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Abstract 17 

Background: Antimicrobial combination therapy is a time/resource- intensive procedure commonly 18 

employed in the treatment of cystic fibrosis (CF) pulmonary exacerbations caused by P. aeruginosa. 19 

Ten years ago the most promising antimicrobial combinations were proposed, but there has since 20 

been the introduction of new β-lactam+β-lactamase inhibitor antimicrobial combinations. The aims of 21 

this study were i) to compare in vitro activity of these new antimicrobials with other anti-22 

pseudomonals agents and suggest their most synergistic antimicrobial combinations. ii) to determine 23 

antimicrobial resistance rates and study inherent trends of antimicrobials over ten years.  24 

Methods: A total of 721 multidrug-resistant P. aeruginosa isolates from 183 patients were collated 25 

over the study period. Antimicrobial susceptibility and combination testing were carried out using the 26 

Etest method. The results were further assessed using the fractional inhibitory concentration index 27 

(FICI) and the susceptible breakpoint index (SBPI). 28 

Results: Resistance to almost all antimicrobial agents maintained a similar level during the studied 29 

period. Colistin (p<0.001) and tobramycin (p=0.001) were the only antimicrobials with significant 30 

increasing isolate susceptibility while an increasing resistance trend was observed for levofloxacin. 31 

The most active antimicrobials were colistin, ceftolozane/tazobactam, ceftazidime/avibactam, and 32 

gentamicin. All combinations with β-lactam+β-lactamase inhibitors produced some synergistic results. 33 

Ciprofloxacin+ceftolozane/tazobactam (40%) and amikacin+ceftazidime (36.7%) were the most 34 

synergistic combinations while colistin combinations gave the best median SPBI (50.11). 35 

Conclusions: This study suggests that effective fluoroquinolone stewardship should be employed for 36 

CF patients. It also presents in vitro data to support the efficacy of novel combinations for use in the 37 

treatment of chronic P. aeruginosa infections.  38 

Keywords: Pseudomonas aeruginosa; Cystic Fibrosis; Antimicrobial susceptibility testing; Synergy 39 

testing; Etest  40 



1.0 Introduction 41 

In cystic fibrosis (CF) patients, Pseudomonas aeruginosa is the most commonly isolated pathogen and 42 

more than 70% of CF patients are colonized with this bacterium by the age of 25 (1, 2). P. aeruginosa 43 

is the primary cause of acute respiratory exacerbations in CF patients with persistent infections leading 44 

to a progressive decline in pulmonary function (3). It has been established that the presence of P. 45 

aeruginosa in respiratory cultures is a major predictor of mortality and morbidity (2). Therefore, in 46 

clinical practice to improve life expectancy and the quality of life especially for patients awaiting lung 47 

transplantation aggressive antimicrobial treatment is employed (1-3). But the cumulative lifetime 48 

treatment of CF patients with antibiotics leads to the development of multidrug-resistant (MDR) P. 49 

aeruginosa (4). For this reason, various treatment approaches are employed in patient management 50 

to delay the development of multidrug-resistant strains. These approaches include combination 51 

therapy and the use of modified dosing strategies to optimize antimicrobial 52 

pharmacokinetic/pharmacodynamics (PK/PD) parameters. To serve as a guide, ten years ago our lab 53 

published that the most promising in vitro antimicrobial combinations for use in the treatment of 54 

MDR P. aeruginosa infections were based on amikacin and ceftazidime combinations (5). However in 55 

recent times, there has been the development of novel antipseudomonal agents such as 56 

ceftolozane/tazobactam (C/T) and ceftazidime/avibactam (4). As single agents, ceftolozane and 57 

ceftazidime have been reported as the most active antipseudomonal agents. However, coupling these 58 

antimicrobials with tazobactam and avibactam extends the susceptibility pattern of these 59 

antimicrobials to include the extended-spectrum beta-lactamase (ESBL)-producing 60 

Enterobacteriaceae (4).  In vitro investigations reported in BSAC data (UK report) state that 61 

ceftolozane/tazobactam is a potent antipseudomonal antibiotic with higher susceptibility rates than 62 

other β-lactam/β-lactamase inhibitor combinations, carbapenems and fluoroquinolones. 63 

Susceptibility rates have been consistently high over the 9 years analysed (2010–18), with 100%, 64 

99.5%, 99.4%, 99.4-100%, 99%, 100%, 90-100%, 100% and 100% respiratory isolates susceptible to 65 

ceftolozane/tazobactam for each year (6). Similarly, susceptibility rates of ceftazidime/avibactam 66 

were 98.6% for the 2016–17 period and 100% for the 2017–18 period. As a result, these new β-lactam 67 

combinations are effective against many Gram-negative bacilli, including MDR P. 68 

aeruginosa associated with urinary tract infections, nosocomial pneumonia, and complicated 69 

intraabdominal infections as well as in the treatment of acute pulmonary exacerbations in cystic 70 

fibrosis (7-9). However, recent studies including ours (10) have shown that there can be the 71 

development of resistance to these new antimicrobial agents.  72 

The purpose of the current study was to compare the in vitro activity of ceftolozane/tazobactam and 73 

ceftazidime/avibactam with other antimicrobials on CF MDR P. aeruginosa and propose an up-to-date 74 



most promising antimicrobial combination for the treatment of CF MDR P. aeruginosa infections. A 75 

secondary objective was to determine the antimicrobial resistance rates of CF MDR P. aeruginosa and 76 

study inherent trends of these antimicrobials over ten years. This would provide empirical evidence in 77 

the treatment of pulmonary exacerbations. 78 

 79 

2.0 Materials and method  80 

2.1 Study Isolates 81 

Between 13 January 2009 and 02 April 2020, 721 CF-MDR Pseudomonas aeruginosa identified by 10 82 

British laboratories were collected over 10 years when they were sent for extended antimicrobial 83 

susceptibility testing. Isolates were stored in the bacterial preservation system MICROBANKTM (PRO-84 

LAB DIAGNOSTICS Ontario, Canada) at -80oC and were plated on receipt onto Mueller-Hinton agar 85 

(MH), MacConkey agar, Pseudomonas Cetrimide agar and Burkholderia cepacia selective agar plates 86 

(All agar plates were manufactured by Oxoid Ltd., Basingstoke, UK). After 18-24 hr incubation in 87 

ambient air at 35oC, plates were verified for culture purity.  As a confirmatory test, oxidase testing 88 

(Oxoid Ltd., Basingstoke, UK) was performed on 18-24 hr colonies. Isolates were accepted as 89 

Pseudomonas aeruginosa when they were oxidase-positive and non-lactose fermenting. In this study, 90 

multidrug resistance was defined as acquired non-susceptibility to at least one agent in ≥3 91 

antimicrobial groups (11). These isolates were referred to as MDR3 while MDR2 and MDR1 referred 92 

to isolates with resistance to two and one antimicrobial groups respectively.   93 

2.2 Minimum Inhibitory Concentration (MIC) testing 94 

MIC testing was performed on MH Agar using the Etest methodology according to the manufacturer’s 95 

instructions (Liofilchem, Abruzzi, Italy and BioMerieux, Basingstoke, UK). The antimicrobials tested 96 

were the aminoglycosides (amikacin, gentamicin, and tobramycin), fluoroquinolones (ciprofloxacin 97 

and levofloxacin), lipopeptides (colistin), and the β-lactams. Of the β-lactams, mono-agents tested 98 

were monobactams (aztreonam), cephalosporins (ceftazidime), and carbapenems (imipenem and 99 

meropenem) while combinations tested were piperacillin/tazobactam, ticarcillin/clavulanate, 100 

ceftazidime/avibactam, and ceftolozane/tazobactam. Susceptibility of ticarcillin/clavulanate included 101 

in the analyses was up to its stop date (2017) while ceftazidime/avibactam and 102 

ceftolozane/tazobactam were included in the analyses from the time of introduction (Jan 2018). 103 

In this study, MIC values between the standard doubling dilution scale were rounded up to the next 104 

doubling dilution. The MICs for all tested antimicrobials were interpreted as susceptible (S), 105 

intermediate (I) or resistant (R) according to the European Committee on Antimicrobial Susceptibility 106 

Testing (EUCAST) approved interpretive standards for P. aeruginosa (12). Due to changes in EUCAST 107 



breakpoints during the studied period, isolate susceptibility patterns were according to the year of 108 

submission.    109 

2.3 Combination testing 110 

Antimicrobial combination testing for each isolate was performed using a minimum of six pairs of 111 

antimicrobials as previously described (5). Briefly, a saline suspension of 0.5 McFarland standard (1.0 112 

for mucoid strains) from 24hr cultures was inoculated onto MH agar plates according to the EUCAST 113 

guidelines for the disk diffusion plate inoculation. Two Etest strips (A and B) were placed top-to-tail 114 

according to the manufacturer’s instructions. After 1hr to allow antimicrobial diffusion into the agar, 115 

each strip was removed and replaced with a fresh Etest (i.e. Etest A strip replaced with fresh Etest B 116 

strip and vice versa). Plates were further incubated for 18±2hr in ambient air at 35±1oC.  117 

2.3.1 Fractional inhibitory concentration index (FICI) 118 

Synergy MIC was expressed using the FICI and calculated as described below. 119 

FICI = (MIC A combination / MIC A single) + (MIC B combination / MIC B single). 120 

If an MIC value was greater than the antimicrobial range tested, the next doubling dilution above this 121 

value of the range tested was used to calculate the FICI (e.g. if an MIC of >32mg/L was found then the 122 

FICI was calculated using 64mg/L) (13). These indices were interpreted as synergy - FICI ≤0.5, no 123 

interaction - FICI >0.5 and ≤4.0, and antagonism - FICI >4.0 (14). 124 

Analyses of species susceptibility to synergy combinations (≥10 replicates) of tested antimicrobials 125 

were carried out when EUCAST breakpoints for P. aeruginosa was known.  126 

2.3.2 Susceptible breakpoint index (SBPI) 127 

The SBPI was used to describe synergy analysis and calculated as described below. 128 

SBPI = (Susceptible breakpoint of antimicrobial A / MIC of antimicrobial A combination) + (Susceptible 129 

breakpoint of antimicrobial B / MIC of antimicrobial B combination) (5). These combination results were 130 

categorised in rank order of their decreasing SBPI results. All antagonistic (FICI >4.0) combinations 131 

irrespective of the SBPI result were not ranked nor recommended for therapy. 132 

 133 

2.4 Statistical methods 134 

Statistical analysis of categorical and continuous variables were carried out using Microsoft Office 135 

Excel 2013 and IBM SPSS statistics for windows, Version 24 (IBM Corp., Armonk, N.Y., USA). The One-136 

way ANOVA with Duncan post hoc test was used for continuous data while the Kruskal Wallis test was 137 

used for comparing categorical data. 138 

 139 

3.0 Results 140 

3.1 Study Isolates 141 



During the study period, 721 MDR P. aeruginosa isolates from 104 female and 79 male CF patients 142 

were referred for extended susceptibility testing from 8 Scottish hospitals while others were from York 143 

and Belfast. The median age at first referral was 27 years (range 7-69 years) and with a median of 3 144 

samples, between 1 and 20 isolates were submitted per patient during the study period.  145 

Figure 1 shows that 69% (496/721 isolates) of the submitted isolates were resistant to the three 146 

groups of antimicrobials (MDR3) tested while 22% (158/721) of submitted isolates were resistant to 147 

only two groups (MDR2). Of the latter, 81% (129/158) of MDR2 isolates showed resistance to the 148 

fluoroquinolones and β-lactams.   149 

3.2 Antimicrobial Susceptibility profile 150 

The results of MIC tests (Figure 2) carried out on 721 isolates showed that the most active 151 

antimicrobial agents were colistin (R=7%), followed by the new β-lactam combinations; 152 

ceftolozane/tazobactam (R=37%) and ceftazidime/avibactam (R=47%). Interestingly, P. 153 

aeruginosa isolates were resistant to the β-lactam combinations; piperacillin/tazobactam (67%) and 154 

ticarcillin/clavulanate (86%). Most of the P. aeruginosa isolates were resistant to the 155 

fluoroquinolones-ciprofloxacin (89%) and levofloxacin (93%) while <70% resistance was observed for 156 

the aminoglycosides with lower resistance rates in gentamicin (36%). In summary, 20% of isolates 157 

were susceptible while 63.9% were resistant to all tested antimicrobials. The fluoroquinolones had 158 

the most resistant isolates (90.83%) followed by β-lactam (67.88%) and aminoglycosides (56.68%). 159 

3.3 Antimicrobial Resistance trend 160 

When the annual mean MIC values for each antimicrobial agent were analysed (Table 1), colistin was 161 

the only antimicrobial which showed a downward trend (R2=0.48) while upward trends were observed 162 

for the fluoroquinolones especially for levofloxacin (R2=0.44). Similarly, an upward trend was observed 163 

in the β-lactams group of which meropenem (R2=0.4967) and piperacillin/tazobactam (R2=0.3007) 164 

demonstrated the greatest increase. The trends for the aminoglycosides during the study period were 165 

level (R2≤0.005).  166 

We analysed our data to determine if there were any statistically significant differences in the annual 167 

means for each antimicrobial. Analysis using the one-way ANOVA showed there was a statistically 168 

significant difference in the annual mean MICs of all tested antimicrobials except tobramycin (p=0.52), 169 

ceftazidime (p=0.19), and ceftazidime/avibactam (p=0.19).  170 

Therefore, we investigated whether observed increases in annual antimicrobial MICs corresponded to 171 

temporal increases in annual resistant strains by assessing time-based differences in resistance to each 172 

tested antimicrobial. Table 2 shows that amongst the aminoglycosides, there were statistically 173 

significant differences (p=0.001-0.041) in the decrease of resistant isolates with tobramycin exhibiting 174 

the sharpest decrease (R2=0.5633). In contrast, levofloxacin (R2=0.472) showed an upward trend but 175 



this was not statistically significant. For the β-lactams group (except imipenem), a statistically 176 

significant resistance increase to meropenem (p=0.01), piperacillin/tazobactam (p<0.001), and 177 

ticarcillin/clavulanate (p=0.024) were observed while statistically significant resistance decrease to 178 

ceftazidime (p=0.017) and aztreonam (p=0.024) in resistance rates (R2≤ 0.1) were observed. 179 

Interestingly, longitudinal analyses of isolates for colistin resistance showed that there was a 180 

statistically significant continuous decrease (R2=0.6881, p<0.001) in resistant isolates during the study 181 

period.  182 

3.4 Antimicrobial Synergy testing 183 

A total of 4062 antimicrobial combinations tests were performed using different antimicrobial pairs. 184 

Overall, 0.01% antagonism and 9.97% synergy were observed for all the tested combinations. In the 185 

antimicrobial groups, 10.31% synergy was observed for aminoglycosides (n=1290), 9.30% for 186 

fluoroquinolones (n=774), and 10.20% for β-lactams (n=2196) while low synergy rates (3.84%) were 187 

observed for colistin (n=964). Of these, the β-lactam (cephalosporin) with aminoglycoside (n=281) as 188 

well as β-lactam+β-lactamase inhibitor antimicrobials (n=19) with another β-lactam (carbapenems) 189 

gave the highest synergy values 20.64 and 26.32% respectively. Table 3 shows that the highest synergy 190 

was observed with antimicrobial combinations of ciprofloxacin and ceftolozane/tazobactam (n=15, 191 

40% synergy) followed by amikacin and ceftazidime (n=60, 36.7% synergy). Similarly, combinations 192 

with ceftazidime were synergistic in 6/7 tested combinations. No synergy was observed when 193 

antimicrobial combinations of colistin with levofloxacin/ceftazidime or imipenem with 194 

tobramycin/ciprofloxacin were tested. In addition, table 3 shows that synergy was observed in all the 195 

tested combinations with the β-lactam+β-lactamase inhibitor antimicrobials (n=12) with 196 

ceftolozane/tazobactam combinations the most synergistic. Indeed, this antimicrobial combination 197 

gave the highest synergy rate (n=82, 23.17% synergy). Synergy rates for ceftazidime/avibactam were 198 

not analysed as only one combination was synergistic.   199 

  200 

4.0 Discussion 201 

The use of antimicrobials has been demonstrated to greatly improve the life expectancy of CF patients 202 

(15). However, a major drawback of this management approach is the development of antimicrobial 203 

resistance due to exposure to several multiple antimicrobial cocktails (1-4, 16). To manage infective 204 

pulmonary exacerbations, CF patients are treated with antimicrobial combinations of which one/both 205 

are generally effective as single agents and there is a lack of evidence guiding the clinician to decide 206 

the best antimicrobial combination that would give a positive treatment outcome (5). Our study 207 

focused on P. aeruginosa, Bullington et al. (17) reported that 62% of healthcare providers and 56% of 208 

people living with CF are concerned about antimicrobial-resistant infections from P. 209 



aeruginosa and Burkholderia spp. This study analysed the multi and extensively drug-resistant isolates 210 

received by our CF antimicrobial reference laboratory, and hence does not provide a representative 211 

picture of the general CF population. Nonetheless, as previously reported by studies sampling CF 212 

patients (5) we observed colistin (93% susceptible) was the most active antimicrobial. These results 213 

should be interpreted with care because for colistin susceptibility testing, it is advised that the use of 214 

micro broth dilution should be employed (12) but our lab used the Etest method. In keeping with the 215 

same study (5) ciprofloxacin was the most active fluoroquinolone. However, we show that a steady 216 

upward trend in annual MIC values was observed for the quinolone antimicrobial class. This 217 

predominance of fluoroquinolone-resistant isolates in our study population may be linked to the use 218 

of ciprofloxacin for first isolates or patients chronically infected with P. aeruginosa as per European 219 

guidelines (18). Fluoroquinolones are used in the treatment of a range of infections due to its safety, 220 

oral bioavailability, and broad-spectrum activity (19, 20). Despite several guidelines to limit the use of 221 

fluoroquinolones in human and veterinary medicine, quinolone-resistance in all species targeted by 222 

this antimicrobial class has been growing steadily (19-23). Also, our data suggest that for the 223 

aminoglycosides (especially tobramycin) and colistin there was an increase in P. aeruginosa 224 

susceptibility rates but in contrast, for the fluoroquinolones, we observed that there was a ~50% 225 

upward trend in the resistance to levofloxacin. Therefore, we agree with Cogen et al., (15) who 226 

reported that although antimicrobial stewardship in this patient population is challenging, its role and 227 

impact would enrich patient management and care.  228 

In this study, ceftolozane/tazobactam and ceftazidime/avibactam were observed as the most 229 

susceptible β-lactam antimicrobials tested. However, our susceptibility rates was lower in contrast 230 

with previous studies which reported in vitro activity of ceftolozane/tazobactam (85.1%) against P. 231 

aeruginosa as comparable with the activity of colistin (89.4%) (24). Gramegna et al. (25) working on 232 

120 CF-derived P. aeruginosa isolates demonstrated that the lowest percentage of in vitro drug 233 

resistance was observed using ceftolozane/tazobactam with 84.2% susceptibility rates. A plausible 234 

explanation of the difference in susceptibility rates might be the study isolate population; their study 235 

was composed of 55% susceptible strains therefore increasing the susceptibility rates. Indeed, 236 

Zamudio et al. (10) reported lower susceptibility values (50%) and Finklea et al. (26) agreed that lower 237 

susceptibility values (30%) were observed if the isolate population differed. Similarly, Mirza et al. 238 

proposed that previous studies had reported a susceptibility rate of 65.4 - 94% for 239 

ceftolozane/tazobactam and 51.8 to 92% for ceftazidime/avibactam in meropenem-non-susceptible 240 

isolates (27). Several resistance mechanisms have been proposed, for example, our laboratory 241 

characterising resistance mechanisms in P. aeruginosa showed it is due to mutation in the AmpC β-242 

lactamase, loss of outer membrane porin D (OprD) while ceftolozane/tazobactam and 243 



ceftazidime/avibactam double resistance is associated with AmpD β-lactamase variations (10). 244 

However, more research is important to determine other resistance mechanisms that would help 245 

develop effective strategies to cope with drug resistance and for epidemiological studies. 246 

To improve efficacy while preventing the emergence of drug resistance, antimicrobial combinations 247 

are often prescribed in the management of CF patients (5). However, the selection of an optimal 248 

combination remains a continual clinical challenge. In a previous work published by our laboratory (5), 249 

antimicrobial combination of amikacin+ceftazidime was stated as the most synergistic combination. 250 

This present study reiterates the dominance of this combination as one of the most synergistic 251 

combination. Interestingly, Nazli et al. (28) demonstrated a 15% synergy using amikacin+ceftazidime 252 

antimicrobial combinations. Furthermore, our analysis demonstrate that combinations with β-lactam 253 

combinations were synergistic. Indeed, newer β-lactam combinations with ciprofloxacin, tobramycin, 254 

and meropenem showed promising results (>25% synergy). The most promising antimicrobial 255 

combination in the present study was ciprofloxacin+ceftolozane/tazobactam. On the basis of our data 256 

suggesting in vitro effectiveness of ciprofloxacin antimicrobial combinations with 257 

ceftolozane/tazobactam, we propose that this combination is explored in clinical care particularly on 258 

the backdrop of restrictions in fluoroquinolone usage. The use of this combination therapy may reduce 259 

the likelihood of the emergence antimicrobial resistance and achieve multi-target engagements 260 

through inhibition of DNA replication and cell wall biosynthesis.  The use of SBPI was proposed earlier 261 

(5) as index for ranking in vitro effectiveness of combinations. Our results suggest that combinations 262 

of colistin with several antimicrobials can give high SBPI values while not predicting synergism as 263 

measured by FICI. Though the reason for this is unclear, we hypothesize that while both indices use 264 

the combination MIC, SBPI compares it with the organisms’ susceptible breakpoint while FICI employs 265 

the single agent MIC. 266 

We acknowledge several limitations to this study, the study population consisting of mainly multidrug-267 

resistant isolate population might have impacted our observations. Also, the choice of antimicrobials 268 

and its combination cut-off (≥10 times) might have impacted on our results. For example, it would 269 

have made our data richer if other newer combinations such as cefiderocol which has low affinity for 270 

AmpC β-lactamases and active against carbapenem-non-susceptible isolates were used in 271 

susceptibility/synergy testing.  272 

In summary, this research reiterates the upward trend in fluoroquinolones resistance and the increase 273 

in susceptibility to colistin and aminoglycosides in CF isolates suggesting effective antimicrobial 274 

stewardship for these antimicrobial agents.  It also gives empirical in vitro evidence that antimicrobial 275 

combinations with β-lactam+β-lactamase inhibitors may be the best synergistic antimicrobial 276 

combinations to use in the treatment of chronic P. aeruginosa infections. 277 
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7.0 Figure Legends 389 
Figure 1. Resistance profile of study isolates to antimicrobial groups. Antimicrobial agents in the 390 
aminoglycoside group are Amikacin, Gentamicin and Tobramycin. Levofloxacin and Ciprofloxacin are 391 
grouped as fluoroquinolones while Aztreonam, Ceftazidime, Meropenem, Imipenem are grouped as 392 
the β-lactams. Also included in this group are β-lactams combinations; Piperacillin/Tazobactam, 393 
Ceftazidime/Avibactam, Ticarcillin/Clavulanate and Ceftolozane/tazobactam.  394 
 395 
 396 
Figure 2. Pseudomonas aeruginosa MIC susceptibility patterns to tested antimicrobials. Percentage 397 
of susceptible isolates are represented by green bars while orange and blue bars represent 398 
Intermediate and resistant isolates. 399 
 400 
* Pip/Tazo, Piperacillin/Tazobactam; Tic/Clav, Ticarcillin/Clavulanate; Ceft/Tazo, 401 
Ceftolozane/tazobactam; Cef/Avi, Ceftazidime/Avibactam. 402 
 403 
Table 1. Temporal variations in MIC values for CF derived P. aeruginosa (n=721)  404 
* Pip/Tazo, Piperacillin/Tazobactam; Tic/Clav, Ticarcillin/Clavulanate; Ceft/Tazo, 405 
Ceftolozane/tazobactam; Cef/Avi, Ceftazidime/Avibactam. 406 
 407 
 ND: Not determined 408 
 NS: Non significant 409 
 410 
 411 
Table 2. Temporal differences of antimicrobial resistance of CF derived MDR Pseudomonas 412 
aeruginosa  413 
a 
AMK, amikacin; GEN, gentamicin; TOB, tobramycin; CIP, ciprofloxacin; LVX, levofloxacin; ATM, 414 

aztreonam; CAZ, ceftazidime; TZP, piperacillin/tazobactam; IPM, imipenem; MEM, meropenem; COL, 415 
colistin; TIM, ticarcillin/clavulanate; CZA, ceftazidime/avibactam; C/T, ceftolozane/tazobactam 416 
b 

Percentage of resistant isolates 417 
ND: Not determined 418 
NS: Non significant 419 
 420 
 421 
 422 
Table 3. Summary of results for combinations tested ≥10 times for CF-derived MDR Pseudomonas 423 
aeruginosa 424 
a 
AMK, amikacin; GEN, gentamicin; TOB, tobramycin; CIP, ciprofloxacin; LVX, levofloxacin; ATM, 425 

aztreonam; CAZ, ceftazidime; TZP, piperacillin/tazobactam; IPM, imipenem; MEM, meropenem; COL, 426 
colistin; TIM, ticarcillin/clavulanate; CZA, ceftazidime/avibactam; C/T, ceftolozane/tazobactam 427 
b 

Percentage susceptible when used as a single agent 428 
c  

Number of times the combinations were tested 429 
 430 


