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Abstract
Uncertainty is inherent in modelled projections of bioenergy with carbon capture 
and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty 
comes from different climate and soil inputs. We investigated variations in 70-year 
UK projections of Miscanthus × giganteus (M × g), BECCS and environmental im-
pacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projec-
tions and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the 
MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK-average 
but yield uncertainty varied regionally, especially south and east England. BECCS 
projections were similar among cohorts, with variation resulting from climate co-
horts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncer-
tainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). 
This is supported by annual time series, displaying variable annual climate and a 
close yield–BECCS–climate relationship but partial correspondence of yield and 
BECCS with maximal soil variability. Each HWSD soil grid square contains up to 
10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating 
why BECCS from combined soil sequences were not significantly different from 
BECCS using the dominant soil type. Mean BECCS from the full climate ensemble 
combined with the full soil sequences, over the current area of cropping limits in 
England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean 
seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 
0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. 
The uncertainty is specific to the input datasets and model used. The message of this 
study is to ensure that uncertainty is accounted for when interpreting modelled pro-
jections of land use impacts.
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1  |   INTRODUCTION

Evidence from global Integrated Assessment Models (IAMs) 
suggest that some level of Greenhouse Gas Removal is 
needed to achieve a limit of global warming to below 2°C 
(POST, 2020). If deployed on a large scale, bioenergy with 
carbon capture and storage (BECCS) is a negative emission 
technology with the potential to remove carbon dioxide (CO2) 
from the atmosphere (Smith et al., 2016). Policymakers make 
decisions on renewable energy and BECCS with the aid of 
modelled projections for the future.

Modelling is a key tool to predict yields and the inter-
annual variability of bioenergy crop production and BECCS 
and evaluating uncertainty is a key part of environmental 
modelling (Smith & Smith, 2007). This study focusses on 
the uncertainty inherent in data, but the models also contrib-
ute to variability and uncertainty (Aodha & Edmonds, 2017; 
Helinga, 1998; Uusitalo et al., 2015). A literature search for 
the model details and testing may reveal inherent variability 
or bias of the model itself: in particular, take note of how 
field data were extracted to parameterize the model, the 
sensitivity analysis, how accurately the modules have been 
calibrated and how well the overall model performed in vali-
dation. Details for the version of the model used in this study, 
MiscanFor, can be found in Shepherd et al. (2020).

The impact of different meteorological and soil inputs on 
model results has significant interest (Pogson et al., 2012). 
Internal climate variability from within climate projections 
of the same database source (the random nature of the cli-
mate, climate model response and climate forcings) are a 
source of uncertainty and yet are seldom quantified for crop 
production predictions (Deser et al., 2012; Qian et al., 2020).

Input data commonly available for climate and soil vary, 
even from within an ensemble database from the same source. 
Ensemble databases are thought to be the best basis for es-
timating projection uncertainties (Mauritzen et al., 2017), 
these are supplied as multi-member datasets of gridded cli-
mate with equally likely occurrence.

UKCP18 RCP8.5 ensemble climate projections are in 
common use. RCP8.5 are worst-case climate projections re-
flecting business-as-usual socio-economic scenarios (Riahi 
et al., 2011). Rogelj et al. (2012) determined that during 
2090–2099, RCP 8.5 temperature is projected to rise 3.8–5.7 
degree C above pre-industrial temperatures.

A multi-member soil dataset, The Harmonized World Soil 
Database (HWSD), is also commonly used (Fischer et al., 
2008) where multiple soils types are ranked in ‘sequences’ by 
the predominance of soil type in grid square area coverage. 
For the UK, there are eight HWSD soil data sequence groups. 
The soil types’ percentage share of the grid square coverage 
could vary if the gridded boundaries were to change so we 
can either consider the difference between outputs of soil se-
quence groups, or outputs combined as provision intended.

Our study determines what effect the variability from 
input data cohorts has on reporting the BECCS projec-
tion in the UK and its uncertainty. To evaluate this we use 
a published, validated crop growth and bioenergy model, 
MiscanFor (Hastings et al., 2009) using Miscanthus × gigan-
teus (M × g) as a feedstock, and use the UKCP18 12-member 
RCP8.5 climate projections, for the variable climate input 
and the HWSD soil sequences as the variable soil input.

MiscanFor was used because it is applicable to a study of 
bioenergy, BECCS and environmental impacts, it has proved 
accurate and is continually updated (Hastings et al., 2009; 
Shepherd, Littleton, et al., 2020). The model contains many 
parameters and requires a minimal amount of commonly 
available datasets. In a literature comparison of multiple bio-
energy models including MiscanFor, Surendran Nair et al. 
(2012) stated that models which simulate soil water, nutrient 
and carbon cycle dynamics make them especially useful for 
assessing the environmental consequences. Also, that field 
trials that address the influence of genetic, environmental and 
crop management on biomass production will provide valu-
able data for the development and calibration of bioenergy 
crop models. Plus, that future research should explore an in-
tegrated framework for efficient execution of large-scale sim-
ulations and processing of input and output data. MiscanFor 
has all three of these capabilities, the more recent version has 
since incorporated soil carbon sequestration and soil water 
deficit, the model is be used for different bioenergy crops and 
genetic varieties, and the model integrates a Java front end 
with Fortran processing capability and Python visualization 
scripts to create global bioenergy and environmental output.

Soil and climate are two of the most important inputs 
whose variability influences elements of a bioenergy crop: 
water availability, crop growth and, via yield and leaf litter, 
soil C.

We have calculated the potential for carbon capture and 
storage (CCS) following Albanito et al. (2019), who assumed 
90% CO2 capture post-combustion at biomass electric-
ity plants, being broadly similar across plants with varying 
efficiency:

where CCS is the annual CO2 captured and transferred into geo-
logical storage expressed in terms of units of C (not CO2), DM 
is the dry matter M × g biomass, and 0.5 assumes 50% C in 
biomass and 0.9 refers to 90% CCS efficiency.

We have referred to the CCS in units of C as BECCS_C 
throughout this text. It can be converted to units of CO2 by 
multiplying by the ratio of 44/12 (ratio of the molecular 
weight of carbon dioxide to that of carbon).

Estimates by the Committee on Climate Change (CCC, 
2018), also quoted in the Net Zero report (CCC, 2020,  
p. 142), estimate between 20 and 65 Mt CO2e year−1 could 

(1)CCS = [DM × 0.5] × 0.9,



      |  693SHEPHERD et al.

be sequestered through BECCS in the UK up to 2050. These 
ranges indicate a substantial range of uncertainty. The land 
area projected to be given over to bioenergy crops is con-
stantly changing, and some IAMs do not model bioenergy 
land area projections for the UK very well (Shepherd et al., 
2020a) which is a separate source of uncertainty confusing 
the uncertainty from soil and climate. An assessment of mod-
elling uncertainty is required arising from model inputs of 
climate and soil, and also from modelled bioenergy land area. 
In this study, we keep the area of land constant to quantify 
uncertainty for mean BECCS per hectare projections of the 
UK resulting from ensemble climate inputs and from soil se-
quence inputs.

2  |   MATERIALS AND METHODS

MiscanFor simulates BECCS_C projections using M × g as 
a feedstock. M × g is a bioenergy crop with relatively high 
yields under a range of conditions (Pogson et al., 2012). It 
has a higher energy output/input ratios than other bioenergy 
crops and a lower carbon (C) cost of energy production than 
fossil fuels (McCalmont et al., 2017; Sims et al., 2006), with 
a consistent increase in grower uptake (Shepherd, Clifton-
Brown, et al., 2020).

MiscanFor is a model which provides projections of bio-
energy crop growth and power generation, along with a num-
ber of environmental variables such as soil water and soil 
organic carbon (SOC). It can be tailored to various crops, 
including  M  ×  g. Annual or seasonal outputs are averaged 
over the years simulated.

Pogson et al. (2012) noted the model being moderately 
sensitive to temperature and precipitation, and a soil's field 
capacity and wilting point, as expected of any crop model.

Hastings et al. (2009) identified the model's main sensi-
tivities as the photoperiod sensitivity in addition to drought 
resistance and frost tolerance. The model has since been up-
dated to correct the sensitivity of yields to drought and newer 
climate and soil databases have underpinned the improve-
ments (Shepherd, Littleton, et al., 2020); we update the sensi-
tivity for the current model and input data used in this study.

In MiscanFor, dry matter assimilation is calculated from 
the fraction of radiation intercepted by the canopy (depen-
dant on leaf area index, an extinction coefficient and pho-
tosynthetically active radiation), modified by radiation use 
efficiency and an overheating factor. Both the increase and 
senescent decline of LAI are linearly related to the degree day 
accumulation. Average annual crop yields of dry matter bio-
mass are output. MiscanFor calculates a soil water balance 
and incorporates a reduction on crop growth by soil mois-
ture deficit via photosynthesis and the reduction of evapo-
transpiration. A soil C module has been incorporated in 
MiscanFor (Dondini et al., 2009; Shepherd, Littleton, et al., 

2020), this module is based on a proposed generic theory 
for the dynamics of C and nitrogen (Bosatta & Agren, 1985, 
1991). Algorithms simulate the input of crop litter as unique 
pools of soil organic matter with exponential rates for de-
composition. The amount of crop litter input to the soil is the 
difference between M × g peak yield and harvest yield.

Projections of carbon capture and storage (CCS) are cal-
culated from crop yield modelling multiplied by known effi-
ciency factors for specific bioenergy supply chains. Following 
the methodology in Hastings et al. (2009), the MiscanFor 
model simulates a recommended M × g crop scenario for the 
UK: local use of the non-irrigated M  ×  g as feedstock for 
electricity generation within 20 km.

2.1  |  Pre-processing steps

Step 1: The climate projection dataset used was UKCP18 
RCP8.5 (Met Office Hadley Centre, 2018), which contains 
12 equally relevant climate projections at 0.19 degree spatial 
resolution of the British Isles (see Figure 1).

This dataset is produced by the 12 km Met Office Hadley 
Centre HadREM3-RA11 M regional model. The model spans 
the UK and is driven by the Met Office Unified Model Global 
Atmosphere GA7 model (HadREM3-GA705) at 12 km reso-
lution. The HadREM3-GA705 model is driven by perturbed 

F I G U R E  1   Pre-processing schedule
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variants of the global climate model, HadGEM3-GC3.05 
(Sexton et al., 2019). The 12 projections take the name of 
the perturbed-physics ID (e.g. p00000, p01935, p02868, etc.) 
for Met Office Hadley Centre models used in the CEDA ar-
chive from which they were downloaded. Sexton et al. (2019) 
explain that these perturbed physics in GA7 models may re-
late to variation in model parameters relating to land surface, 
snow, cloud, aerosol, convection, or gravity wave.

Individual parameters for net shortwave solar radiation, 
maximum and minimum temperature, precipitation, wind 
and humidity were extracted and reformatted for model input. 
RCP8.5 climate data are supplied as monthly data and the 
MiscanFor model is designed to partition these into daily in-
puts within the model.

Step 2: We used the HWSD gridded soil data for the UK 
with sequences of soil types and soil parameters per grid 
square (Wieder et al., 2014), at 0.00833 degree spatial res-
olution. Each grid point in the HWSD global dataset has up 
to 10 dominant soil sequence types with the percentage area 
of each within the grid block, although for the UK coverage 
there were a maximum of eight soil sequence types. The soil 
sequence groups were ranked in order of coverage per grid 
square. The maximum number of soil types a grid square in 
the UK contained was eight. Eight alternative UK soil se-
quence files for model input were produced of HWSD param-
eters, from the soil types with most coverage in sequence 1 to 
the soil types with least coverage in sequence 8.

To convert physical soil data from the HWSD database to 
the soil parameters we required, the data undergo transforma-
tion in a three-step soil data pre-processing:

Program 1: Extracted from GIS data, the latitude, longi-
tude and MUGLOBAL ID (which identifies a specific com-
bination of soil types for a grid square) are combined with the 
soil parameters for those soil types. Among the soil parame-
ters affiliated with the MUGLOBAL ID is SEQ, the sequence 
or ranking of the soil in the soil mapping 8-unit composition 
and SHARE, the % coverage of the grid square for each soil 
sequence in the soil mapping unit. The latitude, longitude, 
MUGLOBAL ID and soil data are output into separate files 
based on the sequence number. This results in a complete soil 
data file for the UK containing the most predominant soil 
type of the grid squares (SEQ 1), and a file containing the 
next most predominant soil type parameters (SEQ 2) and so 
on. UK files run up to SEQ 8, and the higher the sequence 
number the lower the coverage of the UK as most of the UK 
grid does not have a combination of over five types of soils.

Program 2: This program originally created for MiscanFor 
(Hastings et al., 2009) is based on Campbell (1985) pedo-
transfer functions. It transforms the output of Program 1, 
physical soil data (soil depth, gravel, sand, silt, clay, bulk 
density, calcium carbonate for top and subsoil layers) to pa-
rameters of field capacity (FC) and permanent wilting point 
(PWP), and converts units of soil organic matter (SOC). The 

program uses the criteria of shallow soil less than or equal to 
30 cm with a high percent of calcium carbonate in topsoil to 
identify soils on a chalk substrate. The model then considers 
the topsoil characteristics to extend to 4 m to enable the cap-
illary water supplied by the chalk to be used by the plant and 
avoid water stress (Hastings et al., 2014).

Program 3: This program is a later addition (Shepherd, 
Littleton, et al., 2020), which combines the output of Program 
2 with elevation from the climate dataset for adiabatic lapse 
correction to temperature and the SWR (Soil Water Regime) 
class (from the HWSD database) to indicate relative ground-
water support. The program also adds in land use data (from 
Rounsevell et al., 2006).

All of the above programs involve the program scanning 
one set of data for the nearest neighbour within the resolution 
in the other set of data, to coordinate and merge the data.

Step 3: The latest version of the spatial MiscanFor bioen-
ergy model (Shepherd, Littleton, et al., 2020) was modified 
to use any one of the eight sequences of HWSD soil data, and 
the UKCP18 RCP8.5 climate (one of any 12 cohort datasets). 
The sensitivity of the model output of BECCS_C (consider-
ing M × g as the feedstock) was tested against modifications 
of temperature, precipitation, field capacity and wilting point 
(Figure 2), varying one parameter while keeping others fixed 
(Pogson et al., 2012; Smith & Smith, 2007).

Step 4: The MiscanFor model produces soil water deficit 
as an internal intermediate variable. The code was modified 
for this study to output the aggregated seasonal water deficit 
for the UK between May and September, average the sea-
sonal deficit over all years simulated for that grid square, and 
output the result.

Step 5: Gridded output from different HWSD soil se-
quence files varies in length, it varies in the number and order 
of grid squares, from the highest coverage soil type, to the 
lowest coverage soil type. A 4th program was written in R to 
read and merge eight outputs modelled using the different 
soil files, to collate output values to the same grid square, 
adding a null code if the soil sequence does not cover the 
grid square. Outputs resulting from the eight soil inputs were 
processed to calculate the mean, standard deviation, standard 
error and % coefficient of variation (%CV), then output these 
with the longitude and latitude so that they could be mapped. 
A separate version of the program was also developed for 
outputs using the 12-member climate cohorts.

A summary of the input datasets is shown in Table 1.

2.2  |  Processing steps

Step 1. Same climate database, different cohorts. 
12-member climate set 2008–2080: We calculated the un-
certainty between 12 sets of mean annual output (averaged 
over 2008–2080) simulated from using the full 12-member 
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climate RCP 8.5 12 km projections (Hadley Centre model 
HadREM3-GA705 using physics perturbations from the 
global circulation model HadGEM3 GC3.05, Met Office 
Hadley Centre, 2018; see Figure 3). M  ×  g growth was 
simulated, while all other parameters were kept constant, 
using soil sequence 1, the predominant soil type of the 
grid squares. Variables output were total annual precipita-
tion and mean annual temperature, seasonal water deficit, 
BECCS_C, dry matter yield and soil C, all averaged over 
the period 2008–2080. These outputs are absolute values 
resulting from different cohorts of the same climate da-
tabase. This is different to the next section which shows 

mean decadal change in output resulting from using a sam-
ple of those same climate cohorts.

Step 2. Same climate database, different cohorts, and vari-
ation in decadal change: Decadal mean outputs 2011–2020 
through to 2071–2080 were produced (total annual precipi-
tation and mean annual temperature, seasonal water deficit, 
BECCS_C, dry matter yield and soil C) resulting from run-
ning the MiscanFor model for 10 years using three cohorts of 
the monthly RCP8.5 climate projections to reduce the amount 
of processing required. The cohorts of the RCP8.5 climate 
ensemble are given IDs referring to their climate physics per-
turbations in HadGEM3 GC3.05. We used cohorts p00000, 

F I G U R E  2   Sensitivity of model-produced BECCS_C to input parameters (using RCP8.5 climate 2010–2080 and HWSD soil parameters)

T A B L E  1   Summary of input datasets

Data source Format Resolution

UKCP18 RCP8.5 (Met Office 
Hadley Centre, 2018)

12 cohorts of a climate ensemble.
Files: incoming shortwave radiation, precipitation, temperature 

max and min, wind, relative humidity, elevation associated 
with dataset.

Data boundary: UK
Data in ascii text files

Spatial resolution: 0.19 degrees
Temporal resolution: monthly data, 

interpolated to daily in model

The Harmonized World Soil 
Database (HWSD) (Fischer 
et al., 2008)

8 UK cohorts (globally 10 cohorts) of ranked % share of soil type 
within a single grid cell area.

Files of parameters associated with soil type: contents of 
sand, silt, clay, gravel, chalk, organic C (which are used 
in the model in pedo-transfer functions and organic matter 
decomposition functions).

Data boundary: UK
Data in ascii text files

Spatial resolution: 1 km
Temporal resolution: fixed data
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p01935 and p02868 as named in the UKCP18 database 
(named here as 1, 6 and 12) to view changes of temperature 
and precipitation through the century and associated changes 
in BECCS_C projection and environmental impact.

Step 3. Annual variation and yield risk. For higher tem-
poral resolution underlying the decadal results, a cumula-
tive frequency analysis was performed on annual dry matter 
yield limits under climate cohort p00000. The inverse of 
cumulative frequency is the threshold of exceedance or 
non-exceedance, which is the return period of low and high 
yields, a statistic applied in flood modelling (e.g. Shepherd 
et al., 2017).

Step 4. Same soil dataset and different cohorts: All eight 
soil sequence files were used to simulate M  ×  g growth 
while all other factors including climate projections were 
kept constant (using the first ensemble member p00000 and 
running MiscanFor for all years 2008–2080, which produced 
mean annual outputs). Variables output were field capacity, 

permanent wilting point, seasonal water deficit, BECCS_C, 
dry matter yield and soil C.

In steps 1, 2 and 4, the mean, standard deviation, standard 
error and %CV between the outputs for each variable were 
calculated and ANOVAs performed to compare datasets.

The whole of the UK was modelled for M × g growth, 
but only the area of England and Wales below 54.5 degrees 
North was aggregated for statistical results, as this is the cur-
rent limit of viable M × g crop yields, (the most northern UK 
widely known M × g crop being at ADAS High Mowthorpe 
farm on the Yorkshire Wolds). There is a temperature limit 
for viable yields of M × g and a risk of frost kill, and it is very 
difficult to predict where growers will choose to invest in 
M × g in the future despite projected temperature increases, 
so we have based our crop growing area within the current 
cropping limit. In addition, this keeps aggregated area fixed 
along with all other variables while we vary only the climate 
cohorts or the soil cohorts. The full simulation period chosen 

F I G U R E  3   Processing schedule

Run model 2008-2080 with
12-member climate RCP 8.5 
12 km projec�ons 

+
Predominant soil type 
(constant)

INPUT OUTPUT

12 gridded outputs of 
BECCS, yield, temp, precip,
water deficit, soil carbon.
Annual values averaged over 2008–
2080.
Calc. mean SD SE %CV between 12 
datasets.
Aggregate results for crop growing area.

Step 1

Run model for 10-yearly 
�me slices, average annual 
results.
3 sampled members of 
ensemble for RCP 8.5 12km 
projec�ons

+
Predominant soil type 
(constant)

3 gridded outputs of 
BECCS, yield, temp, precip,
water deficit, soil carbon.
Annual values averaged over 10 years, 
�me series of 10 year means 2010 -2080.
% difference between decades. SD, SE 
and %CV between outputs of 3 climate 
members.
Aggregate results for crop growing area.

Step 2

Run model 2008-2080 with 
8 soil sequences.

+
RCP8.5 1st climate member 
(constant)

8 gridded outputs of 
BECCS, yield, temp, precip,
water deficit, soil carbon.
Annual values averaged over 2008–
2080.
Calc. mean SE %CV between 8 datasets, 
and create weighted compound results. 
Aggregate over crop growing area.
Year-to-year varia�on with climate

Step 3 Annual yield �me series with single 
climate cohort; cumula�ve frequency 
and threshold of exceedance.

Annual �me series of yield 
with a single climate cohort

Step 4
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is 2008–2080 which starts when grower investment in M × g 
for bioenergy increased and extends to the end year of the 
UKCP18 RCP8.5 12-member dataset, decadal data used are 
within this period. Steps 1 and 4 simulate the full period on 
a daily timestep and average output for mean annual values, 
while step 2 simulates each separate decade between 2010 
and 2080 on a daily timestep (with an initial 2-year spin-up 
2008–2009), and averages the 10-year output for mean an-
nual values to determine the size of decadal changes and 
differences between the cohorts. Step 3 simulates the yield 
annually 2010–2080 using the first climate cohort as an ex-
ample of annual variation and risk.

3  |   RESULTS

3.1  |  Same climate database, variability 
between cohorts for spatial mean

Table 2 displays the mean, standard deviation, standard error 
and %CV values of total annual precipitation and mean an-
nual temperature, seasonal water deficit, dry matter yield, 
BECCS_C and soil C change, corresponding to inputs of 12 
RCP8.5 climate cohorts while other inputs remain static.

Table 2 shows a relatively low standard deviation com-
pared to the mean for all variables, indicating a low spread 
of data around the mean of the 12 climate cohorts over the 
73-year simulation period. Table 2 shows the BECCS_C 
standard error of the mean over the gridded area in England 
and Wales (0.14) to be lower than that for temperature (0.19) 
and precipitation (18.52). Precipitation always has a larger 
uncertainty relative to other climate variables, influencing 

the uncertainty of the water deficit (3.39). The standard error 
of soil C is negligible.

ANOVA was performed on 12 outputs simulated from 
the climate cohorts, each one with 73 annual values. Outputs 
averaged over England and Wales were temperature, pre-
cipitation and BECCS_C, and all showed that the variables 
are not statistically similar between all 12-members of the 
climate ensemble (Table 2). However, post-hoc compar-
ison using a t test with Bonferroni correction indicated 
similar groups 1, 3, 5, 6, 9 and 12 to have no significant 
differences for BECCS_C (M = 4.37, 4.45, 4.15, 4.08, 4.43, 
4.36; SD = 1.14, 0.93, 0.90, 1.10, 1.10, 1.14, respectively). 
ANOVA on BECCS_C values from these groups confirms 
this, F(5,432) = 1.58, p = 0.16 (Fcrit 2.23, α 0.05).

3.2  |  Same climate database, different 
cohorts, comparing variability in 
decadal change

Table 3 shows the mean decade-to-decade change between 
2011 and 2080, sampling three climate cohorts out of 12 
(sampled due to the intensive processing required). Mean 
decadal changes between the three climate cohorts have a 
low standard deviation relative to the mean, except for pre-
cipitation. In the case of precipitation, this is due to the mean 
change being clustered around zero, showing slight increases 
or slight decreases, producing a SD as large as the mean, and 
hence a relatively large %CV.

Temperature projections in the RCP8.5 database did 
not change equally decade to decade, the largest increases 
were 8% and 6% increase on the previous decadal mean 

T A B L E  2   Comparison of output from all 12 climate cohorts, full bioenergy simulation period of 2008–2080, spatially averaged values below 
54.5 deg. N, current limit of M × g growth

Annual 
mean temp 
(°C)

Annual total 
precipitation 
(mm)

Dry matter 
yielda  (t ha−1 
year−1)

Annual BECCS in 
units of carbona  (C 
storage t ha−1 crop 
year−1)

Water deficit, 
annual May to 
Sept (mm)

Annual soil C 
changea  (t ha−1 
year−1)

2008–2080 mean 10.86 1019 8.87 3.99 71.38 0.22

2008–2080 Std Dev 0.67 64.18 1.10 0.49 11.77 5.8E−17

2008–2080%CV 6.18 6.30 12.68 b  16.48 2.6E−14

2008–2080 Std Error 0.19 18.52 0.32 0.14 3.39 1.7E−17

ANOVA
12 groups of 73 

annual BECCS_C 
2008–2080

Temperature: F(11,864) = 26.4, p = 1.2 × 10−47 (Fcrit 1.8, α 0.05)
Precipitation: F(11,864) = 21.3, p = 1.4 × 10−38 (Fcrit 1.8, α 0.05)
BECCS_C: F(11,864) = 13.5, p = 5.1 × 10−24 (Fcrit 1.8, α 0.05)
The temperature, precipitation and BECCS_C resulting from the 12 cohorts is significantly different
However paired t tests between groups of the above showed groups 1, 3, 5, 6, 9, 12 to have no significant 

difference, ANOVA on BECCS_C for climate cohorts 1, 3, 5, 6, 9, 12 produced F(5,432) = 1.58, p = 0.16 
(Fcrit 2.23, α 0.05)

aSoil C only arable soils (<15% SOC), not including high carbon soils which average extreme values with the majority to give a spurious result. 
b%CV is the same as for DM Yield, since BECCS is DMYield multiplied by a factor of 50% carbon and 90% efficiency. 
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(2021–2030 and 2061–2070, respectively) displayed by co-
horts 1 and 6.

Early decades experience increased precipitation, 2041–
2050 and 2061–2070 display the largest decreases of 5.6–7% 
and 5–6% decrease on the previous decade, over all cohorts.

Climate and climate effects are variable over the decades 
with an overall resulting decade-to-decade decrease in yield 
and C storage and slight decadal increase in water deficit 
using all three sampled climate cohorts.

3.3  |  Annual variation and yield risk

Underlying the decadal results are annual variation which 
would interest growers, so we give some information on 

the annual variation and likelihood of low or high yields, 
which are linearly related to BECCS_C by a factor of 0.45. 
Between 2010 and 2080, under the HWSD majority soil type 
and RCP8.5 climate projection using cohort p00000, the pro-
jected mean annual yield for the UK is 12.2  t ha−1 year−1, 
with a SD of 1.9, %CV of 15.8 and SE of 0.23. Figure 4 
shows the variability of the mean UK yield closely follows 
the precipitation and accumulated degrees during growing 
season (May–October), severe drought stress also influences 
the mean yield and can be seen to rise towards the end of 
the projected period. All simulations assume a non-irrigated 
crop.

Averaged over the whole of the UK, the mean yield has a 
normal temporal distribution 2010–2080 (Figure 5a), this is 
because the yields in the north are lower with cooler climate 

T A B L E  3   Percentage decadal data changes (2011–2080) of RCP8.5 climate output (averaged over UK’s 2020 M × g cropping area, below 
54.5 degrees N; averaged over three climate cohorts)

Cohort
Annual mean 
temp (°C)

Annual total 
precip. (mm)

Dry matter 
yield (t ha−1 
year−1)

Annual 
BECCS 
in units of 
carbon (C 
storage t ha−1 
crop year−1)

Water deficit, 
annual May to 
Sept (mm)

Soil C change 
(t ha−1 crop 
year−1)

2011–2020 
(absolute value)

1 8.90 1036 9.66 4.35 68.14 0.85

6 9.20 1052 9.52 4.28 71.77 0.82

12 10.00 1143 11.33 5.10 75.34 1.05

Mean 9.37 1077 10.17 4.58 71.75 0.90

Mean consecutive 
decade-to-
decade change 
(2011–2080)

1 4.63% −0.9% −3.55%a  b  9.55% −22.54%

6 4.04% 0.54% −3.75% 6.51% −19.14%

12 2.95% 0.85% −2.01% 5.70% −20.00%

Mean 3.87% 0.16% −3.10% 7.25% −20.56%

Std Dev of mean 
decadal change 
between cohorts

0.85 0.93 0.95 b  2.02 1.77

%CV of mean 
decadal change 
between cohorts

21.93 568 −30.74 b  27.97 −8.61

Std Error of mean 
decadal change 
between cohorts

0.49 0.54 0.55 b  1.17 1.02

ANOVA between 
three sampled 
cohort means, 7 
decades

F(2,18) = 1.19, 
p = 0.32, 
Fcrit 3.55, 
α 0.05

no signif 
difference 
between 
cohorts for 
decadal 
changes

F(2,18) = 0.41, 
p = 0.67, 
Fcrit 3.55, α 
0.05

no signif 
difference 
between 
cohorts for 
decadal 
changes

F(2,18) = 0.15, 
p = 0.86, 
Fcrit 3.55, 
α 0.05

no signif 
difference 
between 
cohorts for 
decadal 
changes

F(2,18) = 0.15, 
p = 0.86, 
Fcrit 3.55, 
α 0.05

no signif 
difference 
between 
cohorts for 
decadal 
changes

F(2,18) = 0.36, 
p = 0.70, 
Fcrit 3.55, 
α 0.05

no signif 
difference 
between 
cohorts for 
decadal 
changes

F(2,18) = 0.95, 
p = 0.41, 
Fcrit 3.55, α 
0.05

no signif 
difference 
between 
cohorts for 
decadal 
changes

aConsecutive decade to decade changes in DM Yield and BECCS_C hide that initial decades experience an increase and post-2051 experiences decreases. 
b% decadal change and %CV is the same as for DM Yield, since BECCS is DMYield multiplied by a factor of 50% carbon and 90% efficiency. 
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F I G U R E  4   Mean UK annual dry 
matter yield under RCP8.5 climate 
scenario with (a) annual precipitation, (b) 
accumulated May–June degrees and (c) % 
grid cells with extreme drought stress

(a)

(b)

(c)

F I G U R E  5   (a) Temporal distribution 
of mean UK dry matter yield 2010–2080 
(b) cumulative frequency of mean UK dry 
matter yield 2010–2080

(a)

(b)
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in the early century, and the yields in the south and east are 
reduced due to drought conditions, increasingly in the later 
period of simulation after the 2070s, both of which create 
near-equal and opposite tails of the distribution. The cumula-
tive frequency (non-exceedance; Figure 5b) shows the cumu-
lative percentage of annual data which fall under a threshold 
yield. Conversely, an exceedance plot would show the cumu-
lative percentage of data over a threshold yield.

Based on the cumulative frequency, the return period or 
threshold of non-exceedance and of exceedance (Table 4) 

provides a risk assessment of low or high yield re-occurrence 
during 2010–2080, respectively.

3.4  |  Same soil dataset, different cohorts, 
compared and combined

Table 5 shows the difference between variables using the 
different ranked soil type coverage, known as soil sequence 
groups. Seven out of eight soil sequence groups included 
coverage for England and Wales under 54.5 degrees N. In 
the MiscanFor model, the soil parameters that affect output 
are the ones which contribute towards field capacity, wilting 
point and soil C (see Program 2 in Section 2). Although the 
standard error of field capacity and wilting point was 64.9 
and 48.6, respectively, outputs are not sensitive to these 
changes (standard error water deficit 2.6, BECCS_C and 
soil C both 0.03), as also reported on DM yield by Pogson 
et al. (2012) using different soil and climate inputs. This 
reflects a dampening effect of the variability, smoothed by 
the modelled growth processes over time. The exception to 
this would be when risks converge, such as low precipita-
tion occurring on soil of low water holding capacity.

The only output parameter that does not work well for 
the combined calculation is Soil C. Over the UK, central 

T A B L E  4   Threshold of exceedance (return period) of low or high 
yields

Under yield threshold, t ha−1 year−1
Return period 
(years)

8 70.0

9 10.0

10 3.5

Over yield threshold, t ha−1 year−1
Return period 
(years)

15 35.0

14 7.8

13 3.2

T A B L E  5   (a and b) Spatially averaged results under 54.5 degN parameters for output from all soil sequences

(a) SEQ1 SEQ2 SEQ3 SEQ4 SEQ5 SEQ6 SEQ7 SEQ8

Field Capacity, mm 663.7 566.7 471.2 618.2 No dataa  611.7 299.6 169.7

Wilting Point, mm 376.6 345.2 269.2 378.9 No dataa  292.7 91.22 33.1

May–September Water  
Deficit, mm

66.3 64.9 65.2 61.0 No dataa  70.8 83.6 68.1

Dry Matter Yield, t ha−1 year−1 9.71 9.70 9.42 9.86 No dataa  10.60 10.98 9.87

Annual BECCS, t C. ha−1 year−1 4.37 4.38 4.28 4.28 No dataa  4.77 4.77 4.77

Soil C change, t ha−1 year−1 0.23 0.26 0.19 0.25 No dataa  0.28 0.32 0.06

(b)
Mean of 7 soil 
sequences

Std Error of 7  
soil sequences

%CV of 7 soil 
sequences

Weighted compound 
value:∑ 7

1
(DMYield. fraction coverage)

Field Capacity, mm 485.8 64.9 35.3 556.8

Wilting Point, mm 255.3 48.6 50.4 322.8

May–September Water Deficit, 
mm

68.6 2.6 9.8 60.2

Soil C change, t ha−1 year−1 0.23 0.03 34.6 0.21

Dry Matter Yield, t ha−1 year−1 10.03 0.06 5.27 8.80

Annual BECCS, t C. ha−1 year−1 4.52 0.03 b  3.96

ANOVA: 7 groups of 73 annual 
BECCS_C 2008–2080

Comparing area mean annual BECCS_C output from 7 soil sequence groups existing for the area below 
54.5 degN (separate annual values, 2008–2080): at α = 0.05, F(6,504) = 2.818, p = 0.01, Fcrit 2.12, 
significant difference. However paired t tests between soil sequences showed groups 1, 2, 3, 4 to 
have no significant difference, ANOVA on BECCS_C for soil cohorts 1, 2, 3, 4 at α 0.05 produced 
F(3,292) = 0.166, p = 0.92 (Fcrit 2.64).

aThere are no soil grid squares below 54.5 degN containing data for a 5th ranking soil cover. 
b%CV is the same as for DM Yield, since BECCS is DMYield multiplied by a factor of 50% carbon and 90% efficiency. 
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Scotland has a high number of soil types per grid square. It 
also has moorland with rich peaty soils high in C, and these 
would not be used to grow M × g, modelled output using the 
majority peat soils shows a reduction in soil C. When other 
non-peat arable soils which increase in soil C are aggregated 
with the C reduction occurring on the peat soils, the effects 
cancel each other out and very little change on soil C is seen. 
Due to the opposing effects on soil C from M × g growth, 
the peat and non-peat soils must be treated separately. Since 
we would only consider non-peaty soils for crop growth, our 
results reflect only the non-peat soils.

Unlike the climate cohorts, the soil sequences are meant 
to be combined, so instead of looking at outputs from all 
cohorts as we did with climate cohorts, we can assess if 
the combined soil sequences and percentage coverage re-
sult in a dataset of BECCS_C that is significantly differ-
ent to the modelled output from merely using the majority 
soil coverage. BECCS_C is modelled for soil types from 
all soil sequence groups and these are combined with the 
percentage coverages of the soil type in the grid square. 
BECCS_C is dependent on dry matter yield and the dom-
inant soil characteristic influential on yield is water car-
rying capacity. Lower coverage soil types from other soil 
sequence groups can result in a higher or lower BECCS_C 
projection than that resulting from the majority soil type; 
however, the majority soil accounts for over 50% of the 
coverage of grid squares and will be the dominant influ-
ence on the BECCS_C.

ANOVA revealed that the different soil sequence 
groups result in BECCS_C projections which, at α = 
0.05, is statistically different between groups (at α = 0.05, 
F(6,504) = 2.818, p = 0.01, Fcrit 2.12). However post-hoc 
comparison using a t test with Bonferroni correction in-
dicated similar BECCS_C between soil sequences groups 
1, 2, 3, 4 to have no significant difference (means 4.37, 
4.38, 4.28, 4.28; SD 1.14, 1.22, 1.24, 1.24, respectively). 
Confirming this ANOVA on BECCS_C for climate cohorts 
1, 2, 3, 4 at α = 0.05 produced F(3,292) = 0.166, p = 0.92 
(Fcrit 2.64).

4  |   DISCUSSION

In Table 3, no significant differences were found between 
the three climate cohorts for the decadal changes, which 
is more pertinent to being members of a climate ensem-
ble since dynamic change of climate rather than absolute 
values is more relevant to climate projections. The mean 
decade to decade change hides that initial decades experi-
ence an increase and post-2051 experiences decreases in 
dry matter yield and BECCS_C. This relates to an increas-
ing temperature but relatively constant precipitation, which 
gives rise to a decade-to-decade increase in water deficit. 

The weather is a driver of crop variance via water deficit 
(Frieler et al., 2017). Increased temperature influences in-
creased biological turnover in the soil and together with 
decreased yields, soil C increases less over the consecutive 
decades from the initial increase 2011–2020. The combina-
tion of increasing water deficit and the slowing of soil C 
increase is a dangerous one. To retain water holding ca-
pacity, the soil requires increases in soil C which improve 
texture.

The decade-to-decade uncertainties of the variables are 
higher than the uncertainty between climate cohorts, corre-
sponding to Pogson et al. (2012) using different datasets, who 
determined that inter-annual variation of met data was higher 
than between datasets.

Investigating higher temporal resolution annual yield re-
vealed a close relationship with precipitation, also influenced 
by accumulated growing season temperature and severe 
drought stress. The risk of a lower or higher yield under the 
projected climate is relatively the same, with the probability 
of yields of under 10 t ha−1 year−1 or over 13 t ha−1 year−1 
being about 1 in 3 years return period, but below or above 
these values the probability decreases exponentially.

Model sensitivities (Figure 2) highlight that the model is 
more sensitive to reduction in available water capacity, rather 
than climate, and it is likely that UK climate parameters do 
not create a water deficit at a critical level for crop growth 
as much as the water carrying capacity of the soil. The mod-
elling process for chalk soil as described in the introduction 
will enhance uncertainty of water carrying capacity between 
chalk and other soils which is inherent in the uncertainty be-
tween applications of soil sequences. The MiscanFor model 
is sensitive to field capacity and wilting point, but it is the 
difference between the two, the water capacity, which affects 
growth processes, both may rise or fall together across differ-
ent soils and water capacity variance between different soils 
groups has a lower spread of data around the mean (standard 
error 22.4) than its field capacity and wilting point.

Soil sequence 1 (soil type with majority coverage) 
gave a mean gridded BECCS_C of 4.37  t  C  ha−1  year−1 
and a combined soil sequence output gave a mean gridded 
BECCS_C of 3.96 t C ha−1 year−1 (from BECCS_C projec-
tions of all soil types multiplied by their % coverage of the 
gridded area). ANOVA performed on these two groups of 
73 annual BECCS_C 2008–2080 (area-means for England 
and Wales) revealed no significant difference, for an α of 
0.05, F(1,144)  =  1.658, p  =  0.2, Fcrit  =  3.9. Therefore, 
based on the annual area-means, it is statistically accept-
able to use solely the majority soil data instead of all files 
when modelling output, which could save considerable 
time in processing and analysis.

Maps of BECCS_C resulting from the majority soil cov-
erage and the combination of all ranked coverage soil types 
(Figure 6) indicate that the range of values are similar, except 
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for small areas in sequence 1 which have majority chalk soil 
coverage. BECCS in these areas is improved by larger crop 
yields resulting from improved water storage. The combined re-
sults of BECCS_C will provide more spatial detail. The choice 
to use majority soil output or run all ranked soils and com-
bined output comes down to the application of the BECCS_C, 
whether for locational detail or area-average projections.

We could have attempted an aggregated total for specific 
M × g growing areas, but this is difficult to do since we used 
future climate projections and the areas of M × g growth change 
with time. We used the average of England and Wales which in-
cludes some infeasible areas (industrial, urban, national parks), 
this lowers BECCS_C projections slightly erring on the cau-
tious side and gives a higher standard error, which is suitable 
for worst-case scenario climate. This study could be repeated 
using a GIS mask to extract results under specific areas. Rather, 
the focus here was on changing members of the same source of 
climate and soil data while areas remained fixed.

4.1  |  Uncertainty budget and combined 
uncertainty

Table 6 is a summary related to the various data options we 
have tested in this study, and serves as a summary of variabil-
ity in the data we have used, and a reminder to be aware of 
the variability of modelled BECCS projections. The annual 
data support the finding that the climate cohorts create more 
variability between BECCS projections than soil cohorts. 
BECCS is related to yield, annual yield time series showed 
a close relationship with precipitation and accumulated de-
grees, whereas yield maps only partially coincided with areas 
of higher soil variability.

The %CV and the standard error are uncertainty mea-
sures; standard error also standardizes uncertainty for 
different size datasets. The values tell us about the uncer-
tainty of an average and the different processes involved 
in producing them. To combine the uncertainties, we use 

summation in quadrature, which is also known as the root 
sum of the squares.

The %CVs are combined in quadrature, and %CVs can 
be compared and combined from different size datasets (US 
Dept. of Commerce—Bureau of Standards, 1961).

We can combine the uncertainty of the mean of the 12 
cohort simulations (12.68%) and the uncertainty of the mean 
of the 8 soil cohort simulations (5.27%) by summation in 
quadrature to give us a CV of 13.73%, resulting from 12 in-
puts in mean temperature (10.86 degree C, 6.18% CV) and 
precipitation (1019  mm, 6.30% CV), and 8 inputs in field 
capacity (combined 556.8 mm, 35.3% CV) and wilting point 
(combined 322.8 mm, 50.4% CV).

Alternately, we can state the uncertainty in terms of 
the standard error. If the majority cover soil sequence 
is not statistically different from the combined values, 
the majority cover can be input to a model together with 
the 12 climate cohorts which would be a BECCS_C 
value averaged over England and Wales 2008–2080 of 
3.99 ± 0.14 t C ha−1 year−1. Combining the results from soil 
files plus all 12 climate files using a summation in quadrature 
for standard errors, 3.99 ± 0.14 t C ha−1 year−1 for climate 
and 3.96 ± 0.03 t C ha−1 year−1 for weighted compound soil 
is a BECCS_C of 3.98 ± 0.143  t C ha−1 year−1. Applying 
the same method, combined projections for impacts on as-
sociated environmental effects are a mean seasonal water 
deficit of 65.79  ±  4.27  mm and mean soil C increase of 
0.22 ± 0.03 t C ha−1 year−1.

(2)
√

�

a
2 + b

2 +…
�

.

F I G U R E  6   BECCS_C projection 2008–2080 (t C ha−1 year−1), resulting from HWSD majority coverage soil (left), combined yield from 
percentage share of all HWSD ranked coverage soil types (right)

T A B L E  6   Uncertainty Budget of BECCS_C 2008–2080

Source of BECCS_C, Uncertainty of the mean 
between groups CV

RCP8.5 climate projection, 12 cohorts 12.68%

HWSD soil dataset, 8 different cohorts 5.27%
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Figure 7 shows the maximum no. of soil sequences 
within a 1 km grid square, displaying local soil variability 
for the UK. The straight line of the data across the south of 
England originates from the original HWSD dataset, exter-
nal to our data processing. Regional standard error between 
yields simulated from the different soil sequences (Table 7) 
was calculated using a UK regions NUTS Level 1 shapefile 
(Office for National Statistics, 2018). The variability of yield 
between local soils sequences shows the south-east and east 
of England and the south-west having the highest variability, 
and corresponds to areas of high soil variability in Figure 7.

BECCS, water deficit and soil C standard errors resulting 
from combined climate and soil cohort variation are shown in 

Figure 8. Variation in BECCS (Figure 8a, dependant on dry 
matter yield variation) is concurrent with some areas show-
ing a greater variability in soils shown in Figure 7. However, 
most parameters are likely to respond to local variation be-
tween loam soils and chalk soils which influence results via 
water capacity, rather than the maximum variability of soil 
types, and additionally to climate variation.

The energy of M  ×  g bales is calculated as an energy 
yield of 18 GJ t−1 of dry matter yield, minus latent heat of 
vaporization at 2.72 GJ t−1 of moisture content (30% of dry 
matter biomass), minus fixed energy cost (5.64 GJ year−1) of 
crop establishment, minus energy input 0.61 GJ t−1 per dry 
matter yield, incorporating fertilizer, harvesting and transport 
(Hastings et al., 2017). This gives a feedstock bioenergy of 
131 GJ t−1 associated with a BECCS of 3.98 t C ha−1 year−1.

Comparing our findings against other studies, Hastings 
et al. (2014) modelled mean M × g yield using MiscanFor for 
all UK regions using Met Office UKCP09 A1B scenario cli-
mate projections (Jenkins et al., 2009) for medium emission 
and the HWSD sequence 1 dominant soil dataset. They ob-
tained mean values of dry matter yield for England and Wales 
south of what they termed ‘northern English counties’ which 
gave values convertible to a BECCS_C of 4.43 t C ha−1 year−1 
(2011) and 5.26 t C ha−1 year−1 (2051). This compares with 
our BECCS_C values of 4.51  t  C  ha−1  year−1 (2011) and 
4.97 t C ha−1 year−1 (2051). We have used RCP8.5 worst-case 
climate projections which increase values of BECCS rapidly 
in the early part of the century, then slow the rate of increase 
mid-century as water deficits increase. Pogson et al. (2012) 
also found that when using different meteorological and soil 
datasets to determine M  ×  g yields, it highlighted the sig-
nificance of soil water parameters, and commented that this 
could become an issue in areas affected by climate change. 
They also made the important point that if datasets vary 
widely, and a model is calibrated while using a particular soil 
or climate dataset, it would be therefore be biased towards 
using that dataset so it is important to note the datasets used 
during calibration. In our study, the model sensitivity high-
lighted the importance of soil water capacity, and the climate 
projections showed a static precipitation with increasing tem-
perature, leading to an increasing water deficit.

Hoffman et al. (2016) state that there is a bias inherent in 
aggregating crop yields over large areas. This results from ag-
gregating input data which may be generated by averaging and 
sampling. In this study, yield (upon which BECCS_C is de-
pendant) shows a distinctive east-west divide following higher 
precipitation totals trending to the west of the UK. Yawson 
et al. (2016) comment that UKCP09 climate influenced yields 
to increase more east to west then north to south, this was a 
consistent trend for this study for all climate cohorts.

Folberth et al. (2016) point out that estimated climate 
change effects on yield can be either negative or positive de-
pending on the chosen soil type, and therefore soils have the 

F I G U R E  7   Maximum no. of UK HWSD soil sequences in a 1 km 
grid square

T A B L E  7   Regional standard error of dry matter yield between 
local soil sequences

UK regions

Regional mean Std 
Error of yield from 
local area-composite 
soil sequences

NE England 0.140

NW England 0.099

Yorkshire & The Humber 0.278

E Midlands 0.600

W Midlands 0.352

E England 0.600

SE England 0.881

SW England 0.556

Wales 0.096

Scotland 0.088



704  |      SHEPHERD et al.

capacity to either buffer or amplify these impacts. We found 
the buffering (or cancelling) effect to be particularly the case 
with changes in soil C on peat and non-peat soils, so did not 
use peat soils which would not be used to grow crops due to 
the loss of carbon.

This study is based on the current M × g growing area 
to give mean value parameters per grid square comparable 
with present crop growing conditions. It is not realistic to 
determine the uncertainty among Scottish areas when so 
many are inhospitable to crop growth. We recognize how-
ever that temperature projections increase throughout the 
21st century, so we have included Scotland and England 
north of 54.5 degrees in the map of mean 2008–2080 
BECCS projections (Figure 9) for the majority soil and all 
soil sequences to show that.

1.	 As the RCP8.5 projected climate warms, areas further 
north (northern England and southern Scotland lowlands 
show promise for M × g growth and associated BECCS, 
despite simulations incorporating loss for winter crop 
kill.

2.	 BECCS_C in Figure 9 shows a good correspondence 
with Figure 7, soil type variation. North and west 
Scotland is the Scottish region showing the largest dif-
ference between using a majority soil and the full soil 
sequence. The dominant soil is often classed as no soil 
or bare rock which produces a large area of missing 
data. When all soil sequences are included, we gain im-
proved coverage of results.

3.	 Scotland has regions with complex soil combinations per 
grid square.

F I G U R E  8   Mean (left) and std 
error (right) of (a) UK BECCS_C 
(t C ha−1 year−1), (b) water deficit 
(mm ha−1 year−1) and (c) soil C increase 
(t C ha−1 year−1) combined projections from 
soil and climate cohorts 2008–2080

F I G U R E  9   BECCS_C projection 2008–80 (t C ha−1 year−1) north of current UK 54.5°N latitude threshold; HWSD majority coverage soil 
(left), combined yield from percentage share of all HWSD ranked coverage soil types (right)



      |  705SHEPHERD et al.

In summary, BECCS_C uncertainty from climate cohorts 
of the same climate ensemble database was larger than the 
uncertainty from soil cohorts of the same database. This re-
sult is supported in literature (Waha et al., 2015), and was 
also supported by the annual time-series data, displaying a 
close relationship with precipitation, accumulated tempera-
ture and drought events and a partial correspondence with 
maximal soil variability. This contrasts with the model sen-
sitivity which is greater for available water capacity than the 
climate but also indicates the UK climate is not as limiting 
as the water capacity of the soil. BECCS_C projections from 
soil cohorts differed, although four out of seven were not sig-
nificantly different. The predominant soil coverage was over 
50% so the combined BECCS_C output of all soil sequences 
was not significantly different from the BECCS_C projection 
resulting from the soil of majority coverage.

The uncertainty of BECCS_C in this study using RCP8.5 
climate ensemble and HWSD soil sequence data is relatively 
low in terms of standard error. Mean BECCS_C for England 
and Wales averaged over the current M × g production area is 
3.98 ± 0.14 t C ha−1 year−1.

Policymakers and managers will review BECCS pro-
jections resulting from various models, climates and soils 
databases. Ensure that you know the uncertainty and its 
sources when reporting a modelled BECCS projection. 
The uncertainty of each should be included with the mean 
BECCS projection and the model, climate and soil data-
base used. Uncertainty varies between models inherent in 
model parameterization, sensitivity, calibration bias, val-
idation, but it also varies between climate databases and 
soils databases.

While this study analyses projected BECCS uncertainty 
resulting from modelled output, we recognize that there is 
a great deal of uncertainty surrounding BECCS related to 
socio-economics, financial viability and the aggregation in 
area grown, we have studied but one part of the whole. The 
message from this study is for non-modellers to be aware of 
variation in a modelled BECCS projection even from climate 
and soil databases with the same source.
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