
ly
m
et
eo
ro
lo
gi
ca
ld
at
a

(m
ax
.a
nd

m
in
.

te
m
pe
ra
tu
re
,p
re
ci
pi
ta
tio
n,

so
la
rr
ad
ia
tio
n)
;s
oi
l

pr
op
er
tie
s(
bu
lk
de
ns
ity
,

ca
rd
in
al
w
at
er
co
nt
en
ts
,

pH
);
cr
op

an
d
an
im
al

pa
ra
m
et
er
s;
m
an
ag
em

en
t

pr
ac
tic
es
(d
at
e-
ba
se
d
or

dy
na
m
ic
)

Q
ua
lit
y
of
N
2O

si
m
ul
at
io
n

G
oo
da

G
oo
da

G
oo
da

In
iti
al
iz
at
io
n

Sp
in
-u
p
fo
r2
–3
yr

Sp
in
-u
p
fo
r>

1,0
00

yr
Sp
in
-u
p
fo
r2
–2
0
yr

Sp
at
ia
ls
ca
le

Fi
el
d/
re
gi
on
al

Fi
el
d/
re
gi
on
al

Fi
el
d/
re
gi
on
al

Ti
m
e
st
ep

H
ou
rly

fo
r

ni
tr
ifi
ca
tio
n–
de
ni
tr
ifi
ca
tio
n;
da
ily

fo
ro
th
er
pr
oc
es
se
s

D
ai
ly

M
os
tly

da
ily
,s
om

e
su
bm

od
el
sa
ss
ho
rt
er

dy
na
m
ic
tim

e
st
ep
s

O
ut
pu
tt
im
e
st
ep
s

D
ai
ly
/a
nn
ua
l

D
ai
ly
/m

on
th
ly
/a
nn
ua
l

U
se
rd
ef
in
ed

Ec
os
ys
te
m

A
ra
bl
e
la
nd
/g
ra
ss
la
nd
/

fo
re
st
/w
et
la
nd

A
ra
bl
e
la
nd
/g
ra
ss
la
nd
/f
or
es
t

A
ra
bl
e

la
nd
/g
ra
ss
la
nd
/g
ra
ze
d

pa
st
ur
e/
m
an
ag
ed

fo
re
st
ry

M
ax
.s
im
ul
at
io
n

de
pt
h,
cm

50
20

U
nl
im
ite
d

Ra
ng
e
of

m
an
ag
em

en
t

op
tio
ns

Ve
ry
br
oa
d

Li
m
ite
d

Ve
ry
br
oa
d

M
ul
tip
le

si
m
ul
ta
ne
ou
sc
ro
ps

Ye
s

N
o

Ye
s

Ph
en
ol
og
ic
al

re
sp
on
se
to
N
st
re
ss

Ye
s

Ye
s

Ye
s(
bu
tc
ro
p
de
pe
nd
en
t)

(C
on
tin
ue
s)

http://www.dndc.sr.unh.edu
http://www.nrel.colostate.edu/projects/daycent/


GILTRAP et al. 1179

T
A
B
L
E

3
(C
on
tin
ue
d)

Pa
ra
m
et
er

D
N
D
C

D
ay
C
en
t

A
PS
IM

Fa
ct
or
sa
ffe
ct
in
g
N
m
in
er
al
iz
at
io
n

C
/N

ra
tio

Ye
s

Ye
s

Ye
s

Te
m
pe
ra
tu
re

Ye
s

Ye
s

Ye
s

M
oi
st
ur
e

Ye
s

Ye
s

Ye
s

C
ro
p
m
od
ul
e

Si
m
pl
e

Si
m
pl
e

A
dv
an
ce
d

O
ve
r-
w
in
te
r

pr
oc
es
se
s

Sn
ow

dy
na
m
ic
s,
so
il
fr
ee
ze
–t
ha
w

Sn
ow

dy
na
m
ic
s,
so
il
fr
ee
ze
–t
ha
w

N
o

N
tr
an
sf
or
m
at
io
ns

ex
pr
es
se
d
by

M
ic
ro
bi
al
gr
ow

th
M
ic
ro
bi
al
gr
ow

th
M
ic
ro
bi
al
gr
ow

th
an
d
ab
io
tic

fa
ct
or
s

Re
le
as
e
of
pr
od
uc
ed

ga
se
sa
ffe
ct
ed

by
so
il
ph
ys
ic
al

pr
op
er
tie
s

Ye
s

N
o

N
o

D
en
itr
ifi
ca
tio
n

ki
ne
tic
s

Ye
s

Ye
s

Ye
s

N
itr
ifi
ca
tio
n
ki
ne
tic
s

Ye
s

Ye
s

Ye
s

N
2
fr
om

de
ni
tr
ifi
ca
tio
n

ca
lc
ul
at
ed

Ye
s

Ye
s

Ye
s

N
2O

lo
ss
es
fr
om

ni
tr
ifi
ca
tio
n

Ye
s

Ye
s

Ye
s

D
is
so
lv
ed

or
ga
ni
c
N

Ye
s

N
o

N
o

a
Pr
ev
io
us
st
ud
ie
sh
av
e
sh
ow

n
go
od

co
rr
el
at
io
ns
be
tw
ee
n
th
e
fie
ld
m
ea
su
re
d
an
d
si
m
ul
at
ed

N
2O
.



1180 GILTRAP et al.

(1991) presented a scheme for determining which inputs
have important effects by performing a series of individu-
ally randomized one-at-a-time simulations.

5.2.2 Most sensitive factor

Li, Narayanan, and Harriss (1996) investigated the sensi-
tivity of the DNDC model to variations in soil parameters
by running simulations with each parameter at its maxi-
mum or minimum (with the others held at the mean val-
ues) and comparing model results with the extreme sce-
nario when all parameters were at an extreme. The para-
meter that resulted in the greatest output variability was
termed the most sensitive factor (MSF). Different outputs
were sensitive to different factors. Therefore, in regional
mode, DNDC estimates the model uncertainty by running
the model with the maximum and minimum values of the
MSF for the output of interest.

5.2.3 Monte Carlo analysis

The disadvantage of one-at-a-time sensitivity analysis is
that it does not account for interactions between input
variables. To account for these, it is necessary to investi-
gate varying multiple parameter values simultaneously. In
a Monte Carlo analysis, a PDF is estimated for each input
variable of interest. This can include correlations between
variables if known. These PDFs are then used to randomly
generate a large number of input datasets. The model is
then run for each set of input data values and the results are
analyzed statistically. One easy statistic to estimate from
Monte Carlo output is the 95% confidence, which is simply
the 2.5th and 97.5th percentiles of the results. Sobol (2001)
outlines more advanced techniques for global sensitivity
analysis.

6 CALIBRATION AND VALIDATION

Values of model parameters vary, depending on the
system simulated so model parameter values need to
be established in each new system. The most common
procedure for finding model parameter values (calibra-
tion) is by using an optimization method. This involves
assigning initial values to parameters (based on some prior
knowledge about the system). Simulated model results
are then compared with the corresponding observations
and parameters adjusted until a satisfactory solution is
obtained. This comparison could be a simple visual com-
parison or could use one of the goodness-of-fit measures
described in the section below.

This method works well for simple models with few
parameters. However, as many biogeochemical models are
very complex with tens to hundreds of parameters, leading
to a vast number of possible combinations, it is common for
calibration to be carried out using only a subset of param-
eters. Sensitive parameters can be identified by model sen-
sitivity analysis to reduce the number of parameters that
need to be calibrated (Babu, Li, Frolking, Nayak, & Adhya,
2006). This can lead to biases due to assumptions made by
individual modelers, and this effect is evident in Ehrhardt
et al. (2018), where multiple groups used the same models
and produced different results.
With increasing availability of computational power

automation of the calibration process is possible
(Necpálová et al., 2015). Automation requires the cri-
teria to evaluate model fit to be predefined. In the
literature, several statistical functions have been used for
this purpose (Babu et al., 2006; Beheydt, Boeckx, Sleutel,
Li, & Van Cleemput, 2007). Once the model parameter
values have been fitted, the model can be validated by
testing the model fit using a data set independent of that
used for calibration.

7 GOODNESS-OF-FITMEASURES

Quantitative analysis of a model simulation tells us how
well the simulated values matchmeasured data. Two types
of analyses are most frequently used—analysis of coinci-
dence and analysis of association—and a thorough analy-
sis will include both. A model with a small difference (i.e.,
high coincidence) and high association between simulated
and measured values simulates the measured data accu-
rately. It is possible, however, for the difference between
simulated andmeasured values to be small, but the associ-
ation to be low, suggesting that the fit between simulated
and measured data may just be happenstance. Equally, it
is possible for the measured and simulated values to be
closely associated, but the difference between them to be
high, suggesting the model is good, but some systematic
error is causing a shift in the simulations and preventing a
good fit.
For all analyses, the different statistical tests tell us dif-

ferent things about the goodness-of-fit of themodel (Smith
& Smith, 2007). For example, the correlation coefficient r
is a measure of how well trends in measured values are
simulated; RMSD (Loague & Green, 1991; Smith & Smith,
2007) is a measure of the total error; mean difference (M)
or the relative error (E) (Addiscott & Whitmore, 1987)
indicate bias or systematic error; and lack of fit (LOFIT;
Whitmore, 1991) separates model error from variation in
the measurements. Supplemental Material 3 contains the
details of these measures of model fit and how they are



GILTRAP et al. 1181

TABLE 4 Summary of modeling approaches

Issue Types of approaches
Purpose of model Assessing effectiveness of mitigation

Running scenarios
Estimating cumulative emissions
Scaling up
Understanding drivers and mechanisms

Types of model Empirical
Process-based

Sensitivity analysis One parameter at a time
Monte Carlo
Global/local

Goodness of fit
Measures of association Correlation coefficient
Measures of coincidence RMSD
Measures of bias Mean error/relative mean error
Separating model error from
measurement error

LOFITa

aLOFIT, lack of fit.

calculated. Other helpful references include Legates and
McCabe (1999), Moriasi et al. (2007), and Bennett et al.
(2013).
The significance tests described in the supplemental

material assume a normal distribution. However, N2O
emissions are frequently right skewed rather than nor-
mally distributed (Giltrap, Berben, Palmada, & Saggar,
2014). For this reason, the normality of the distribution
of difference between measured and simulated values
should be checked using standard statistical tests (e.g., the
Shapiro–Wilk test), and if the distribution is not normal,
an appropriate transformation applied. Examples ofmodel
assessment using these goodness-of fit measures can be
seen in Abdalla, Jones, Yeluripati, et al. (2010), Abdalla
et al. (2014), and Bell et al. (2012).

8 CONCLUSIONS

Models have the potential to significantly increase our
understanding of N2O emissions from soils compared
with what would be possible from measurements alone.
Potential applications of N2O modeling include gap fill-
ing of measured data; upscaling emissions estimates to a
regional, national, or global scale; determining the long-
term variability of N2O emissions; and running scenar-
ios to assess the potential benefits of mitigation strategies
(Table 4). However, the processes controlling N2O emis-
sions are complex, and it is important to ensure that the
model selected is fit for purpose and well calibrated.
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