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Abstract

The association between breast cancer risk defined by the Tyrer-Cuzick score

(TC) and disease prognosis is not well established. Here, we investigated the relation-

ship between 5-year TC and disease aggressiveness and then characterized underly-

ing molecular processes. In a case-only study (n = 2474), we studied the association

of TC with molecular subtypes and tumor characteristics. In a subset of patients

(n = 672), we correlated gene expression to TC and computed a low-risk TC gene

expression (TC-Gx) profile, that is, a profile expected to be negatively associated with

risk, which we used to test for association with disease aggressiveness. We per-

formed enrichment analysis to pinpoint molecular processes likely to be altered in

low-risk tumors. A higher TC was found to be inversely associated with more aggres-

sive surrogate molecular subtypes and tumor characteristics (P < .05) including Ki-67

proliferation status (P < 5 × 10−07). Our low-risk TC-Gx, based on the weighted sum
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of 37 expression values of genes strongly correlated with TC, was associated with

basal-like (P < 5 × 10−13), HER2-enriched subtype (P < 5 × 10−07) and worse 10-year

breast cancer-specific survival (log-rank P < 5 × 10−04). Associations between low-

risk TC-Gx and more aggressive molecular subtypes were replicated in an indepen-

dent cohort from The Cancer Genome Atlas database (n = 975). Gene expression that

correlated with low TC was enriched in proliferation and oncogenic signaling path-

ways (FDR < 0.05). Moreover, higher proliferation was a key factor explaining the

association with worse survival. Women who developed breast cancer despite having

a low risk were diagnosed with more aggressive tumors and had a worse prognosis,

most likely driven by increased proliferation. Our findings imply the need to establish

risk factors associated with more aggressive breast cancer subtypes.
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1 | INTRODUCTION

Breast cancer is a complex disease involving genetic and nongenetic

risk factors. Risk assessment tools have been developed to estimate

individual breast cancer risk over time.1 In particular, the Tyrer-Cuzick

risk score integrates information on established life style, reproductive

and familial risk factors.2 In order for these tools to help decrease

breast cancer mortality through improvement of screening practices,

chemoprevention trials or other preventative strategies,3 they should

be able to predict risk for breast cancer of different subtypes. We

have previously observed that women at high risk as predicted by risk

assessment tools are more likely to have tumors of more favorable

tumor characteristics,4 prompting the question whether the associa-

tion persists for breast cancer subtypes, which are known to differ in

their etiology.5

Aggressive tumors are characterized by a faster growth rate,

greater capability to invade surrounding tissue and metastazise, lead-

ing to poorer survival. More aggressive breast cancers tend to be of

basal-like and human epidermal growth factor receptor 2 (HER2)-

enriched intrinsic molecular subtypes,6 hormone-receptor

(ER) negative,7 higher grade and proliferation status, larger tumor size

and lymph node-positive involvement.8,9 Currently, no risk assess-

ment tool is particularly sensitive for predicting risk of aggressive

breast cancer subtypes.10 The lack of such an algorithm can be par-

tially attributed to a bias because overrepresentation of ER positive

and thus less aggressive cancers in most populations where etiology

has been studied and risk prediction tools have been established.

Therefore, more insights into the biology of breast cancer risk are

needed in order to develop preventative approaches that target

women at increased risk, particularly of more lethal tumors.11

The goal of this study is to investigate the association between

Tyrer-Cuzick risk score and breast cancer subtypes, tumor characteris-

tics and prognosis, and to gain biological understanding of underlying

molecular processes by leverage of gene expression data in samples

from a clinically representative study population.

2 | METHODS

Study population consisted of women under the age of 80, diagnosed

with primary invasive breast cancer recruited in the Linné-Bröst

1 (LIBRO-1) study12 or KARolinska MAmmography Project for Risk

Prediction of Breast Cancer (KARMA)13 studies, in the Stockholm and

Skåne region of Sweden. LIBRO-1 study is a case-only, population-

based cohort consisting of 5715 women diagnosed with breast cancer

in Stockholm during 2001 to 2008. KARMA is a prospective cohort

study of 70 877 women with or without breast cancer, recruited in

What's new?

The Tyrer-Cuzick score for assessing breast cancer risk inte-

grates information on lifestyle, reproductive, and familial fac-

tors, including BRCA mutation status. The relationship

between Tyrer-Cuzick score and specific breast cancer sub-

types, however, remains unclear. In this investigation, five-

year, low-risk Tyrer-Cuzick gene expression profile, expected

to be negatively correlated with risk, was associated with

certain, more aggressive breast cancer subtypes, including

basal-like and HER2-enriched subtypes. Analyses further

indicate that genes and biological pathways involved in

increased proliferation underlie this association. The findings

draw attention to factors relevant to aggressive breast can-

cer subtypes that are not yet captured in risk assessment

tools.

UGALDE-MORALES ET AL. 885



2011 to 2013, from four mammography units situated in Skåne

county and Stockholm.

All LIBRO-1 and KARMA participants with primary invasive breast

cancer diagnosed 2005 to 2015 were considered for inclusion

(n = 4598). The cutoff at 2005 was chosen since staining for HER2

and Ki67 immunohistochemistry (IHC) markers was not performed

before 2005. In total, 2632 cases with complete information on all the

IHC markers, needed to derive surrogate molecular subtypes, were

eligible for this study.

2.1 | Tumor characteristics, surrogate molecular
subtypes and survival

Information on molecular markers was retrieved from medical and

pathology records at treating hospitals. Percent of estrogen receptor

(ER) and progesterone receptor (PR) staining was dichotomized into

positive or negative status (positive if ≥10%, otherwise negative) dur-

ing this period. HER2 status was dichotomized according to the Swed-

ish Society of Pathology's guidelines, as being negative if protein

expression showed 0 or 1+, or higher with no confirmed gene amplifi-

cation by FISH, and as being positive if FISH showed gene amplifica-

tion. Proliferation marker Ki67 was measured in hotspot regions

according to contemporary guidelines and reported as percent

staining (low if <20% and high otherwise). Surrogate molecular sub-

types were derived from ER, PR and HER2 status; Ki67 percentage

values; age at diagnosis, using a subtype classifier based on a random

forest algorithm trained to predict breast cancer molecular

subtypes.14

Data on clinical tumor characteristics and prior breast cancer

diagnoses were obtained through the Swedish National Cancer Regis-

ter15 and the Stockholm-Gotland Regional Breast Cancer Quality Reg-

ister16 using the Swedish personal identity numbers.17 Lymph node

involvement was dichotomized as being positive or negative. Tumor

size diameter was measured in millimeters. Tumor grade was recorded

using the Nottingham Histologic Grade system.

Date of death was obtained from the Swedish Cause of Death

Register (linkage performed on 6 October 2017). Breast cancer-

specific events were identified in cases with cause of death code

“C50*.” The quality of the registry is high. A high correlation (95.9%)

between hospital discharge diagnosis and underlying cause of death

from death certificates for malignant breast neoplasms has been

observed.18

2.2 | Tyrer-Cuzick risk score

Individual 5-year TC was computed using the International Breast

Cancer Intervention Study (IBIS) tool version 7 (http://www.ems-

trials.org/riskevaluator/), based on the Tyrer-Cuzick model.2 The

model included risk factors of age, age at menarche, age at first child,

menopause, length, weight, hormone-replacement therapy use and

previous benign breast disease (eg, hyperplasia, atypical hyperplasia,

lobular cancer in situ). The score also includes first-/second-degree

family history of breast and ovarian cancer, Ashkenazy descent and

BRCA mutation status. Information on these variables was available

from a self-reported Web-based questionnaire during study recruit-

ment, with 95% to 100% completeness. BRCA1/2 mutation status

was defined based on the carriership of at least one rare protein-

truncating variant, as previously described.19 TC scores were calcu-

lated at age of first breast cancer diagnosis. Variables were coded

according to the Tyrer-Cuzick protocol.

2.3 | Gene expression data sets

Two tumor RNA-sequencing data sets comprising LIBRO-1 and

KARMA participants with breast cancer were analyzed in a discovery-

validation setting. The discovery data set consisted of 296 participants

that were sequenced under the Clinical Sequencing of Cancer in Swe-

den (ClinSeq) project.20 The validation data set consisted of 376 par-

ticipants sequenced under The Sweden Cancerome Analysis

Network—Breast (SCAN-B) initiative.21 Sample preparation, sequenc-

ing protocol and gene expression quantification are described in the

supplementary methods.

An independent RNA-seq data set consisted of breast cancer

expression data from The Cancer Genome Atlas (TCGA).22 RNA-seq

expression data (HTseq counts), together with patient clinical informa-

tion, was retrieved using the GDC Data Transfer Tool on 7 November

2018. In total, 975 primary invasive breast carcinomas with age at

diagnosis between 26 and 90 years old were included in this study.

2.4 | PAM50 molecular subtypes

PAM50 molecular subtypes were computed on the discovery, valida-

tion and independent data sets from RNA-seq normalized counts

using a research-based subtype predictor, the Absolute Assignment of

Breast Cancer Intrinsic Molecular Subtype (AIMS) method23 version

1.12.0 in R.

2.5 | Correlation of gene expression levels with TC

Regression analyses were used to correlate tumor gene expression

with TC. TC score was available for 259 (87.5%) of women in the dis-

covery data set and ranged from 0.1% to 9.5% with a mean of 2.0% in

the validation data set, TC was obtained for 313 (83.24%) women and

ranged from 0.4% to 7.1% with a mean of 2.1%. In order to capture

effects by lower risk, the 5-year TC risk score was transformed by

subtracting its value from zero (ie, creating a negative TC), so that

gene-level effect sizes (beta coefficients) represent expression

changes related to a 1-percentage decrease on the TC scale. The

regression analyses were performed using the quasi-likelihood

(QL) dispersion estimation and hypothesis testing method

implemented in the edgeR package24,25 in R. Under this methodology,

886 UGALDE-MORALES ET AL.

http://www.ems-trials.org/riskevaluator/
http://www.ems-trials.org/riskevaluator/


RNA-seq count-based data are modeled using a negative binomial

(NB) distribution. Regressions were fitted based on the NB general lin-

ear model using the glmQLFit (robust = T) function, and beta coeffi-

cients were obtained using the QL F-test with the glmQLFTest

function. Genes with a mean counts per million value of <0.5 were

considered weakly expressed and therefore were not included in the

analysis. Differences in library composition, for example, total number

of counts per sample, were normalized using the trimmed mean of M-

valued method.26

2.6 | Low-risk TC-gene expression profile

A low-risk Tyrer-Cuzick gene expression (TC-Gx) profile was calcu-

lated for each individual in the discovery, validation and TCGA expres-

sion data sets, as the weighted sum of gene expression values

(weighted by the beta coefficients, which are on the scale of a per 1%

decrease in TC). The profile was based on genes found to be signifi-

cantly correlated with the TC score through regression analysis in the

discovery data set. We controlled the false discovery rate (FDR) to be

lower than 0.05, and significantly associated genes were required to

have an absolute effect size larger than 1.5-fold (ie, beta coefficient

larger than ±log2[1.5]). Effect size beta estimates, corresponding to a

1% decrease in 5-year TC risk, were used to weight the normalized

and log2-transformed expression values. The low-risk TC-Gx therefore

represents a weighted sum of gene expression values, which is

expected to be negatively correlated with breast cancer risk. Genes

with low expression values (ie, below 0.5 mean counts per million) in

the validation data set were not included in the final TC-Gx.

2.7 | Statistical methods

Statistical analysis was performed in R (version 3.5.2). All statistical

tests were two-sided, with an alpha level set at 0.05, or as specified

otherwise. We summarized association between continuous expo-

sures (eg, TC score and low-risk TC-Gx) and outcome variables, one at

a time. Binary outcomes such as hormonal status were analyzed using

unconditional binomial logistic regression, and categorical outcomes

such as molecular subtypes and tumor grade were modeled with

unconditional multinomial logistic regressions using the R “nnet” pack-

age. The TC score was treated as a continuous linear score, and odds

ratios are reported in terms of per one-percentage increase. The TC-

Gx was treated as a standardized continuous linear score, and odds

ratios are reported in terms of per 1 SD increase.

2.7.1 | Gene Set Enrichment Analysis

To test for gene sets enriched for overall gene expression correlated

with TC, we performed gene set enrichment analysis (GSEA) methods

that do not rely on predefined significance thresholds (ie, no P value

cutoff is applied), using the workflow implemented in the Piano27 R

package. Gene sets were defined using the Molecular Signature Data-

base (MSigDB) hallmark collection, consisting of 50 hallmark gene sets

curated from a number of “founder” gene sets.28 A gene set was con-

sidered enriched if affected by the constituent genes compared with

the rest of the genes. Detailed input and workflow settings are

described in supplementary methods.

2.7.2 | Survival analysis

Multivariate Cox proportional hazard regression models were used to

estimate 10-year breast cancer-specific survival using the “survival” R

package, with time since diagnosis as the underlying time scale. For

this analysis, we combined patients from the validation (ClinSeq) and

discovery (SCAN-B) samples with complete information on survival

(n = 661). Of these, 416 (62.8%), were prevalent cases. Kaplan-Meier

survival curves were visualized using the “ggkm” R package. Time at

risk was considered from date of study entry (eg, blood draw and left

truncation) until date of breast cancer death, or censoring, due to any

cause of death or end of follow-up (truncated at 10 years), whichever

occurred first. For survival analysis, the low-risk TC-Gx was dichoto-

mized according to the mean of the distribution (ie, above vs below

the mean distribution). Cox proportional hazards (PH) models were

adjusted for data set, year and age at diagnosis. Additional Cox PH

models were further adjusted for MKI67 and ESR1 log2-gene expres-

sion levels and PAM50 subtypes.

3 | RESULTS

3.1 | Association between breast cancer risk and
disease aggressiveness

In our case-only cohort of 2474 invasive breast cancer patients for

whom information on established breast cancer risk factors had been

collected (Supplementary Table 1), the 5-year breast cancer risk, TC

score, ranged from 0.1% to 10.8%, with a mean of 2.0%. We found

that women with a higher TC (as per 1% increase in TC) were less

likely to be diagnosed with basal-like (P = 1.39 × 10−6) and

HER2-enriched (P = 1.39 × 10−6) surrogate molecular subytpes of

breast cancer (P < .05), ER-negative (P < 1 × 10−3), HER2-positive

(P < .05), lymph-node positive (P < 1 × 10−3), higher tumor grade (P-

trend < 1 × 10−06) and higher Ki-67 proliferation status (P < 5 × 10−7)

(Table 1). Exclusion of women with family history of breast cancer,

and BRCA mutation status, did not affect the observed inverse associ-

ation between TC and disease aggressiveness (data not shown).

3.2 | Definition of a low-risk TC-Gx profile

Using our discovery data set, we identified 37 top genes significantly

correlated with the TC score (FDR < 0.05 and β > 1.5-fold)

(Figure 1A). Based on these genes (Supplementary Table 2), for each
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individual we computed a low-risk TC-Gx profile, as a weighted sum

of normalized gene expression values, defined in such a way that the

profile is negatively correlated with breast cancer risk (Methods and

Supplementary Figure 1). Tumors with an enriched low-risk TC-Gx

(above the mean distribution) tended to overlap with basal-like and

HER2-enriched subtypes (Figure 1B).

3.3 | Association between low-risk TC-Gx profile
and PAM50 subtypes

The low-risk TC-Gx was associated with more aggressive PAM50 sub-

types in our validation and discovery data sets (Table 2). In particular,

our low-risk TC-Gx was consistently associated with a higher proba-

bility for basal-like (P < 5 × 10−13) and HER2-enriched tumors

(P < 5 × 10−7). Importantly, the low-risk TC-Gx computed in an inde-

pendent data set from TCGA was associated with more aggressive

PAM50 subtypes and tumor characteristics (Table 3).

3.4 | Gene set enrichment analysis

We found that 15 out of the 50 MSigDB gene sets were significantly

enriched for overall gene expression by lower TC, under at least one

directionality (Table 4). Proliferation and signaling processes were the

most common pathways likely to be affected by upregulated genes

(ie, genes associated with lower TC risk). Proliferation gene sets were

related to E2F and MYC targets, G2M checkpoint and mitotic spindle.

Signaling gene sets included estrogen response, mTORC1 and WNT

beta catenin signaling.

TABLE 1 Association of 5-year
breast cancer risk (TC score) with
surrogate molecular subtypes and tumor
characteristics in 2474 LIBRO-1/KARMA
cases

Outcome n % OR 95% CI P value

Surrogate subtype

Luminal A 1802 72.84 Ref

Basal-like 153 6.18 0.599 0.487, 0.738 1.39E−06

HER2-enriched 272 10.99 0.867 0.771, 0.975 1.72E−02

Luminal B 247 9.98 0.918 0.818, 1.030 1.44E−01

ER status

Positive 2116 85.6 Ref

Negative 356 14.4 0.825 0.736, 0.918 6.11E−04

PR status

Positive 1697 68.65 Ref

Negative 775 31.35 0.961 0.894, 1.030 2.66E−01

HER2 status

Negative 2174 88.34 Ref

Positive 287 11.66 0.872 0.774, 0.975 2.04E−02

Lymph node status

Negative 2135 87.79 Ref

Positive 297 12.21 0.809 0.713, 0.910 6.65E−04

Grade

Well differentiated 448 18.9 Ref

Moderately differentiated 1210 51.05 0.959 0.884, 1.039 3.07E−01

Poorly differentiated 712 30.04 0.777 0.702, 0.861 1.25E−06

P-trend= 5.03E−07

Tumor size

<20 mm 1521 62.44 Ref

≥20 mm 915 37.56 0.950 0.886, 1.016 1.38E−01

Ki-67

Low (<20%) 1364 55.31 Ref

High (≥20%) 1102 44.69 0.831 0.774, 0.890 2.24E−07

Note: Odds ratios with 95% CI are shown per 1-percentage point increase in the 5-year TC. Boldface type

indicates associations significant at α = .05. Unconditional regression analysis for association of 5-year TC

score with surrogate molecular subtypes, and tumor characteristics in 2474 LIBRO-1/KARMA cases.

Abbreviations: ER, estrogen receptor; OR, odds ratio; PR, progesterone receptor.
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3.5 | Breast cancer-specific survival

We observed 39 events from 661 patients in our discovery-validation

data set. Tumors with an increased low-risk TC-Gx were found to be

associated with worse survival using Cox models adjusted for data

set, age and year of diagnosis (log-rank P value = .00024; Figure 2);

(HR: 2.29; 95% CI, 1.21-4.35) (Table 5). Additional adjustment for pro-

liferation status (defined as log2 MKI67 expression levels) attenuated

the association, similar to adjustment for PAM50 subtypes, while

adjustment for estrogen receptor status (defined as log2 ESR1 expres-

sion levels) did not change, substantially, the survival estimates.

4 | DISCUSSION

A high breast cancer risk as measured by 5-year TC score was associ-

ated with less aggressive breast cancer. In a subset of patients, a low-

risk TC-Gx profile was found to be associated with more aggressive

F IGURE 1 Discovery of genes correlated with low 5-year risk for breast cancer as estimated by the Tyrer-Cuzick risk model and
correspondence of the low-risk TC-Gx with the PAM50 subtypes. A, Volcano plot showing differential expression for low TC in the discovery
data set. Genes are displayed by strength of association (beta coefficient, β, as per 1% decrease in TC) and statistical significance (−log P value).
An individual-level TC-Gx profile was computed based on 37 top genes (FDR < 0.05 and β > ±log2[1.5]) marked in green (downregulated) and red
(upregulated). Gene names are shown for the genes with the strongest association (P value <1 × 10−8 and β > ±log2 (2)). B, Principal component
analysis (PCA) plot showing distribution of validation samples based on whole transcriptomic profiles. Samples are labeled by PAM50 subtype and
by low-risk TC-Gx dichotomized according to the mean of the distribution. Tumors with an increased low-risk TC-Gx profile (eg, ≥ mean
distribution) were more common among basal-like and HER2-enriched subtypes, and less likely labeled as luminal and normal-like subtypes

TABLE 2 Association of the low-risk TC-Gx profile with PAM50 subtypes: discovery and validation data set

Discovery
(n = 296)

Validation
(n = 376)

PAM50
subtype n % OR 95% CI P value n % OR 95% CI P value

Luminal A 91 30.74 Ref 180 47.87 Ref

Basal-like 29 9.80 12.111 6.237,
23.515

1.74E
−13

36 9.57 13.206 7.099,
24.57

3.72E
−16

HER2-enriched 47 15.88 4.217 2.443,
7.279

2.36E
−07

40 10.64 4.791 2.947,
7.791

2.67E
−10

Luminal B 81 27.36 1.261 0.757,

2.099

3.73E

−01
39 10.37 1.235 0.784,

1.944

3.62E

−01

Normal-like 48 16.22 1.819 1.033,

3.204

3.82E

−02
81 21.54 1.336 0.946,

1.888

1.00E

−01

Note: Odds ratios with 95% CI are shown per 1-SD increase in the TC-Gx profile. Boldface type indicates associations significant at α = .05. Unconditional

multinomial regression analysis for the association of the low-risk TC-Gx profile with PAM50 subtypes in the discovery and validation data set.
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PAM50 subtypes (basal-like and HER2-enriched) and with worse

breast cancer-specific survival. In addition, differential gene expres-

sion associated with low breast cancer risk was found to be related to

key biological processes involved in tumor proliferation and oncogenic

signaling pathways. This may explain why we observe that some

patients, despite having lower risk of breast cancer, tend to develop

more aggressive tumors. To our knowledge, this is the first epidemio-

logical study utilizing gene expression data to provide molecular biol-

ogy insights into the relation between breast cancer risk and disease

aggressiveness.

The lack of established risk factors associated with more aggres-

sive subtypes could explain why lower TC scores are more frequent in

patients with aggressive tumor characteristics. Several of the lifestyle-

and reproductive risk factors determining the TC risk score have been

shown to be positively associated with ER positive and thus less

aggressive breast cancer as previously reviewed,29,30 and this is con-

sistent with our findings. Therefore, risk factors linked to the etiology

of basal-like, HER2-enriched and fast growing tumors would need to

be pinpointed and taken into account in order for risk assessment

tools to accurately predict risk to develop breast cancer, including the

aggressive subtypes.

Our low-risk TC-Gx profile included genes known to be bio-

markers of specific breast cancer subtypes. In particular, lactalbumin

alpha (LALBA) and progastricsin (PGC) were replicated with strong evi-

dence of association with breast cancer risk. Higher RNA expression

of LALBA has been found to be associated with more aggressive

breast cancer, such as triple-negative breast cancers (TNBC),31 while

PGC expression has been associated with more favorable tumor char-

acteristics and prognosis related to ER-positive disease.32-34 Consis-

tently, we observed LALBA to be associated with lower breast cancer

risk and PGC with higher risk. This may explain why our low-risk TC-

Gx profile was associated with aggressive PAM50 subtypes, despite

that none of the genes contributing to the low-risk TC-Gx are part of

the genes defining the PAM50 subtypes.

TABLE 3 Association of the low-risk TC-Gx profile with PAM50 subtypes and tumors characteristics: independent TCGA data set

Outcome n % OR 95% CI P value

PAM50 subtype

Luminal A 354 36.31 Ref

Basal-like 167 17.13 8.060 5.95, 10.919 2.27E−41

HER2-enriched 102 10.46 3.931 2.921, 5.291 1.70E−19

Luminal B 287 29.44 1.074 0.884, 1.305 4.74E−01

Normal-like 65 6.67 1.495 1.068, 2.092 1.90E−02

ER status

Positive 724 77.52 Ref

Negative 210 22.48 4.037 3.264, 5.063 1.04E−35

PR status

Positive 626 67.24 Ref

Negative 305 32.76 2.250 1.919, 2.658 1.58E−22

HER2 statusa

Negative 313 82.59 Ref

Positive 66 17.41 1.118 0.857, 1.459 4.10E−01

Lymph nodeb

Negative 404 49.33 Ref

Positive 415 50.67 0.954 0.831, 1.094 4.97E−01

Stagec

I 162 17.33 Ref

II 556 59.47 1.277 1.064, 1.532 8.47E−03

III 217 23.21 1.191 0.965, 1.469 1.03E−01

P-trend= 1.73E−01

Note: Odds ratios with 95% CI are shown per 1-SD increase in the TC-Gx. Boldface type indicates associations significant at α = .05. Unconditional regres-

sion analysis for the association of the low-risk TC-Gx profile with PAM50 subtypes and tumor characteristics in an independent data set (n = 975)

from TCGA.

Abbreviations: ER, estrogen receptor; OR, odds ratio; PR, progesterone receptor.
aFISH method.
bDichotomized number of lymph node examined under histological evaluation.
cStage I: stage I, IA and IB; Stage II: stage II, IIA and IIB; Stage III: stage III, IIIA, IIIB, IIIC.
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TABLE 4 Gene set enrichment analysis results of overall differential expression by lower breast cancer risk

Directionality
class

Gene set name Category N n
n
(dn)

n
(up) Dist(dn) Mix(dn) Nondir Mix(up) Dist(up)

E2F_TARGETS Proliferation 200 133 24 109 1.00E+00 9.95E−01 9.82E−01 7.71E−01 1.00E−03

G2M_CHECKPOINT Proliferation 200 123 22 101 1.00E+00 9.95E−01 9.82E−01 7.33E−01 1.00E−03

MITOTIC_SPINDLE Proliferation 200 121 27 94 1.00E+00 9.95E−01 9.13E−01 7.11E−01 1.00E−03

MYC_TARGETS_V1 Proliferation 200 118 7 111 1.00E+00 9.95E−01 1.22E−01 1.05E−01 1.00E−03

MYC_TARGETS_V2 Proliferation 58 40 3 37 1.00E+00 9.95E−01 5.00E−03 1.00E−02 1.00E−03

ESTROGEN_RESPONSE_EARLY Signaling 200 100 28 72 1.00E+00 9.95E−01 9.13E−01 7.11E−01 2.14E−03

MTORC1_SIGNALING Signaling 200 95 25 70 1.00E+00 9.95E−01 9.83E−01 9.39E−01 6.43E−03

ESTROGEN_RESPONSE_LATE Signaling 200 99 32 67 1.00E+00 9.95E−01 9.13E−01 6.63E−01 6.87E−03

UNFOLDED_PROTEIN_
RESPONSE

Pathway 113 60 19 41 1.00E+00 9.95E−01 9.07E−01 3.67E−01 8.33E−03

UV_RESPONSE_UP DNA
damage

158 81 30 51 1.00E+00 9.95E−01 9.82E−01 6.47E−01 3.30E−02

WNT_BETA_CATENIN_
SIGNALING

Signaling 42 25 8 17 1.00E+00 9.95E−01 9.13E−01 4.34E−01 4.04E−02

GLYCOLYSIS Metabolic 200 91 30 61 1.00E+00 9.95E−01 9.83E−01 9.17E−01 4.46E−02

BILE_ACID_METABOLISM Metabolic 112 54 35 19 2.00E−02 9.95E−01 9.13E−01 9.17E−01 1.00E+00

COMPLEMENT Immune 200 59 39 20 2.75E−02 9.95E−01 9.83E−01 9.94E−01 1.00E+00

XENOBIOTIC_METABOLISM Metabolic 200 90 55 35 3.67E−02 9.95E−01 9.83E−01 9.99E−01 1.00E+00

Note: Top-ranked molecular signature (MSigDB) hallmark gene sets significantly enriched for overall gene expression correlated to TC (ie, as per 1%

decrease in TC), in at least one directionality class. Upregulated classes consist of enrichment for genes negatively associated with TC, while downregulated

classes do so for genes positively associated with TC. The median-adjusted P value from six GSEA methods (Wilcoxon rank-sum test, tail strength, mean,

median, sum, reporter features and Stouffer's method) is shown. Boldface type indicates associations significant at α = .05.

Abbreviations: GSEA, gene set enrichment analysis; N, number of gene set constituent genes; n; number of constituent genes included in GSEA tests; dn,

downregulated; up, upregulated; Dist, distinct-directional; Mix, mixed-directional; Nondir, nondirectional.

F IGURE 2 Kaplan–Meier plot
showing 10-year breast cancer-
specific survival by low-risk TC-
Gx in 661 women from the
discovery and validation data set.

Log-rank P value obtained from
Cox-model adjusted for data set,
age and year of diagnosis, is
shown. The low-risk TC-Gx was
dichotomized according to the
mean of the distribution (ie,
≥mean vs <mean distribution)
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Our results suggest that the association between lower risk of

breast cancer and more aggressive disease is likely due to altered bio-

logical processes involved in proliferation and oncogenic signal-

ing pathways. We found enrichment for proliferation-related

gene sets related to E2F and MYC targets and mitotic spindle

processes. E2F transcription factors have been found over-

expressed in breast cancer tumors and associated with prognosis

in TNBC,35 and to be critical in HER2+ tumor development and

progression.36 MYC overexpression is associated with basal-like

tumors and shorter metastasis-free survival in Luminal A lymph-

node positive tumors,37 is constitutively overexpressed in HER2

+ tumors through loss of p53,38 and activation of MYC down-

stream pathways is thought to be related to aggressive tumors

with acquired therapy resistance.39 With regard to enriched

signaling-related gene sets, these represented involvement in

estrogen response, mTORC1 and WNT beta catenin pathways.

The former two have been suggested to harbor potential thera-

peutic targets in TNBC.40,41 Interestingly, we found that patients

with tumors whose expression pattern more closely resembles

low-risk tumors (as defined by our low-risk TC-Gx profile), had a

worse breast cancer-specific survival, which was partially

explained by proliferation status and PAM50 subtypes, but not

by estrogen-receptor status.

Some limitations and methodological considerations should

be discussed for this study. A considerable proportion of ki67

proliferation data was missing in our validation data set. We

addressed this issue by using MKI67 expression in the survival

analysis, which was found to be moderately correlated with ki67

percent staining (r = 0.64). Adjustment for other proliferation

genes, that is, AURKA and PCNA, yielded similar results (data not

shown). Also, we lacked information on breast cancer-specific

survival in the TCGA data set; therefore, the negative association

of our low-risk TC-Gx profile with survival time needs to be fur-

ther replicated.

In conclusion, our results suggest that gene expression pat-

terns associated with low breast cancer risk are related to tumors

of more aggressive subtypes, in which deregulation of prolifera-

tive and oncogenic signaling pathways can lead to worse

prognosis. Importantly, inquiry into molecular and pathological

features of breast cancer in relation to known risk factors is an

important approach toward better understanding of complex eti-

ology of breast cancer. This is in accordance with the necessity

to incorporate subtype-specific risk factors into current assess-

ment tools in order to identify women at increased risk of

aggressive breast cancer and to contribute to effectively

decrease disease burden.
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Low-risk TC-Gx n nevent HR 95% CI P value

<mean 398 18 Ref
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with additional adjustment for PAM50 subtypes, log2(MIK67) or log2(ESR1), respectively. The low-risk TC-Gx was dichotomized according to the mean of

the distribution. Boldface type indicates associations significant at α = .05.

Abbreviations: CI, confidence interval; HR, hazard ratio; TC-Gx, TC gene expression.
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