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Abstract

We show that various flavours of Witt vectors are functorial with respect to multiplicative
polynomial laws of finite degree. We then deduce that the p-typical Witt vectors are functorial
in multiplicative polynomial maps of degree at most p — 1. This extra functoriality allows us to
extend the p-typical Witt vectors functor from commutative rings to Z /2-Tambara functors, for
odd primes p. We use these Witt vectors for Tambara functors to describe the components of
the dihedral fixed-points of the real topological Hochschild homology spectrum at odd primes.

Contents
Introduction 2
1 PD-functors and their functoriality in polynomial laws 6
1.1 Review of polynomial laws and divided powers . . . . .. ... .. .. ... .. ... 6
1.2 Definition and examples of PD-functors . . . ... ... ... ... ... ....... 11
1.3 Functoriality of PD-functors in multiplicative polynomial laws. . . . . . .. .. .. 15
1.4 The ghost components of a polynomial law . . . ... ... ... ... ... ... .. 22
1.5 The product of polynomial laws . . . . . ... ... ... . ... .. . 24
2 On the functoriality of the Witt vectors in polynomial maps 25
2.1 Review of polynomial maps. . . . . ... ... ... L 25
2.2 Functoriality in polynomial maps . . . . ... ... ... L L Lo L L 30
3 Applications 34
3.1 The factorisation problem for polynomial maps . . . . ... ... ... ... ..... 34
3.2 Witt vectors of Z /2-Tambara functors . . . . . . ... ... ... ... ... ... .. 36
3.3 The components of the dihedral fixed-points of THR for odd primes . . . ... .. 38
A The free 7Z /2-Tambara functor on a presheaf of sets 50
References 54



Introduction

The various rings of Witt vectors have a prominent role in number theory and algebraic topology.
They are defined as endofunctors on the category of commutative rings, and they provide a
functorial way of passing from characteristic p to characteristic zero. The prototypical example
is the ring of p-typical Witt vectors of the field [, which is isomorphic to the ring of p-adic
integers Z,. These Witt vectors functors exhibit some fundamental extra structures, such as
A-operations, §-ring structures, and Frobenius lifts, which determine several of their universal
properties (see e.g. [AT69], [Joy85]). In topology, Witt vectors appear in calculations related
to topological cyclic homology [HM97], cyclic K-theory [Alm74], and in chromatic homotopy
theory. Here they also exhibit extra structure, as they relate to the free Tambara functors of
the cyclic groups [Bru05|. In this paper we will provide novel additional structure on the Witt
vectors, related to polynomial laws and polynomial maps.

We recall from [Rob63| that a multiplicative polynomial law f from a commutative ring A
to a commutative ring B is a collection of multiplicative maps

frRRA® R— B®z R

for every commutative ring R, which is natural with respect to ring homomorphisms in R. Every
multiplicative polynomial law f of finite degree n has an underlying multiplicative map

fz2A— B

which is n-polynomial, in the sense that its (n + 1)-st cross-effect, or deviation, vanishes. The
main goal of this paper is to show that various Witt vectors functors extend from the cate-
gory of commutative rings and ring homomorphisms to the category of commutative rings and
polynomial laws of finite degree, or to polynomial maps.

In §1 we introduce an axiomatic framework of “PD-functors”, to study this extended func-
toriality in polynomial laws. A PD-functor is an endofunctor of the category of commutative
rings

F:Ring — Ring

which commutes with certain limits and colimits. Examples of these functors include the Witt
vectors Wy for any truncation set S ¢ N, so in particular the big and p-typical Witt vectors,
as well as their truncated versions. They also include the rational Witt vectors, the subring of
the big Witt vectors of those power series with constant term one which are rational functions,
which by a theorem of Almkvist [Alm74, Alm78] is isomorphic to the cyclic K-theory ring. The
following is the main result of §1.

Theorem A. Any PD-functor F:Ring — Ring extends canonically to an endofunctor on the
category RingP°Y of commutative rings and multiplicative polynomial laws. For any of the Witt
vectors functors W listed above, this is the unique extension such that for any multiplicative
polynomial law f: A — B the diagram

W(f)

W (A) W (B)

s

[TA [1B
commutes in RingP°V, where w is the ghost map of W and [1 f is the product polynomial law.

The theorem for a general PD-functor is proved in §1.3. We reduce the construction to
torsion-free rings by means of a resolution argument. We then use that the n-homogeneous



polynomial laws out of a torsion-free ring A are classified by the “wuniversal polynomial law”
ya = (-)®" A - (A®")¥ which we by definition send to the map
YF(A) ’ o=
F(ya): F(A) ——= (F(A)®")% — F(A®")% — F((A®")™"),

where the last map is an isomorphism by the axioms of a PD-functor. In fact we show that our
extension of F to RingP°V is the unique one that sends 4 to this map. When A has torsion,
the universal polynomial law has value in the divided powers I',, A, which motivates the name
PD-functor, where PD stands for “puissances divisées” (that is “divided powers”). In §1.4 we
describe the ghost components of a polynomial law for the Witt vectors functors.

Remark. By a theorem of Almkvist [Alm74, Alm78], our result shows that the cyclic K-
group Ki¥(A), defined as K-group of the exact category of endomorphisms of finitely generated
projective A-modules modulo the zero endomorphisms, is functorial in multiplicative polynomial
laws. It is well known that K{¥ and Ko, as functors from additive categories, are functorial in
polynomial functors (see [BGMN] for a highly structured statement). It is however not clear
how multiplicative polynomial laws of commutative rings relate to polynomial functors on the
respective module categories. We also remark that Ko is not a PD-functor (Example 1.15), and
therefore that our theorem does not provide this extra functoriality for K.

In §2 we turn our attention to n-polynomial maps. These are the multiplicative maps f: A —
B which satisfy the additive condition

(Crn+1 f)(a1a~~7an+l):: Z (_1)n+1_|U‘f(zal) =0.

Uc{l,m+1} leU

As remarked above polynomial laws forget to polynomial maps, but this correspondence is
neither surjective nor injective in general. However, it is bijective when the target ring is p-local
and the degrees are at most p — 1. By combining this observation with the theorem above we
prove the following, in §2.2. For any integer or infinity 1 < m < oo, let W,,,(A;p) denote the ring
of p-typical m-truncated Witt vectors.

Corollary B. The functor W,,(—;p) extends to the partial category of multiplicative polynomial
maps of degree at most p—1. That is, a multiplicative n-polynomial map f: A - B induces a
multiplicative n-polynomial map

Wm(f):W'rn(A;p) - Wm(B;p)

for every m < p, with the property that if f:A — B and g: B — C' are multiplicative and n and
k-polynomial, respectively, and nk < p, then Wy, (g) o Wi (f) = Win(go f). This extension is
unique with the property that the diagram

W1n(f)
Wi (A;p) ——————— W, (B;p)
Lo, b
Hg:() A HJ—O B

commutes.

Much like the universal polynomials for the sum and multiplication of W, (A;p) it does not
seem to be possible to give an explicit description of the Witt components of the map W,,(f),
but there is an inductive procedure for finding them. For odd p the first two components of

W (f) are B
Wl ao,01,...) = (00, ZCD(F) o) (e, ...)



(see Example 2.9). When f is a ring homomorphism, one can verify using standard binomial
identities that the second component is equal to f(a1), so that this construction indeed extends
the usual functoriality of W,,(—;p) in ring homomorphisms. In §2.2 we also discuss how the
hypotheses of this corollary are necessary. Most notably, there is no further extension of this
functoriality on multiplicative polynomial maps of degree p. For example, the map

N:Z — Z[z]/(2* - px)

that sends a to N(a) =a+ “pp_“aj is of degree p and does not induce a map on Wa(—;p) with the

ghost components as in the corollary (see Example 2.11).

Our motivation for considering polynomial maps is rooted in topology. A large supply of
polynomial maps is provided by the multiplicative transfers, or norms, of Tambara functors. A
Tambara functor is a Mackey functor with a multiplication (a Green functor) and multiplicative
transfers subject to certain axioms. Tambara functors naturally occur in topology, in particular
in equivariant stable homotopy theory, as the components of genuine G-equivariant commutative
ring spectra. For example the map N above is the norm of the Burnside Tambara functor for
the group G = C), which corresponds to the inclusion e - C), of index p. This Tambara functor
is the components of the initial G-equivariant commutative ring spectrum, namely the sphere
spectrum. For the group G = Z /2, a Tambara functor T consists of two commutative rings A
and B, and maps

tran

T C A {—res
N

B

)

subject to the axioms of [Tam93]. In particular the involution 7 and res are ring homomor-
phisms, N is multiplicative 2-polynomial, and tran is additive and determined by the Tambara
reciprocity relation tran(a) = N(a +1) - N(a) — 1. Therefore for every odd prime p, we can
define a diagram

tran

Won(T;p) = (W) (S Win(Asp) Wm<(res)> Wi (B:p) ),
W (N

where W,,,(7) and W, (res) are induced by the usual functoriality in ring homomorphisms,
W (N) is induced by the functoriality of the Corollary, and tran(z) := Wy, (N)(x + 1) -
Wi (N)(x) — 1. The following is proved in §3.2.

Theorem C. Let T be a 7 [|2-Tambara functor, p an odd prime and 1 < m < oo an integer or
infinity. The diagram W,,(T;p) is a Z |2-Tambara functor. It is the unique Tambara functor
functorial in T with underlying rings Wy, (A;p) and W, (B;p) such that the ghost maps define
a natural morphism of Tambara functors

tran

——
Wi (A;p) &———res——= Wi (B;p)
N
wl [1tran lw
I, A Il res [, B .

N

The reader should not confuse our construction with those arising in the theory of Witt
vectors for Green functors of [BGHL19.

In §3.3 we use this theorem to describe the components of the dihedral fixed points of the
real topological Hochschild homology THR(E') of a connective commutative Z /2-equivariant ring
spectrum E. Let D,m be the dihedral group of order 2p™. Then THR(E) is a commutative
D,m-equivariant ring spectrum, for all m > 0, defined as the (derived) dihedral bar construction

THR(E) := BYE = |[k] — E"**1|



with the usual cyclic structure of THH(E), and the involution of E***! defined as the indexed
smash product over the Z /2-set {0,1,...,k} with the involution which reverses the order of
{1,...,k} (see DMPPR20| and [Hggl6]). For every m >0 one can define a Z /2-spectrum

TRR™(E;p) := THR(E) ",

which is a Z /2-equivariant refinement of the TR-spectra of [BHM93]. In Corollary 5.2 of
[DMPPR20| we identify the Z /2-Tambara functor of components , THR(E), in the case m = 0.
In [HM97, Theorem 3.3] Hesselholt and Madsen show that the components of the underlying
ring spectrum

7o TR™(E; p) = mo THH(E)“»™ 2 W1 (70 E; p) = Wini1 (mo THH(E); p)

are naturally isomorphic to the ring of p-typical (m + 1)-truncated Witt vectors of moE. Here
we establish a real version of this statement for odd primes. We call a Z /2-Tambara functor
cohomological if N res = (-)? (in particular the underlying Mackey functor is cohomological, that
is tranores = 2). For example the Tambara functor defined by the fixed-points of a commutative
ring with involution is cohomological.

Theorem D. Let E be a connective Z [2-equivariant flat commutative orthogonal ring spectrum,
with wyE cohomological. Then for every odd prime p and m > 0, there is an isomorphism of
Z [2-Tambara functors

tran
7o TRR™ ! (E;p) = (70 THH(E)“»™ Tres— mo THR(E)P»™ ) 2 Wiyt (1 THR(E); p)
N

which is natural in E. Here W,11(=;p) is the Tambara functor of the previous theorem. In
particular there is a natural ring isomorphism mo THR(E)Pr™ = W1 (mo THR(E)?/2; p).

At the prime p = 2, or if 7 E is not cohomological, the ring 7o THR(E )Prm is in general not
the Witt vectors of a ring. Moreover on the algebraic side there is no reason for the norm of
7w, THR(E) to induce a map on 2-typical Witt vectors, since the condition n < p of Corollary
B is violated. For example when E = S is the sphere spectrum, whose components are not
cohomological, THR(S) = S and therefore

7o TRR™(S; )2 /2 = 1SP™ = A(Dpm)

is the Burnside ring of the dihedral group, which is not the p-typical (m + 1)-truncated Witt
vectors of mo THR(S)?/? = A(Z /2) (see Example 3.16). The dihedral fixed-points can still be
described by a variant of the Witt vectors construction. For odd p, there are “twisted ghost
maps” w;: [17 70 THR(A)%/% » 19 THR(A)%/2, defined by the formula

plTt-1

J i1
Wi(xo,...,Tm) = Z(l + 7(]) 5 )tranf/z(l))xi(NeZ/zresf/z(a:i)) z .
i=0

When 7, E, and therefore m, THR(E), is cohomological tran(1) = 2 and this is the usual ghost
map w; of the ring o THR(E)Z/2. In Theorem 3.15 we describe the dihedral fixed-points in
the following terms.

Theorem E. Let E be a connective Z [2-equivariant flat commutative orthogonal ring spectrum,
and p an odd prime. There is a unique ring structure Wiy, (mo THR(E)?/?;p) on the set
172 7o THR(E)Z/2 such that the maps w; are natural ring homomorphisms, and a natural ring
isomorphism

mo THR(E)"™ & W1 (mo THR(E)? /2 p)

for every 1 <m < oo,



There is a similar description of mo THR(FE)P>™ for the prime 2. The ring structure is again
determined by a twisted version of the ghost maps w;, which additionally take into account
the action of the non-trivial Weyl group of 7 /2 in Dyn. However, as a set, mo THR(E)P="
is a quotient of the product [T}, 7o THR(E)?/2. This quotient accounts for the fact that the
transfer maps mo THR(E)P21 — 7o THR(E)P=1 are not injective for the prime 2. This situation
is analogous to the Witt vectors for non-commutative rings of [Hes97| and [Hes05] where the
Verschiebung is generally not injective. The description of this quotient requires a choice of free
resolution of m, E as a Z /2-Tambara functor, which is unsatisfying if one is interested only in the
case where F is a discrete ring with involution. This situation will be analysed in a forthcoming
paper with different methods.

We note that the topological applications are independent on the rest of the paper, and the
readers who are only interested in the algebraic results can safely ignore §3.3.
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Notation and Conventions

All the rings of this paper will be unital and commutative, and ring homomorphisms will not
necessarily be unital. We will denote by Ring the category of unital commutative rings and
not necessarily unital ring homomorphisms (or non-unital ring homomorphisms). The category
of commutative rings and unital ring homomorphisms will be denoted by Ring;. The tensor
product ® defines a symmetric monoidal structure on Ring, which is not the coproduct. It is
given by the usual tensor product of unital rings and the tensor product of non-unital maps.

1 PD-functors and their functoriality in polynomial laws

In this section we present an axiomatic framework that includes the various flavours of Witt
vector functors. The notion of PD-functor, named after the French “puissances divisées”, is
an axiomatisation of the properties which allow extra functoriality in polynomial laws. Since
divided powers govern polynomial laws, the axioms can be thought of as sufficient conditions
for compatibility with divided power structures.

1.1 Review of polynomial laws and divided powers
We begin by recalling some basic results about polynomial laws, mostly from [Rob63].

Definition 1.1. Let A and B be abelian groups. A polynomial law from A to B is a collection
of maps of sets fr: A®z R - B®z R for every commutative ring R, which is natural with respect



to unital ring homomorphisms R — R’ (i.e., a natural transformation of set valued functors).
Such a collection is called n-homogeneous if

fr(z-7) = fr(x) 1"

for every v € A®z R, r € R, and any commutative ring R. If A and B are rings, we call a
polynomial law multiplicative if each map fr is multiplicative (but not necessarily unital).

All the results of the present section apply equally well to non-unital rings, which is the gen-
erality employed in [Rob80]. We will however need the rings to have a unit for the constructions
of §1.3 (see in particular (1)), so we will consider unital rings already from now.

Commutative rings and multiplicative polynomial laws form a category under the composi-
tion of natural transformations.

Example 1.2.

i) A homomorphism of abelian groups f: A — B defines a canonical 1-homogeneous polynomial
law

fR3:f®zR3A®ZR—>B®ZR,

which is multiplicative if f is a ring homomorphism. This defines an embedding of the
category of abelian groups and group homomorphisms into the category of abelian groups
and polynomial laws.

ii) Let A be a ring, and n a non-negative integer. The n-th power maps
(—)n:A®ZR — A®7 R

of the rings A ®7 R define a multiplicative n-homogeneous polynomial law.

Remark 1.3. To denote a polynomial law from A to B, we will use the usual arrow A — B.
In view of Example 1.2 (i) this should not cause any confusions since homomorphisms uniquely
correspond to 1-homogenous polynomial laws [Rob63, Section 1.11]. The same applies in the
multiplicative context. In particular any commutative diagram of rings and homomorphisms
uniquely determines a commutative diagram of polynomial laws. This convention will be in
place in all of Section 1.

We recall from [Rob63] that there is a universal n-homogeneous polynomial law
A —T,(A),

where T',,(A) is the n-th graded piece of the divided power algebra of the abelian group A. This
is universal in the following sense. Let H,, (A, B) be the set of n-homogeneous polynomial laws
from A to B, and M,,(A, B) the subset of the multiplicative laws.

Proposition 1.4 ([Rob63, Rob80]). For every pair A and B of abelian groups, there is a natural
bijection

homAb(Fn(A)a B) = Hn(Av B)
which sends a group homomorphism ¢:T'y,(A) - B to @ ov,. If A is a commutative ring, then
T, (A) possesses a natural ring structure [Rob80/, and restricting to ring homomorphisms gives

a bijection.
homRing(Fn(A)a B) = Mn(Av B)

for every commutative ring B.

For the convenience of the reader we recall the construction of divided powers (see e.g.,
[Rob63, TI1.1]). Let A be an abelian group. The divided power algebra of A, denoted by T'(A),
is a commutative ring generated by the symbols v, (a) for all n > 0 and a € A subject to the
following relations:



i) v(a) =1, for all a € A;

i)
il) yn(ka) = k"v,(a), for all a € A and k € Z;
i)

n+m)!

i) Y (a)ym(a) = My L (a), for all a € A;
iv) yn(a+b) =7 yk(a)yn-r(a), for all a € A.

Then I',,(A) is the subgroup of I'(A) generated by elements of the form ~;, (a1)7i,(a2) ... v, (ar),
where i1 +1i9 +--- +4; =n, and I'(A) decomposes as a direct sum

PDTrn(4).

n>0

The universal n-homogeneous polynomial law ~,,: A — T',,(A) defined in [Rob63, IV.1], is given
by
a®rey,(a)®r"

for an elementary tensor a ® 1 € A ® R. We note that for the sums of elementary tensors, the
formulas in general are more complicated and involve lower divided powers. Thus homogeneous
polynomial laws are generally not determined by their value at R = Z. See for example [Chel4,
Example 1.2].

We recall from [Rob63] that any polynomial law f has a “Taylor decomposition™ it decom-
poses uniquely into a locally finite sum of homogeneous polynomial laws. If there are finitely
many non-zero homogeneous pieces, we say that the polynomial law is of degree n, where n is
the largest degree of its homogeneous summands.

Notation 1.5. Let RingP°" denote the category whose objects are commutative rings and whose
morphisms are the multiplicative polynomial laws of finite degree, and where the composition is
the composition of natural transformations. The category Ring is a subcategory of RingP°Y of
the multiplicative polynomial laws of degree 1 which preserve zero.

Let us denote the Taylor decomposition of a polynomial law f: A — B of degree n by

f=fotfitotfn,

where f; is a homogeneous polynomial law of degree i (the f; are however not unital even if f
is, in particular fy is a constant in B). Each f; in the Taylor decomposition of f corresponds
to a unique additive map

2 FzA — B 9

such that o; o~; = f;. When f is multiplicative, the maps ¢; have the following properties (see
[Zip86, Page T1]):

e The map ¢; is multiplicative, i.e., a not necessarily unital homomorphism of rings;

e The maps ¢; and ¢; are orthogonal for i # j, i.e., for any z € I'; A and y € I'; A, one has
i) - 9;(y) = 0.

Altogether the multiplicative polynomial law f admits a unique factorisation in RingP°%

t %l %‘

[M,;A

and the map @;p; is a morphism in the subcategory Ring of ring homomorphisms (see Remark
1.3). Note that if f is unital, then so is ®;¢; (but not the individual ;).



We now give a more conceptual description of the category RingP°%, by expressing it as a
Kleisli-type category of something that resembles a comonad on Ring. Let us look more closely
at the structure of the sequence of endofunctors {I];,T';}ns0 of Ring. We have natural ring

homomorphisms
n+1 n

Tp+1- H FlA —> HFzA
i=0 i=0

for every n > 0, defined by the projections. Additionally, for every n,m > 0, there is a natural
ring homomorphism

nm n m

Ap ot H I'nA— HFi(H FjA)

k=0 i=0  j=0

which classifies the composite polynomial law
A A B e e, TS A)

of degree nm under the isomorphism of Proposition 1.4. Finally, we also have the projection
morphism e: ],y T;(A) = Z xA - A. These morphisms are compatible in a way which resembles
the axioms of a comonad, and govern the composition of polynomial laws. This point of view
will be very useful in the subsequent parts of the paper. To formalise this structure we introduce
the following:

Definition 1.6. Let C be a category. A p-filtered comonad T, on C is a sequence of endofunctors
T,:C — C, for n € N, and natural transformations

Tna1: L1 = Th, An,m:jvnm - TyoTy, 11— id

for all n,m >0, satisfying the following axioms:

i) (Coassociativity) For any n,m,k > 0, the diagram

An,wtk
Trmk Ty o Tk
Anm,kl J{TnAm,k

An,nLTk

Tom o Ty Ty oLy, o Ty

commutes.
ii) (Unitality) For any n > 0, the diagram
An 1 Aqn
T, 0T T, Ty oT,

eTy

N ‘

Ty

commutes.

iii) (Filtration) For any n’ > n and m’ > m, the diagrams

An’,m Anmll
Tn’m E— Tn’ ° Tm Tnm’ —_— Tn © Tm’
ﬂn’m,nwtl J/Trn"nTm ﬂ—nm’,nmJ/ J/Tnﬂ-m,’nl
An,m An,wt
Tom —— T o1y, Ty —— T 0T,

commute. Here m; j = mj.q 0---om:Ty — T for i > j.



Here p-filtered stands for multiplicatively filtered, as T, is indexed over the multiplicative
monoid of natural numbers. When the maps 7,1 are identities this definition recovers the usual
notion of comonad. We recall that given an ordinary comonad 7" on a category C, one can define
the Kleisli category Cp with the same objects as C and the morphisms

Cr(X,Y)=C(TX.Y).

The compositions and identities are defined using the structure maps of T', and the associativity
and unitality of Cr follow from those for T' [Kle65]. The following generalises the Kleisli category
to p-filtered comonads.

Proposition 1.7. Let T, be a p-filtered comonad on a category C. Then there is a category
Cr,, which we call the Kleisli category of Ts, with the same objects as C and with morphism sets

Cr,(X,Y) =colimC(T,X,Y),
n
where the colimit is taken in the category of sets along the maps w,. The composition is defined
on representatives by

Am n m
(TY % Z) o (ToX L Y) = (Ton X 225 T (Tu X)) 2L 17 % 2),

and the identity of X is e:Th X - X.

Proof. This follows immediately from the axioms of a p-filtered comonad. In particular, the
Filtration Axiom of Definition 1.6 implies that the compositions do not depend on the choice of
colimit representatives. O

Our main example of a p-filtered comonad is the sequence of functors T, = [Ti-,I'; together
with the canonical projections, the map €, and the maps

An,m: H ry — Hrz(HF])
k=0 =0 =0

defined above. Checking that the axioms of Definition 1.6 are satisfied is straightforward and
just uses that A,, ,, classifies the composition of the universal polynomial laws of degrees n and
m. We let Ringp denote the Kleisli category associated to the p-filtered comonad [1;_o I';(-).

Proposition 1.8. The categories Ringp and RingP°Y are equivalent.

Proof. We define a functor E : RingP°%¥ — Ringp. It is the identity on the objects. A multi-
plicative polynomial law f: A — B of finite degree n uniquely factors in RingP°" as

A ! B.
IT; 'Yil /

[T A

where ¢ is a ring homomorphism. We let E(f) be the element in colim,, Ring(IT/2, I; 4, B)
determined by ¢. By the surjectivity of the projections this determines a bijection between
finite degree polynomial laws from A to B and Ring-(A, B). Clearly E preserves the identities.
It remains to show that E preserves compositions. Given two composable arrows in RingP°¥,

aLp o,

10



let us consider the corresponding ring homomorphisms ¢: I'I;-LO I'scA - Band ¢: ;% TB - C.
It follows immediately from the definition of A,, ,, that the composite E(g)o E(f) in the Kleisli
category

H?:lo Fi(@)

mn Amv" m n m ¥
M2 TeA ——= TTZ Di(IT50 T A) [liZgI'iB ——C

is the unique ring homomorphism corresponding to the composite polynomial law go f, that is
E(go [). O

Remark 1.9. The Kleisli category Cr, of a p-filtered comonad T, can be related to the Kleisli
category of an honest comonad. Indeed T, defines a comonad T on the category Pro(C) of
pro-objects in C, whose underlying functor assigns to a pro-object {X)}iea the pro-object
{Tn(X2)} (n,a)enxa- Then Cr, is the full subcategory of the Kleisli category Pro(C)r spanned
by the constant pro-objects.

1.2 Definition and examples of PD-functors

In this section we introduce the notion of PD-functor which defines a class of well-behaved
endofunctors on Ring;. We will show in §1.3 that these extend in a canonical way to functors
on polynomial laws, and the definition given here is tailored to this purpose.

We recall that Ring is the category of unital rings and not necessarily unital ring homomor-
phisms, and Ring; is the subcategory of unital ring homomorphisms.

Definition 1.10. A functor F:Ring, — Ring; is a PD functor if it preserves the following
universal constructions:

i) finite products,
ii) reflexive coequalisers,
iii) fixed points of finite group actions.

Example 1.11. Let S be a set, and (-)*°:Ring — Ring be the functor that takes a ring A
to the product ring A*® = [Ig A, and a ring homomorphism to the product map f*°. Then
(=) is a PD-functor. Conditions i) and iii) are satisfied, since products commute with limits.
Given a reflexive coequaliser of commutative rings, it is also a reflexive coequaliser of underlying
abelian groups and sets. If the set S is finite, then it is clear that (-)*° commutes with reflexive
coequalisers, since finite products in sets do. Infinite products in sets do not commute with
reflexive coequalisers in general. However, infinite products of abelian groups do commute with
reflexive coequalisers and reflexive coequalisers in abelian groups are reflexive coequalisers of
underlying sets.

Example 1.12. Let R be a torsion-free commutative ring. The functor (-)®z R: Ring; — Ring,
that sends a commutative ring A to A ®7 R is a PD-functor. The fact that R has no torsion is
used to show that (=) ®z R commutes with invariants of finite groups.

Example 1.13. For any truncation set S, the S-truncated Witt vectors functor Wg:Ring; —
Ring; is a PD-functor. We recall that as a set

Ws(A) =TT A4,
seS

and that the functoriality is given by taking the product map on underlying sets. As in Example
1.11 this implies that Wy satisfies Conditions i) and iii). A reflexive coequaliser of commutative
rings is also a reflexive coequaliser of underlying abelian groups and sets. To show Condition ii)
one can argue exactly as in Example 1.11 using that Wg and (-)*° have the same underlying
set.

11



By choosing the appropriate S, we see that big Witt vectors, n-truncated big Witt vectors, p-
typical Witt vectors and n-truncated p-typical Witt vectors are all PD-functors. See for example
[Hes15, Rab14] for more background on Witt vectors.

Example 1.14. For a commutative ring A, the ring of big Witt vectors W(A) is isomorphic
to a ring whose underlying additive group is the subgroup of the units of A[[x]] consisting
of the power series with constant term equal to 1. The ring of rational Witt vectors Wq(A)
is the subring of W(A) corresponding to those power series which are rational functions. See
[Alm74, Alm78, Haz83] for more details.

It is clear that Wq preserves finite products. We verify Conditions ii) and iii) directly. For
a reflexive coequaliser of unital ring maps

f
A ?; B—=lsC
with a common section s: B — A, we would like to show that
Wa(f) Wa (k)
Wo(A) W:()§ Wo(B) ———— Wa(0)
o(g

is a coequaliser. One only needs to check that Ker Wg(h) ¢ Im(Wo(f) - Wa(g)). Suppose that

we have
1+bix+-+bya™

1+bjz+--+ban

Then h(b;) = h(b}) for all i = 1,---,n. This implies that there are a; € A, i = 1,...,n such that
f(a;) =b; and g(a;) = b} for every i. Consider the rational function

e Ker Wq(h).

1+a1z+-+apz"”
1+s(by)x+-+s(by)zm

€ WQ(A)

Then the map Wq(f) — Wq(g) sends this rational function to

1+ fla)z+ -+ f(ay)a" 1+g(s(b1))z+ -+ g(s(by))z"
1+ f(s(by))z+-+ f(s(by))z™ 1+g(ap)x+-+g(ay)z™
_l+bw+ o+ bpa” 1+bix+-+bpa”  1+biz+- +bya”

L+bix+ - +bpa™ 1+bix+-+b0am  1+ba+-+ban’

where we have used that fs=gs=1. This shows Condition ii).
Let G be a finite group and A a commutative ring with G-action. To show Condition iii) we
want to show that the canonical map

Wo(AY) - Wo(4)°

is an isomorphism. Since Wq preserves injections this map is injective, so we must show surjec-
tivity. Given a polynomial o € A[z] and an element g € G, we denote by g -« the polynomial
obtained by acting on the coefficients of « by g. Now let

% e Wo(A)°

be an invariant rational function. Then by definition for any element g € G, we have
g-a

o _go_o
Y8 g8 8

12



Hence (g-«)B = a(g- ). Note that a and 8 do not have to be G-invariant. However, the latter
equation allows us to replace them with G-invariant polynomials. Indeed, we observe that

a_ a(ngG,gﬁ g-B)

B ngGg'B

It is clear that the denominator of the right hand fraction is G-invariant. We check that the
numerator is invariant as well:

he(a( TT g-8)=(h-a)(hh™-8)C T[]  hg-B)=

geG,g#1 geG,g+#1,h~1
(h-a)s( I hg-B)y=a(h-8)C I hg-B)=a( I] g-B).
geG,g+1,h~1 geG,g#1,h~1 geG,g+1

The third equality uses the relation (h-a)8 = a(h- ). Now the quotient

a(HgEG,g;tl g- 6)
HgEG g- ﬁ

is an element of Wq(A®) that maps under the canonical map to 3 in Wo(A)C.

Example 1.15. By Almkvist’s theorem [Alm74, Alm78], the functor Wy is isomorphic to the
cyclic K-theory functor K¢, which is therefore a PD-functor. We remark however that the
Grothendieck group Kgy is not a PD-functor. Indeed, since any surjective ring homomorphism is
the projection onto a reflexive coequaliser, any PD functor must preserve surjections, whereas
Kq does not.

We end the section by remarking that any product-preserving endofunctor of Ring; extends
canonically to an endofunctor of Ring. For this reason we will often implicitly consider a PD-
functors as being defined on the larger category Ring.

Lemma 1.16. Let F:Ring, — Ring; be a functor that preserves finite products. Then there is
a functor E:Ring — Ring and an isomorphism ¢: E|ring, = F. The pair (E, ¢) is unique up to
unique isomorphism over F.

Proof. We first prove existence. For a possibly non-unital ring A we write A* for its unitali-
sation and pa: A* — Z for the canonical projection. We set F(A) = ker(F(A*) - F(Z)) and
note that this defines an endofunctor of the category of non-unital rings and non-unital ring
homomorphisms. If A is unital there is a natural unital map A" — A and the induced map
A* - Ax 7 is an isomorphism of unital rings. Since F' preserves products, taking kernels of the
projection to F'(Z) gives an isomorphism ¢4: F(A) - F(A), so we see that F restricts to an
endofunctor F' on Ring. The maps ¢4 are natural in unital ring homomorphisms so we get a
natural isomorphism ¢: E|ring, — F as desired.

We now prove uniqueness. Let (E, ¢) and (E’, ¢") be pairs as in the statement of the lemma
and write ¥ = (¢')™ 0 ¢. We will show that v is natural with respect to all maps in Ring. Any
such map f: A — B factors as

Ae—'f>eBld—XO>eB><(l—e)B§B,
where e = f(1) is idempotent. The left and right hand maps are unital, so it suffices to check 1)
is natural with respect to maps of the form id x0: R - Rx S. This follows since F', and therefore
also E' and E’, preserve finite products. The uniqueness of v is clear. O

By abuse of notation we will simply write F' for a choice of extension of a product preserving
functor F' on Ring; to non-unital ring homomorphisms. A pair of maps f:A - C and ¢:B - C
in Ring is called orthogonal if f(a)-g(b)=0eC for allae A and be B.
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Lemma 1.17. Let F:Ring, — Ring, be a functor that preserves finite products. Then the
extension to the category Ring has the following properties:

i) For any pair of maps f:A —~ A’ and g: B - B’ in Ring, the diagram

F(A) e F(B) 279 | poany g p(BY)
F(AeB) — Y% pae B

commutes, where ¢ is the canonical coproduct map for unital rings.
it) For any pair of orthogonal maps f:A — C and g:B — C the maps F(f) and F(g) are
orthogonal.
iit) For any pair of orthogonal maps f:A — C and g:B — C in Ring there is a commutative
diagram in Ring
F(f+g)

F(AxB) F(O)

F(A) x F(B).

Proof. Part i): The statement is true for unital maps. By factoring f® g as (f ®id) o (id ®g) we
may assume that f is the identity. Moreover since every map in Ring factors as a unital map
followed by an inclusion id x0: B — B x C' (see the proof of 1.16), we may assume that g is of the
form id x0. We must show that the left hand square in the following diagram commutes

F(A) @ F(B) —2X0 b4y @ P(B x 0) LL2E@DSE@Dp 4y @ B(B)) x (F(A) ® F(C))
F(Ae B) — 200D | pag (B xC)) — L IEER) L b4 By x F(AeC).

The right hand square commutes and the right hand horizontal maps are isomorphisms, so it
suffices to show that the outer rectangle commutes. The composite through the upper right
hand corner is the map (coid®id) x co (id®0) and the other composite equals (F(id®id) o
¢) x (F(id®0) o ¢). The second coordinates of both maps are equal to the 0 map and the first
coordinates are equal because ® is the coproduct on unital rings.

Part ii): Orthogonality of f and g is equivalent to the composite map

Ae Bl ceC %

factoring through 0, where p¢ is the multiplication of C. Since F'(0) = 0, Part i) implies that

F(f)®F(g) K (C)
-

F(A)® F(B) F(C) e F(C) 22 p(0)

factors through 0 as well.

Part iii): The orthogonal maps f and g give a splitting of C' as C'= Cy x C, x C' with f and
g factoring through C; and Cy, respectively. Here Cy = f(1)C and C, = g(1)C. The map f +g
is the composite

AxBiZ£u%xcbgc}xqﬂcﬂﬁeq
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where f* is the corestriction of f, which is unital, and similarly for ¢*. Now consider the

diagram
F(Ax B) — L) F(Cfxcg>/F<C)
F(A) x F(B) — L2290 pieyy < p(Cy)

where the vertical maps are the canonical isomorphisms. This diagram commutes in Ring and
the composite of the upper row is F'(f + ¢) while the composite from the lower left hand corner
to the right hand corner is the map F(f) + F(g). O

1.3 Functoriality of PD-functors in multiplicative polynomial laws

We now explain how to extend a PD-functor F:Ring — Ring to the category RingP°" of com-
mutative rings and polynomial laws of finite degree.

If A is a torsion-free ring, the natural transformation &4:T,(A4) — (A®")®" from [Rob63,
Section IT1.6] is an isomorphism, and we can consider the polynomial law defined as the composite

F(A) 25 (R(A)en)™ — F(aem)® E p(aemy) S par ). )

Theorem 1.18. Any PD-functor F:Ring — Ring extends canonically to an endofunctor of
RingP°Y which preserves the degree. This is the unique extension which sends the universal
n-homogeneous polynomial law ~v,: A — T, (A) to the map (1) for any torsion-free A.

The proof of this theorem will occupy the rest of the section. The key ingredient of the proof
is the construction of a natural unital ring homomorphism

cn:TpF(A) — F(T,A),

for every n > 0. For n =0, the functor I'j is constant with value Z, and we define ¢y to be the
unit map
co:Z — F(Z)

of the ring F'(Z). Now suppose that n > 1. We start by defining ¢,, for torsion-free rings, as the
composite

e D F(A) S22 (R(a)om)=n 20y paon)®n 2 p((A2)5) £ pr, 4.

Here ¢: F(A)®" — F(A®") is the canonical map that commutes F' and the coproduct, and it is
Yn-equivariant. The third map is an isomorphism since by assumption PD-functors commute
with invariants of finite groups.

In order to construct ¢, for rings which are not necessarily torsion-free, we use resolutions
by polynomial rings. We recall the formal setup of the monadicity theorem, see e.g. |[ML9S8,
Section VI.7]. Let C and D be categories, such that C has reflexive coequalisers, and

U:C—7D

a functor which has a left adjoint L, reflects isomorphisms, and preserves reflexive coequalisers.
The Barr-Beck theorem (crude version) then states that U is monadic, i.e. that the category
C is equivalent to the category D7 of algebras over the monad 7 = U o L, and the functor U
corresponds to the forgetful functor D7 — D.
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Let us now identify the full subcategory Free” of free T-algebras in D7 with a full subcat-
egory of C. Then the inclusion i:Free” c C enjoys the following universal property: For any
category A which admits reflexive coequalisers and any functor

G:Free” > A

which sends reflexive coequalisers in C to reflexive coequalisers in A, there exists a unique (up
to natural isomorphism) extension G:C - A which preserves reflexive coequalisers and a natural
isomorphism

G5 Gou

The value of G on an object C' is given by the reflexive coequaliser G(TTC) =X G(TC) — G(C) .

We see in particular that G is the left Kan extension of G along ¢, that is given any functor
H:C - A and natural transformation 8: G — H o, there exists a unique natural transformation
v:G - H such that y.0« = 8. In particular, if a functor F:C — A preserves reflexive coequalis-
ers, then it is left Kan extended from its restriction to Free”. More generally, F is in fact left
Kan extended from any full subcategory of C containing Free .

We now apply this discussion to the forgetful functor U:Ring, — Sets, whose left adjoint
Z[-]:Sets - Ring is the polynomial algebra functor, to define the unital ring homomorphism
en:TnF(A) - FT',(A) for a possibly non-torsion free ring.

Proposition 1.19. For any PD-functor F', the natural transformation c,:I',F' — FT',, on the
category of torsion-free rings defined above extends uniquely to the category Ring, of all rings
and unital ring homomorphisms. The value at a ring A is the map induced on coequalisers

I, F(Z[Z[A]]) == T, F(Z[A]) —— T, F(A)

A

FT,.(Z[Z[A]]) == FT,(Z[A]) —— FT,,(4).

Proof. The functor I',,(-) preserves reflexive coequalisers by [Rob63, Section IV.10] and the
functor F' does so by Axiom ii), hence so do the composites I',, ' and FT',,. Thus both functors
are left Kan extended from the subcategory of torsion-free rings and unital ring homomorphisms,
and the natural transformation ¢, uniquely extends. O

We will need to use that this natural transformation c¢,, is in fact natural also with respect
to the non-unital ring homomorphisms.

Proposition 1.20. For any n >0, the map c,: 1T, F' — FT',, is natural with respect to morphisms
in Ring. In other words, for any not necessarily unital ring homomorphism f:A — B, the
diagram
[ F(A) ——= 5 FT,(A)
roF () | R
IWF(B) —————— FT'(B)

commutes.

Proof. We obtain this extra naturality again by applying the monadicity theorem. Since we are
considering non-unital ring homomorphisms the forgetful functor Ring — Sets does not admit
a left adjoint, and therefore we need to find a substitute forgetful functor. Let Mon be the
category of commutative monoids and not necessarily unital monoid homomorphisms. Then
the functor U:Ring — Mon which sends a commutative ring to its underlying multiplicative
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monoid has a left adjoint Z(-) which is the usual monoid ring functor. The functor U preserves
reflexive coequalisers (they are all computed in sets), and by the monadicity theorem Ring is
equivalent to the category of U Z(-)-algebras. The free objects in this case are monoid rings,
which are in particular torsion-free.

Now I',, and F also preserve reflexive coequalisers in Ring (the first preserves them in abelian
groups by [Rob63, Section IV.10], and the second by Lemma 1.16), and therefore FT,, and I', F
are left Kan extended from the full subcategory of Ring on torsion-free rings. Thus ¢,, uniquely
extends to a natural transformation on Ring. O

Remark 1.21. The extension of ¢, in the proof of Proposition 1.20 coincides on Ring; with the
extension obtained in Proposition 1.19, by the uniqueness of the latter. In fact Proposition 1.19
could be considered redundant, but we prefer to define ¢, using the more common resolutions
by polynomial rings.

We are now ready to define a multiplicative polynomial law F(f) for any multiplicative
polynomial law f: A — B of finite degree. We recall from §1.1 that the Taylor decomposition

f=Tfo+ i+ fn,

where f; is a homogeneous polynomial law of degree i, provides a factorisation in RingP°"

I1; 'y,l /
w=B;pq

[T, A

where ¢; 0v; = f;. We define the multiplicative polynomial law F'(f) to be the composite

F ()
F(A) —> [T, TiF(A) —> [T, F(T;A) — F(TL,T;A) —= F(B),
where the third morphism is the inverse of the canonical morphism, which is an isomorphism
since PD-functors commute with finite products. This definition recovers the original F(f)
when f is a morphism in Ring, and it clearly preserves the degree. In order to prove Theorem
1.18 we must therefore show that this construction respects the composition of polynomial laws.

Theorem 1.22. Let F' be a PD-functor and f:A — B and g: B - C' two multiplicative polyno-
mial laws of finite degree. Then F(go f)=F(g)o F(f).

In order to prove Theorem 1.22 it is convenient to recall that by Proposition 1.8 the category
RingP°" of rings and polynomial laws is equivalent to the Kleisli category Ringp of the p-filtered
comonad J];_, I';. We will then make use of the following general construction regarding Kleisli
categories.

Lemma 1.23. Let T, be a p-filtered comonad on a category C, let F':C — C be a functor and
Nn: T F — FT, be natural transformation such that the diagrams

Nnm

i) (Comultiplicativity) Ty F FTom

An,nLJ/ J/F(A'flym)

T, T FﬁTFT 4}FTT
Ty (Nm

ii) (Unitality) nF——F

Ty

17



Mn+1

it1) (Filtration) TpwirF———— FTy 1

7Tn+1J/ lF(ﬂvwl)

T.F —— T,
Mn

commute for every n,m > 0. Then F can be extended to a functor Cr, — Cr, by sending an
object X to F(X), and a morphism in Ct, represented by p:T, X —Y in C to

. F
T, F(X) 2 FT,(X) 29 p(y).

Proof. The proof is immediate from the definitions. The third axiom guarantees that this map

does not depend on the colimit representative, and the first and the second that it preserves the

compositions and the identities, respectively. O

Proof of 1.22. Our definition of F on RingP°Y arises precisely as in Lemma 1.23 from the maps

o [0 F 225 T Py = AT
=0 =0 =0

which are natural on Ring by Proposition 1.20. It is immediate to verify that these natural
transformations 7,, are compatible with the projections 7,1 and with the counit €. It therefore
suffices to show that 7, is compatible with the comultiplication A, ,, as in condition i) of
Lemma 1.23.

Let us recall from [Rob63, Theorem I11.4] that for every n >0 and rings A and B, there is a
natural group isomorphism

I, (AxB) — [] Ti(4)eT,(B)

i+j=n

whose (i, j)-component classifies the n-homogeneous polynomial law v;®v;: A x B — I';(A) ®
I';(B). Here ® is the tensor product of multiplicative polynomial laws oz A - C and 3: B — D,
defined as the composite

AxBY cxD 5 CeD,

where the map 7 is the canonical map from the product to the tensor product, which is a
polynomial law by [Rob63, Section 1.7]. Since v;®7; is multiplicative the isomorphism above
is a natural ring isomorphism. Under this isomorphism the comultiplication of the p-filtered
comonad is the ring homomorphism

k=0 =0 j=0

0<jo+-+jm<n
whose (jo, ..., jm)-component is the composite of ring homomorphisms

Y040, mim ®iX1,j;

(FO]OA) ®-® (ijnL A) - (FJOFOA) & ® (Fj'm FmA)

nm
H FkA - F0j0+"'+mj7nA
k=0

where the first is the projection, the second classifies the tensor product 79, ® . .. ®7Ym,., and the
third is the tensor product of the ring homomorphisms x; 5:1';; = I'yI'; which classify v 0. By
using that F' commutes with finite products, the comultiplicativity of the 7),, is thus equivalent
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to the commutativity of the outer rectangle in the diagram

Cojo+1j1+-+mjim

Lojo+1j1 +tmjpm F FTojo+1j1+4mim (2)
Y050,---s maml \{F(’)’Ojo ,,,,, mim )
m T, F Brcti mopr, s F(Q Ty
®l:O g1 ®l:O L (®l:0 lJL)

®le,jll &L (x1,5, )l JF(&XLJ'Z)

®io Ui TiF oo @20 Tt P11 5 @i P15 T —— F(®i%p 1)
Il

for every 0 < jo + -+ jmm < n. The horizontal maps in the bottom right square are the canonical
maps that commute F' and the tensor products, and that square commutes by naturality. We
therefore need to show that the remaining two rectangles commute, and since all the functors
involved commute with reflexive coequalisers it is sufficient to prove it on torsion-free rings.

We start with the bottom left rectangle of diagram (2), where we need to show that for every
pair of integers j,k > 0 and torsion-free A, the top rectangle in the diagram

Chj

Ty F(A) FTy;(A)

Xk’jl J/F(Xk,j)

DT F(A) —————— T, FT}(A) ———— FT;Tx(A)

T'j(ex)
€l Jﬁ IF(@

(PR F(A)® ———= (FTk(A))® ———— F(T(4)*)

commutes. The vertical maps from the second to the third row are induced by the natural ring
homomorphisms I'; - ((=)®/)* of [Rob63, Proposition II1.1], followed by the inclusion of ¥,
invariants in the j-fold tensor product (see also [Lak06]). The right-hand one is injective, since
it is the composite

FT;T4(A) = F((Tk(A)™)™) = F(Tw(A)®)™ e P(T(A)™)

where the first map is an isomorphism since A, and therefore I';(A), is torsion-free (see [Rob63,
Section IT1.6]). The bottom left-hand square commutes by naturality of £, and the bottom right-
hand square commutes by the definition of ¢; on torsion free rings, where c is the canonical
map that commutes F' and the tensor product. It is therefore sufficient to show that the
outer rectangle commutes. The composite of the two left vertical maps is the natural ring
homomorphism _

Vit Lij — Ffj

which classifies the kj-homogeneous polynomial law 75,®...&vg:id - T'®7. This is because by
definition of xi, ; the composite
id 22 1y X popy, S

is Eoyjoy = (’yk)‘é’j. It follows that the composite of the two right vertical maps is F'(vx,.. k).
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By induction on j, it is sufficient to show that for every ki, ks > 0 the diagram

Fk1+k2F A Frk1+k2
’Ykl,kQJ lF('Ykl,kg)
(T, F) ® (Tjy F) —————— (FT'y,,) ® (FTy,) —————— F(Ty, ® [y,)

Cky ®Cly

commutes. We moreover observe that by induction on m also the commutativity of the top
rectangle of diagram (2) can be reduced to the commutativity of the latter, and this will conclude
the proof.

In order to show that this last diagram commutes, we need understand the map v, x,. By
definition of 74, , the diagram of ring homomorphisms

Ty vhy (D)
Fk1+k2A n Fk1+k2(A X A)
'Ykl,kzl A—llg
(T, A) ® (T, A) - [T (TA)e(T;4)
YR1,R2

i+j=k1+ka

commutes for every ring A, where A: A - A x A is the diagonal map, and the lower map projects
onto the summand (i,7) = (k1, k2). The map X is explicitly described in [Rob63, Theorem II1.4],
and it sends an elementary tensor a ® b in the (i,7)-summand to

((id, 0)«(a)) * ((0,1d). (1)),

where (id,0).:T;A — T;(A x A) is induced by the inclusion (id,0):A4 - A x A in the first
summand, and similarly (0,id), is induced by the inclusion in the second summand. The map
* is the graded multiplication of the divided power algebra I'(A x A) = ®,,I',,(A x A) as defined
in [Rob63, Sections III.3-5].

Now we can replace 7, k, by the composite projy, ., oAt o Tk, 1k, (A) into the diagram
above. Using the definition of the maps ¢, +,, ¢k, and ck,, and Property i) of Lemma 1.17, one
can reduce the commutativity of this diagram to the commutativity of

Ckq+ko

Fk1+k2 (F(A) X F(A)) <; Fk1+k2F(A X A) FFk1+k2 (A X A)
;lF(/\'l)
NE FOTT @a)e(T;4)
i+j=k:1+k2

lg

i+j=k1 +ka [Tei®e; i+j=k1+ka i+j=k1+ka

Since A! is an isomorphism we can equivalently verify that the rectangle obtained by replacing
A1 with A commutes, and this can be verified one component at the time. By inputting the
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definition of A we need to verify that the outer rectangle of

Fk1F(A) ®F7€2F(A) Fkl(F(A)XQ) ®Fk2(F(A)X2) ;}Fk1+k2(F(A)X2)

(1d,0) . ®(0,id)«
Er(a)®Er(a) Ep(ayx2®Epayx2 Er(ayx2

(F(A)?H)750 @ (F(A4)%) e s (F(4)")%F )50 @ ((F(4)")%F) s S ((F(A)2) ke s

c2k1®c2k2 (F(AX2)®k1)Ekl ® (F(AX2)®k2)E"‘2 * (F(Ax2)®k1+k2)2kl+k2
7k @c k2 ko

®k1\Xk, ) ®k2\Xp x2\®k1\Xx x2\®k2\Xp, _ S x2\®k1+k2 \ Xk, +k
F(A®M)5m @ F(A®"2) 2Fm>)f((14 )ER) T @ F((A*)®h2)%ke + F'((A*) ) 2

1113

F((A%4)551) & F((A%%2)552)
P((A%)%: & (4%52))
F(£a®Ea) | =

F(FklA ® FkQA)

F((A2)8k1k2 )R )
F(€A><2)

F(Fk1+k2 (A X A))

F((id,0)«*(0,id)+)

11

F((id,0)*(0,id).)

commutes for every torsion-free ring A. Here the map * denotes the graded multiplication of
the divided power algebra, as well as the shuffle product of the symmetric tensor algebra, with
respect to which & @0 Tk = @pso((=)®¥)*F is a natural ring homomorphism (see [Lak06]).
We recall that on 2 € (X®*1)¥ and y e (X®*2)Zk1 the shuffle product is defined as

zxy= Y, o(z®y),

€Sk, ky

where Sk, 1k, is the set of (ki,k2)-shuffles (which are representatives of the left cosets (g, x
ko )\Xk, 4k, ), Where the left action of o € ¥, on X®* is defined by the formula
0’(331 Qro®--- ®$k) =To-1(1) @ To-1(2) B+ @ Ty-1(k)

(there is some confusion between left and right actions in [Rob63, Section II1.5], see also [Lak06]).
All the rectangles in the last diagram except the ones involving the dashed map commute by
naturality, or because £ is a map of graded algebras. We define the dashed map by the formula

s(zew):= ), oc(zew),

(765'161,]62

where z € F((A*?)®%1)2x and w € F((A*?)®%2)¥r2 and ¢(z ® w) is the image of z ® w under
the composite

F((A2)2) % @ F((A7)2h2) % s P((A7)2h) @ F((A72)%h) —y F((A2)eh ),
It is immediate to verify that s lands in the X, 1x,-invariants. The rectangle above s commutes
since

Rtk (z *y) :CEk1+k2( Z o(z®y)) = Z oc(x®y)

€Sk ko €Sk ko

= Y oe(cTh(x) @ 2 (y))

Ueskl ko

= (%1 (1) 8 e ().
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Let us denote by 1, (X®?)*» — X®" the fixed points inclusion. It is sufficient to show
that the rectangle below s commutes after composing with tg,+r,. After postcomposing with
this inclusion, the lower composite of this rectangle sends an element u ® v € F((A®*1)%) @

F((A®F2)Ek2) to
F(tky ek ) F((id, 0)5 x (0,id) ) (c(u @ v)) = F (1 k. ((id, 0)s + (0,id).)) (c(u® v))
= F(((0,0). + (0,1d)) (1, ® 15,))(c(u ® 0))
=F( Y o((id,0). ® (0,id).) (t, ® tiy)) (c(u®v)).

o'ESkl ko

The last sum is a sum of orthogonal ring homomorphisms since the permutations of Sy, 5, are
shuffles, and by Property iii) of Lemma 1.17 we can write this as

F( Y o((id,0)« ® (0,id)+) (uk; ® tr,))(c(u®v))

€Sk
- USZ ZF(U((id,O)* ® (0,id). ) (tk, ® ty)) (c(u @ v))
= USZ oF(((id,0). ® (0,id).) (tk, ® tk,))(c(u®v))
= UGS%:M oc(F((id,0)+) ® F((0,id)«)) (F (tk, ) (u) ® F (1, ) (v))
which is the value of the upper composite. O

1.4 The ghost components of a polynomial law

A consequence of Theorem 1.18 and Example 1.13 is that any multiplicative polynomial law
f+ A — B of finite degree induces a multiplicative polynomial law on Witt vectors

Ws(f):Ws(A) — Ws(B),

for every truncation set S ¢ N. We will describe the ghost components of Ws(f), and explain
how these determine the functoriality of Wy in multiplicative polynomial laws.

Proposition 1.24. Let F,G:Ring — Ring be PD-functors and o: F' — G a natural transforma-
tion. Then o extends to a natural transformation on RingP°V. That is, for any multiplicative
polynomial law f: A — B of finite degree, the diagram of polynomial laws

FA) —D L pB)

T

G(A) —————— G(B)
commutes.

Proof. Suppose that degree of f is at most n. Recall that we have a commutative diagram of

polynomial laws
A ! B.
Hi £

H?:o FiA
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We need to show that the outer rectangle in the diagram

F(A) 1 e T F(A) — S [T F(PA) —E— F(ITL, TiA) —2 s F(B)

QAJ/ ll‘[i Ti(aa) ll’h ar, (A) Jani r;(A) las
IT; ci G()

G(A) — I TG (A) — 5 T G A) —E— G(IT T A) —— 2 G(B)

commutes. The first square commutes by naturality of the universal polynomial laws ~;. The
third and fourth squares commute by the naturality of o on Ring. It remains to check that the
second square commutes. For this it suffices to see that for any 7, the square

[F(A) —2 5 F(I;A)

FiaAl laFiA

[,G(A) ———— G(I;A)

commutes. Because ¢; is extended to all rings from torsion free rings it suffices to check this
when A is torsion-free. By the naturality of « this reduces to showing that for any commutative
rings C7 and Cs, the diagram

F(Cl)®F(CQ) c—)F(Cl ®02)

o o

G(Cl) ® G(CQ) S G(Ol ® 02)
commutes. This also follows from naturality of «. O

Let us recall that for any set S, the S-fold product functor (-)*:Ring — Ring is a PD-
functor, and therefore a multiplicative polynomial law f: A — B of finite degree induces a
multiplicative polynomial law f*%: A% - B*®. When the set S is finite this is the natural
transformation

xS
(FS)r: (A*5) @2 R2 (Aey RS Y, (Bey R)S = (B*5) @2 R.

If S is infinite there is no obvious direct description of this law as a natural transformation, and

one needs to involve divided powers.

Proposition 1.25. Let f: A — B be a multiplicative polynomial law of finite degree. Then for
any truncation set S, the diagram of polynomial laws

Ws(f)

Ws(4) Ws(B)

wl lw
HSA Is f HSB

commutes, where the vertical maps are the ghost coordinates. Moreover, W: RingP?y — RingP°%
is the unique extension of Wg with this property.

Proof. The ghost coordinates w:Ws — (=)*° form a natural transformation between PD-
functors. Thus by Proposition 1.24 the diagram commutes. Let W§ be another extension of Wy
to RingP°" such that the diagram above commutes. Then we must have wWs(f) = w'Ws(f),
or equivalently that the composites

® w y
[T, TiWs(A) I:; Ws(B) —2—— B*°
@
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agree, where ¢ and ¢’ are the unique ring homomorphisms extending Wgs(f) and W§(f),
respectively. When B is torsion free w is injective, and this shows that ¢ = ¢, and consequently
Ws(f) =WE(S). In general, let us consider the commutative square

7[A] — o r 74

| f B

A B

where € is the counit from the polynomial ring, the top horizontal map is the universal poly-
nomial law, and ¢ is the unique ring homomorphism extending the polynomial law fe. By
applying Ws and W, respectively, to this diagram we obtain analogous commutative squares
of polynomial laws, and corresponding commutative squares of ring homomorphisms

PWs(I; 74 n n PWE L) n
Iy TiWs (Z[A]) =% W (T2, T Z[ A]) n o TiWs(Z[A]) ——5 W (TTiLo T Z[ A])
ll‘llnws(s) le(w) ll‘l I';Ws(e) le(w)
Hz=0 FzWS(A) PWg(f) WS(B) Hz:O FZWS(A) WL WS(B)

The vertical maps of these squares agree since Wg and W{ agree on ring homomorphisms by
assumption. The top horizontal maps also agree by the previous argument, since i, I'; Z[A]
is torsion-free. Since the left vertical map is surjective, the bottom horizontal maps are also
equal. O

1.5 The product of polynomial laws

We show that our construction respects the product of polynomial laws. Given two multiplicative
polynomial laws f: A — B of degree at most n and g: A — B of degree at most m, there is a
multiplicative polynomial law

(f-9)r=fr-grrA®z R— B®z R

defined by the pointwise product in the ring B ®7 R, of degree at most n + m.

Proposition 1.26. Let F' be a PD-functor. For any pair of finite degree multiplicative polyno-
mial laws f,g: A - B, we have F(f-g)=F(f)-F(g).

Proof. This is very similar to the proof of Theorem 1.22. Suppose that f is of degree at most
n and g of degree at most m. Then we have commutative diagrams

A ! B, A g B,
Il wl / I, ’Y‘]_J/ /
¥ P
Miso A M2 LA,

where ¢ and 1) are not necessarily unital ring homomorphisms. In order to prove the proposition
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it suffices to show that the diagram

F(IT TiA) @ F(IT TiA) — 225 p(By o F(B)

F(IT, v)®F(I1; 7;) l l
F((Hi'}’i)é(nj Y5)) F(pev)

P F(ITiso DA IT7L I A) F(B® B) I

lF(u)

F(B)

F(A)

commutes, where y denotes the ring multiplications and & is the tensor product of polynomial
laws of the proof of Theorem 1.22. Indeed, the outer composite through the upper right hand
corner is F'(f)- F(g) by functoriality of F'. The lower triangle commutes by functoriality of F',
and the square commutes by Lemma 1.17 i). The upper left hand triangle commutes by the
final step in the proof of Theorem 1.22. O

2 On the functoriality of the Witt vectors in polynomial
maps

In this section we show that in certain circumstances the functoriality of the Witt vectors
functors in polynomial laws extends to polynomial maps. We start by reviewing some material
on polynomial maps.

2.1 Review of polynomial maps

This is a recollection of results on polynomial maps and their relationship with polynomial laws
that we will use throughout the paper. The content is classical and we do not claim originality
for these results. Some of these results can be found in [Pas68, Pas69, Lei02, Xanl17].

Let A and B be abelian groups and f: A — B a function which is not necessarily a group
homomorphism, and n > 0 an integer. We recall that the n-th cross-effect, or n-th deviation, of
f is the function cr,: A*"™ - B defined by

crp flar,oan) = Y ()" ).

Uc{l,-,n} leU

Definition 2.1. A function f: A - B of abelian groups is called polynomial of degree < n, or
n-polynomial, if cry,41 f = 0. Tt is called n-homogeneous if it is n-polynomial and f(ka) = k" f(a)
for every ke Z and a € A.

A function of rings f: A — B is called a multiplicative n-polynomial map if it is n-polynomial
as a map of abelian groups, and f(aa’) = f(a)f(a") for any a,a’ € A. Similarly, it is multiplicative
n-homogeneous if it is multiplicative n-polynomial and n-homogeneous.

The composition of an n-polynomial map and an m-polynomial map is nm-polynomial, by
[Lei02], and similarly for n-homogeneous maps. Similarly the product of an n-polynomial map
and an m-polynomial map is (n + m)-polynomial.

Example 2.2.
i) The only 0-polynomial maps are the constant maps.

ii) A multiplicative polynomial map f:A — B of degree 1 is precisely a map of the form
f(a) =c+p(a), a e A, where ¢ is a constant idempotent and ¢ is a not necessarily unital
ring homomorphism from A to B which is orthogonal to c.
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iii) The exponentiation map (=)™ A — A is a multiplicative n-homogeneous map for every
commutative ring A. This is the case since it is the n-fold product of the identity map with
itself, which is 1-homogeneous.

iv) The map N:Z — Z[z]/(2*-2x) defined by N(a) = a+ @x is multiplicative 2-polynomial,
but not homogeneous. This is the multiplicative norm of the Burnside Tambara functor of
the group Z /2. It is an instance of the following more general example.

v) Let T be a Tambara functor for a finite group G. The multiplicative transfer
N(f):T(G/H)->T(G/K)

induced by a G-equivariant map f:G/H — G/K is [K : H9]-polynomial, where HY is a
subgroup of K conjugate to H with f(eH) = gK. This is proved in [Tam93| [Str12, 13.22].
For example for the groups 0 = H < K = G = 7 /2, the Tambara reciprocity formula for
N =N(Z]2— *) gives

N(a+b)=N(a)+ N(b) + tran(ab)

where tran is the additive transfer and the bar denotes the involution of T'(Z/2). In this
case one can explicitly calculate that

ersN(a,b,c)=N(a+b+c)-N(a+b)-N(b+c)-N(a+c)+N(a)+N(b)+N(c)
= N(a) + N(b) + N(c) + tran(ab) + tran(ac) + tran(bc)
-N(a+b)-N(b+c)-N(a+c)+N(a)+N(b)+N(c)
=0.

Not all polynomial maps can be decomposed into a sum of homogeneous maps. A well-known
counterexample is the degree 2 map

n»(n):Z»Z,
2

(see e.g., [GHO9]). However, this is possible when sufficiently many integers are invertible.

Proposition 2.3. Let f: A - B be n-polynomial, and suppose that every integer 1 < k < n is
invertible in B (e.qg., if B is p-local for some prime p>n). Then f decomposes uniquely as

f= i@k
k=0

where each @i is k-polynomial and homogeneous. If moreover f is multiplicative, so are the oy,
and

ei(x)p;(y) =0
for any x,y e A and i = j.

Proof. By definition the n-th cross-effect of an n-homogeneous function h satisfies

First let us show that the decomposition into homogeneous summands is unique. For simplicity
we introduce the notation

(erpa)(z) = (cry @) (my -, ).
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If f=Y)0%k then f— ¢, is (n—1)-polynomial, and
0=cr,(f—pn)=cry, f—cr,@n =cry, f—nlo,.

Since by assumption n! is invertible, ¢,, is uniquely determined by f. Similarly, f - v, — @n_1 —
-+« =y, is (k - 1)-polynomial, and

Ozcrk(f—(pn—@n_l_..._(’pk):@g\k(f_<pn_<pn_1_..._<pk+1)_®u~k(pk
=0k (f = On = Pn-1 = — Prs1) — klok

shows that ¢, is inductively determined by the ¢; for k£ < j <n.

The proof of uniqueness gives us an inductive procedure to define the maps ¢. We recall
that the n-th cross-effect cr,, f of an n-polynomial map is additive in each variable, and therefore
the diagonal cr,, f is n-homogeneous. We set

1
Pn = _'CTn f7
mn.

and we define inductively

1
Pk = EQrk(f_QOn — = k1)

for every 0 < k <n. A simple inductive argument shows that each ¢y is k-homogeneous.

Now let us show that if f is multiplicative, then so is each ¢y, and the different summands in
the decomposition are orthogonal to each other. Indeed, from the equation f(zy) = f(x)f(y)
we see that

n n n n

> ee(ay) = X en(@)ei(y) = 3 er(@)(Y v (y)-

k=0 k,j=0 k=0 j=0
The function f(ay) is n-polynomial in x and ¢k (zy) is k-homogeneous in x for any fixed y. By
the uniqueness of the homogeneous decomposition it follows that

iy = mx)(iw(y))

for every k and every fixed y € A. This is now a k-homogeneous polynomial map in y for any
fixed =, and again by the uniqueness of the homogeneous decomposition

o (zy) = pr(x)er(y) and 0=i(x)e;(y)
when i # j. O

Example 2.4. Let N§:T(G/H) - T(G/G) be the norm-map of a G-Tambara functor T', for
some finite group G. Then Ng is a multiplicative polynomial map whose degree is equal to the
index [G : H]. This map does not in general extend to a polynomial law (See Example 2.11
below), nor does it decompose into a sum of homogeneous pieces. After inverting the group
order there is an isomorphism of rings

T(GIAG = TI (T(GIE)IGI ]/ Ti) e,
(K<@)

where the product runs though the conjugacy classes of subgroups of G, Jk is the sum of the
images of the additive transfers T(G/L) - T(G/K) where L is a proper subgroup of K, and
Wea(K) is the Weyl group of K in G [Sch18a, Proposition 3.4.18]. The isomorphism is induced
by the restrictions resf(. The K-component of the composite map

T(G/H) 25 T(GIG) — T(GIG)[|G ] = (KH@(T(G/K)[|G|*1]/JK)WG(K>
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is then homogeneous of degree |K\G/H]|. Tt suffices to check this after postcomposing with the
inclusion

[T (TG UG Ix) e e T T(G/E)IGI ) k-

(K<G) (K<G)

By the double coset formula modulo Jx we get

G G K H
resg Ny = H NionkCqTeSHnKa
[9leK\G/H

where the conjugation map ¢, and resgﬁ ko are ring-homomorphisms. By reciprocity
K K
Nionk (mx) = mNgnp (2) +t(z)

for m € Z, where t(z) is a sum of proper transfers which vanishes in the quotient.

We remark that if f: A - B is an n-homogeneous polynomial law, the underlying map of
abelian groups
le A— B

obtained by evaluating the law at the ring R = Z, is an n-homogeneous polynomial map. This
can be verified for the universal n-homogeneous law v,,: A - T",,(A), where

Clp+1 ’Yn(ala cee aanaam—l) = Crn('}/n(arul + (_)))(ala ce 70%) —CI'y ’Yn(ah S aan)
= crp( Z Yi(an+1)v(=)) (a1, ..., an) —crpyn(ai,...,a,)
i+j=n

i+)=n
=50 (ans1)(crpnvn) (a1, ... an) —crnyn(ar, ... an) =0

since the terms of the sum with j < n vanish by induction on n, and ~yq is the constant function
with value 1.

Proposition 2.5. Let f: A — B be an n-polynomial map, and p > n a prime. Then the composite
fy: A = B — By extends to a unique polynomial law of degree n. If f is multiplicative, then
so is the extension.

Proof. For convenience we will sometimes denote an element ~y;(a) € I';(A) just by a(®).
We start by showing that any n-homogeneous polynomial map ¢: A — B, extends to an
n-homogeneous law, which is multiplicative if the original map was. We will now define a unique

(1) (1)
1

additive extension @:I',,(A) — By of ¢ as follows. The generators of the form a;’...a; ’ can

always be expressed as a sum of generators of the form a(™, by the formula

agl) o 'a”ELl) = (Crn’Yn)(ala .. 'aan) = Z (_1)n—\U|(z ai)(n).
Ucn iU

This formula can easily be proven by induction on n. Indeed it clearly holds for n =0 and n =1,

28



and in general

Cry, Vn(ala cee 7an—17an) = Crn—l('}/n(an + (_)))(ah R 7an—1) —CI'p-1 ’Yn(aly cee 7an—1)
=crp1( Z %‘(an)%(—))(al, ey lno1) = Ty Yn (@, - A1)
i+j=n
= Z Yi(an)(crp_1 7j(_))(ala ey @po1) = Clpo1 Yp(ar, . an1)
+J=n
= Z Yi(an)(crn-1 ’Yj)((lh N
i+j=n
j<n

Y1 (an)(cn 1 yn1) (@1, an1) = 71(an)al? .. al)
D),

where the second to last equality holds if we inductively assume that the identity holds for n—1.
Here we used that cr,,—1 y; = 0 for j <n —1. Therefore we define
Ne)

2( ~aV) = (erp @) (ar, ... an).

Then we observe that if an additive extension @:I",(A) — By, exists, then it will factor over

I'n(A)(py- A generic generator agm) .. .al(m) of I'y,(A) with ¥ n; = n will decompose in T'y,(A) ()
as

(1) () _ 1 C) IR ¢} N ¢ N ¢))
alm ...alm —mal ...al ...al ...al 5

ni ng

where the positive integers smaller or equal to n are invertible since p > n. We therefore define

_ 1
(p(agm) ,,,al(m)) =——————(crp) (a1, ... A1,y Qp, Q).
n!...nyg! N N
ni ny

This map extends ¢, since

P(a™) = (e @) (a . 10) = 9(0),

where the second equality holds because ¢ is n-homogeneous. It remains to verify that this map
respects the relations of the divided power algebra. We recall that the n-th cross-effect of an
n-polynomial map is additive in each variable. It follows that

— n 1 k7l N— n
cp((ka)( )) = E(crnga)(kaw..,ka) = m(crnga)(a7...7a) =k c,o(a( )),

@((a+b)(”)):i(crngo)(a+b,...7a+b):l > (7?)(Crng0)(a7...,a,b,...,b)
n! n! i+j=n 3 —_——— ——
i J

= #(Crnw)(a,...,a,b,...,b): 3 2(aMp0),
i+j=n Z'J' ‘,_/ ‘,_z i+j=n
i j
P(aMa@)y = — (crntp)(a,...,a):(zfj) - 1‘ (Crn@)(a,...7a):(Z"j])a(a(z+])).
ilj! i )(i+7)! i

The additive map P is unique since it factors through an additive map

?:Tn(A) ) — By
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and by the above observations the Z(,)-module Fn(A)(p) is generated by the image of the
canonical map

AT (A) —— T (A) ()

Next we check that if ¢ is multiplicative, then so is @. For this it suffices to show that 3 is
multiplicative. We have

?(a™) = p(a)

and the elements of the form a(™) generate the Z (py-module T'y, (A) (). Hence % is multiplicative
on additive generators and hence in general.

Now we complete the proof for a general an n-polynomial map f: A — B. By Proposition
2.3 the map f(,) decomposes into an orthogonal sum of homogeneous polynomial maps:

Ty =Po+ @1+ +pn.

The previous paragraph provides an additive extension

n
o [[Ti(A) > By,

i=0
of f(»).- By Proposition 2.3 and the previous paragraph the latter extension is unique. Further
if f is multiplicative, then by Proposition 2.3 so are ¢;-s and the images of ¢; and ¢; are
orthogonal if 7 # 7. We already saw that @; is multiplicative for every i. Similarly, using the fact
that T';(A) (p) is generated by the elements of the form a™ | we can see the desired orthogonality
property. Altogether we get that @;p; is multiplicative. O

Remark 2.6. Any abelian group A admits a universal polynomial map A — P, (A) which
classifies n-polynomial maps out of A. The construction can be found in [Pas68, Pas69]. If A is
a ring, then the ring multiplication on A, makes P, (A) also into a ring. The latter proposition
implies that if p > n, then the p-localisation of P,(A) is isomorphic as a ring to [Ti—o T'i(A4)p)-
In other words, the composite

IT; vi

A——= Tl Ti(A) ——= TTLo Ti(A) ()

is the universal multiplicative n-polynomial map with a p-local target.

Remark 2.7. We remark that Proposition 2.5 holds also if we replace the localisation By,
with B [%L,] Thus by Theorem 1.18, for any n > 1, any PD-functor F' extends to the category
with partially defined composition of Z[}L!]—algebras and multiplicative n-polynomial maps. In
the next section we will see how for the p-typical Witt vectors we can further extend this result
integrally.

2.2 Functoriality in polynomial maps

Let us fix once and for all a prime number p. Let 1 < m < oo be an integer or infinity. We denote
by W, (A) the ring of p-typical m-truncated Witt vectors of A. The case m = oo gives the full
ring of p-typical Witt vectors for which we will use the usual notation W(A) := W (A).

Theorem 2.8. The functor Wy,:Ring — Ring extends to the partial category of multiplicative
(p = 1)-polynomial maps. That is, a multiplicative n-polynomial map f:A — B, with n < p,
induces a multiplicative n-polynomial map W, (f): W, (A) = W,,,(B), with the property that if
ftA— B and g: B — C are multiplicative n and k-polynomial, respectively, and nk < p, then

Win(g) o Win(f) = Win(go f).
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This extension is unique with the property that the ghost coordinates of the map Wy, (f) is the
product map [1,, f, i-e., the square

W (f)

Win(A) Win(B)

[, A 1., B

I f

commutes. If moreover f,g:A — B are multiplicative n and k polynomial, respectively, and
n+k<p, then Wi, (f-9) = Wi (f) - Wi (g).

Example 2.9. Using the uniqueness of the functoriality of Theorem 2.8, one can go ahead
and try to calculate the components of a polynomial map W,,(f) by inductively solving the
equations provided by the description in ghost components.

Let us consider p odd so that f can have degree greater than 1. The first component of the
image of a Witt vector (ag,a1,...) in W(A) by a polynomial map W(f):W(A) - W(B) is
bo = f(ap). The next component by must be the unique natural solution to the equation

f(ao)? +pby =wi(bo,b1) = f(wi(ao,a1)) = f(af + par).

Since p > n, the map f is also p-polynomial and from the equation cry, f(af + (-)) = 0 one can
calculate that .
p- .
Flab +par) = (@) + 3 (-1 () F(af + ).
i=1
The binomial coefficients of this sum are all divisible by p, and the unique natural solution to

the equation above is
p-1

b= Y O(?) i) el i),

i=1
We remark that when f is a ring homomorphism, this sum is in fact equal to f(a;) so that we
indeed recover the usual functoriality in ring homomorphisms.
The proof of Theorem 2.8 will use the following well-known lemma:
Lemma 2.10. For any commutative ring A and integer or infinity 1 <m < oo, the commutative
diagram
Win(A) ——— Wn(Ayp)

wl lw

I, A [T A

is a pullback of rings, where the horizontal maps are induced by the canonical localisation ho-
momorphism A — Ap).

Proof. The case m = oo follows from the case m < oo by passing to inverse limits, since pullbacks
commute with inverse limits. For finite m, we prove the statement by induction. The case m =1
is obvious. Next we observe that for any commutative ring (in fact, for any abelian group), the
diagram of abelian groups
A——"—— 4
pml lpm

A——"F— Ay
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is a pullback. This follows from the fact that the induced maps on kernels and cokernels of the
vertical maps are isomorphisms. Using the latter commutative diagram we see that the sequence

(R,proj)
0 A Wm+1(A(p)) el y Ay Hm+1 A—— W7n(A(p)) T

Ay [Ty A ———0

m

is exact, where the first map sends a to (V™ (7w (a)),(0,...,0,a)), V™ is the Verschiebung
operator, R is the restriction operator and proj projects off the last factor. The proof is then
completed by induction. O

Proof of 2.8. We denote by Agr: R — R, the natural localisation homomorphism. We first
define W, (f): W, (A) = W, (B) using the pullback of Lemma 2.10. Since pull-backs of rings are
pullbacks of sets, it suffices to construct a multiplicative n-polynomial map W, (A) - Wi, (Bp))
which will make the diagram of polynomial maps

Win(A) ——— Win(By))

(T, f)ow w
HiB o 2 Hﬁg@)

commute. By Proposition 2.5 we know that the composite A N B2 B(p) extends uniquely
to a multiplicative polynomial law. We can therefore take the map underlying the multiplicative
polynomial law W, (Ap o f): Wy, (A) - W (B(p)) provided by Theorem 1.18. Corollary 1.25
implies that the underlying multiplicative n-polynomial map of this polynomial law has the
desired description in ghost components. We therefore obtain a map

Wm(f)Wm(A) - Wm(B)

such that wo W, (f) = (I1,, ) cw and W,,,(Ap) o Wy, (f) = Win(Ap o f). If we evaluate the
polynomial law induced by the map Ago f on the ring Z,), we get a multiplicative n-polynomial
map f(,): A(p) = B(p) making the diagram

A ! B
| [ss
A ) B
(») * Dp)

commute. By Proposition 2.5, the maps f(,) and Ago f are underlying maps of unique polynomial
laws. Hence Theorem 1.22 implies that the diagram

Wm(A) Wi (f) Wm(B)
Wm()\A) Wm(AB)
l Wi (f)) l
Wm(A(p)) Wm(B(p))

commutes.

Next, we check the identity W,,,(g) o Wi, (f) = Win(g o f). Using the pullback of Lemma
2.10, it suffices to check that W,,(g) o W, (f) = W, (g o f) holds after postcomposing with the
canonical map

Wm()\(j): Wm(C) d Wm(C(p)).

Consider the commutative diagram

A ! ' B g c
AAl lAB lxc
A f) . B 9(p)

(») > Bp) Cip)




The maps g(,), f(p) and Ay uniquely extend to multiplicative polynomial laws by Proposition
2.5. So do their composites, and the polynomial laws corresponding to the compositions are the
compositions of the polynomial laws associated to the individual maps. Hence Theorem 1.22
implies that

Win(Ac) e Wi(ge f) = Wm(Acego f) = Wilgp) o fip) 0 Aa) = Win(9(p)) o Win(f(p)) © Win (Aa).
Finally, using the commutative diagram

Wi (f) Wi (9)

Win(A) Win(B) Wi (C)
Wm()\ ) Wm()\B) Wm()\ )
’ l W (f(p)) l Wi (9p)) l ‘
Win(Aw)) Win(B(p)) Win(Cipy),

we conclude that Wy, (A¢) o Wi (go f) = Wi (Ao) o Wi (g) o Wi, (f), which shows that W, is
a partial functor.

The uniqueness is immediate in the torsion-free case since the ghost maps are injective. In
the general case one reduces to the torsion-free case by choosing a resolution similar to the one
of Proposition 1.25.

Finally, arguing as above and using Proposition 1.26 we see that under our conditions the
functor W, respects multiplications of multiplicative polynomial maps. O

Now we provide examples which show that the conditions of Theorem 2.8 are optimal.

Example 2.11. The following counterexample shows that the p — 1 bound on the degree is
necessary. Let us consider the multiplicative p-polynomial map

N:Z — Z[z]/(2* - px)

defined by N(a) = a+ Lp‘“a:. This is the norm of the Burnside Tambara functor of the cyclic
group C), of order p. We show that the norm of the first two ghost components (Nwg, Nw;)
of Z is not in the image of the first two ghost coordinates (wq,w;) of the ring Z[x]/(2? - px).
Indeed, suppose that there are elements bg,b; € Z[z]/(z% - px) such that (wg,w:)(bo,b1) =
(Nwg, Nwy)(0,1). Then

(bo. by +pb1) = (Nwo, Nw1)(0,1) = (N(0). N(p)) = (0,p+ (p"' = 1)z),

and we must have that pb; = p+ (p?~! — 1)x. This equation has no solution in Z[x]/(z* - px)
since p?~! — 1 is not divisible by p.

This shows that there cannot be a map on p-typical Witt vectors which in ghost components
is the map N in each coordinate. That is, for any m > 2 there cannot be any map (of sets)
Fi W (2) » W, (Z[z]/(2* - pr)) making the diagram

Wi(Z)— = ————-=————— -+ VVm(Z[m]/l(ﬂc2 - pz))
Hm VA M, N Hm Z[ZE]/(Z‘2 —px)

commute.

Remark 2.12. Another piece of evidence on the optimality of the theorem is provided by
the exponentiation maps. The map (=)™ A — A induces W((-)") = (=)":W(A) - W(A) for
n < p. If we try to go beyond the bound n < p we see that the map (-)? =id:F, — [, should
simultaneously induce the p-th power map and the identity on the p-adic integers W (F,) = Z,,
contradicting the functoriality of W.
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Example 2.13. The functor W does not extend to a functor on the subcategory of commutative
rings and set maps generated by the multiplicative (p—1)-polynomial maps. The reason is that
in general, a map can have several factorisations as compositions of (p—1)-polynomial maps, and
the extension will depend on this choice. For example, let us take p =5 and the multiplicative
polynomial maps (-)2,(-)%Fs — Fs, so that 2-3 > 5. These maps compose to the map
(-)¢ = (-)%:F5 - F5, but the composite of (-)? and (-)? is not (-)? on W(F5) = Z5. This
shows that the condition nk < p for the composition formula in Theorem 2.8 is necessary.

Remark 2.14. Exponentiation illustrates well the different roles played on Witt vectors by
polynomial maps and polynomial laws. The key fact used in the previous examples is that
(-)? =1d as a self polynomial map of [,,. This equality does not however hold as polynomial laws.
Indeed, the polynomial law on [, defined by exponentiation by n is the natural transformation

(-):F,®R—F,®R,

defined by the exponentiation of the ring [, ® R, where R ranges through all commutative rings.
When R = Z[t] we clearly have that (=)? on F, ® Z[t] = F,[¢] is not the identity.

Example 2.15. Similar to the case of composition, for the product of maps one cannot remove
the hypothesis that n+k < p and only require n, k < p. For example, the map (=) = (-)%:F5 - [F5
decomposes both as the product of (-)? and ()3, and of the identity with itself. However (-)°
and (-)? are different on W (F5) = Zs.

Example 2.16. One cannot extend the functor W additively on sums of multiplicative (p—1)-
polynomial maps. For example, the identity map id:[F, - F, decomposes as the sum of (p+1)-
identities, but (p+1)W(id) = (p+1)id is different than id on Z,, i.e., such an extension will not
be well-defined.

Remark 2.17. Theorem 2.8 gives a potential obstruction for decomposing an n-polynomial
map f:A — B into a composition of polynomial maps of lower degree. Indeed, let n = Ik with
I,k # 1 and choose a prime p such that [,k < p <k (say that [ < k, then a prime p with k < p < 2k
can be used, since 2k < lk). By Theorem 2.8, if f is the composition of two polynomial maps of
respective degree [ and k, it will induce a map on (m-truncated) p-typical Witt vectors whose
ghost coordinates are [] f. In particular [] f o w is in the image of the ghost coordinates of B
and one can attempt to contradict this fact as in Example 2.11. An example of this will be
provided in §3.1.

3 Applications

3.1 The factorisation problem for polynomial maps

As we pointed out above, Theorem 2.8 can provide an obstruction for detecting if a polynomial
map of degree nk is the composite of some polynomial maps of degree k and n. In this subsection
we give a non-trivial example, where Theorem 2.8 tells us that such a factorisation is not possible.

Let A4 be the fourth alternating group, and A3 < A4 any copy of the third alternating group.
We denote by A(A,,) the corresponding Burnside rings.

Proposition 3.1. The 4-polynomial norm map Nﬁ;‘: A(As) = A(Ay) does not decompose as the
composition of two multiplicative polynomial maps of degree 2.

Remark 3.2. The norm Ng of a Tambara functor, corresponding to a subgroup inclusion
H < G, is always [G : H]-polynomial. Suppose that [G : H] = nk. If there is a subgroup
H < K <G of index [G: K] =k we would obtain that

NG = NENf
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decomposes as a composite of an n-polynomial map and a k-polynomial map. Hence, in order
to get an interesting example out of such norms, we need to know that H is maximal in G’ and
has a non-prime index. The group A, is the smallest group which admits a maximal subgroup
As of a non-prime index. Hence the norm N f;‘ does not factor as the composite of two norm
maps of subgroups of index 2. Our theorem shows that it does not even decompose abstractly
as the composition of two 2-polynomial maps.

Proof of Proposition 3.1. Let Wa(—;3) denote the ring of 2-truncated 3-typical Witt vectors.
Suppose that N := N ﬁ; is the composite
A(As) —L 0 —2 (Ay)

of multiplicative polynomial maps f and g of degree 2, for some commutative ring C'. Then
(since 2 < 3) by Theorem 2.8, we get a commutative diagram

W2 (g)oWa(f)

W2 (A(As)) Wa(A(A4))
lw . lw
A(A3) x A(Az) ——F—— A(Ay) x A(Ay).

We claim that the top horizontal map making this diagram commute cannot exist. This will
follow immediately if we show that

((NxN)ow)(1,1)

is not in the image of the ghost map of A(A4). The argument is similar to the one in Example
2.11. If
(N xN)ow)(1,1) = (N xN)(1,4) = (1, N(4))

was in the image of w, then N(4) would be congruent to 1 mod 3.

Let us then show that N(4) is not congruent to 1 mod 3. Recall that the norm N§ in the
Burnside Tambara functor is defined as follows. Choose orbit representatives g1, ... g, for the
quotient G/ H of cardinality n. Then each group element g € G determines a permutation o € 3,
and elements hi,...,h, € H, defined by the relations gg; = g,(;)hi for 1 <i <n. Then Nﬁ sends
an H-set X to the set X*™ with the G action obtained by restricting the natural X, : H-action
along the group homomorphism

G—X,'H g— (o,h1,... . hy).

In particular an integer m € A(H ), represented by the trivial H-set with m-elements X, is sent to
the set X" where G acts by the group homomorphism p: G — ¥,, that sends g to o. In the case
of the groups H = A3 < Ay = G this is the standard inclusion Ay — ¥4 up to an automorphism
of A4 (automorphisms of A4 act trivially on A(A4)). Indeed, the kernel of p consists of those
elements g € A4 such that gg; = g;h; for all 1 <i <4, that is

4
g€M(gidsgi) = 1.

i=1
Thus a trivial Az-set X with m-elements is sent by N to the set X*4, where A4 acts by permuting
the components via the standard inclusion into ¥4. Up to conjugacy the stabiliser of an element
(z,y,2z,w) € X** only depends on how many of the components are equal. This leads to the
orbits decomposition of the As-set X 4 as

m—1

N(m):XX4:m+(m2_m)A4/A3+( 5 )A4/Z/2+m( 5 )A4/e+2( " )A4/e.
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In particular
N(4) =4+ 12A4/A3 + 6A4/Z/2 + 14A4/6 =1+ 14A4/6 mod 3,
with 14 not divisible by 3. O

Remark 3.3. The above example shows that if a product map lifts to the Witt vectors, then
it must satisfy certain congruences. Indeed if f: A — B is a map that fits in a commutative
diagram

wa(h)
Wa(A;p) ——————— Wa(B;p)

I, [

Ax A BxB

for some map Wa(f), then for any ag,a; € A we must have

f(ab+par) = f(ap)” mod p.

Similarly, an analogous argument for W,,, with m > 2 forces f to satisfy higher versions of these
congruences. One can in fact directly show by induction on %k that an n-polynomial map f
satisfies
p-1
flasro =@+ % 0 (M) (D) far i)
i1, ip=1 1 1k

for every odd prime p > n and k > 0, where the sum is divisible by p*. This congruence is then
preserved by the composition of maps, and our proof of Proposition 3.1 shows that N f: does
not satisfy this congruence for p =3 and k = 1.

The formula above is in fact sufficient to lift the product map of f: A - B to the Witt
vectors when A and B are torsion-free with compatible Frobenius lifts, as this guarantees that
the congruences of the Dwork Lemma are satisfied (this is for example the case for the universal
n-polynomial map of [Pas68, Pas69]). Thus these congruences are closely related to the lifts of
the product map on the Witt-vectors.

3.2  Witt vectors of Z/2-Tambara functors

We use Theorem 2.8 to extend the p-typical Witt vectors functor to the category of Z /2-Tambara
functors, for odd primes p. We will schematically display a Z /2-Tambara functors T' as

tran
T=(AT—=s——B),
N

where we keep in mind, but suppress from the notation, that A has an involution which is part
of the structure. Given a Z /2-Tambara functor T as above, we let

[1tran

[I7= (11,A=—m=—=11.B)
n 1IN

be the n-fold product of T in the category of Z /2-Tambara functors. The ring structures,
involution, restriction, transfer and norm are all defined componentwise. The classical Witt
polynomials for a prime p define ghost coordinates w:[],, A - I1,, A and w:[],, B — I1,, B which
are ring homomorphisms precisely when the sources are endowed with the ring structure of the
p-typical Witt vectors.
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Theorem 3.4. Let p be an odd prime and 1 < n < oo an integer or infinity. There is a unique

tran
structure of Z |2-Tambara functor W, (A) &——es—— W,,(B) such that the Witt polynomials
N

define a natural transformation of Tambara functors

tran

Wy (A) ———— W, (B)
N
wJ, I1tran lw
I, A Tres [1,B .

onN

We denote the resulting Tambara functor by W, (T').

Remark 3.5. Theorem 3.4 cannot be extended to the prime p = 2. Indeed, Example 2.11 shows
that the norm of the Z /2-Burnside Tambara functor does not induce a map on 2-typical Witt
vectors with the above description in ghost components.

We start by defining the maps of the Tambara functor W,,(T"). The restriction map res: B —
A is a ring homomorphism, and therefore it induces a ring homomorphism W, (res): W, (B) —
W, (A), and we define this to be the restriction of W, (7). Similarly, the involution on A
induces an involution on W, (A). The multiplicative transfer N: A — B of T is multiplicative
2-polynomial, and Theorem 2.8 provides an induced multiplicative 2-polynomial map for odd
primes
W (N): Wi (A) — Win(B)

which in ghost components is the product map. We declare this to be the norm of W,,(T"). The
additive transfer tran: A — B of a Z [2-Tambara functor is always determined by the norm N
by the Tambara reciprocity formula

tran(a) = N(a+1) - N(a) - 1.

Therefore we define W, (tran) = W, (N) o (1 +id) + W,,(N) — 1. By Theorem 2.8 the ghost
components of these maps are the product maps, and therefore it remains to show that this
structure indeed defines a Tambara functor, and that it is unique.

Proof of 3.4. The main tool for proving this theorem is the existence of a resolution of Tambara

functors
tran

Z[A] —7es A[A, B]
N
ei tran lé
A B

N

where the vertical arrows are surjective and where A[A; B] is torsion free. Such a resolution is
constructed in the Appendix by explicitly calculating the left adjoint of the forgetful functor
from Z /2-Tambara functors to presheaves of sets on the orbit category of Z /2. The construction
of W,,(T') described above gives a diagram

W, (tran)
W (Z )(—W (res)—— W (A A B])

W e)l Wn(N) lwn(é)

Wy, (tran)
Wi(A) &——W, (res) W,.(B)

W (N)
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where the vertical arrows are surjective ring homomorphisms, which commute with W, (N),
W, (tran) and W, (res). Since the vertical maps are surjective it is sufficient to show that
the relations needed for W, (7T') are satisfied by the upper Tambara functor. Since Z[A] and
A[A; B] are torsion free their ghost coordinates are injective, where the relations hold since in
ghost coordinates the maps become the product maps. The commutativity of this diagrams also
shows uniqueness. O

3.3 The components of the dihedral fixed-points of THR for odd primes

In this section we apply the main theorem of the previous section to topology. We describe the 7
ring of the dihedral fixed-points of real topological Hochschild homology and their multiplicative
transfers in terms of the algebraic constructions of the previous section, for odd primes.

We assume that the reader is familiar with basic notions of equivariant stable homotopy
theory of [MMO02, Sch18b]. We will be mostly interested in the group O(2) and its dihedral
subgroups Dp» of order 2p". We fix once and for all a group isomorphism O(2) = S Y%7 /2 by
sending the generator of Z /2 to the reflection with respect to the x-axis.

Let E be an orthogonal ring spectrum with anti-involution (see [DMPPR20, Section 2.1]
for a definition), which is flat (flat here refers to being underlying cofibrant in the flat model
structure of [Stoll, BDS16] on Z /2-spectra). We recall from [DMPPR20| and [Hegl6] that
the real topological Hochschild homology of E is the O(2)-spectrum defined as the geometric
realisation of the dihedral nerve

THR(E) := BYE = |[k] — E"*|

with the usual cyclic structure of the cyclic nerve, and the involution of E***! defined as the
indexed smash product over the Z/2-set {0,1,...,k} with the involution which reverses the
order of {1,...,k} and keeps 0 fixed. We will regard THR(E) as a genuine D,n-spectrum for
all primes p and n > 0. For every integer n > 0, we define a Z /2-equivariant spectrum

TRR" (E;p) := THR(E)»",

where (-)%" stands for the derived fixed points and Z /2 acts via the Weyl action of Dyn /Cpn =
7 /2.

Remark 3.6. The Z/2-spectra TRR"(F;p) were constructed in [Hggl6| using a version of
Bokstedt’s model for THR. This model is compared to the dihedral nerve in [DMPPR20],
where an explicit zig-zag of equivalences is constructed. The same zig-zag is used in [DMP*19|
to see that the cyclotomic structures, reviewed below, agree. By combining these results we see
that the two models of TRR"(FE;p) defined here and in [Hggl6] are equivalent.

When FE is a 7 [2-equivariant flat commutative orthogonal ring spectrum, then THR(E)
is a Dpn-equivariant commutative orthogonal ring spectrum. In this case TRR”“(E; p) is
a commutative Z [2-equivariant ring spectrum, and we are interested in calculating its Z /2-
Tambara functor of components. In [DMPPR20, Cor. 5.2] it is shown that for n =0

tran
7, THR(E) = =, TRR' (E;p) = (m0E <——>N

To(B?1?) @4 mo (B2 12)),

where ®, indicates the quotient of the tensor product by the subgroup (which is in fact an ideal)
generated by the elements of the form

x® N(e)y—xzN(e)®y,

where N:myE — 775 / *(E) is the multiplicative norm. We recall that a Z /2-Tambara functor T
is called cohomological if N res = (=)
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Theorem 3.7. Let E be a connective 7 [2-equivariant flat commutative orthogonal ring spec-
trum, such that myFE is cohomological. For an odd prime p and n > 0, there is a natural
isomorphism of 7 [2-Tambara functors

7o TRR™ ' (E; p) = Wys1 (m, THR(E)),
with the Tambara functor W,.1(=) of p-typical Witt vectors of §3.2. In particular, the ring
mo THR(E)Pr" is isomorphic to Wy (mo(E4/?) @4 mo(E4/?)).
Example 3.8.

i) Since the transfer of a Z /2-Tambara functor is determined by the Tambara reciprocity
formula tran(z) = N(x + 1) — N(z) - 1, for cohomological Tambara functors we also have
tran(1) = 2.

ii) The Tambara functor associated to a commutative ring with involution A defined by the
fixed-points ring A%?/? is always cohomological, since N res(a) = aa = a® for all a € AZ/?.

iii) The Tambara functor

tran

T= (22—
N

Z /4)

is also cohomological, and it is not associated to a ring with involution. The restriction is
the canonical projection, tran sends 0 to 0 and 1 to 2, and N preserves 0 and 1.

iv) The Burnside Tambara functor is not cohomological, since tran(1) = [Z /2] is the free
transitive 7 /2-set, which does not represent 2 in the 7 /2-Burnside ring.

An extension of Theorem 3.7 to non-cohomological 7 £ is provided at the end of the section.
The proof of Theorem 3.7 will use an inductive argument based on maps R: TRR”+1(E;p) -
TRR"(FE;p). These maps are constructed using the real cyclotomic structure on THR(E)
which we now recall. We denote by T' the O(2)-spectrum T := THR(F). As E is flat, there is
an isomorphism of O(2)-spectra

50T ST,

where ®°7 is the relative monoidal geometric fixed-points functor of [MMO02, Section 5.4] for a
complete O(2)-universe (for convenience, we choose the universe U of [Hogl6, Section 2|). Here
® T has the residual O(2)-action given by the isomorphism

O(2)/C, = (S' %7 [2)]Cp = (S*CY) % Z [22 S« 7 |22 O(2).

The map § is an S'-equivariant isomorphism by work of [ABG*18| when E is cofibrant as an
associative or commutative algebra, and by [DMP*19] when FE is underlying flat, based on
results of [Stoll, BDS16]. The map § is moreover Z /2-equivariant, and therefore an O(2)-
equivariant isomorphism when E is an orthogonal ring spectrum with anti-involution which
is flat as a Z/2-spectrum. When FE is commutative, the map § is an isomorphism of Z /2-
equivariant commutative orthogonal ring spectra. This map 0 is the real cyclotomic structure
of THR(FE). We also note that ®“»T is already derived as a Z /2-spectrum when E is flat. This
is a real analog of [ABG*18, Theorem 4.7]. One first checks that ®“» is derived on the levels
of the dihedral bar construction using [Stol1, §3.4.3] and the cofibrant replacement functor of
[DMPPR20, Appendix A.1]. After this one passes to the geometric realisations as in the proof
of [ABG*18, Theorem 4.7]. By iterating this argument we see that in fact ®»T is derived as a
Dyni1 [Cp = Dyn-spectrum for any n > 0.

Definition 3.9. Let E be a flat orthogonal ring spectrum with anti-involution and p a prime.
The restriction map of T'= THR(FE) is the zig-zag of O(2)-equivariant maps

C
P

~ ~ n-1
BT = (Tt — (9% (Ty))rmt < (0 (T7))Crmt J TCpn-1 |
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where (-)¢ is a functorial fibrant replacement in the model category of O(2)-equivariant or-
thogonal spectra. We define TRR(A;p) to be the homotopy limit of the diagram

60

L 1O L (@9 (Ty))r £ (@9(T))r S T 5 6O (Ty) £ 8T ST

in the category of Z /2-spectra.

The third map in the zig-zag of the definition of R is an equivalence since X — X is an
acyclic cofibration, which are preserved by the relative geometric fixed points functor. It will be
crucial for the proof of Theorem 3.7 to understand the interaction between the map mR and
the norm of the Tambara functor mo TRR™""(E;p), when F is commutative.

Remark 3.10. When F is commutative the zig-zag defining R can be arranged to take place in
the category of O(2)-equivariant orthogonal ring spectra. This is achieved by taking (-) s to be a
functorial fibrant replacement functor for the model category of O(2)-equivariant orthogonal ring
spectra, and use that the acyclic cofibrations of ring spectra are underlying acyclic cofibrations,
which are preserved by geometric fixed points. This in particular gives TRR(E;p) the structure
of an O(2)-equivariant orthogonal ring spectrum, and the map

7o(R): 1y TRR"(E;p) » my TRR" (E;p)

is a map of commutative Z /2-Green functors. This is however not obviously a map of Z /2-
Tambara functors, since it is not clear if one can represent the R map in the category of
Z [2-equivariant commutative orthogonal ring spectra. The problem is that the cofibrations of
7 [2-equivariant commutative orthogonal ring spectra are not cofibrations of underlying 7 /2-
spectra, and hence the third map defining R will not be a weak equivalence in general. One
should be able to solve this problem by working with algebras over an equivariant F.-operad
instead of strictly commutative O(2)-ring spectra. This is however outside of the main scope
of this paper and we will instead explicitly show that ;R is compatible with the norms, and
hence is a map of Z /2-Tambara functors.

For ease of notation we write R:= mo(R):moT " — 70T P and Ry:= 7TOZ /2(R):7TOTDP" -
D n-1
7TOT P .

Lemma 3.11. Let E be a connective Z [2-equivariant flat commutative orthogonal ring spec-
trum. Then:

i) For anyn>1 and p odd, there is a commutative triangle

Dpn

z/2

N.
7o THR(E)?/? — " 7y THR(E)P»"

R
NDPX) l 2

z/2 7o THR(E) ot

it) For any n > 1 there is a commutative square

Dpn

Con
7o THR(E)®?" —————— 7y THR(E)P»"

lR D n-1 le
Ncp

7o THR(E) ot — 2" o THR(E)Pw .

Hence my(R):my TRR™ ! (E;p) - m, TRR"(E;p) is a map of Z |2-Tambara functors.
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Proof. For simplicity we will set T:= THR(E). We need the following construction for both
parts of the lemma. For any orthogonal G-spectrum X and a normal subgroup N of G, there
is natural transformation

N
S X 2af Xe L niNeN xe —— i/ NeN X,

where (-)¢ is a functorial cofibrant replacement (of equivariant spectra or associative algebras).
In other words this construction first takes derived geometric fixed points and then composes
with the canonical map of the cofibrant replacement. The maps R and Ry can be described by
the composites

Cpn ® Cpon- 0 Con- Dyn @ D - Ss D _n-
Remy?"" T —— m, " 1<I>CPT—>7TOP T, Roimy ™' T ——m, " 1<I>CPT—>7TOP T,

respectively. We begin with Statement i). As a Djn-spectrum THR(E) is isomorphic to the
geometric realisation of a simplicial D,n-spectrum, defined as the Segal subdivision [Seg73,
Appendix 1] of the p™-fold edgewise subdivision of the dihedral bar construction. For odd p, its

zero simplices are isomorphic to the norm N; /”2" (EAE), and we let

Dpn
vpn: N3y (E A E) - THR(E)

be the canonical map from the zero simplices to the geometric realisation. Consider the com-
mutative diagram

Z[2 N°* Dp'n. Dp'n. Dp'n. Dp'n. d) D - Dpn = D n- D -
o (B AE) 2o n) N3 (B A B) == " N iy (E A E) —— my "7 @ Ny s (ENE) —m " N, [y (ENE)
J(m)* J{N;/p; (v1)« l(vpn ) l@cp (vpn ) J/(Upnl )«
er n n Ex n n-— Ox n—
g PT — D N T T a 7y 7 @O T Ty T

Here N¢* is the external norm and € is the counit. The first and third squares commute by
naturality. The second square commutes by definition of the subdivisions. The right hand
square commutes by the construction of §. We also note that the diagonal A is an isomorphism
by results of [Stoll, BDS16, ABG*18|. By definition the composite €, N°* is the norm NZD/Z’; of
moT". Moreover the external norm satisfies 9N = A, N°*, and therefore

Dyn _ D -
R2 © NZ/pg © (Ul)* = (,UI)"'l)*Ax—1¢NeE = (Up"—l)*Nex = ]V'Z/p2 ! o ('Ul)x—,
where the last equality uses the first two squares for n—1 instead of n. Since (v1). is surjective
this proves Part i).
For Part ii), we consider diagram

Nem Dpn

Cpn Dyn €x Dyn
—_—
" T U Ncpn T Ty T

ld) l(b J¢
C on-1 Ne® D n-1..D n-1 Ay D n-1 D,n (°?e)s D .1
m PO T ——— TN T ——— 1 P RN T — ) P @O T,
n- r

n
p

where A: N, CD p"_ll T - PPN CD ?"T is the relative version of the Hill-Hopkins-Ravenel diagonal
P P

constructed in [ABG*18]. We do not claim that it is an equivalence since T is only flat rather
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than cofibrant. The first square commutes since it commutes after replacing 1" cofibrantly. The

second square commutes by naturality. Moreover the composite <I>CP(6) o A is equal to the
counit e: Né);:l PCrT — ®C»T. This can be seen by explicitly computing the adjoint of the
latter composite and identifying it with the identity. Thus the lower horizontal composite is
equal to the norm

Dot a0 GO

Cpn-1

Finally, the claim follows from the fact that the map 5:®“»T — T is a map of commutative
O(2)-ring spectra, and therefore §, is compatible with the norms, and from the observation that
R5 and R are the composites of d, and ¢. O

Proof of Theorem 3.7. We start by calculating the components of the fixed-points
mo(TRR™ (E;p)*/?) = mo ((THR(E) ") #/%) = mo(THR(E) "),

using an argument analogous to [HM97, §3.3]. Let us denote the components of the underlying
ring spectrum by A = mo(E) and of the derived fixed-points by B = mo(E%/?). Let R be
the family of subgroups of D, generated by the reflections, together with the trivial group.
Let ER be a universal space for this family, for concreteness one could take the unit sphere
ER = S(C*) in the countably infinite direct sum of copies of C, where O(2) acts on C = R? by
the standard action. Since R is the family of subgroups of O(2) which do not contain C,, using
the Adams isomorphism (see e.g., [RV16]) and isotropy separation, we get a cofiber sequence of
Dpn-1-spectra
ER. Ac, THR(E) — THR(E)“” — &“» THR(E).

(see [Hpgl6] where this sequence for Bokstedt’s model is used). By postcomposing the second
map with the equivalence 6: ®“» THR(E) 5 THR(F) and taking derived Cjn-1-fixed points
(and again using the Adams isomorphism), we obtain a fibre sequence of Z /2-spectra

ER, Ac,. THR(E) —— THR(E)%" —2 THR(E)%m.

By the homotopy orbits spectral sequence induced by the standard filtration of S(C*), it is
clear that
o(ER+ Ac,» THR(E)) = mo(THR(E))c,. = mo(E) = A,

pn =

where the Cpn acts trivially on A = 7o THH(E) since the cyclic actions are restricted from
the circle. A similar analysis on the spectral sequence converging to the homotopy groups of
(ER+ Acyn THR(E))Z/2 shows that there is an isomorphism

P

0(ER. Ac,, THR(E))?/? = Hy*(ER/Cp;my THR(E)) = Hy " (ER; 1, THR(E))
> c%limg(()‘) THR(E) = mo THR(E)?/?
R

where the second isomorphism holds because C,» acts freely on ER. The Bredon homology

group Hé) ?" is computed as the colimit over the full subcategory Og of the orbit category of
Dpn generated by R. The final isomorphism holds because when p is odd there is only one
conjugacy class of reflections in D,». We recall that m THR(E)?/? is a quotient of B ® B,
which we denote by B ®4 B.

On homotopy groups the above fibre sequence induces a long exact sequence

-
... — 1 THR(E)Pr -2 B®y, B 2 mo THR(E)Pr" 22 mo THR(E) P — 0
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Dpn
z/2
and therefore that the 7y terms form a short exact sequence for every n. The restriction for
the subgroup inclusion Z /2 ¢ D,» defines a map Fj':mg THR(E)P»" - B ®4 B. By the double

coset formula we see that F3'V5" is the map

where the map V' = tran is the transfer map from Z /2 to D,n. We claim that V3" is injective,

z)2_ 7/2

ny n Z/2 Z/2 .
VY = > tran cqres =id+ tran] '~ res]

(" -1)
97 /207 [2 7 /207 [29
[Q]ez/z\Dp” /Z/2 2
where the conjugations are trivial since Cp» acts trivially on 7, THH(E). It follows that any
element z in the kernel of V3" must satisfy

+(P"—1) z)2 7)2

x tran] “res] " (x) = 0.

Now let us consider the commutative square

V;Tl,
B®y B———— m THR(E)P»"
res? pl lresg;):
A v » 7o THR(E)Cr

where the bottom horizontal map V" = tranfp" is injective by [HM97, Proposition 3.3]. By

the commutativity of this diagram if = is in the kernel of V;' we have that res% / 2(96) =0, and
therefore by the formula above

(" -1)

T=x+ Ttmn?/2 resf/Q(x) =0.

This shows that V' is injective.
We define maps I3 W,,.1(B ®4 B) - mo THR(E)P»" for every n > 0, by the formula

v —i
I;L(Iov"'7x7l)zz‘/éLNé) (337)7
i=0
n—i D n—i i 3
where NI := Nyjy B®yBzm THR(E)%/? - mg THR(E)"»"" is a short notation for the
norm. We claim that the following diagram commutes and that its rows are exact:

00— Wy (B®yB) — Y Wp(B®yB) — - s Bg, B————0

12"‘{ l]; :ng

0 ———— 7 THR(E) """ ———— m THR(E)"»" ———m THR(E)?/? ——— 0.
2 2

The exactness of the top row follows from the definition of the Witt vectors. An inductive
diagram chase using the latter exact sequence for Ry shows that the lower row is also exact.
The commutativity of the first square is clear. The second square commutes by the definition
of Ry and Lemma 3.11 (i). Further, again using the same lemma, we know that NJ " splits RS.
This implies inductively that the maps I3 are all bijections, and it remains to show that I3 is
a ring homomorphism.
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We follow the strategy of [HM97| and define topological version of the ghost coordinates.
That is, we consider the commutative diagram

Wi (B®yB) —— 1" By B

7o THR(E)P»"

where w is the ring homomorphism with components w; = R;l*j resgp:_j = R;fj FQJ . We prove
that this diagram commutes in Lemma 3.13 below. If B®, B is p—torgion free the ghost map w
is injective. Since I3 is bijective w is also injective, and it is sufficient to show that wo I3 = w
is a ring homomorphism. This is clear by the definition of the Witt vectors.

Now suppose that B ®, B possibly has p-torsion. In Lemma A.4 we construct a Z /2-set X
and a map of cohomological Tambara functors S := Z[ X | - m,E which is pointwise surjective,
where Z[ X ] is regarded as a Tambara functor by the involution induced by the functoriality in
X. Using the Eilenberg-MacLane functor H from [Ull13|, we can form a homotopy pullback of

commutative Z /2-ring spectra
E E
H7Z[

e

X]— HnoE.
Then m,E is isomorphic to the Tambara functor associated to Z[X], and e induces surjection
of Tamb:ga functgrs on . Let B denote WQEZ /2 and A dgnote _7TOF . By Lemma 3.12 below
7o THR(E)?/? = B ®, B is torsion-free. The induced map B ®, B - B ®, B is also surjective,

and we have a commutative diagram

— — Vs —
W1 (B®y B) ————————— 1y THR(E) "

| |

Wit (B ®y B) —————— m THR(E)P»"
2

where the vertical maps and the top horizontal map are ring homomorphisms, and where the
left vertical map is surjective. It follows that the bottom horizontal map is also a ring homo-
morphism.

Let us now identify the Z /2-Tambara structure. Since the restriction map res and the
involution w: A - A are ring homomorphisms, their induced maps on Witt vectors W (res) and
W (w) are defined coordinatewise. We can therefore verify by direct calculation that the squares

W (res) W(w)
Wn+1(B ®¢ B) —_— Wn+1(A) Wn+1(A) Wn+1(A)
gl];‘ ;l[n le" glln
7o THR(E)"»" —— 7 THR(E)“" 7o THR(E)“»" —— 7 THR(E)“»"
rest;z "

P

commute, where ¢, is conjugation by the preferred reflection r = (0,7) € Dpn, where 7 is the
generator of Z /2. The commutativity of the first square is obtained by the double coset formula
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for the additive and multiplicative transfers

rebc "Iy (ag,....an) = rebC z(:)tranD . Z/2 “(ai) = ZtranC . resC n ZNZ/E “(ay)
1=
n
=> rancpn N, ot res?/?(a;) = I"(resag, . .. .resay),
i=0

where we used that the double cosets Cpn\Dpyn/Dpn-i and Cpn-i\Dpn-i/Z [2 are trivial. The
second square commutes because conjugations commute with transfers and norms

n pr—i C n-i
e I™(ag, ... an) —chtranC (a;) = Ztranc S Ne” (a;)
=0
< c,
= > tran :n lN " epai) = I (erag, - . . cran) = I"(w(ag), . .., w(ay)),
i=0

where we used that Cpi is normal in Dyn.
Since the norm map W(N) is not defined componentwise we are not able to directly show
that W(N) and Ng:: coincide. Instead, we show that these agree in ghost components and

conclude by reducing to the universal case. We observe that since the transfer is determined by
the norm, this will conclude the proof. We show that the outer part of the diagram

W (N)
Wn+1(A) Wn+1(B ®¢ B) w
lzn ;lz; I M, B®,B
o THR(E)»" ——————— mo THR(E)P»" v
NC pn
P

commutes. By construction (Theorem 3.4), wo W(N) = (ITN) o w, and the lower composite
has components

D

D D
. Dpn n _ n-j p" Dyn n o _ pJ n-j no_ pJ pJ n—j n
w]N I" =R, restn_j NC I res; Ry N I res; N R I

where we use Lemma 3.11 and that Ry is induced by the ﬁxed—points of the map R of equivariant
spectra. By applying the double coset formula for the norm we obtain

D p . 7 C, C - )
pl pn—=jgn _ /2 n—j rn z)2 .. pl pn-jn
NeZ R =TT NEf o egresy e BV = N2 xesc” BT
geZ [2\D ;/C

= N2, = N2 2,

D
resz /2

where the last equality is from [HM97, Theorem 3.3]. Since the triangle in the diagram above
commutes by Lemma 3.13 below, this proves the claim when B®; B is p-torsion free. In general,
the resolution e: ¥ — E above induces a diagram

— W(N) -
Wn+1(A) Wn+1(B ®¢ B)
\» W(N) > | IY
21" Whi1(A) l Wi (B ®y B)
In
7o THR(E)C»" l — 7o THR(E)Pr" e
€ NCP: €
\ Cpn \ Dyn
7o THR(E)C> - 7o THR(E)P» .
Nel
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The top and bottom faces commute since € induces a morphism of Tambara functors. The side
faces commute by naturality of I" and I3'. The back face commutes by the argument above,
since B®, B is torsion free. Since the maps € are surjective the front face commutes as well. [

Lemma 3.12. Let X be a Z [2-set. The abelian group mo THR(Z[X])%/? is p-torsion free for
every odd prime p.

Proof. We observe that Z[X] is the monoid-ring on the free commutative monoid M (X) gen-
erated by the set X, with the involution induced functorially by the involution on X. It follows
from [DMPPR20, Proposition 5.12] that the real topological Hochschild homology spectrum of
Z[X] decomposes as

THR(Z[X]) ~ THR(Z) AX*N¥M(X),

where N% is the dihedral nerve with respect to the product of spaces. In particular

o THR(Z[X]) = m, THR(Z) 0 1y (SN M(X)+) 2 ZO 1y (E° N M (X)),
where the identification of m, THR(Z) with the constant Mackey functor Z is in [DMPPR20,
Corollary 5.2]. We observe that the underlying group moX* N M (X), = Z[X] is torsion-free.

t
Thus the result follows from the following general claim: if L = ( A <:>a B) is a Z [2-Mackey

functor such that A is p-torsion-free, then the box product Mackey functor Z 0 L is p-torsion
free.

Clearly the value at the trivial group (ZoL)(e) =Z® A = A is p-torsion-free by assumption.
The value at Z /2 is the abelian group

(ZoL)(Z2[2)=(AeB)/I,

where T is the ideal generated by the elements of the form 2b —res(b), a — tran(a), 7a — a, for
every a € A and b € B, where 7 is the involution of A (this follows from the Frobenius reciprocity
relations for the box product, see e.g., [Bou97, Section 1.5]). We notice that the second relation
collapses the A-summand, and that the box product has value isomorphic to

(ZoL)(Z/2)2 B[]

where J is generated by the elements 2b — tranres(b). Suppose that b € B/.J is p-torsion for
some odd prime p. The restriction map res: B/J — A is additive, and since A is p-torsion-free
we must have res(b) = 0. It follows that in B/J

0 =2b-tranres(b) = 2b,
that is that b is also 2-torsion. Since p is odd b = 0. O

Lemma 3.13. For every odd prime p and connective Z |2-equivariant flat commutative orthog-
onal ring spectrum E with w,E cohomological, we have wly = w.

Proof. First we observe that since Rg_j is induced by a map of O(2)-spectra it commutes with
transfers, in the sense that

—q Dyn D_; n—j
R} tran,”" =tran,” Ry
2 Do D, tt2

if i < j. Since R"7/ is induced by the canonical map to the geometric fixed-points, which kills
the proper transfers, one can directly verify that R, trang’)" ~=0if i > j. It also commutes
o
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with restrictions, and therefore

D

w;ily (ag, ..., an) = Rg_jr Ztra Up : Nz " (ai)
D D i
=res, 7; Ry Ztrangpn NZ/’); l(ai)

=0

D i
= resZ/2 ZtranDp] R}~ ]NZ;’2 (a;).

Moreover by Lemma 3.11 we have that R} N, /’”2" e NZ/’”QJ for i < j. It follows that

D ; :
w; I3 (ag, . .. a,,)—lresZ ZtranDJ NZ/”QJ (a;).

Now we apply the double coset formula for restrictions and transfers:

J

— n z/2 D, i

w; 13 (ag,....a,) =Y, > transz(D Ry cgres(Z/Q)gnD . NZ/I’QJ (a;).

=0 [g]e(Z [2)\D,; /D ;- !

The set of double cosets is isomorphic to the quotient (Z [2)\C,: of the inversion action, which
has representatives {1,6, 62, . Gl 21 where 6 = o” " for o € O, a generator. The intersec-
tion (Z/2)9 N Dpj-: is equal to Z/2 if g =1, and to the trivial group otherwise (since p is odd).
Moreover the conjugations c, are trivial for the elements of the cyclic group. Therefore we have

W15 (ag. ... ap) = Z(reszp“]\fz/pél(ai)+(pi—1)/2tranZ/2reserjlNZ/p;l(1-))

Z(resZ;’; ' Nz/pg “(a;) + (p' - 1)/2trant 2 res? /2 re527; ' NZ/Z’QJ "(a))

J

' resZ]/"; ' NZ/”QJ "(ay).
i=0

where the last equality holds since tran’/?res” /2((1) = tran?/? (1) -a, and tran? /2(1) =2 (since
7, (E) and hence m, THR(E) is cohomological). Similarly, by applying the double coset formula
for the norm we have that

K3 7 _ Z/2 Z/2
resz% NZ/p; (a:) = I1 N7 ja0(z j2y0 reS(Z/Q)gnZ/Q(ai)
[91e(Z/2\D ;-1 /(2 [2)

= ai(NZ?ves?(a)) "D,

Similarly since 7, THR(FE) is cohomological we have that N¢ 212 res?! *(a;) = a?, and thus

w; 13 (ao, ... an) = Zp resZ;’;l Z/‘?;L(al) Zplap =wj(ao,...,a,). O

Corollary 3.14. Let E be a connective Z [2-equivariant flat commutative orthogonal ring spec-
trum, such that wE is cohomological. Then the Green functor mo TRR(E:p) admits a structure
of Tambara functor, and the isomorphisms of Theorem 3.7 induce an isomorphism of Tambara
functors

mo TRR(E;p) = W (m, THR(E))

for every odd prime p.
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Proof. By the proof of Theorem 3.7 the connecting homomorphism 0: 7y THR(E)DP”‘1 - 1o THR(E)? 12
is zero, and the R maps induce surjective group homomorphisms in 7. Thus the Mittag-Leffler
condition is satisfied and there are induced ring isomorphisms

7o TRR(E)Z/? = lin 7 THR(E)?»" = W (B ®, B).

Combining this with [HM97, Proof of Proposition 3.3|, yields an isomorphism of Green functors
7, TRR(E) = lim7, TRR"(E).

The right hand side of this isomorphism is canonically a Tambara functor since TRR"(E) are
Z [2-equivariant commutative ring spectra and the R maps are compatible with the norms by
Lemma 3.11. Since limits of Tambara and Green functors are computed pointwise, 7, TRR(E)
inherits a norm which defines a Tambara functor. The rest follows from Theorem 3.7. O

Let us now address the case where the flat commutative Z /2-equivariant orthogonal ring
spectrum £ has a Tambara functor of components 7, F which is not necessarily cohomologi-
cal. For any Z /2-Tambara functor 7' = ( A== B ) and odd prime p, we define twisted ghost
coordinates w;: [1j-y B - B by the formula

)= i(:)(1 ' @tmn(l))%(]\/res(%))#,

for all 0 < j <n+1. When 7' is cohomological this is the usual ghost map w; of the Witt vectors
of the commutative ring B. If E' is a connective commutative Z /2-equivariant orthogonal ring
spectrum, we denote by A := moE and B := moEZ/?.

Theorem 3.15. Let E be a connective Z [2-equivariant flat commutative orthogonal ring spec-
trum, and p an odd prime. There is a unique ring structure W, .1 (B®¢B) on the set [1;—o B®, B
such that the maps w; are natural ring homomorphisms, and a natural ring isomorphism

7o THR(E)Pr = W,,.1 (B ®4 B)
for every 1 <n < co.

Proof. The proof of the bijectivity of I3:]"y B ®4 B — mo THR(E)P»" from the proof of
Theorem 3.7 does not use that 7 £ is cohomological. Moreover the calculation of Lemma 3.13
shows in fact that the topological ghost coordinates correspond to the twisted algebraic ghost
maps, that is w;I3 = w;. The maps w; = R;’_j FQJ are natural ring homomorphisms. It is
therefore sufficient to show that a ring structure on mo THR(E)P»" such that the maps w; are
ring homomorphisms is unique.

The product @ of the maps w; for T := THR(E) fits into a commutative diagram

o TP v ]_[?zo(ﬂ'ofbcpiT X ﬁofbDPiT)

| s

1o moT?/? ————— T (m0T x me®Z/2T)

where 0 is the product of the cyclotomic structure maps. The top horizontal map has components
the composites of the restrictions from Dy» to Cp:, and from Dyn to D,:, with the canonical
projections to the geometric fixed-points. The bottom horizontal map is the product of the map
775 P 70T x mo®Z /2T which is the restriction on the first factor and the canonical projection

on the second factor. If the top horizontal map V¥ is injective, then the map w is injective, and
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the ring structure on 7T0D P"T is unique. We show that F can be resolved by a commutative
Z [2-ring spectrum whose map V¥ is injective.

Given E, we resolve the Eilenberg-MacLane ring spectrum of the Tambara functor 7 F
by the free (genuine) 7 /2-E-algebra P(X*°Z,) of some Z [2-CW complex Z, and form the
homotopy pullback of commutative Z /2-ring spectra

E E

| l

P(2°Z,) —— Hr,E.

Here the vertical maps induce isomorphisms on 7, and the horizontal maps induce surjections.
We also note that the free Z /2-E-algebra P(X°Z,) can be modelled via a strictly commu-
tative flat 7 /2-equivariant ring spectrum and as an associative algebra it is stably equivalent
to the spherical monoid-ring S A M, of a monoid with anti-involution M. The real topological
Hochschild homology of the spherical monoid-ring THR(S A M.) is a suspension spectrum by
[Hogl6] and [DMPPR20, 5.12], and it follows from [Sch18a, 3.3.15] that the map ¥ of P(X*Z,)
is injective. By the naturality of ¥ the diagram

N4

mo THR(E)Pr" s [T (@7 THR(E) x mo®»* THR(E))

| |

o THR(P(S% Z, )P 2 5 [T, (mo®C» THR(P(E°Z,)) x 70 ®P» THR(P(£*Z.)))

commutes. The left vertical map is an isomorphism since we already know that I2' is a bijection.
Hence we conclude that W is injective for E as well. Finally, since E - E induces a surjection on
Ty, We get a surjective ring homomorphism o THR(E)?/? « B4 B - B®4 B = mo THR(E)?/2,
and hence a surjective ring homomorphism

B®, B=m THR(E)P".

.

I
[}

7o THR(E)P»" = [[B®y B —
=0

(3

Thus 79 THR(E)P»" is a quotient of 7o THR(E)P»" and the ring structure of the former is
determined by the latter. O

Example 3.16. We demonstrate on an explicit example that the rings Wm+1(B ®y B) and
Win1 (B ®4 B) are different in general. Consider the sphere spectrum S with the trivial Z /2-
action. We know that THR(S) = S as real cyclotomic spectra and therefore

7o TRR™(S; p)2/2 = 1ySP™ = A(Dym)

is the Burnside ring of the dihedral group. Hence Wi,41(B ®4 B) in this case is just A(Dym).
We claim that this ring is not isomorphic to Wy,+1(A(Z /2)) for m > 0. To see this we check
that the groups of units A(Dpm)* and Wy,41(A(Z/2))* are different.

The unit group of the ring A(Z /2) = Z[z]/(2* - 2x) is isomorphic to Z /2 x Z /2, containing
the elements =1 and +(x — 1), where z = tran(1). The ring A(Z /2) is torsion-free. Hence the
ghost map

W Wt (MZ2)) » T AZJ2)
m+1
is injective. Thus W41 (A(Z /2))* injects into the units ([1,,.1 A(Z/2))*. Now using Dwork’s
Lemma one can see that the image of the latter injection is isomorphic to Z /2xZ /2. Indeed, since
p is odd, the identity map of A(Z/2) is a Frobenius lift. This implies that a tuple (zq,...,zm)
is in the image of w if and only if 2;_1 = 2; mod p’ for all 1 <i < m. The latter condition implies
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that a tuple consisting of the elements of {+1, £(z—1)} is in the image of w if and only if all the
elements are equal. We conclude that Wy,.1(A(Z/2))* 2 Z /2 x Z /2. We can in fact explicitly
check that all the units of W,+1(A(Z /2)) are given by the Teichmiiler lifts of the four units of
A(Z ]2):

{£1, [z -1]}.

On the other hand the unit group A(Dpm)* is isomorphic to (Z/2)™*? (see e.g., [BPOT]).
Each subgroup of C,m gives two units and additionally we also have 1. The group C,m has
(m+1) subgroups and in total we get (Z /2)™*? as the unit group. One can make these elements
more explicit when m = 1. The eight units of A(D,) are given by:

{1, (1 +[Dp] = [Dp/Cp] = 2[Dp[ 2 [2]), +(1 +[Dp] = 2[Dp/ 7 /2]), £(1 = [Dy/Cp])}-

A The free Z /2-Tambara functor on a presheaf of sets

Let Oz o denote the orbit category of Z /2. We compute the left adjoint of the forgetful functor
that sends a Tambara functor to the underlying Oz jp-diagram of sets. Let X « Y:res be an
Oy jo-diagram of sets (X is in particular a Z /2-set but we suppress this from the notation for
simplicity). We let M (X) denote the free multiplicative abelian monoid generated by a set X
and Z(M (X)) its monoid ring, so that the polynomial ring Z[X ]| = Z(M (X)). More generally,
we denote by Z(-) the free abelian group functor. We define a Tambara functor

tran

AX;Y]:= (Z[X]<i>

Z(M(YuX/Z[2)eZ(M(X)*?) e Z(M(X)/™/Z[2)),

where M(X)/m¢ = M(X)~ M(X)?/%. Let us first discuss how these different summands arise,
and postpone the definition of the structure maps. We represent an element in the first summand
as a linear combination of monomials of the form m(x)g(y)m(T) where ¢ is a monomial in Y
and m is a monomial in a set of representatives of the orbits of X. An element in the second
summand is represented by a linear combination of monomials of the form m(z)k(z")m(Z) where
k is a monomial in the fixed-points set XZ/2. An element in the third summand is represented

by a linear combination of formal sums h(z) + h(Z) where h is a monomial in X which is not
fixed by the involution (h(Z) + h(z) and h(z) + h(T) are identified).

Remark A.1. The motivation behind this definition is the following. First one can form the
free semi-Mackey-functor on X < Y:res by taking the free commutative monoids on X and Y
and freely add a norm. This is the diagram

M(X:Y) = (M(X) €55 M(Y 1 X/Z[2)),
N

where the restriction is induced by the restriction on Y and the map X /7 /2 — X that sends [z]
to #Z. The norm is induced by the projection X — X /Z /2. The free Tambara functor on this
diagram is heuristically 7 of the “spherical monoid ring SA M (X;Y")”. The underlying abelian
group of components is then Z[ X]. The fixed-points can be additively calculated using the tom
Dieck splitting as

To(SA (MX;Y)2 ) @mo(S A M(X;Y))nzye = Z(M(Y uX/Z [2)) @ (Z[X]/Z/2),

where the quotient in the second summand is a quotient of abelian groups. This is therefore
isomorphic to

Z[X]/Z[2=Z(M(X)]Z[2) = Z(M(X)*P*) @ Z(M (X)) 2 /2),
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hence the formula. In order to calculate the multiplicative structure from this formula rigor-
ously, one needs to find an actual (or homotopy coherent) topological commutative monoid with
involution M, such that the associated semi-Mackey functor of components is isomorphic to
M(X;Y). We have not investigated if this is possible. Instead of doing this, we directly define
the Tambara structure on A[X ;Y] keeping the latter heuristics in mind.

The commutative multiplication on Z(M (Y uX/Z [2))@Z(M(X)?/?)ez(M(X)/m¢/ 7 [2)
is defined on additive generators by the following multiplication table:

° mgm mkm h+h
m/g'm’ | mm'gg'mm’ | mm'res(g’)kmm/ m'res(g’ Ym'h + m’res(g’)m'h
m'k'm’ 2mm/kk'mm/ 2(m'k' hm’ + m/k'him’)
(hh! +BI7) + (W + hR7) if Wi # hi7, hi' # B
WAn WA + (BT + Bt it WI7 # BI, hh' = R
(hh' + hh') + hh' if hh! = hh!, hh' # hh'

where the elements hh' and hh/ in the last two cases of the bottom right case belong to the
second summand. Thus, we see that Z(M (Y 1 X/Z/2)) is a subring and that Z(M(X)%?/?) @
Z(M(X)I7e¢/ 7 [2) is an ideal. The restriction, transfer and norm maps are defined on additive
generators by the formulas

res(mgm) = mres(g)m res(mkm) = 2mkm res(h+h)=h+h
tran(k) = k tran(h) =h+h
N(m)=mlm

where k is a fixed monomial in X, and h is a non-fixed monomial. Here m is any monomial
in X and its norm belongs to the first summand. The transfer and restriction are extended
additively, and the norm by Tambara reciprocity:

N(a+b)=N(a)+N(b) + tran(ab).
It is easy to verify that the restriction and the norm are multiplicative, and that this indeed
defines a Tambara functor.

Lemma A.2. The functor A[—; -] is left adjoint to the forgetful functor that sends a Tambara

t
functor T = (A (—r;s ’

B) to the Oz jo-diagram of sets A < B:res with the involution of A.

Proof. Clearly a map of Tambara functors A[ X ;Y] — T induces maps of sets X - Aand Y — B,
by restricting the maps of underlying rings respectively to the set of polynomial generators X
and along the inclusion Y - M (Y u X/7Z/2). Tt is easy to verify that these commute with the
restriction and the involution.

Conversely, let us show that maps of sets a: X — A and £:Y — B commuting with the
restriction and the involution induce a unique map of Tambara functors

an

7[X] <_t—> Z(M(YuX/Z[2)eZ(M(X)*/?)ez(M(X)Im¢|Z/2)
N |

a,{J/ | Bx
tran N2
A : B,

N
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whose map of underlying presheaves is again given by o and /3. Clearly «, is the unique map of
rings which restricts to «, and it is equivariant. Since «, and (5, must commute with transfers
and norms, the map [, must satisfy the conditions

B+ (mgm) = B, (m1Im)B.(g) = B.(N(m))B«(g9) = N(a.(m))B.(g)
B« (mkm) = B, (tran(mkm)) = tran(a. (mkm))
B+(h+h) = By (tran(h)) = tran(a. (h))

(here we abuse the notation and denote the monoid maps induced by a and g also by a, and
B., respectively). Thus if 3, exists it must be unique. In order to show existence we need to
verify that these formulas indeed define a morphism of Tambara functors. It is immediate that
a, and B, commute with the transfers and the norms. For the restrictions, we verify that

ves B (mg) = res(N (e (1)) B(9)) = res(N (e (m))) res(Be ()
= a(m)a.(m)asres(g) = . res(mgm)
res B. (mkm) = restran(a, (mkm)) = 2a. (mkm) = a, res(mkm)
res B, (h+ ) = restran(au (h)) = ax(h) + o (h) = . (ves(h + h)).
It remains to verify that /3, is multiplicative. We do this directly on generators:
Be(mgim-m'g'm') = B (mm’gg'mm’) = N (. (mm”))B.(g99")
= N(ae(m))N(a.(m'))B.(9)B:(9") = B (mgm) 8. (m'g'm’)

B« (mgm -m'km’) = B, (mm’ res(g)kmm/) = tran(a. (mm’ res(g)kmm/))
= tran (o, (m'km’) . (m) o (M) avs res(g) )
= tran (o, (m'km’) res(N (ax (m)) 8. (9)))
= N(ax(m))B(g) tran(a. (m'km’)) = B (mgmm) B« (m' ki’

B.(mgm - (h+h)) = . (mres(g)mh + mres(g)mh) = tran(o. (mres(g)mh))
= tran(ax (h)a. (m)as(m)a res(g)) = tran(as (h) res(N (ax(m))B+(g)))
= N (. (m))B(g) tran(cv. (h)) = B (mgm) B (h + h)

Be(mkm -m'k'm") = B 2mm'kk'mm’) = 2tran(a. (mm'kk"mm’))
= 2tran( o (mkm)a., (m'k'm’)) = tran( o, (mkm) res(tran( o (m'k'm’))))

= tran( o (mkm)) tran(a., (m'k'm’)) = B, (mkm) B. (m'k'm")

Be(mkm - (h+h)) = 2B, (mkmh + mkmh) = 2 tran(a, (mkmh))
= tran( . (mkm) (a. (h) + a.(h))) = tran(a, (mkm) restran(a. (h)))
= tran( o, (mkm) ) tran(o, (h)) = B (mkm) B, (h + h)

(hh' + BRT) + (R + hRT) if WY % BIZ, hh' = W
Bu((h+T) - (W + 1)) = B BB + (W7 + 7 £ W+ T, W < T
(hh'+Rh') + hh'! if hh! = hh!, hh' + hh'
= tran(a, (hh')) + tran(a. (Rh')) = tran(a. (h) (o (B)) + ax (R)))
= tran(a (h)) tran(as (B')) = Bu(h + B)Ba (B + 1)
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Remark A.3. There is a way of constructing the left adjoint A[—;—] using 7 /2-equivariant
stable homotopy theory. Given an Oz jp-diagram of sets X « Y:res (with an involution on
X), one can functorially construct a Z /2-CW complex Z whose fixed point Oz jo-diagram is
weakly equivalent to the latter. This uses Elmendorf’s Theorem [Elm83|. Let P denote the free
(genuine) Z /2-E.-algebra functor. Then using the adjunction of [Ull13, Theorem 5.2|, we can
see that the components of P(X*Z,) are the free Tambara functor, and therefore

my(P(E%2,)) 2 ALX; Y]

We do not go into the details of this construction, but note that we can deduce from this abstract
construction that the free Tambara functor is torsion-free. Indeed, the spectrum P(X*Z.) is
equivalent to a wedge of suspension spectra of Z /2-CW complexes. By the tom Dieck splitting,
the groups of components of such spectra are in fact free-abelian.

This strategy is different than the heuristics presented in Remark A.1. There we first pass
to the free semi-Mackey functor and then to the free Tambara functor. Here we first go in
the additive direction and create the free (honest) Mackey functor and then the associated free
Tambara functor. The functors X*°(-), and P are just topological analogs of the latter two
constructions.

We can use the construction A[X;Y] to build resolutions for cohomological Tambara func-

tors. Let
tran

T=(Az=—==——B),

be a cohomological Z /2-Tambara functor, that is one for which Nres = (-)? (and in particular
from Tambara reciprocity tran(1) = 2). Any cohomological Tambara functor can be resolved
with a torsion-free commutative ring with involution.

Lemma A.4. For any cohomological Tambara functor T as above, there exists a polynomial
ring with involution S and a surjection of Tambara functors

tran

o —— AP

N

A B.
N

Proof. Consider the free Z [2-set X = Z /2 x A which consists of two disjoint copies of the
underlying set of A. The Z /2-action exchanges the two copies of A. The obvious Z /2-equivariant
counit map a: X — A gives a map of Oz jp-diagram of sets

Xe———F0

I

A res B’

which in turn by the adjunction of Lemma A.2 gives a map of Tambara functors A[X; @] — T

7[X] <—t4sn—> Z(M(X[Z[2))® Z(M(X)*/*) @ Z(M(X)I7°/ Z [2)
Oé*l N J/B*
A tra?l > 5

N
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The top row is not a cohomological Tambara functor. We make some identifications which will
transform the top row into a cohomological Tambara functor, and which are preserved by (..
For any fixed monomial mm € M (X)%/?, consider the difference

2N (m) — mm.

These elements generate an ideal I of the upper right corner. It follows from the definitions
that res(I) = 0. Since the lower row is cohomological, we know that tran(1) = 2 which implies
that 8.(I) =0. Hence we get a morphism of cohomological Tambara functors

7[X] L (Z(M(X/Z[2)) @ Z(M(X)*?) @ Z(M(X)'"*¢/ Z [2))/1
N

a*l lﬁ*
tran
A B,

T€;

N

where we keep the notation . to denote the the induced map on the quotient. An elementary
calculation now shows that there is a ring isomorphism

(Z(M(X/Z/2)) ® Z(M(X)**) @ Z(M(X)'"*] 2 [2))[1 2 Z[X]*/.

In fact the Tambara functor associated to the commutative ring with involution Z[X] is iso-
morphic to the top row of the latter diagram. Hence we get a map of Tambara functors

tran

7[X] /= Z[X]4/?

N
" |
tran
A y

B,

N

where £ (mim) = N(a,(m)) and £, (h+h) = tran(a, (h)), for any monomial m and a non-fixed
monomial h.

This almost proves the desired result, except the map 5. is not necessarily surjective. By
tensoring with Z[B], where B has the trivial Z /2 action, we obtain a morphism of Tambara

functors
tran

Z[X]® Z[B] —=s— Z[X]?/?  Z[ B]

l ) l
tran

A T B.
N

Here we define N(mb) = N(m)b?, where b is a monomial in the elements of B. For linear
combinations, the norm is extended using Tambara reciprocity. The left vertical map is induced
by a. and the restriction res: B — A. The right vertical map is induced by 8 and the identity
on B. Clearly, both vertical maps are surjective. That these maps are compatible with the
norm uses that Nres = (-)?, i.e., that our Tambara functor T is cohomological.

It is now easy to verify that the Tambara functor associated to the commutative ring with
involution S =Z[X]® Z[B] = Z[ X u B], where B has a trivial Z /2 action, is isomorphic to the
top row of the latter diagram. O
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