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Abstract: In many applications comprised of multiple platforms with stringent vibration isolation
requirements, several vibration isolators are employed to work in tandem. They usually must
accomplish two objectives: (i) reduce the vibration level of each platform; and (ii) maintain the
required alignment with respect to each other or with a fixed reference. If the isolators are located
on a rigid supporting structure, the problem can be approached as a classical vibration isolation (VI)
problem, in which an increase in damping implies a reduction of vibration level experienced by the
platforms. However, there are an increasing number of scenarios in which the dynamic interaction
between the isolator and the base structure has the potential to alter the system response and
consequently degrade VI performance. In this work, a generalized method to analyze the combined VI
and alignment problem, for multiple isolators located on a flexible supporting structure, is proposed.
The dynamic interaction between the platforms and the isolators is considered in the control design,
and it is proved employing two different functional values that the maximum damping solution is not
always the best approach when the dynamics of the supporting structure are considered. Numerical
simulations are presented to validate the theory developed and robustness of the proposed control
approach is demonstrated.

Keywords: vibration control; active vibration isolation; dynamic interaction; multi-platform alignment

1. Introduction

Vibration isolation (VI) techniques are generally employed to reduce the vibrations transmitted
between a supporting structure (also denoted as base) and a platform, where vibration-sensitive
equipment is placed. The vibration propagation occurs via two main scenarios: Scenario 1, the equipment
generates vibrations that are transferred to a supporting structure; and Scenario 2, a supporting structure
propagates vibrations onto sensitive equipment it supports [1]. Vibration isolation is achieved by applying
an appropriate control force that opposes the vibrations-generated force, by employing isolators that are
placed between the supporting structure and the platform(s) to be isolated.

Depending on the method in which this control force is generated, three different techniques can
be distinguished: Passive VI (PVI), Semi-Active VI (SAVI) and Active VI (AVI). In both PVI and SAVI,
the controlled force is generated passively as a consequence of the relative movement between the
supporting structure and the platform [2,3]. For PVI, the dynamic properties of the isolator system do

Actuators 2020, 9, 108; doi:10.3390/act9040108 www.mdpi.com/journal/actuators

http://www.mdpi.com/journal/actuators
http://www.mdpi.com
https://orcid.org/0000-0002-4456-9886
https://orcid.org/0000-0002-9029-1352
https://orcid.org/0000-0002-1691-1648
https://orcid.org/0000-0002-2814-3690
http://dx.doi.org/10.3390/act9040108
http://www.mdpi.com/journal/actuators
https://www.mdpi.com/2076-0825/9/4/108?type=check_update&version=2


Actuators 2020, 9, 108 2 of 21

not change and, hence, are not able to adapt to changes in the platform and/or supporting structure
dynamics. The use of SAVI can mitigate this problem, since the stiffness and/or damping of the isolator
system can be varied to adapt to changes in the structural dynamics [4–6].

For both PVI and SAVI, VI only occurs for frequencies greater than
√

2 times the natural frequency
of the isolator (i.e., its cut-off frequency). In addition, a PVI with −40 dB/dec roll-off in the isolation
(or rejected) band needs a low damping ratio, which may introduce significant unwanted amplification
around its resonant frequency. Nonlinear techniques have been applied to reduce the natural frequency
of the isolator system, thereby improving its performance [7–14]. The problem of having less than
−40 dB/dec roll-off for high frequencies when the damping ratio is reduced can be alleviated by using
a spring in parallel with a Maxwell element, i.e., damper and spring in series [15]. In this approach,
the damper tends to be blocked, resulting in a system with two springs in parallel.

AVI presents the following advantages: high damping ratio with −40 dB/dec roll-off in the
isolation band, the possibility to reach zero static deflection, robustness to system parameter and
operational uncertainties and trajectory tracking capabilities [16]. These improvements may be required
in applications with highly-demanding VI requirements, such as space applications, precision research,
manufacturing centres, etc. [17–20]. Thus, although the implementation cost of an AVI scheme is higher
than PVI or SAVI [21–23], their advantages make AVI schemes more attractive in these applications,
when compared to PVI or SAVI schemes.

In AVI, in addition to the force generated by the relative movement between the base and
the platform, an additional control force is introduced, usually called active force. This active force is
controlled by the adopting suitable feedback or feedforward control techniques [24–26]. The application
of AVI implies the use of at least one sensor at the platform (feedback) or at the supporting structure
(feedforward), as well as a controller and actuator to generate the control force. It is also necessary
to deal with the potential problems of real-time signal processing, in particular instability problems
when the system is not well modeled and/or is time variant.

If the aforementioned Scenario 2 is considered, the common hypothesis in the classic isolator
system design is to consider the supporting structure as an infinitely rigid system compared with
the isolator. This assumption is correct when the control force exerted by the isolation system does
not significantly affect the base response [27–29]. However, this hypothesis is not valid when the
movement of the supporting structure is affected by the control force, as occurs in a range of practical
cases [30–37]. This interaction phenomenon, which can be defined as a hybrid scenario, may change
the response of the supporting structure to perturbations, such as force exerted by other activities or
displacements. Thus, vibration reduction, which may be achieved by the isolators, can also improve
the isolation performance since the absolute VI level may be reduced.

An isolation system including multiple devices using a multi-input multi-output (MIMO) AVI
strategy can deal with more complex problems. These MIMO AVI strategies are needed in tasks where
multiple isolators are involved, such as multi-degree of freedom systems (e.g., Stewart platforms) or
applications where the alignment between equipment is required [18,19,38]. Note that, if the hypothesis
of a rigid base is considered, the alignment problem may be considered analogous to obtaining the
best isolation performance in terms of platform movement with respect to the supporting structure.
Thus, each isolator can be considered as an individual system that does not interact with other isolators
or with the supporting structure. However, if the isolators are situated on a flexible supporting
structure, the problem must be analyzed from a wider perspective, considering the effect that the
isolator makes in the supporting structure response. This effect may involve improvements in the VI
performance, as mentioned above, and in the alignment between these multiple devices. Therefore,
the model used to design MIMO AVI must consider the supporting structure model, which is excited
by both external disturbances and every isolator system, in order improve the performance of the
isolation and alignment control objectives.

This paper studies how the control forces exerted by the isolation system may improve
performance according to the isolation and alignment control objectives. Thus, under the hypothesis
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of perturbation forces exerted at the supporting structure, two designs are compared. The first one
considers a rigid supporting structure with no dynamic interaction with the isolator system. In this case,
the best transmissibility between the accelerations of supporting structure and sensitive equipment is
always the best overall solution. The second hypothesis considers a flexible supporting structure with
dynamic interaction with the isolator systems. The objective of this paper is to highlight when the best
AVI design does not correspond with the best transmissibility, showing the importance of considering
this interaction.

The remainder of the paper continues with the general AVI framework, where a model of the
isolator system placed on a flexible supporting structure is presented in order to formulate the isolation
and alignment problem. Then, this general framework is particularized for a multiple single-input and
single-output (SISO) AVI, which feeds back the acceleration measured at the platform of each isolator
system. This section also includes the AVI control law employed and the functional used to design
optimally the aforementioned real scenario. The next section includes illustrative results obtained with
a large set of optimal AVI multiple SISO controllers designed for a large set of supporting structures
and isolator systems. This large set of examples are normalized in terms of mass and frequency ratios
of both systems. Finally, the main conclusions derived are presented.

2. General AVI Framework

This section defines a general framework where the forces generated by an isolator system together
with external disturbance forces can be included into a model of the supporting structure. Thus,
the performance of the isolator system, which is defined in terms of isolation and alignment, can be
considered as a problem that also involves the supporting structure dynamics. Firstly, the isolator
system is analyzed from a base acceleration point of view. The objective is to obtain the acceleration
transmissibility between any acceleration measured at the jth isolator and the base acceleration
measured at this jth location. Secondly, the base structure is modeled by considering n forces exerted
by the n isolators and disturbance forces applied at l nodes of the base structure. Feedback and
feedforward AVI can be included in this general model. Thirdly, this real scenario is defined in terms
of isolation and alignment objectives.

2.1. Transmissibility Model for the Isolation System

Figure 1 shows the transmissibility model of the a generic isolator j, such that {1 ≤ j ≤ n, j ∈ N}.
The mass to be isolated is mpj , which is situated on the platform of the isolator. The dynamic properties
of the isolator are modeled with its stiffness kpj and its viscous damping cpj . The active force faj(t)
is obtained either by a feedback and/or feedforward technique, which may consider any variable of
the isolator and/or the support. The variables ẍpj(t) and ẍbj

(t) are the accelerations measured at mpj

and at the base, respectively. If the variable xrj(t) = xpj(t)− xbj
(t) is defined, the differential equation

describes the motion of mpj is expressed as:

faj(t)−mpj ẍbj
(t) = mpj ẍrj(t) + cpj ẋrj(t) + kpj xrj(t) (1)

pk pc af ( )t

pm
px ( )t

bx ( )t
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Figure 1. Single isolator on a rigid supporting system.
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It is desired to have a general representation of all modeled isolator systems to formulate the
design criteria. Thus, Equation (1) can be formulated as the following state–space model:

ẋIj(t) = AIj xIj(t) + BIBj ẍbj
(t) + BIFj faj(t)

yIj(t) = ẍpj(t) = C Ij xIj(t) + DIFj faj(t),
(2)

where the vector ẋIj(t) = [ẋrj(t), ẍrj(t)]
T and the matrices are hence defined as:

AIj =

[
0 1
−ω2

pj
−2ζpj ωpj

]
, BIBj =

[
0
1

]
, BIFj =

[
0

1/mpj

]
,

C Ij =
[
−ω2

pj
−2ζpj ωpj

]
, DIFj = 1/mpj ,

(3)

in which ωpj is the natural frequency of the jth isolator, obtained by ω2
pj

= kpj /mpj , and ζpj is its
damping ratio, obtained by ζpj = cpj /(2mpj ωpj). Each isolator system then has two inputs, the base
acceleration ẍbj

(t) and the active force faj(t), which depends on the AVI controller utilized.
If Equations (2) and (3) are generalized for the n isolators, the state–space model of the isolators

system is:
Ẋ I(t) = AI X I(t) + BIBẌb(t) + BIFFA(t),

Y I(t) = C I X I(t) + DIFFA(t),
(4)

in which the state variables of each isolator are defined in the vector X I(t) =
[
xI1(t), xI2(t), . . . , xIn(t)

]T ;
the output vector is Y I(t) =

[
yI1(t), yI2(t), . . . , yIn(t)

]T ; the system matrix is a diagonal matrix of the
system matrices of the n isolators, such that AI = diag

(
AI1 , AI2 , . . . , AIn

)
; the disturbance input matrix

is BIB = diag
(

BIB1 , BIB2 , . . . , BIBn

)
; the controlled input matrix is BIF = diag

(
BIF1 , BIF2 , . . . , BIFn

)
;

the output matrix is C I = diag
(
C I1 , C I2 , . . . , C In

)
; and the feedthrough matrix is defined as

DIF = diag(DIF1 , DIF2 , . . . , DIFn). The inputs of the system are defined by the vectors Ẍb(t) =[
ẍb1(t), ẍb2(t), . . . , ẍbn(t)

]T and FA(t) = [ fa1(t), fa2(t), . . . , fan(t)]
T .

The model of Equation (4) can be expressed in the Laplace domain as follows:

Y I(s) = GIB(s)s2Xb(s) + GIF(s)FA(s), (5)

in which the variables Y I(s), Xb(s) and FA(s) are the Laplace transforms by components of the vectors
Y I(t), Xb(t) and FA(t), respectively, and the matrices GIB(s) and GIF(s) are formed by the following
transfer functions:

GIB(s) = C I [sI2n − AI ]
−1 BIB, (6)

GIF(s) = C I [sI2n − AI ]
−1 (BIF + DIF) , (7)

where I2n is a 2n× 2n identity matrix.

2.2. Supporting Structure Model

Figure 2 shows the model of the supporting structure and isolator system described in Equation (4).
The supporting structure is modeled by considering n control forces, F I , exerted by the n isolators and
l disturbance forces, FD, which can be applied at the isolation locations and/or at other base locations,
where l ≥ 1. The outputs of the supporting structure are the accelerations measured at the n locations
of the isolators. The forces exerted by the n isolators are obtained by multiplying the vector Y I by the
diagonal matrix MP = diag (mp1 , mp2 , . . . , mpn).
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Figure 2. Schematic block diagram of the coupled isolator–structure system.

The state–space equations of the base structure of m vibration modes can be expressed as follows:

ẊB(t) = ABXB(t) + BBDFD(t) + BBI F I(t),

Y B(t) = CBXB(t) + DBDFD(t) + DBI F I(t),
(8)

where the matrices AB, BBD, BBI , CB, DBD and DBI are defined as:

AB =

[
0m Im

−Ω2 −2ZΩ

]
; BBD =

[
0m,l
ΦD

]
; BBI =

[
0m,n

ΦI

]
;

CB = ΦT
I

[
−Ω2 −2ZΩ

]
; DBD =

[
ΦT

I ΦD,
]

; DBI =
[
ΦT

I ΦI ,
]

;

The vectors XB(t) =
[
xB1(t), ẋB1(t), . . . , xBm(t), ẋBm(t)

]T , FD(t) = [ fd1(t), . . . , fdl
(t)]T and

F I(t) = [ f I1(t), . . . , f In(t)]
T = MPY I(t) are the state–space vector, the disturbance force and the forces

exerted by the n isolators, respectively. The output vector is Y B(t) = Ẍb(t) =
[
ẍb1(t), . . . , ẍbn(t)

]T .
Note that ẍbj

(t) is the acceleration measured in the jth isolator location and xBq(t) is the modal state
variable of the qth mode, which is used to define the state vector XB(t) of the supporting structure.

The terms Ω =diag(ωb1 , . . . , ωbm) and Z =diag(ζb1 , . . . , ζbm) are m×m diagonal matrices formed
by the natural frequencies of the structure and the damping ratios. The matrices 0m and Im are the
zero and identity matrices of dimension m×m, while 0m,l and 0m,n represent m× l and m× n zero
matrices, respectively. ΦD is a m× l matrix whose columns are the mode shapes at the disturbance
locations, while ΦI is a m× n matrix whose columns are formed by the mode shapes of the supporting
structure at the isolator locations.

The model of Equation (8) can be expressed in the Laplace domain as follows:

Y B(s) = s2Xb(s) = GBD(s)FD(s) + GBI(s)Y I(s), (9)

in which the variables Y B(s) and FD(s) are the Laplace transforms of Y B(t) and FD(t), respectively,
and the matrices GBD(s) and GBI(s) are formed by the following transfer functions:

GBD(s) = CB [sI2m − AB]
−1 BBD + DBD, (10)

GBI(s) = (CB [sI2m − AB]
−1 BBI + DBI)MP, (11)

where I2m is a 2m× 2m identity matrix of the same dimensions as AB.
If Equation (9) is substituted into Equation (5), the accelerations of the isolator masses are given by:

Y I(s) = [In −GIB(s)GBI(s)]
−1 GIB(s)GBD(s)FD(s)+

[In −GIB(s)GBI(s)]
−1 GIF(s)FA(s),

(12)
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which depend on the disturbance forces (FD) and the active forces (FA). This equation is
needed to study the influence of the platform acceleration when a non-rigid supporting structure,
an AVI and disturbances forces are considered together. Then, the AVI objectives are defined
as: (i) transmissibility defined by Equation (5) (YIj(s)/YBj(s)); and (ii) the alignment between two
platforms in the presence of the disturbance force, which can also be defined from Equation (12)
((YIj(s)−YIj+1(s))/Fdk

(s)). The variables YIj(s), YBj(s) and Fdk
(s) are components of the vectors Y I(s),

Y B(s) and FD(s), respectively.

2.3. Formulation of the VI and Alignment Problem

The objectives of the AVI defined in this section consider the maximum value of the frequency
response functions defined by YIj(s)/YBj(s) and (YIj(s) − YIj+1(s))/Fdk

(s). Thus, the following
variables are defined: (i) the transmissibility between the platform and supporting structure
acceleration, defined in this work as:

ΛT =
1
n

n

∑
j=1

∥∥∥∥∥ YIj(s)

YBj(s)

∥∥∥∥∥
∞

; (13)

and (ii) the alignment of the isolators located on the supporting structure, which is illustrated in
Figure 3, and defined as follows:

ΛA =
1

l(n− 1)

n−1

∑
j=1

∑l
k=1

∥∥∥∥YIj
(s)−YIj+1

(s)

Fdk
(s)

∥∥∥∥
∞

Lj,j+1
. (14)

The expression of Equation (14) is based on the tangent of the angle between adjacent platforms,
tan θj,j+1. The angle has been considered to be small enough such that tan(θj,j+1) ≈ θj,j+1.

As can be observed, both expressions are divided by the number of addends, thus the functional
values can be compared independently of the number of isolators and disturbance forces applied on
the supporting structure.

The design criterion based on a rigid supporting structure hypothesis considers AVI that
minimizes ΛT defined by Equation (13). The design criterion based on a flexible supporting structure
considers the AVI objectives defined by the combination of ΛT and ΛA.

Reference
...12q 23q

n-1nq

( )tpx 1

( )tpx 2

( )tpx 3

( )tpx n-1

( )tpx n
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Figure 3. Illustration of the alignment problem.

3. Interaction Problem Using a Feedback AVI Control Law

This section particularizes Equations (5) and (12) when the AVI is based on the following
feedback strategy:

FA(s) = GAVI,F(s)Y I(s), (15)

where GAVI,F(s) is the matrix formed by the transfer functions that relate the n outputs of the isolator
system with the n inputs. Thus, if Equation (15) is considered, Equations (5) and (12) are as follows:

Y I(s) = [In −GIF(s)GAVI,F(s)]
−1 GIB(s)Y B(s), (16)
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Y I(s) =
[

In − [In −GIB(s)GBI(s)]
−1 GIF(s)GAVI,F(s)

]−1

· [In −GIB(s)GBI(s)]
−1 GIB(s)GBD(s)FD(s). (17)

Then, Equation (16) is used to obtain the variable defined in Equation (13), and Equations (16)
and (17) are used to obtain the variables defined in Equation (14).

AVI Control Law

The matrix GAVI,F(s) is defined as follows:

GAVI,F(s) =


C f1(s) . . . 0

...
. . .

...
0 . . . C fn(s)

 =
1
s

kv1 . . . 0
...

. . .
...

0 . . . kvn

 =
1
s

KV , (18)

where c f j
is considered in this work as a direct velocity feedback (DVF), with the aim to emulate the

behavior of a sky-hook damper [1], in which each force faj(t) only depends on the movement of the
platform. The active damping added to the isolator by the DVF c f j

(s) increases with the absolute value
of the gain kvj . The DVF controller of the jth isolator can be expressed as:

C f j
(s) = kvj /s, (19)

in which kvj is the controller gain. The matrix of the isolator system of Equation (18) is given by
KV = diag(kv1 , . . . , kvn). The transfer function between the platform acceleration (ẍpj ) and the base
acceleration (ẍbj

) for the jth isolator (Figure 1) and the DVF of Equation (19) is as follows:

s2Xpj(s)

s2Xbj
(s)

=
2ζpj ωpj s + ω2

pj

s2 + 2ζpj ωpj s + ω2
pj
− (kvj /mpj)s

. (20)

Note that the value of ζpj should be small enough to guarantee a −40 dB/dec attenuation in
first part of the rejected band. For example, if the value of ζpj is equal to 0.01, there is a −40 dB/dec
attenuation between ωpj and 50ωpj (i.e., the zero is placed at −50ωpj ). The objective of Equation (20)
is to increase the damping of the poles, reducing the peak response. The value of this closed-loop
damping, denoted in this work as ζAVI

pj
, is obtained with following equation:

ζAVI
pj

= ζpj −
kvj

2mpj ωpj

. (21)

4. Application Example

In this section, the analysis of the VI and the alignment problem is particularized to the case of
three isolators placed on a simply supported beam. The numerical results illustrate when the dynamics
of the supporting structure must be considered in the alignment problem (i.e., the combination of ΛT
and ΛA). This section is divided into: (i) system dynamics; (ii) design criterion; (iii) numerical examples
for symmetrical and non-symmetrical configurations of the three isolators; and (iv) robustness analysis
for isolator parameter uncertainty.

The system configuration adopted here represents a general case study, in which the isolators are
situated on the same non-rigid supporting structure. Similar configurations can be found in [31,39],
in which four actuators are used to isolate the equipment situated on a flexible supporting plate
structure. An identical configuration considering only one isolator is also presented in [40].
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4.1. System Dynamics

The system can be divided into two parts: the supporting structure and the three isolators
(Figure 4). The first is chosen to be a pinned-pinned supported beam. The relevant beam material
properties are Young’s modulus (Ex) and its density (ρ). The geometrical properties of the beam are
defined such that the inertia of the cross-section with respect to the horizontal axis is Ix and the length
between the supports is Lb.

pk
1 pc

1

pm
1

af1
( )t

pk
2 pc

2

af2
( )t

px
2
( )t

pm
2

fc 1
( )tpx ( )t

1
Sensor

fc 2
( )tSensor

fc 3
( )tSensor

pk
3 pc

3

af 3
( )t

px
3
( )t

pm
3

fc ( )t

Flexible structuresL
l

sL
r

bL  / 2
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Figure 4. Illustration of three isolators situated on a flexible beam support.

The qth mode shape of the beam can be expressed as [41]:

φbq(x) = C1 sin
qπx
Lb

, (22)

in which C1 is a constant that has been chosen to be unity. The frequency of the qth mode can be
expressed as:

ωbq =

(
qπ

Lb

)2
√

Ex Ix

ML
, (23)

in which ML is the mass per unit length of the beam. The relationship between the vibration modal
frequencies can be defined by considering Equation (23) as: ωbq = ωb1 · q

2, in which 1 ≤ q ≤ m.
The variables Lsl and Lsr are the distances from the end isolators with respect to the left and

right supports, respectively, and they correspond with the location of the isolators j = 1 and j = 3,
respectively. The isolator j = 2 has been considered to be at the mid-span of the beam structure for the
symmetrical and non-symmetrical cases. The distances used for the functional are L12 = Lb/2− Lsl

and L23 = Lb/2− Lsr .
The state–space representation proposed in Equation (8) is used to model the supporting structure,

in which: (i) the number of modes considered for the analysis is m = 3; (ii) the number of inputs of the
isolator system (i.e., the number of outputs of the supporting structure) is n = 3; (iii) the considered
disturbance forces are at the isolation locations (l = 3) or one force located at Lb/4 from the left support,
which can excite all the considered vibration modes (l = 1); and (iv) the damping is assumed to be
constant for all modes, with a value of ζbq = 0.005, in which 1 ≤ q ≤ 3.

The three isolators are considered to have the same dynamic properties (i.e., the values of mpj ,
ωpj and ζpj are the same for j = 1, 2, 3). The values of the masses and natural frequencies are defined
with respect to the supporting structure model as follows:

mpj = rm Mm, (24)

ωpj = rωωb1 , (25)

where rm is the ratio between the isolator mass and the beam modal mass, which is defined as
Mm = MLLb/2, and rω is the ratio between natural frequency of the isolator and the first vibration
mode of the beam. The simulations have been developed considering ζp1 = ζp2 = ζp3 = 0.01.
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4.2. Design Criterion

The design criterion is based on finding the optimal gains values kv1 , kv2 and kv3 for each pair of
values rm and rω to minimize the following functional:

f f v(KV , rm, rω) = αΛT(KV , rm, rω) + βMmLbΛA(KV , rm, rω), (26)

where the parameters α and β balance the importance of vibration level reduction for every platform,
which is defined by ΛT , and the relative alignment between the isolators, which is defined by ΛA.
In this particular example, these parameters are considered as α = β = 0.5. Note that: (i) the function
ΛT depends on KV , rm, and rω ; and (ii) the function ΛA is scaled by MmLb to make f f v independent of
the flexible beam, depending only on KV , rm and rω. Thus, the conclusions can be generalized to any
simply supported beam where such configurations of isolator systems are used, simplifying a future
experimental validation.

Firstly, if the rigid case is considered, the minimization of the functional value f f v is simplified to
the minimization of ΛT . Thus, the optimal value of KV must be as large as possible. To limit this value,
this work considers that the maximum damping in this numerical example is one. Thus, the gain kvj

obtained for this damping value, which is denoted as k̂vj , is calculated as follows:

k̂vj = −2(1− ζpj)mpj ωpj , (27)

where the optimal matrix for the rigid case is defined as K̂V . Secondly, the flexible supporting structure
is also considered in order to minimize Equation (26). The optimal value of KV is denoted as K̂FV . Thus,
the differences in f fv(K̂V)/ f fv(K̂FV), which must be greater or equal to one, and KV/KFV , where each
component must be also be greater than or equal to one, are useful to illustrate and quantify the
interaction between the supporting structure and isolator system in terms of isolation and alignment
objectives. Note that the damping of the transmissibility for K̂FV will be always less than or equal to
that obtained with K̂V , showing that a worse transmissibility may improve the alignment objective.

4.3. Numerical Results

Since the functional f f v(KV , rm, rω) does not depend on Mm and Lb, the value of Lb is 1 [m],
while the modal mass of the supporting structure has been chosen to be 10 kg. The range of the ratios
for rm and rω are defined in Table 1. The value of each kvj must be between k̂vj and zero.

Table 1. Mass ratios rm and frequency ratios rω used in the numerical experiment.

rm rω

[1 · 10−4, 1.5] [0.1, 1.5]

Two examples are presented: (i) a symmetrical case with Lsl = Lsr = Lb/4 (L12 = L23 = Lb/4);
and (ii) a non-symmetrical case with Lsl = Lb/4 and Lsr = Lb/6 (L12 = Lb/4 and L23 = Lb/3).
In addition, two scenarios are independently studied in order to compare the effect of disturbance
force location. The first considers a single disturbance force applied at Lb/4. The second considers
three disturbances forces applied at the isolator locations. The optimal control gains for each case
have been obtained using the Nelder–Mead simplex algorithm [42] with boundary conditions [43].
The maximum number of iterations has been chosen to be 2000, with a tolerance on convergence
of 10−6. Additionally, the stability of the overall system defined in Equations (9), (16) and (17) is
verified. Thus, if there are positive real poles, the functional defined in Equation (26) is penalized and
all unstable solutions are discarded.

With the aim of showcasing the effect of uncertainty in isolator dynamics on the VI and alignment
performance, a robustness analysis has been conducted. The single force disturbance input case is
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analyzed for symmetrical and non-symmetrical scenarios, considering variations of 5% and 10% in the
dynamic properties ζp2 , ωp2 , of the mid-span isolator.

4.3.1. Symmetrical Case: L12 = L23 = Lb/4

A comparison of the functional f f v(KV) for both optimal control gains K̂V , K̂FV is shown in
Figure 5. Figure 5a shows the case of a single disturbance force, which is applied at Lb/4 from the left
support, and Figure 5b shows the three disturbance forces applied at the isolator locations.

The influence of the frequency ratio rω is much higher than the influence of the mass ratio rm for
the scenario of a single disturbance force. The highest influence region is determined for rω → 0.8 and
low mass ratios. The use of K̂V may imply an increment of two times the value of f f v(KV) with respect
to the use of K̂FV . It is important to note that, for most of the domain analyzed here, the influence
of the dynamics of the supporting structure on the functional value is high. This influence starts to
be significant from rm ≤ 0.1. In addition, the interval for rω is between 0.3 and 1.5, when rm = 10−4,
where the functional varies from 9% to 200%.

Before analyzing the case of three disturbance forces applied at the isolator locations, it should
be noted that the total effect of the force applied at isolators 1 and 3 is null and the force applied
at isolator 2 does not excite the second mode. Thus, the second mode of the flexible support does
not affect Equation (26). Therefore, the three gains of the isolators must be tuned to find a trade-off
between the transmissibility and the cancellation of the first and third mode. Thus, the improvement
must be more important than for a single disturbance force, which excites the three vibration modes.
This is evidenced in Figure 5b, where the ratio f f v(K̂V)/ f f v(K̂FV) is shown. For most of the region,
the use of K̂V implies an increment of the functional value two times higher than the use of K̂FV .
In addition, if the frequency of the isolators are similar to the first natural frequency of the supporting
structure, the influence of the base dynamic on the functional value is higher, reaching an increment of
nineteen times higher if K̂V is used. Note that this increment shows that the isolators are working as
tuned mass dampers tuned to the resonant frequency of the first vibration mode of the base supporting
structure. Note that the difference between an isolator system optimally tuned to damp the first
vibration mode respect to other tuned to minimize ΛT , with ζAVI

pj
= 1, is more significant for low

values of rm. This justifies that the maximum difference occurs for rm = 10−4.
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Figure 5. Cont.
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Figure 5. Ratio f f v(K̂V)/ f f v(K̂FV) for: (a) a single disturbance force; and (b) three disturbance forces
for the symmetrical case.

The functional value f f v(KV) is determined by the control gains. It must be highlighted that,
for most of the domain analyzed in this work, the optimal control gain found is not the one that implies
maximum damping (ζ AVI

pj
= 1). Figure 6a shows the ratio K̂V/K̂FV when a single disturbance force

is applied, while Figure 6b shows the same ratio when three disturbance forces are applied. In both
scenarios, the highest gain reduction region is almost coincident with the highest influence region of
f fv(K̂V)/ f fv(K̂FV). Hence, the compromise between alignment and VI is shown, since considerable
reductions in ΛA are achieved with values of ζAVI

pj
less than one.
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Figure 6. Ratio k̂v1,3 /k̂ f v1,3

for: (a) a single disturbance force; and (b) three disturbance forces for the
symmetrical case.

Next, the impulse responses of (yI1(t) − yI2(t)) are compared for three particular cases of rω

and rm to illustrate the importance of considering the supporting structure dynamics in the control
design problem.

For the cases rm = 0.01, rω = 0.3, the ratios f f v(K̂V)/ f f v(K̂FV) are 1.08 and 1.09 for a single and
three disturbance inputs, respectively. A small improvement in the temporal responses can be seen in
Figure 7a,d.

For the cases rm = 0.001, rω = 0.5, which are shown in Figure 7b,e, the ratios f f v(K̂V)/ f f v(K̂FV)

are 1.35 and 1.37 for a single and three disturbance inputs, respectively. An appreciable change in the
time response can be appreciated in these temporal responses.

For the cases rm = 0.0001, rω = 0.9, which are shown in Figure 7c,f, the ratios f f v(K̂V)/ f f v(K̂FV)

are 1.80 and 6.34 for a single and three disturbance inputs, respectively. A high influence of the
supporting structure dynamic into the time response can be seen. Note the considerable reduction for
the scenario with three disturbance inputs.

Finally, it should be noted that there are two effects. The first one is associated with the
level of vibration, which depends mainly on the synchronization of isolators 1 and 2 and their
transmissibility. In this case, the response of (yI1(t)− yI2(t)) is reduced in amplitude but its settling
time is not significantly changed (i.e., the damping imparted to the vibration modes is not significant).
For example, in Figure 7b,e, the setting time is slightly increased but the amplitude is reduced.
The second one is associated with the damping imparted to the supporting structure, which reduces
the settling time of the response (yI1(t)− yI2(t)). This can be clearly seen in Figure 7c,f, as explained
in Figure 5b comments. Therefore, these behaviors, which depend on the interaction between the
isolator system and the supporting structure, are not obvious and must be considered when a dual VI
and alignment problem is being examined.
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Figure 7. Impulse responses for three particular cases: (rm = 0.01, rω = 0.3) (a,d); (rm = 0.001,
rω = 0.5) (b,e); and (rm = 0.0001, rω = 0.9) (c,f), for a single disturbance input (top row) and three
disturbance inputs for the symmetrical case (bottom row).

4.3.2. Non-Symmetrical Case: L12 = Lb/4 and L23 = Lb/3

In this subsection, the case in which the end isolators are located asymmetrically with respect to
the mid-span isolator is studied. The distances have been defined to be at the maximum amplitude
location for the three first vibration modes, i.e., Lsl = Lb/4, Lsr = Lb/6. The objective of including this
case is to show how the position of the isolators in the supporting structure can also affect the task
performance. Note that the contribution of the disturbance forces and the isolators to the vibration
modes of the base supporting structure are different with respect to the symmetrical case.

The influence of the supporting structure dynamics on the functional f f v(KV) is analyzed for a
single disturbance force applied at Lb/4 (Figure 8a). In this case, the first difference observed with
respect to the symmetric all case is the change in the highest influence region, which is observed
for rω → 0.9. The influence of mass ratios seems to be slightly higher than for the symmetrical
case. In addition, the maximum value of the functional ratio f f v(K̂V)/ f f v(K̂FV) is greater than in the
symmetrical case.

In this case, the three disturbance forces can excite the three vibration modes. However, the forces
applied to Lsl and Lsr do not excite the second vibration mode significantly in comparison with the first
and the third vibration modes. Thus, its contribution is not significant in Equation (26). In addition,
the contribution to the third vibration mode is more significant in Equation (26), with respect to
the symmetrical case. Thus, the improvement in the ratio f f v(K̂V)/ f f v(K̂FV) is less important in
this example, as shown in Figure 8b. Note also that the maximum influence region is similar to
that of the symmetrical case. The highest ratio values of f f v(K̂V)/ f f v(K̂FV) are lower than for the
symmetrical case.

Another difference with respect to symmetrical case is that both end isolators (j = 1 and j = 3)
have different optimal control gains, since their locations with respect to the mid-span isolator are
different. The comparisons between k̂ f v1 and k̂v1 and between k̂ f v3 and k̂v3 are shown in Figure 9a for
one disturbance force scenario. For the left isolator (j = 1), the optimal gain value k̂ f v1 can be reduced
more than 1.40 times the gain value k̂v1 . For the right isolator, the optimal control gain considering the
supporting structure dynamic k̂ f v3 may be reduced more than 1.90 times the gain value k̂v3 . In both
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cases, a considerably reduction of the damping ratio is achieved. The same comparisons for the three
disturbance force scenario is shown in Figure 9b. It is observed that the influence of the mass ratio is
much higher than for a single disturbance force. For the left isolator, the optimal control gain k̂ f v1 can
be even 1.60 lower than k̂v1 . For the right isolator, the ratio k̂ f v3 /k̂v3 can be higher than 2.
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Figure 8. Ratio f f v(K̂V)/ f f v(K̂FV) for: (a) a single disturbance force; and (b) three disturbance forces
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Actuators 2020, 9, 108 15 of 21

1
.0

4

1
.0

4

1
.0

4

1
.0

4

1
.0

4

1
.0

8

1
.0

8

1
.0

8

1
.0

8

1
.0

8

1.13

1
.1

3

1
.1

3

1.13

1
.1

3

1
.1

7

1
.1

7

1
.1

7

1.17

1
.1

7

1
.1

7

1
.2

1

1.21

1.21

1.21

1
.2

1

1.25

1.25

1.25

1
.2

5

1.3

1.3
1.3

1
.3

1
.3

1.3 1
.3

1.34
1
.3

4

1
.3

4

1.34
1.34

1
.3

8

1.38

1
.4

2

-4 -3 -2 -1 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1
.0

9

1
.0

9

1
.0

9

1
.0

9

1.0
9

1
.1

8

1
.1

8

1
.1

8

1
.1

8

1
.1

8

1
.2

7

1
.2

7

1
.2

7

1
.2

7

1
.2

7

1
.3

6

1
.3

6

1
.3

6

1
.3

6

1
.3

6

1
.4

5

1
.4

5

1
.4

5

1
.4

5

1
.4

5

1
.5

4

1
.5

4

1
.5

4

1
.5

4

1.54
1.54

1
.6

3

1
.6

3

1
.6

3

1
.6

3

1.631.63

1
.6

3

1
.7

2

1.72

1
.7

2

1.721.72

1
.7

2

1.72 1
.7

2

1
.7

2

1
.8

1

1
.8

1

1.811.81

1
.8

1

1.81

1
.8

1

1.9

1.91.9

1.9

-4 -3 -2 -1 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(a)

1
.0

6
1
.0

6

1
.0

6

1
.0

6

1
.0

6

1
.1

3
1
.1

3

1
.1

3

1
.1

3

1
.1

3

1
.1

9

1
.1

9

1
.1

9

1
.1

9

1
.1

9

1
.2

5

1
.2

5

1
.2

5

1
.2

5

1.25

1
.2

5

1
.3

2

1
.3

2

1
.3

2

1
.3

2

1.32

1.32
1.32

1
.3

2

1
.3

8

1.38

1
.3

8

1.38

1.38
1.38

1.38

1.44

1
.4

41.44

1
.4

4

1
.4

4

1
.4

4

1
.4

4

1
.4

4

1
.4

4

1.44

1.44

1
.5

1
.5

1
.5

1
.5

1
.5

1
.5

1
.5

1
.5

7

1
.5

7
1
.5

7

-4 -3 -2 -1 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1

1.1

1.2

1.3

1.4

1.5

1.6

1
.1

3
5

1
.1

3
5

1
.1

3
5

1
.1

3
5

1
.2

6
9

1
.2

6
9

1
.2

6
9

1
.2

6
9

1
.4

0
4

1
.4

0
4

1
.4

0
4

1.404

1
.4

0
4

1
.5

3
8

1
.5

3
8

1
.5

3
8

1.538

1.538
1.538

1
.6

7
3

1
.6

7
3

1.6
73

1.6731.673

1
.8

0
7

1
.8

0
7

1.8
07

1.8071.807

1.942 1.942

1
.9

4
2

1
.9

4
2

1.942

1
.9

4
2

2
.0

7
6

2
.0

7
6

2
.0

7
6

2
.2

1
1

-4 -3 -2 -1 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.2

1.4

1.6

1.8

2

2.2

(b)
Figure 9. Ratios k̂v1 /k̂ f v1

and k̂v3 /k̂ f v3 for: (a) a single disturbance force; and (b) for three disturbance
forces for the non-symmetrical case.

The same strategy of examining impulse response functions of the tangent is followed here to
demonstrate the beneficial effect of using the optimal control gain K̂FV for the alignment problem.
The same pairs (rm, rω) were used in the symmetrical case are analyzed here.

For the case rm = 0.01, rω = 0.3, the relative alignment between left and mid-span
isolators is observed in an impulse response in Figure 10a,d. For this case, the influence of the
supporting structure is not very high, with f f v(K̂V)/ f f v(K̂FV) = 1.06 for one disturbance input and
f f v(K̂V)/ f f v(K̂FV) = 1.07 when three disturbances inputs are applied. However, it is observed in both
temporal responses that the use of K̂FV slightly improves the alignment.
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Figure 10. Impulse responses for three particular cases: (rm = 0.01, rω = 0.3) (a,d); (rm = 0.001,
rω = 0.5) (b,e); and (rm = 0.0001, rω = 0.9) (c,f), for a single disturbance input (top row) and three
disturbance inputs for the non-symmetrical case (bottom row).

For the pair rm = 0.001, rω = 0.5, the difference of considering K̂V or K̂FV is clearly highlighted in
Figure 10b for a single disturbance force, in which the functional ratio f f v(K̂V)/ f f v(K̂FV) is equal to
1.27. If three disturbance forces are considered, this ratio is equal to 1.29, and the effect in the alignment
problem is shown in Figure 10e. Note that the settling time for the three disturbances forces is higher
than for the single disturbance force case.

For the pair rm = 0.0001, rω = 0.9, the value of f f v(K̂V)/ f f v(K̂FV) is equal to 2.38 for a single
disturbance force and 5.28 for three disturbance forces. In Figure 10c,f, the alignment problem is
improved for K̂FV . Figure 10f shows that the settling time is also reduced, and considering the
supporting structure dynamics clearly improves the functional value.

4.3.3. Robustness Analysis

In practical applications, the identified models always encounter uncertainty in model parameters.
Moreover, these parameters can be time variant over the operational lifetime and affect to the stability
of any adopted AVI scheme. As a result, incorporating adequate robustness to system parameter
uncertainty is key to the design and implementation of any AVI scheme. Consequently, to conclude
this work, a robustness analysis of the proposed method has been conducted. The nominal values for
system parameters—damping ratio and natural frequency of the mid-span isolator (ζp2 and ωp2 )—are
both varied by 5% and 10% in each case, and the AVI performance, alignment and stability are
quantified. The first main conclusion of this analysis is that the proposed AVI scheme is always stable
across the uncertainty zone. The second conclusion is that f fv can vary significantly when ζp2 and ωp2

change. Additionally, the value of f fv for the rigid base is either equal to or greater than that for the
non-rigid base (improved performance).

The three parameter value sets for rm and rω for symmetrical and non-symmetrical cases and
a single disturbance force analyzed are: (i) rm = 0.01, rω = 0.3; (ii) rm = 0.001, rω = 0.5; and (iii)
rm = 0.0001, rω = 0.9. Note that the parameter rω varies when ωp2 changes. The value of ζAVI

p2

depends of ωp2 and ζp2 . Therefore, the nominal case is not the optimum for this robustness analysis.
In other words, the values for f fv can be reduced when the parameters ζp2 and ωp2 change.



Actuators 2020, 9, 108 17 of 21

Figure 11 shows the effect on the VI and alignment performance for the symmetrical case. For the
first case, the robustness analysis is shown in Figure 11a,d. It is observed that, if the value of the
parameters of the mid-span isolator are reduced, the response is improved and vice versa. This is
because the control gain limits are not changed. However, in both cases, considering the dynamics of
the supporting structure improves the VI and alignment performance.

(a) (b) (c)

(d) (e) (f)
Figure 11. Effect on the VI and alignment performance due to 5% (a–c) and 10% variation (d–f) in
system parameters ζp2 , ωp2 of the mid-span isolator—symmetrical case.

Similar behavior is encountered for the second case, as shown in Figure 11b,e. As expected, for a
higher variation in the dynamic properties of the mid-span isolator, the performance is more different
respect to the ideal case ( no variation). It can be observed in the the third scenario (Figure 11c,f) that,
although the functional value is high for the ideal case (no variation), considering the dynamic of the
supporting structure improves the performance even though the controller is not designed considering
uncertainty in the dynamic properties of the isolator.

For the non-symmetrical case, similar behavior is observed for the first case (see Figure 12a,d).
As the control gain limits are maintained, performance improvement is seen when parameter values are
reduced when compared to the nominal case. The performance of the VI and alignment performance
is worsened compared to the ideal case when the parameters are increased. However, in both cases,
considering the dynamics of the supporting structure improves the response.

For the second (Figure 12b,e) and third (Figure 12c,f) cases, similarity to the symmetrical case is
found, hence showing the importance of considering the dynamic of the supporting structure.
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(a) (b) (c)

(d) (e) (f)
Figure 12. Effect on the VI and alignment performance of 5% variation (a–c) and 10% variation (d–f) in
the dynamic parameters ζp2 , ωp2 of the mid-span isolator—non-symmetrical case.

5. Conclusions

This work describes the theoretical development of a new control scheme for multi-isolator scenarios
aimed at delivering excellent vibration isolation as well as alignment of multiple devices supported
by a single flexible structure. The efficacy of the proposed AVI scheme is demonstrated via extensive
simulations on a three-isolator systems supported by a pinned-pinned beam. Both symmetrical and
non-symmetrical configurations of the isolators are analyzed. The analysis highlights the importance
of considering the dynamics of the supporting structure during the control design. key conclusions of
this analyses are: (i) the best isolator in terms of transmissibility is not the optimum when component
alignment is considered; (ii) the influence of supporting structure dynamics on control design and
resulting performance is more pronounced for low mass ratios; (iii) there is a trade-off between the
transmissibility and vibration cancellation of the supporting structure; (iv) this trade-off also depends
on how the vibration modes are excited (by the disturbance forces) and are cancelled (by the isolators);
and (v) the contribution of the vibration modes may produce large differences between the rigid
and non-rigid hypotheses, as illustrated in the three disturbance force cases. The proposed scheme
possesses adequate robustness for practical implementation, as shown by the parametric analysis
results presented for parameter uncertainty in the mid-span isolator. Future work will focus on
experimental validation and optimization based on actuators with complimentary bandwidths.
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36. Alujević, N.; Senjanović, I.; Ćatipović, I.; Vladimir, N. The Absence of Reciprocity in Active Structures Using
Direct Velocity Feedback. J. Sound Vib. 2019, 438, 251–256. [CrossRef]

37. Allaoua, S.; Guenfaf, L. LQG Vibration Control Effectiveness of an Electric Active Mass Damper Considering
Soil–Structure Interaction. Int. J. Dyn. Control 2019, 7, 185–200. [CrossRef]

38. Li, M.; Zhang, Y.; Wang, Y.; Hu, Q.; Qi, R. The Pointing and Vibration Isolation Integrated Control Method
for Optical Payload. J. Sound Vib. 2018, 438, 441–456. [CrossRef]

39. Elliott, S.; Benassi, L.; Brennan, M.; Gardonio, P.; Huang, X. Mobility Analysis of Active Isolation Systems.
J. Sound Vib. 2004, 271, 297–321. [CrossRef]

40. Sciulli, D.; Inman, D.J. Isolation Design for a Flexible System. J. Sound Vib. 1998, 216, 251–267. [CrossRef]
41. Chopra, K.A. Dynamic of Structures, 4th ed.; Pearson: London, UK, 2011.

http://dx.doi.org/10.1016/j.actaastro.2017.11.038
http://dx.doi.org/10.1016/j.ijmecsci.2020.105592
http://dx.doi.org/10.1117/12.188877
http://dx.doi.org/10.1016/S0022-460X(02)00980-X
http://dx.doi.org/10.1016/j.ymssp.2014.10.007
http://dx.doi.org/10.1006/jsvi.2002.5047
http://dx.doi.org/10.1016/j.ifacol.2017.08.2413
http://dx.doi.org/10.2514/3.55976
http://dx.doi.org/10.1088/1742-6596/744/1/012006
http://dx.doi.org/10.1016/j.jmmm.2016.10.007
http://dx.doi.org/10.2514/6.1990-1223
http://dx.doi.org/10.1016/S0022-460X(02)01057-X
http://dx.doi.org/10.1088/0964-1726/21/10/105021
http://dx.doi.org/10.1007/s11012-011-9451-z
http://dx.doi.org/10.1007/s10518-016-0021-6
http://dx.doi.org/10.1007/s12206-018-0702-y
http://dx.doi.org/10.1016/j.jsv.2018.09.035
http://dx.doi.org/10.1007/s40435-018-0428-9
http://dx.doi.org/10.1016/j.jsv.2018.09.038
http://dx.doi.org/10.1016/S0022-460X(03)00770-3
http://dx.doi.org/10.1006/jsvi.1998.1667


Actuators 2020, 9, 108 21 of 21

42. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder–Mead Simplex
Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]

43. D’Errico, J. Fminsearchbnd, Fminsearchcon; MathWorks: Natick, MA, USA, 2020.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/S1052623496303470
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	General AVI Framework
	Transmissibility Model for the Isolation System
	Supporting Structure Model
	Formulation of the VI and Alignment Problem

	Interaction Problem Using a Feedback AVI Control Law
	Application Example
	System Dynamics
	Design Criterion
	Numerical Results
	Symmetrical Case: L12=L23=Lb/4
	Non-Symmetrical Case: L12=Lb/4 and L23=Lb/3
	Robustness Analysis


	Conclusions
	References

