
International Journal of Mechanics and Applications 2021, 10(1): 1-10 

DOI: 10.5923/j.mechanics.20211001.01 

 

Evaluation of Dynamic Stress Intensity Factor of  

Griffith Crack Using the Finite Element Method 

Brian E. Usibe
*
, Oleksandr V. Menshykov 

School of Engineering, University of Aberdeen, Aberdeen, Scotland, UK 

 

Abstract  Cracks in elastic media vary significantly, depending on the nature (frequency, direction and magnitude) of the 

external load as well as the material properties. Therefore, the methods of determining the fracture parameter (Stress Intensity 

Factor) depends on the crack geometry, which also influences the choice of elements and mesh generation in Finite Element 

Analysis. In this paper, the Griffith centroid crack is modelled in 3D Finite Elements under harmonic loading. The numerical 

results of Stress field variables and displacement jumps are compared in order to determine the suitable and reliable method 

for determining appropriate dynamic SIF of the through-thickness crack. The accuracy and variations of the results were only 

dependent on the mesh refinement of the isoparametric hexahedral element in the vicinity of the crack tip. The obtained result, 

which agrees with literature also establishes the validity of the model for both methods of solving mode I fracture dynamic 

problems, numerically, irrespective of the mesh and element type. For both methods adopted for the determination of SIF, the 

plane strain condition was satisfied. 
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1. Introduction 

The understanding of the dynamic responses of fractured 

elastic media subjected to different loading conditions is 

important and of great interest to a variety of scientific   

and engineering fields where structural integrity is needed. 

The responses of materials under loading are significantly 

influenced by the presence of cracks and since flaws are 

essentially unavoidable, it is often necessary to assume a 

crack of some given size will be present in a material. 

According to [1], the discrepancy between the observed 

fracture strength of crystals and the theoretical cohesive 

strength was due to the presence of flaws in brittle materials. 

Though this theory is applicable to a perfectly brittle material 

such as glass, Griffith’s ideas formed a base to understand 

the fracture mechanism in metals. The presence of defects 

serve as stress concentration regions and can significantly 

decrease the overall lifetime of the structures resulting in 

sudden failure under small loads, which puts human health 

and life at risk. There is also the increase in the cost of 

maintenance and consequential costs of repairs and loss of 

revenue for any failures that occur [2]. 

It is necessary to predict how cracked engineering 

materials will behave under loadings, as they tend to     

fail under very small unexpected stresses. Therefore, there is  
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need to develop suitable models and procedures that would 

form the basis for assessing the integrity, sensitivity and 

standards of engineering structures, thereby remedying   

the risk of deterioration and subsequent failures of these 

structures due to flaws and crack-like defects. The 

understanding of the failure mechanism, which is the 

description of technical failure modes resulting from 

degradation of components due to in-service combined with 

fabrication errors lead to the concept of Fracture Mechanics. 

Fracture Mechanics, as an engineering field deals with the 

propagation of cracks in materials. It studies the failure of 

solids from crack initiation stage to propagation, then to 

fracture. It finds application in all engineering fields where 

engineering materials are used including; investigation of 

critical crack sizes in aircraft wings, creep rupture studies of 

concrete, brittle fracture of cargo ships, etc. The relationship 

between applied loads and the size and location of a crack in 

a structure can be determined with the help of Fracture 

Mechanics solutions, which plays a role in the prediction of 

the rate of the crack growth [3]. The rate of cracking can be 

correlated with Fracture Mechanics Parameters such as the 

Stress Intensity Factor and the critical crack size for failure 

can be computed if the fracture toughness, Kc is known. 

Fracture Mechanics quantifies the critical combinations of 

the three variables; the applied stress, crack size and the 

fracture toughness for the determination of material 

suitability, contrary to the traditional strength of material 

approach, which assumes that a material is adequate if its 

strength is greater than the expected applied stress. In such 

an approach, a safety factor on stress, combined with 
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minimum tensile elongation requirements on the material 

may be introduced to guard against brittle fracture. Whereas, 

Fracture Mechanics has an important additional structural 

variables; crack size and the fracture toughness, which 

replaces strength as the relevant material property [3].  

The crack size and shape, the specimen geometry and 

loading, along with material fracture toughness (a measure 

of a material with pre-existing crack to resist fracture) can be 

used to determine the ability of the material to resist fracture 

[4]. The importance of related geometric correction factors 

for compliance in the determination of Stress Intensity factor 

was also described in [5]. This is why it important to 

accurately determine the fracture parameters, especially 

when it is obvious that under harmonic loading, the closure 

effect of the opposite crack faces significantly alters the 

distribution of the Stress state in the vicinity of the crack-tip 

[6].  

The field of Mechanics can be classified as Analytical 

Mechanics, Experimental Mechanics and Computational 

Mechanics. Due to the enormous progress in Computer 

Technology and numerical techniques in the recent years, 

the use of computational method has gained more 

importance and popularity for complex industrial problems 

which are limited by analytical methods [7]. The 

complexity of dynamic loads, crack geometry and the 

heterogeneity of material properties can only be handled by 

computational methods of fracture studies. Amongst the 

three techniques, numerical simulation techniques have 

become established as a widely self-contained scientific 

discipline and numerical simulations prove to be best 

suitable to solve problems of fracture dynamics due to its 

comprehensive result sets, generating the physical response 

of the system at any location [8]. Therefore, the numerical 

method is used in this work for determining the Stress 

Intensity Factor. Numerical approaches could either be based 

on field variables or energy balance. However, the authors 

have adopted the contemporary field variable approach due 

to its reliability, convenience and simplicity in calculating 

the desired fracture parameter.  

One interesting method used in computational and 

numerical modelling of engineering problems is the Finite 

Element Method which has found extensive usage and 

applications in mechanics and fracture dynamics. In the 

formulation of Finite Element models, discretization is a 

major technique and requirement, therefore the choice of 

elements and the development of refined meshes that will fit 

and define the problem geometry, while satisfying the 

pre-determined constraints (loading conditions and material 

properties) is an essential aspect of the FE modelling. With 

the Finite Element Analysis (FEA), the understanding of the 

behaviour of a cracked structural component under harmonic 

loading will be enhanced and the dynamic Stress Intensity 

Factor (DSIF) which predicts an acceptable crack size and 

stress levels before propagation occurs can be determined 

numerically. 

Below are practical steps for FEA solution to the Fracture 

Mechanics problem:  

  We develop/define the model which represents the 

physical problem of Griffith crack to be solved 

  Choose a suitable element (isoparametric hexahedral 

element) for the problem and discretize the domain by 

forming the corresponding Finite Element Mesh 

  Refine the Mesh at the crack tip region of the model 

  Assign the interpolation function to represent the 

variation (at nodal points) of the field variable over the 

element 

  Define the properties of the individual elements 

according to the physical material/problem 

  Assemble the element properties to obtain the system 

equations for the complete network of elements 

  Apply boundary conditions, constraints and 

harmonic loading(s) to the model, using the known 

nodal values of the dependent variables. This completes 

the description of the physical problem 

  Obtain the unknown nodal values of the problem at 

nodal points to check accuracy of results (note: stresses 

are obtained over an entire element or integration point) 

  Repeat the computation to obtain all desired unknowns 

(Displacement fields and stresses at crack tip) 

  Extract the numerical results using an IDE and then 

compute the fracture parameter (Stress Intensity factor) 

The Stress Intensity Factor (SIF), K is the main fracture 

parameter for the integrity assessment of structures 

containing cracks. The SIF quantifies the singularity 

intensity of an elastic crack-tip stress field, which forms the 

foundation for LEFM and is used to describe the fracture 

resistance 𝐾𝐼𝐶  (known as mode I fracture toughness) of a 

material. By introducing SIF, the fracture criterion can be 

formulated [9]. Accordingly, fracture starts when SIF, KI 

reaches a material-specific critical value, 𝐾𝐼𝐶  (for mode I). 

Once K is obtained for any mode, elastic crack assessment 

can be performed. This determination of K is of great 

engineering importance and it is necessary to calculate K 

with high accuracy in order to assess the integrity of 

cracked components precisely. Based on K, it is possible to 

establish when a material will fracture due to a critical crack 

length or stress level.  

2. Statement of Problem and Finite 
Element Set up 

Consider a 3D linear elastic homogeneous isotropic solid 

(Ω1 = Ω2) with properties of steel (Young’s modulus E = 

200 GPa, Poisson’s ratio ν = 0.3, density ρ = 7800 kg/m3), 

having a through-thickness interfacial crack between the 

half-spaces, under normal tension-compresion harmonic 

incident wave. The model has been built using Abaqus/CAE 

with opposite crack faces having an initial “small” opening 

of 10-6 mm and we assume that only small deformations 

occur in line with LEFM. The model satisfies the plane  

strain conditions of crack aspect ratio. Under harmonic  

wave, the internal crack opens and closes during tensile and 

compressive phases, respectively. The orientation of the 

plane strain FEA model for figure 1 is a good representation 
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of the center through-thickness crack specimen behaviour 

where the thickness is fixed. In practice, this condition is 

used where the stress state is varying slowly from plane to 

plane in a deep component. There should be enough material 

in depth to stabilize and eliminate the through thickness 

strain. This assumption is useful to characterise the fracture 

toughness for mode I, 𝐾𝐼𝐶  as is the case of this model. 

 

Figure 1.  FE Model of through-thickness crack under loading 

According to fracture mechanics theory, KI is a function 

of the far-field stress, the crack size, the shape and 

orientation of the crack as well as dimensions of the 

specimen. There exist many techniques to determine SIF 

from FE field variables (stress or displacement). The 

numerical methods for calculating K can be divided into  

the field variable methods and the energy release methods. 

The field variable methods can be further divided into 

displacement based and stress-based methods [10]. Here, 

the stress extrapolation and displacement correlation 

methods have been used to calculate SIF since these methods 

can be applied to all types of elements. The basic idea of any 

method used is relating the SIF with the physical quantities 

(such as stresses, displacements) around the crack front, 

which have been determined by FE analysis. Stress field 

variables are obtained at integration points closest to the 

crack tip and the SIF can be calculated using equation (1)  

[11] and extrapolated to zero (representing the crack tip). 

For a mode I through thickness crack-front field in which 

𝜎𝑥  and 𝜎𝑦  are principal stresses at a node, parallel and 

perpendicular to crack directions respectively, the stress 

fields are defined as; 

𝜎𝑥 =  
𝐾𝐼
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Where the normal stress, 𝜎𝑦  along the crack surface 

(𝜃 = 𝜋) is adopted in the calculation of SIF. 𝑟  is the 

relative distance from the crack tip and 𝐾𝐼 can be obtained; 

𝐾𝐼 = lim𝑟→0 𝜎𝑦   2𝜋𝑟             (2) 

With a plot of 𝐾𝐼 as a function of r, SIF at the crack 

front can be determined by extrapolation. 

Similarly, from the displacement field around the crack 

tip; 
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Where 𝑘 = 3 − 4𝜈  (for plane strain condition), 

𝐺 =  
𝐸

2(1+𝜈)
 is shear modulus, E and 𝜈  are the Young 

modulus and Poisson ratio of the material, respectively. 

With displacement jumps at nodal positions along the crack 

plane, SIF is calculated using equation (4). Note that 𝑈𝑦   

along the crack surface ( 𝜃 = 𝜋)  is adopted in SIF 

calculation. 

 ⇒   𝐾𝐼 = lim𝑟→0
𝐺

4(1−𝑣)
  

2𝜋

𝑟
 𝑈𝑦  (𝑥, 𝑡)     (4) 

Where 𝐺 is the shear modulus and 𝑣 is Poisson ratio of 

the material. 𝑟 is the relative distance from the crack tip.  

For mode II crack, 𝐾𝐼𝐼 has an expression like equation 

(4) with the parallel (x-direction) displacement, 𝑈𝑥   to 

replace, 𝑈𝑦   [12], [13] and [14]. 

 

 

Figures 2.  Displacement Jump 
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Figures 3.  Stress Extrapolation 

Figures 2 shows the Displacement Jump [U] method 

correlated from two adjacent nodes on the crack faces 

closest to the crack tip. In the stress extrapolation method 

shown in figure 3, the SIF is obtained for normal stress 

components along the crack plane, as 𝑟~0, which also 

describes the crack-tip. 

The idea of the displacement jump method is to find the 

displacements of the points located on the top and bottom 

half-spaces at the interface across the crack and the dynamic 

Stress Intensity Factor based on the expression of the 

displacement field in the vicinity of the crack tip. Hence, the 

single displacement jump is the relative displacement 

between points 1 and 2 located at the same distance, r [15]. 

The displacement jump [U] is obtained at unique nodal as 

follows; 

 𝑈 ≡ 𝑈𝑦 =  𝑈𝑦
+ −  𝑈𝑦

−           (5) 

On the other method, the applied stress of interest is 

considered in the normal tension-compression loading case 

for the incident wave. It should be noted that stresses are 

obtained at Integration Points in FEM and then extrapolated 

to nodal positions. From equations (1), there is an inverse 

relationship between stresses and the distance from the crack 

front, r. As the value of r approaches zero, the value of 

stresses increase significantly. However, stresses become 

infinite if the problem is solved at the crack tip (r = 0), which 

is impossible in real life as no material can sustain infinite 

stresses. As a result, the region of plastic deformation   

must be assumed to be negligibly small compared to all 

characteristic dimensions of the body [9]. Under these 

circumstances, it can be assumed that the area of the plastic 

zone is controlled by the K-dominated field. The fracture will 

commence when values of stresses concentrated at the crack 

tip are high enough to cause the propagation of the crack. 

Therefore, crack propagation starts when the Stress Intensity 

Factor, K reaches a certain critical value KC of any material. 

3. Numerical Results and Discussions 

Mesh and Element Generation 

In this paper, the FE model of the through-thickness crack 

(figure 4) is based on hexahedral mesh, generated using 

C3D8R (an 8-node linear brick, reduced integration, hour 

glass) isoparametric elements, which usually provides a 

solution of good accuracy at less cost (Abaqus/CAE 6.14-1). 

It best identifies the characteristics of this model, being a 

three-dimensional continuum (solid) cube using the explicit 

analysis (for dynamic stress and displacement) that provides 

flexibility in the modelling of different geometries and 

structures. The presence of stress singularities at the   

crack tip requires mesh refinement and reduction of element 

size around that region. This allows for the accurate 

determination of field variables around the crack front. This 

can be achieved by a rapid transition from small elements 

near the crack front to much larger elements in the other 

parts of the domain where spatial gradient variations are 

expected [16]. The hexahedral element is also good for the 

formation of quarter-point elements by collapsing some of 

the crack-tip nodes for some other complicated geometries. 

 

 

Figure 4.  FE mesh of through-thickness crack 
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Figure 5.  FE Model result of the Griffith crack 

In the FE formulation, the stress and displacement 

extrapolation methods have been comparatively used to 

determine SIF (Mode I) since these methods can be applied 

to all types of elements (no special crack tip elements are 

needed). Mesh refinement and sensitivity study are sufficient 

to approximate the singularity at the crack tip of the FE 

model for accurate results. The investigation and use of 

special crack tip elements are suitable for other kinds of 

crack configuration, especially the elliptical or penny-shaped 

cracks where there are curvatures and blunt edges. On the 

other hand, hexahedral elements simply adopts polynomials 

to interpolate field variables in the FE domain of interest. 

The basic idea of any method used is relating the SIF with 

the physical quantities (such as stresses or displacements) 

around the crack tip, which have been determined by FE 

analysis. The result FE model is shown in figure 5 with 

obvious stress concentration can be observed at the crack 

tip.  

Harmonic Wave Distribution 

(i) Dynamic Stress 

By using the stress extrapolation and displacement jump 

methods, KI in the vicinity of the crack front is computed 

for the FE model. The problem is solved for the crack under 

normal tension-compression loading as shown in the 

distribution of the applied dynamic stress as a function of 

time. A harmonic load of frequency ω=2πf is applied as a 

uniformly distributed pressure to the FE model in the 

normal direction. The amplitude of the applied load is 

periodic with step time and initial amplitude using the 

Fourier function;  

 𝑓 𝑡 = 𝑎0 +   𝐴𝑛cosωt + 𝐵𝑛sinωt ∞
𝑛=1     (6) 

The amplitudes 𝐴𝑛   and 𝐵𝑛  of the Fourier functions  

are represented by components of the tractions and 

displacements, respectively as shown below; 
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𝜔
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The incident tension-compression harmonic wave is 

defined by the potential function;  

Φ (𝑥, 𝑡)  = Φ0𝑒
𝑖(𝑘𝛼𝑥𝑛−𝜔𝑡 )                (9) 

Where Φ0 and ω are the amplitude and the frequency of 

the incident wave, respectively, 𝑘𝛼  is the generalized wave 

number given by 𝑘𝛼 =  𝜔 𝐶𝛼  and 𝐶𝛼  are the velocities of 

incident waves in elastic media [6]. 

𝐶1 =   
𝜆+2𝜇

𝜌
  (Longitudinal wave), 

𝐶2 =   
𝜇

𝜌
 (Transverse wave)           (10) 

Where λ and µ are lame constants and ρ is the density of 

the material (in this case steel).  

The results of the applied load in time and the 

corresponding stress distribution along the crack plane for  

a periodic incident wave on the FE model of figure 6 are 

shown in figures 7 and 8. 
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Figure 6a.  The model at initial loading 

 

Figure 6b.  The tensile phase 

 

Figure 6c.  The compressive phase 
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Typical stress distribution around the crack plane are 

shown with obvious stress concentration observed at the 

crack tip during tensile phase. With the application of the 

dynamic normal load, there is an increase in the stress level 

at the contact region of the crack surface and the model is 

deformed based on the load increment, with each time step 

until the complete cycle. The numerical results of stresses 

and displacement jumps obtained from the FE model are 

used for the calculation of the dynamic SIFs at the end of 

each load step. 

Results of applied stress as a function of time is shown in 

table 1. The applied stress of interest is considered in the 

normal Y-directions at a time interval, for selected points 

away from the crack front at normalised distances. The 

results were obtained for the normal tension-compression 

loading case for the incident wave at element number 578. 

The results of the dynamic stress distribution along the 

crack plane at distances, r and a crack size, a are presented in 

table 2 for selected points depicted as t1, t2, t3, t4 and t5. 

(See figure 8 for interpretation of results). 

The stress distribution away from the crack front is shown 

in figure 8, for selected points (step time), depicted as t1, t2 

(tensile phase), t3 and t4, t5 (compressive phase) with the 

respective annotation. It can be seen that higher stress 

amplitude was obtained as the distance towards the crack tip 

tends to zero, with both tensile and compressive phases. Far 

away from the front, the dynamic load tends to the static 

applied value. It should be noted that stresses become infinite 

if the problem is solved at the crack tip (𝑟 = 0), which is 

impossible in real life as no material can sustain infinite 

stresses. 

Table 1.  Stress in time 

Stress (Pa) Time (s) 

0 0 

1.21E+08 1.00E-01 

2.03E+08 2.00E-01 

1.88E+08 3.00E-01 

1.31E+08 4.00E-01 

-4.82E+06 5.00E-01 

-1.15E+08 6.00E-01 

-1.92E+08 7.00E-01 

-1.87E+08 8.00E-01 

-1.17E+08 9.00E-01 

-3.48E+06 1 

 

Table 2.  Dynamic stress distribution along the crack plane at different step time 

r (mm) r (m) r/a Stress (Pa) 

   
t1 t2 t3 t4 t5 

1.89985 0.0019 0.316642 1.43E+08 2.42E+08 -6.55E+06 -2.40E+08 -1.47E+08 

3.79971 0.0038 0.633285 1.17E+08 1.99E+08 -6.00E+06 -1.97E+08 -1.20E+08 

5.69956 0.0057 0.949927 1.05E+08 1.77E+08 -5.45E+06 -1.76E+08 -1.07E+08 

7.59942 0.007599 1.26657 9.92E+07 1.68E+08 -5.22E+06 -1.67E+08 -1.01E+08 

9.49927 0.009499 1.583212 9.53E+07 1.61E+08 -5.08E+06 -1.60E+08 -9.71E+07 

11.3991 0.011399 1.89985 9.24E+07 1.56E+08 -4.92E+06 -1.55E+08 -9.41E+07 

13.299 0.013299 2.2165 8.97E+07 1.51E+08 -4.79E+06 -1.51E+08 -9.13E+07 

15.1988 0.015199 2.533133 8.71E+07 1.46E+08 -4.61E+06 -1.46E+08 -8.86E+07 

17.0987 0.017099 2.849783 8.43E+07 1.41E+08 -4.48E+06 -1.41E+08 -8.57E+07 

18.9985 0.018999 3.166417 8.27E+07 1.38E+08 -4.35E+06 -1.38E+08 -8.40E+07 

 

 

Figure 7.  Applied stress in time 
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Figure 8.  Dynamic Stress distribution in the crack plane 

 

Figure 9.  Distribution of displacement jump as a function of time 

(ii) Nodal Displacement Jump 

Similarly, the time-dependent nodal displacements being 

the interconnection points of the elements which also 

undergo harmonic deformation due to the dynamic loading is 

shown if figure 9. The displacement output of any node is a 

function of its global Cartesian coordinate system. The 

displacement jumps distribution obtained in the FEA is in the 

normal Y-direction for the pair of selected nodes closest to 

the crack front at a distance, r. The nodal displacement jumps 

tends to zero as the crack tip is approached, as seen on the 

curve obtained from the crack plane. 

Comparable SIFs for stress fields and Displacement 

Jumps 

The dynamic SIF obtained from the FE results of both 

stress fields and displacement jumps are comparable as seen 

in figure 10. The normalised 𝐾1  values obtained for the 

varying crack aspect ratio shows the plane strain SIF decays 

gradually towards a constant with varying crack dimension, 

until a change in crack size and specimen dimension become 

insignificant to the results (See table 3). It also establishes 

the validity of the model for both methods of solving fracture 

dynamic problems, numerically, irrespective of the mesh and 

element type, where K [U] and K [σ] were calculated Stress 

Intensity Factors from displacement jumps and stress field of 

the numerical model. This result corresponds to that in [9], 

therefore it is valid as first step a solution for fundamental 

problems of mode I elastodynamic cracks. The solution is of 

great relevance since all structural members have finite 

dimensions and cracks are most commonly located within 

half-spaces and/or through the thickness of solid materials. 

Table 3.  Stress intensity factor values from both displacement jump and 
stress field variables 

W/a K [U] K [σ] 

20.00 1.493E+07 1.460E+07 

16.67 1.474E+07 1.470E+07 

12.50 1.350E+07 1.480E+07 

10.00 1.223E+07 1.530E+07 

6.25 1.019E+07 1.610E+07 

4.17 8.887E+06 1.640E+07 

2.94 8.183E+06 1.750E+07 

2.27 8.001E+06 1.970E+07 

1.28 7.914E+06 2.700E+07 

t1
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Figure 10.  Variation of comparable SIFs with crack size 

From the numerical results and illustration of the through 

thickness crack, it was found that an increasing ratio of crack 

length to specimen width decreases the Stress Intensity 

Factor and vice versa. Hence, the ratio of crack length to 

plate width can be used as a design parameter that affects the 

fracture toughness and as a tool of predicting condition for 

failure of a structural member.  

4. Conclusions  

In the FE model, the distributions of normal stress 

components and displacement jumps for the 

through-thickness crack located in the center of a 3D 

homogeneous solid under harmonic loading was obtained 

and the Stress Intensity Factor, KI for mode I was computed 

using stress and displacement extrapolation methods, 

respectively. The variations of K as a function of crack 

aspect ratio was also analysed. The numerical K obtained 

from stress field and displacement jumps show both methods 

of calculating K are comparable for the same crack size and 

fixed specimen dimension. The results show the validity of 

the FEA model and both methods can simply be used to 

determine accurate values of SIFs, irrespective of the 

element type (so long as mesh refinement is achieved in the 

crack vicinity), which indicates that the Finite Element 

Method is reliable and would achieve the correct expectation 

of results for complex cases when contact interaction is taken 

into account. In what follows, it is recommended that the 

Dynamic Stress Intensity Factors for opening mode be 

computed as a function of varying wave numbers, taking the 

effects of crack closure into account, which defines the 

'true-state' Physics phenomena of the dynamic problem. 

Nomenclature  

a    Crack size 

𝐴𝑛  , 𝐵𝑛   Components of Fourier function 

𝐶1 , 𝐶2  Velocities of the longitudinal and transversal 

waves 

E   Young modulus 

𝑓 𝑡   Fourier function 

𝐺   Shear modulus 

𝐾𝐼   Mode I stress intensity factor 

𝐾𝐼𝐶   Fracture toughness  

r   Distance from the crack tip 

𝑈𝑥  , 𝑈𝑦    displacement fields  

 𝑈   Displacement jump  

W   Specimen dimension 

𝑘𝛼    Generalized wave number 

λ, µ  Lamé constants  

𝜈    Poisson ratio 

ρ   Material density  

σ   Applied stress 

Φ   Potential function of the incident wave 

Φ0   Amplitude of the incident wave 

Ω1 , Ω2  Isotropic half-spaces 

ω   Frequency of the incident wave  

FEM  Finite Element Method  

LEFM  Linear Elastic Fracture Mechanics 

SIF   Stress Intensity Factor 
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