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A B S T R A C T

Osteoarthritis (OA) and intervertebral disc degeneration (IVDD) as major cause of chronic low back pain re-
present the most common degenerative joint pathologies and are leading causes of pain and disability in adults.
Articular cartilage (AC) and intervertebral discs are cartilaginous tissues with a similar biochemical composition
and pathophysiological aspects of degeneration. Although treatments directed at reversing these conditions are
yet to be developed, many promising disease-modifying drug candidates are currently under investigation. Given
the localized nature of these chronic diseases, drug delivery systems have the potential to enhance therapeutic
outcomes by providing controlled and targeted release of bioactives, minimizing the number of injections
needed and increasing drug concentration in the affected areas. This review provides a comprehensive overview
of the currently most promising disease-modifying drugs as well as potential drug delivery systems for OA and
IVDD therapy.
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1. Introduction

Musculoskeletal diseases are a major cause of disability and mor-
bidity worldwide [1,2]. Osteoarthritis (OA) and low back pain (LBP)
associated with chronic and progressive degeneration of articular car-
tilage and intervertebral discs (IVDs), respectively, account for more
than 50% of patients with musculoskeletal diseases [1]. For early
stages, current treatments are generally focused on pain management,
while surgical intervention is often needed for late stage disease. De-
spite the extensive and compelling preclinical evidence on the efficacy
of different therapeutic molecules (i.e. growth factors and cytokine in-
hibitors), to date, no disease modifying treatments aiming at tissue
repair and regeneration are available [3,4]. The clinical trials carried
out so far have shown disappointing results, as the drugs showed only
short-lived to no beneficial effects [4]. This is mainly attributed to the
heterogenous and multifactorial profile of the diseases, as different
tissues and different pathways, from inflammation to degeneration, are
involved in their pathophysiology [3–5]. Equally important, the short
half-life of the bioactives within the joint and the disc limits the dura-
tion of their therapeutic activity, hence decreasing efficacy [4,6,7]. In
this regard, drug delivery systems might play a crucial role as part of
novel therapeutic strategies due to their capacity to incorporate dif-
ferent types of drugs, tunable release profiles and targeting ability. By
concentrating and prolonging the presence of the drugs in the tissues,
these systems might contribute to improved drug efficacy and ther-
apeutic effect [6,7].

This review focuses on state-of-the-art bioactives targeting joint
degeneration, and current developments on drug delivery systems that
can be used to enhance their efficacy.

2. Synovial joints and intervertebral discs: histological,
biochemical and physio-pathological features

Synovial joints and IVDs are crucial tissues for body movement and
shock absorption due to their unique properties of load distribution,
gliding and wear resistance. Articular cartilage is located at the end of
long bones in synovial joints, which in turn are together by ligaments
and a dense fibrous connective tissue forming the articular capsule
[8,9]. Lining the inner part of the synovial capsule is the synovial
membrane, which is crucial for maintaining joint homeostasis [10]. The
IVDs are composed by two different tissue types: an outer lamellar
structure called annulus fibrous (AF) enclosing an inner gelatinous
structure called nucleus pulposus (NP) which acts as a shock absorber.
At their upper and lower side, IVDs are limited by cartilaginous end-
plates and the vertebral bodies [11,12]. In the AC, chondrocytes can
assume different morphologies whether they are located in the super-
ficial, middle, deep or calcified layer of the cartilage [8,9]. In the IVDs,
the fibrocartilaginous AF contains fibroblast-like and spindle-shaped
cells, whereas the NP contains rounded chondrocyte-like cells [12].

In the AC, collagen type II represents 90–95% of total collagen fibers

and provides resistance to tensile loads. In addition, the collagen net-
work also contains collagen types I, III, IV, V, VI, IX, XI [9,13]. Pro-
teoglycans are also a key component of cartilage matrix due to their
highly charged nature, which attracts and retains water within cartilage
(65–80% wet weight), enabling resistance against compressive forces
and mechanical loading [9,14]. Cartilage matrix also contains a small
amount of other non-collagenous proteins such as lubricin and elastin,
which are necessary to reduce friction during load bearing articulating
activities and provide elasticity to the matrix, respectively [8,9]. In
IVDs, the external part of the AF is rich in collagen type I, while col-
lagen type II and proteoglycans are found in the inner NP tissue. Both
articular cartilage and IVDs are characterized by an absence of vascular,
neural and lymphatic networks, except for the outer AF which contains
a limited number of blood vessels and nerves [5,9]. Cartilage nutrition
depends on the diffusion of nutrients present in the synovial fluid and
basal subchondral bone (bone marrow) and on compression and re-
laxation cycles of the tissue [9,15], whereas IVDs rely mainly on dif-
fusion through the cartilaginous endplate [16,17]. The lack of vascular
networks contributes to the lack of regenerative capacity of these tis-
sues, and additionally makes them less accessible to systemically ad-
ministered drugs.

Not only the risk factors for OA or intervertebral disc degeneration
(IVDD) are similar (i.e. trauma, aging, obesity, and abnormal mechan-
ical stress) [5,18], but also the pathological evolution of both diseases
share common aspects. During the development of disease, the cells
undergo a phenotypic switch which leads to disruption of tissue
homeostasis and impaired extracellular matrix (ECM) turnover [18,19],
accompanied by low grade inflammation [20,21] (Fig. 1). Cells form
clusters [9,18,22], their balance in collagen production switches from
collagen II to collagen I, concomitant with the upregulation of matrix-
degrading proteinases, such as metalloproteinases (MMPs) and ag-
grecanases, and inflammatory cytokines. Hypertrophic differentiation is
observed at later stages and, ultimately, cells undergo apoptosis
[18,22,23]. This abnormal response results in a decreased content of
proteoglycans, and collagen type II, increased collagen I, and loss of
water. Macroscopically, fibrillation of the cartilage surface and fibrotic
changes in the NP are observed. In the AF, the shear stress caused by
tissue degeneration stimulates fibrosis and production of nitric oxide by
resident cells [24]. The perpetuation of such pathological changes and
the progression of degeneration lead to inflammation, stiffness and pain
[18]. In IVDD, pain is likely induced by neovascularization and
spreading of sensory nerves into the endplate and inner annulus
[25–27]. With disease progression, increased tissue calcification occurs.
Although in OA vascular penetration into the decalcified layer is seen
[9,18], in the degenerating IVD the number of capillary buds in the
endplate is reduced [28]. Additionally, cellular senescence has been
proposed as a mechanism involved in both OA and IVDD [23,29]. Se-
nescence, which is a stress-response mechanism, is characterized by cell
cycle arrest, resistance to apoptosis and a pro-inflammatory phenotype
[29,30]. Senescent cells have been found to be more prevalent in OA

Fig. 1. Schematic representation of healthy joint and IVD and the main pathological and morphological changes in OA and IVDD.
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cartilage and IVDD than in healthy tissue [31]. Additionally, in the
joint, senescent cells can also be found in other tissues such as the sy-
novium, a structure that plays a major role in OA development and
progression [29,30].

In sum, OA and IVDDs involve cell phenotype changes that, by
promoting inflammation and matrix degradation, drive tissue and joint
degeneration. Therefore, there is an urgent need for the development of
novel therapeutic strategies aimed at blocking disease progression and/
or promoting tissue regeneration.

3. Clinical approaches for treatment of OA and IVDD: the old and
the new

First-line therapies for OA and IVDD generally aim at relieving pain
and improving function, with a combination of analgesic pharmacolo-
gical and non-pharmacological treatments. Non-pharmacological ap-
proaches include exercise and physiotherapy [32–34]. Pharmacological
therapy for OA or IVDD is largely represented by analgesics, non-ster-
oidal anti-inflammatory drugs (NSAIDs), and opioids [33–35]. The
administration of oral analgesics, such as paracetamol, represents the
first therapeutic solution to control mild pain [35,36]. However,
paracetamol is often not effective, leading physicians to prescribe
NSAIDs (e.g. ibuprofen) at the lowest effective dose and for a limited
time, due to the risk of side effects in the gastrointestinal (GI) tract and
antiplatelet activity [37–39]. Alternatively, in OA, cyclooxygenase
(COX)-2 selective NSAIDs were shown to have the anti-inflammatory
and analgesic efficacy of traditional non-selective NSAIDs, with sig-
nificantly reduced GI-related side effects [40]. However, concerns on
the cardiovascular effects of COX-2 inhibitors have been raised [41,42].
In disc degeneration and low back pain, muscle relaxants are sometimes
used to control non-specific musculoskeletal pain [43–45]. Opioids are
used as an alternative to NSAIDs for both OA and IVDD related back
pain [35,36,46], yet this carries a significant risk of side-effects and
addiction [37,47]. Local injection of steroids and corticosteroids has
also been used in the clinic for pain management of moderate-to-severe
pain, although much more frequently in OA [39,48–50]. Also here,
adverse reactions such as tissue injury by repeated injections, infections
and stimulation of inflammation by crystallized corticosteroids can
occur [38].

Intra-articular hyaluronic acid (HA) injections are frequently used
for symptom relief in OA in an attempt to restore the viscoelasticity of
the synovial fluid [38,51]. The alleged analgesic effect of HA has been
shown to be dependent on its molecular weight, with higher molecular
weight possibly producing more effective and durable effects [52].
Platelet-rich Plasma (PRP) injection is another intra-articular therapy
recently introduced as an experimental treatment for OA [53,54]. PRP
is a preparation of concentrated blood plasma with increased platelet
concentration, growth factors and other mediators [53]. It has been
suggested to have anti-inflammatory effects and to reduce pain [107],
and efficiency has been suggested to be higher and more uniform than
HA [54,55]. However, the Osteoarthritis Research Society International
has recently officially recommended against the use of PRP “because
the evidence in support of these treatments is of extremely low quality”
and “formulations themselves have not yet been standardized” [56].
The latter is related to the myriad of procedures to prepare PRP
[53,56].

When pain management is no longer effective, invasive surgical
interventions are necessary, such as end-stage total joint replacement
for OA [34] and spinal fusion for disc degeneration [57]. Unfortunately,
prostheses have a limited lifetime and revision surgeries have a much
higher risk of failure, posing problems for younger patients. Ad-
ditionally, analogous to the treatment of traumatic cartilage defects
[58], autologous chondrocyte implantation (ACI) was tested in patients
with knee OA, with a significant clinical improvement after a 5-year
evaluation period [59]. However, this technique would be only ap-
plicable to patients with small sized and limited number of lesions.

Additionally, the population followed in this study was relatively young
[59]. Altogether, even though these surgical approaches are effective at
reducing pain, their efficacy is often suboptimal in terms of stability and
integration, thus failing to restore function [60].

The increasing prevalence of both OA and IVDD as well as the lack
of optimal treatment represents a major socio-economic burden
worldwide, and therefore strongly calls for more effective therapeutic
solutions. In the coming years, the identification of new therapeutic
targets followed by the development of disease-modifying drugs for OA
(DMOADs) and IVDD aiming at restoring tissue quality and function
will be crucial.

The abovementioned treatments focus mainly on symptom treat-
ment rather than on reducing, halting or even reversing disease pro-
gression [61,62]. An ideal disease-modifying agent should focus on
either inhibiting catabolic pathways or stimulating repair and re-
generation [63,64]. However, and despite their enormous potential, to
date no disease-modifying agents have been approved for OA or IVDD,
owing to their side effects when administered systemically, short half-
life in the tissue when injected locally, and ultimately, their lack of
efficacy [51,65]. Some of the DMOADs and disease-modifying drugs for
IVDD being tested in clinical trials are summarized in Table 1 and Fig. 2
and described in the next sub-chapters.

3.1. Antibodies and cytokine inhibitors

Therapies using monoclonal antibodies and cytokine inhibitors have
been the most tested strategies so far. A monoclonal antibody raised
against nerve growth factor (NGF), called Tanezumab, was shown to be
effective in reducing pain in hip and knee OA [66]. However, serious
adverse events were noted, including knee osteonecrosis, rapid pro-
gression of OA, and increased incidence of total joint replacement.
Although side effects were mainly observed when combined with
NSAIDs, some clinical trials have come to a halt [66–68]. Another si-
milar clinical trial administering Tanezumab subcutaneously showed
significant function and pain improvements in patients with moderate
to severe hip or knee OA, yet more adverse events and total joint re-
placements were observed [69]. Conflicting results were also obtained
with tumor necrosis factor alpha (TNF-α) inhibition. Intra-articular
administration of Adalimumab, an antibody against TNF-α, was shown
to improve pain and function scores in a trial in knee OA [83], but did
not have any therapeutic effect in erosive hand OA [84]. Similarly, use
of anti-cytokine therapy for low back pain as been investigated, yet the
majority of trials concerned patients with sciatica associated with disc
herniation, without any reference to disc degeneration [85]. Also here,
the results of the trials are conflicting among each other. Several studies
reported improvements in back and leg pain and function upon sub-
cutaneous or epidural injection of Etanercept, a TNF-α selective in-
hibitor [74,86]. Yet, in two other studies Etanercept did not lead im-
proved primary outcomes, leg pain and disability index, when
compared to placebo or steroid-treated groups [87,88]. Whether these
treatments are also able to promote disc regeneration remains unclear.
Interleukin-1 (IL-1) has also been targeted in joint degeneration. Ana-
kinra, a IL-1 receptor antagonist (IL-1Ra), did not lead to symptomatic
improvements compared to placebo in a 3-month follow up clinical
study for OA [70]. Likewise, in a study where AMG 108, an antibody
against IL-1 receptor type 1, was administered IV or subcutaneously in
OA patients, no beneficial clinical effects were observed when com-
pared to the placebo group at a 3-month follow-up [71]. Interestingly,
in a pre-clinical study conducted in arthritic mice, combined antibody-
mediated inhibition of IL-17 and TNF-α showed improved cartilage
protection when compared with single inhibition, showcasing the
beneficial therapeutic effect of multi-target blockade [89]. Similarly,
combined inhibition of IL-1α and IL-1β showed improved cartilage
protection when compared to single inhibition in a mouse model of OA
[90]. Nevertheless, in a clinical trial where patients with knee OA were
bi-weekly treated subcutaneously with Lutikizumab, a bispecific
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antibody for IL-1a and IL-1β, no beneficial effects were observed in pain
scores, synovitis or cartilage thickness over a 50-week period [72].
Similar results were observed in a clinical trial testing bi-weekly sub-
cutaneous administration of Lutikizumab for the treatment of erosive
hand OA [73]. Despite a decrease in serum levels of inflammatory
markers, no significant pain or function improvements were observed
when compared to placebo group [73].

3.2. Enzyme inhibitors

Another class of agents that has been proposed as therapeutics for
degenerative joint diseases is the enzyme inhibitors, namely MMPs in-
hibitors [91]. These inhibitors are synthetic agents that mimic the role
of endogenous tissue inhibitors of MMPs (TIMPs). Yet, despite pro-
mising preclinical data showing chondroprotective effects in OA
[91–93], clinical trials have failed to show efficacy of these agents in
humans so far and an association with severe side effects [4,78,79,94].
Oral administration of doxycycline, a general MMP inhibitor, did not
have any effect on symptom reduction and was associated with more
severe side effects in patients with OA [77]. Similar results were ob-
served for oral administration of PG-116800, another broad-range MMP
inhibitor [78]. No changes were observed in pain and function scores
when compared to placebo group, yet there was an increased occur-
rence of musculoskeletal toxicity [78]. The side effects are likely as-
sociated with the broad spectrum of inhibition of such molecules and
the variety of roles MMPs play in several tissues throughout the body,
together with the fact that the drugs have been mainly administered
orally or systemically for long periods [4].

Currently, efforts are focused on the development of more specific
MMP inhibitors, in particular for MMP-13, which is thought to be the
most important MMP in OA cartilage [4,95–98]. Likewise, the ADAMTS
(a disintegrin and metalloproteinase with thrombospondin motifs) en-
zyme family has an important role in cartilage degradation. M6495, a
nanobody against ADAMTS-5 previously shown to be chon-
droprotective [99,100], is currently being tested in clinical trials for its
safety, tolerability and pharmacokinetics upon subcutaneous injection
(NCT03224702, NCT03583346). Additionally, the safety and efficiency
of the small molecule inhibitor GLPG1972 targeting ADAMTS5 are
being currently evaluated in Phase I and II clinical trials
(NCT03311009, NCT03595618).

Inducible nitric oxide synthase (iNOS) has been linked to pro-
gressive degeneration in OA [101], and its inhibition led to decreased
levels of catabolic effectors in a OA dog model [102]. An iNOS inhibitor

has also entered a phase II clinical trial for treatment of knee OA,
however, no functional benefit or pain decrease were observed when
compared to the placebo group upon oral administration [79]. Calci-
tonin, a small peptide that was shown to have protective effects on
cartilage and bone in preclinical studies [103–105], also failed to im-
prove treatment outcomes in two phase III clinical trials carried out in
OA patients [82]. In this study, the authors hypothesized the lack of
efficacy could be derived, among others, from the low exposure to the
compound [82].

3.3. Growth factors

Growth factors have also been proposed for treatment of knee OA.
In a randomized, double-blind, placebo-controlled trial, bone morpho-
genetic protein 7 (BMP-7) was intra-articularly administered to knee
OA patients, showing good tolerability and safety profiles [106]. Even
though a symptomatic improvement was observed, no follow-up studies
have been carried out so far. Based on preclinical studies in rabbit
models of IVDD showing the potential of growth and differentiation
factor-5 (GDF-5) [107] and BMP-7 [108,109] to restore disc height and
structure, phase I and II clinical trials have been carried out testing the
safety and efficacy of intradiscal injection of recombinant human GDF-5
and BMP-7. However, these trials have been discontinued for unknown
reasons. In a placebo-controlled trial, fibroblast growth factor 18 (FGF-
18 or sprifermin) was injected intra-articularly to knee OA patients in
single or multiple doses over a 3-week period [76]. FGF-18 has been
previously reported to exert anabolic effects on chondrocytes and car-
tilage [110,111]. After 1 year follow-up, while lower cartilage volume
loss and increased joint width in the lateral compartment was reported
in patients treated with FGF-18, higher pain relief was observed in the
placebo group.

3.4. Gene and oligonucleotide therapy

Gene therapy offers unprecedented tools for the modulation of gene
products involved in pathological and repair pathways [112,113]. As
the exact causes behind OA remain unknown, gene therapy for OA
focuses on either up-regulating therapeutic genes or down-regulating
disease-associated genes using plasmid DNA, messenger RNA (mRNA)
or short oligonucleotides, such as small interfering RNA (siRNA) and
antisense oligonucleotides (ASOs) [113]. Together, these strategies
have the common goal to halt degeneration while improving local re-
pair and regeneration [113]. Both strategies can be employed by means
of non-viral or viral transfection, and theoretically be performed ex
vivo, where cells are transfected prior to transplantation into the joint,
or in vivo, upon direct gene transfer to joint tissues [112,113]. While
viral gene delivery strategies for OA have been already tested in clinical
trials [114,115], non-viral gene delivery is still in its infancy. The main
limitation of non-viral strategies is the low efficiency of gene transfer
and subsequently low levels of transgene expression, and the transient
effects, as opposed to viral approaches [116]. For IVDD-associated
chronic low back pain, clinical trials using either non-viral or viral gene
therapy have not been carried out so far [117]. While the preclinical
potential of gene therapy to treat degenerative joint diseases is estab-
lished [118,119], more preclinical and clinical trials need to be carried
out to assess the safety and efficacy of such strategies.

The investigation of epigenetic changes during OA development
also offers the potential to discover novel therapeutic targets. Recent
studies showed that a wide range of microRNAs (miRNAs) plays im-
portant roles in the maintenance of cartilage homeostasis, and conse-
quently in the pathological processes preceding or sustaining OA and
cartilage degradation [120–127]. MiRNA-140 was shown to exert a
crucial role in cartilage development and homeostasis [128,129]. Intra-
articular injections of miRNA 140 led to anti-inflammatory effects,
cartilage matrix production and slower OA progression in both mice
[130] and rat [131] models of OA. Recent preclinical studies showed

Fig. 2. Pre-clinical drugs that are currently in testing as disease-modifying
agents for OA and IVDD therapy, ranging from cytokine/enzyme inhibitors to
promoters of anabolic pathways.
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the feasibility of antisense oligonucleotide-mediated silencing of
miRNA-181a-5p [132], a microRNA found to be increased in OA car-
tilage [125]. Intra-articular injections of a modified ASO led to at-
tenuation of cartilage degradation and reduction of catabolic molecules
in two rodent models of OA [135]. Likewise, evidence is being gathered
on the involvement of miRNAs in disc degeneration [133–135]. Mod-
ified ASOs may in addition be potential alternatives to small molecules
for the inhibition of other OA-associated proteins [136–138]. More
recently, other epigenetic regulators such as long noncoding RNAs and
circulating miRNAs have been investigated for their roles in the pa-
thophysiology of OA and, therefore, their potential use as biomarkers
and therapeutic targets [139–141]. Although there is substantial in vitro
evidence supporting the potential of these molecules or their inhibitors
as therapeutics for both OA or IVDD, a better understanding of their
spatiotemporal expression is necessary to avoid cytotoxicity and off-
target effects [117,142,143]. Moreover, efficient and targeted delivery
of miRNAs or their inhibitors for therapeutic purposes should be care-
fully evaluated due to potential degradation by RNases and Toll-like
receptor-mediated immune system activation [126,135,144].

3.5. Others

The Wnt signaling pathway is known to be not only a key regulator
of joint and disc development and function, but also a relevant com-
ponent involved in joint and disc pathology and hence degeneration
[3]. Hence, the Wnt pathway has been a studied therapeutic target for
OA and IVDD. Phase I and II clinical trials have been carried out testing
the safety and efficacy of SM04690, as treatment for OA [80,81]. In
these clinical trials, SM04690 improved pain and function according to
the WOMAC score (The Western Ontario and McMaster Universities
Osteoarthritis Index) [80,81]. A follow-up phase III clinical trial is
currently underway (NCT03928184). The same drug was also proposed
as therapeutic for IVDD, following a preclinical study where matrix
production and disc height were observed in a rodent-model of disc
degeneration [145]. The molecule has since then entered a phase I
clinical trial for treatment of disc degeneration, yet the study was halted
for business reasons (NCT03246399).

Lately, a new class of drugs targeting senescence mechanisms is
emerging as a new therapeutic approach for OA [146]. UBX101, a drug
that increases p53 activity and hence inducing apoptosis in senescent
cells, entered a phase clinical trial to evaluate safety and tolerability in
OA patients [147]. This drug was previously shown to be effective in
eliminating senescent cells and in slowing down disease progression in
a mouse model of OA [30]. While senescence has been pinned out as a
hallmark of IVDD, the development senolytic drugs for disc degenera-
tion is still in its infancy [148].

All in all, most of the novel pharmacological treatments for OA and
IVDD show little to no efficiency in cartilage repair in clinical studies,
although being promising in pre-clinical research. Most of the draw-
backs of the previously tested drugs are related with either prolonged
systemic overexposure and subsequent off-target side effects such as for
the enzyme inhibitors, but also short bioavailability in the target tissue
leading to a lack of efficacy, especially for small molecule drugs are
likely to have played a role. Additionally, and specially for IVD, due to
the avascularity, presence of endplates and absence of a synovial space,
systemically-administered drugs have limited bioavailability within the
local tissue [7]. Therefore, improved therapeutic outcomes are likely to
be obtained through local injections in drug delivery platforms. These
systems can be tailored to provide local and a sustained drug release, as
well as targeting of specific cell/tissue types.

4. Drug delivery systems

Several approaches have been taken towards the application of
biocompatible and safe drug delivery platforms for the improvement of
therapeutic outcomes (Table 2 and Fig. 3). Among these strategies, Ta
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microparticles and hydrogels are used as drug depot for local extra-
cellular drug release. Continuous drug release over time or upon en-
dogenous (e.g. enzymatic activity, temperature, pH) or external stimuli
(e.g. ultrasound) can be tailored to achieve drug concentrations within
the therapeutic window for prolonged periods of time [6,149]. On the
other hand, since OA and IVDD involve different tissues with varied
roles during pathogenesis, drug delivery using targeting moieties may
facilitate and improve drug delivery to specific cells and tissues.

4.1. Microparticles

Microparticles are micron size particulate systems. Due to their size,
ranging from one to hundreds of microns, injected microparticles can
be well retained within the joint cavity, escaping the main mechanisms
of clearance: synovial vasculature and lymphatic systems [6] (Fig. 4).
Microparticles can be designed to encapsulate a variety of drug candi-
dates, ranging from small hydrophobic drugs such as corticosteroids
and NSAIDs to large macromolecules such as enzymes and antibodies
and therefore offering the possibility to encapsulate DMOADs. To tune
their degradability and hence their release profile, microparticles can
be formulated using different biomaterials.

Up until now, only one microparticle–based drug delivery system
has reached the clinic. This product is based on triamcinolone

acetonide-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres and
commercialized under the name of Zilretta® /FX006 [150]. In OA pa-
tients, the system showed improved joint retention and prolonged anti-
inflammatory effects compared to the injection of bolus triamcinolone
acetonide (TAA) (Kenalog 40®) [151]. However, in a phase-3 clinical
trial, FX006 failed to outperform the standard of care bolus suspension
of microcrystalline TAA in the primary outcome parameter. Never-
theless, the novel formulation did show significantly better results in
several secondary outcome parameters [152]. A new clinical trial is
ongoing to evaluate the effect of FX006 on synovial inflammation in OA
patients [153].

Other microparticle formulations, ranging from synthetic to natural
polymers have been used in preclinical studies. Microspheres derived
from the synthetic polyester amide (PEA) polymer and loaded with
TAA, were tested in several models of joint pathology [154]. In col-
lagenase-induced OA rats, the TAA-PEA microparticles showed a re-
tention time of over two months and reduction of inflammation [154].
In addition, the TAA-PEA formulation was also shown to be superior to
TAA-loaded PLGA microparticles in reducing pain, swelling, lameness
and synovitis in a rat model of acute arthritis [155]. In a trauma-in-
duced OA model, reduction of prostaglandin E2 levels, synovial in-
flammation, osteophyte formation and subchondral bone sclerosis were
observed using celecoxib-loaded PEA microspheres, whereas extended

Fig. 3. Schematic representation of the different drug delivery platforms according to their size, from nano to macrosystems.

Fig. 4. Schematic representation of the fate and clearance profiles of drug delivery systems in the joint and IVD.
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exposure to TAA enhanced degeneration [156,157]. In a canine model
of IVDD, celecoxib-loaded PEA microspheres inhibited osteophyte for-
mation and sclerosis similarly to the rat OA model, and even prevented
further degeneration [158]. However, TAA delivery in the same model
only reduced the expression of a pain marker [158,159]. In contrast, in
a rat model of IVD trauma, prevention of IVD degeneration was ob-
served after delivery of corticosterone using tricalcium phosphate (TCP)
microcapsules [160]. A new drug formulation, combining synthetic
poly(lactic) acid (PLA) nano- and microparticles, encapsulating drug
nanocrystals of a few hundred nanometers, allowed an extended release
profile of the encapsulated drugs, specifically kartogenin and p38α/β
MAPK inhibitor [161,162]. Using these drug formulations, a protective
effect on cartilage integrity and reduction of disease markers were
observed in an OA mouse model [161,162]. Microparticles of silk fi-
broin, a natural polymer, also increased the retention of a fluorescent
dye within the joint cavity after intra-articular injection [163]. By ex-
ploiting their biodegradability and biocompatibility, PRP-containing
gelatin hydrogel microspheres were shown to significantly delay OA
and IVDD progression in an anterior cruciate ligament transection
(ACLT) and degenerated IVD rabbit models, respectively [164–166].

Another approach towards controlling drug release dynamics and
avoid the typical drug burst release of microparticles was reported in a
study where ibuprofen was chemically functionalized to the backbone
of a polymer chain instead of loaded into the particles [168]. Here, a
methacrylic derivative of ibuprofen was co-polymerized with an oligo
(ethylene-glycol) methacrylate and poly(PLGA-PEG) dimethacrylate,
and used to form microparticles of 40–100 μm. The release of re-
generated ibuprofen was obtained by hydrolysis of the ester bond, al-
lowing a gradual release of 13% over a three-month period. [167]

Sustained delivery of IL-1Ra-loaded PLGA microspheres in IVDD led
to attenuation of NP degeneration in in vitro human IVD tissue culture
[168]. Upon intradiscal injection in a rat model of IVDD, the same
system showed protection against GAG degradation [169]. Re-
generative factors have been formulated in microparticle drug delivery
systems to a much lesser extent. Only in one study PLGA microparticles
loaded with dexamethasone and FGF-2-embedded heparin/poly(L-ly-
sine) nanoparticles were shown to promote rat mesenchymal stem cell
(MSC) proliferation and differentiation into NP cells in vitro [170] and
induce partial tissue regeneration in a rat model of disc degeneration
[171].

Microparticles have longer retention times than smaller delivery
systems mainly owing to their bigger size and limited clearance via
small capillary networks [172] (Fig. 4). In vivo studies have reported a
joint residence time of several months for different microparticle-based
delivery systems [154,156]. Additionally, PLA microparticles of above
3 μm in diameter exhibited slower joint clearance than nanoparticles of
300 nm in diameter [173]. Remarkably, the inflammatory state of the
joint was also shown to affect clearance times, with 3 μm microparticles
having faster clearance in diseased joints as opposed to healthy joints
[173]. The authors hypothesized that the increase in clearance rate was
associated with the permeability of the synovial capillary network.
Additionally, bigger particles are known to be entrapped in the synovial
membrane and subsequently phagocytized by macrophages [174,175].
Although synovial entrapment and subsequent phagocytosis is often
regarded as a limitation for drug delivery platforms, phagocytosis by
macrophages has also been exploited as a strategy for increased joint
retention and as a mechanism for triggering drug release [175–177].
Fewer studies have reported retention and degradation kinetics of mi-
croparticulate systems upon intradiscal delivery. PLGA microspheres
were shown to be retained in the disc up to 28 days after injection and
were localized both in the NP and AF [169].

Importantly, special attention should be given to the cytotoxic
profile and biocompatibility of drug delivery systems. Biocompatibility
is not only related to the particle itself, but also to its degradation
products. For instance, PLGA is known for its biocompatibility but
acidic breakdown products can lower the surrounding pH, and

potentially cause inflammation [178]. Microparticles can also stimulate
a host cell response, and this can be influenced by the particle size. In
example, PCL, PLA and PLGA microspheres have shown to provoke an
adverse inflammatory reaction in rabbit joints when their size was
around 1–20 μm but not 35–105 μm [179]. Particle shape can also
influence the inflammatory response as observed when joints were in-
jected with irregularly shaped chitosan microspheres despite the widely
reported biocompatibility of such polymer [179]. In sum, many factors,
from physicochemical properties to biodegradability and degradation
products, need to be considered in order to design biocompatible par-
ticles with minimized host response.

4.2. Nanoparticles

Nanoparticles can be either exploited to increase drug retention
time or to target specific areas within the joint, as their smaller size
allows for efficient use of targeting moieties and facilitates penetration
and diffusion within the dense cartilage matrix. Using different nano-
particle formulations and production methods, size and surface prop-
erties can be modulated, allowing loading of a large range of drugs.
However, the resulting drug release profile depends on several factors
such as pH, temperature, nanoparticle degradation, drug diffusion and
loss of binding interactions. Different types of nanoparticles have been
widely used for OA and IVDD treatment in preclinical animal models,
including polymeric nanoparticle, micelles and liposomes.

In general, although microparticles allow for longer retention time
in the joint space and drug delivery to the synovium, they do not
guarantee sufficient drug concentrations in the cartilage matrix as their
cargo is diluted in the synovial fluid and thereby dispersed throughout
the joint (Fig. 4). In this regard, nanoparticles present an attractive
vehicle for drug delivery into the cartilage matrix. Due to their tunable
properties and smaller size, nanoparticles can be tailored to pre-
ferentially bind cartilage surface and promote full-thickness matrix
penetration. HA nanogels were shown to remain in the joint for up to
two months upon a single intra-articular injection in mice [180]. Ad-
ditionally, they were also shown to locate in the synovial lining. Na-
noparticles below 90 nm were shown to penetrate full-thickness carti-
lage explants, while bigger nanoparticles tend to accumulate in the
superficial layers [181–184]. Finally, interaction with the synovial fluid
must be taken into account when designing drug delivery systems, as
Synovial fluid has been shown to induce aggregation of nanoparticles
limiting cartilage uptake [182].

As for microparticles, nanoparticle properties are also crucial due to
their influence on biocompatibility. Positively charged particles are
known to be more toxic, as they can potentially lead to cell membrane
lysis and mitochondrial/lysosomal damage [185]. Hydrophobicity can
also favor particle interactions with proteins of the complement im-
mune system, promoting inflammation and particle removal by pha-
gocytosis [186]. On top of that, since nanoparticles can also be taken up
by immune cells, their immunostimulatory properties should also be
evaluated [187]. However, nanoparticle tunability and manipulation
could be exploited to obtain optimal drug delivery properties as well as
minimal or no adverse effects.

4.2.1. Polymeric nanoparticles
Polymeric nanoparticles can be derived from several biocompatible

and biodegradable polymers, allowing tuning of their drug loading and
release properties. In addition, due to their small size and flexibility,
polymeric nanoparticles can be functionalized to allow targeted de-
livery to specific tissues or cells by the addition of extracellular matrix-
or cell-binding ligands. For instance, using the collagen II α1-binding
peptide (WYRGRL) nanoparticles retention was increased 72-fold
within the articular cartilage of murine knee joints, exploiting the tissue
as a drug reservoir [181]. Targeting can also be achieved by making use
of electrostatic interaction. Avidin is a positively charged protein with
an isoelectric point of ~8 in physiological conditions and with a
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hydrodynamic radius of 7 nm which makes it small enough to diffuse
through the dense cartilage matrix [189]. Due to its positive charge,
avidin has a strong affinity to the negatively charged cartilage matrix,
and this facilitates a faster penetration and longer retention of the
protein carrier within cartilage [188–190]. Drugs like dexamethasone
and insulin-like growth factor 1 (IGF-1) were conjugated to avidin na-
noparticles through a biotin linker allowing the loading of the carrier
with potentially four different molecules [188–190]. Avidin nano-
particles showed full thickness penetration into the articular cartilage of
rat knee joints, a half-life of 29 h and retention time within the joint of
7 days [189]. This study shows how the engineering of nanoparticles
can improve the delivery of therapeutics to specific cell types or areas
within the joiit. Amine terminal polyamidoamine (PAMAM) dendrimers
were functionalized with poly(ethylene glycol) (PEG) and utilized to
deliver IGF-1 for the regeneration of articular cartilage in a rat model of
OA [183]. The electrostatic interaction between the positively charged
dendrimer and the negatively charged cartilage matrix allowed a 10-
times higher nanoparticle retention up to thirty days. The subsequent in
vivo study in an OA rat model demonstrated improved cartilage repair
when using IGF-1 conjugated to dendrimers as opposed to injection of
free IGF-1 [183]. Altogether, these studies highlight the beneficial ef-
fect of using positively charged nanoparticles and their interaction with
the negatively charged matrix for OA treatment.

An example of nanoparticles used for IVDD therapy are albumin/
heparin nanoparticles which were used for the release of stromal cell-
derived factor-1α (SDF-1α) and the recruitment of bone marrow re-
sident MSCs [191]. Using this strategy, disc regeneration was observed
as opposed to SDF-1α without delivery system.

4.2.2. Micelles
Micelles are supramolecular self-assembled nanoparticles that

spontaneously form upon hydration of amphiphiles. Amphiphiles are
molecules which contain a hydrophilic and a hydrophobic part. When
hydrated in aqueous solution, amphiphiles reorganize themselves to
form nanoparticles containing a hydrophobic core and a hydrophilic
external shell facing the water media. These vesicles are formed in
aqueous solution when the amphiphilic molecule reaches a certain
concentration threshold known as critical micelle concentration (CMC).
These particles allow the encapsulation of poorly soluble hydrophobic
drugs within the hydrophobic core [192]. Expectably, incorporation of
hydrophilic molecules is rather difficult and dependent on covalent
conjugation to the external hydrophilic shell of the micelles [193]. The
vesicle diameter usually ranges between 10 and 100 nm, depending on
the ratio between the hydrophilic and hydrophobic part of the amphi-
philic molecule. Size can also vary depending of the nature of the en-
capsulated drug. Advances in polymer chemistry, and the use of block
copolymers with lower CMC for the preparation of polymeric micelles
has been yielding vesicles with higher in vivo stability, which makes
them suitable candidates for drug delivery [192]. Several micelle for-
mulations have been investigated for OA therapy. Rapamycin-loaded
micelles delivered intra-articularly in a gelatin hydrogel were shown to
delay OA progression in arthritic mice [194]. In a similar approach,
PEGylated kartogenin-based micelles delivered in a HA hydrogel were
used to prevent OA progression in an ACLT rat model [195]. PEGylation
is a common strategy to provide particles with stealth properties and
allow longer circulation time and retention in vivo. Several other mi-
celle formulations have been tested for the treatment of inflammatory
arthritis by delivering dexamethasone [196–199], cyclosporin-A [200],
and indomethacin [201]. The covalent entrapment of dexamethasone in
core-crosslinked polymeric micelles composed by PEG and poly(N-(2-
hydroxypropyl)methacrylamide-lactate) rendered particles with con-
trollable and tunable release kinetics. Once injected in two animal
models of rheumatoid arthritis, the micelles induced improvements in
arthritic scores [196]. Also folic acid-functionalized polysialic acid/
cholesterol micelles loaded with dexamethasone demonstrated im-
proved arthritic scores when compared to non-targeted micelles and

dexamethasone alone [202].
Micelle polyplexes composed of PEG-polyamino acid block copoly-

mers and loaded with an anabolic mRNA were also used for IVDD
therapy in a rat model of disc degeneration [203]. The strategy led to
maintenance of disc integrity and prevention of inflammation induced
by administration of naked mRNA. MiR-29a-loaded micelle polyplexes
encapsulated into hydrogels were also used for IVDD treatment in an-
imal models [204]. The polymers of both hydrogel and particles were
MMP-responsive, causing the release of micelles from the gel. Sub-
sequent removal of the PEG shell from particles, enhanced their cellular
uptake and endosomal escape. The strategy led to reduced MMP-2 le-
vels and attenuation of IVD fibrosis in vivo [204].

4.2.3. Liposomes
Liposomes, which were the first nanoparticles to be translated to

clinical applications, are synthetic vesicles made of phospholipid bi-
layer(s) and structurally arranged as a cellular membrane [205–207].
Phospholipids are natural amphiphiles which contain a hydrophobic
apolar tail and a hydrophilic polar head. The size of the liposomes can
range from 50 nm to 5 μm, depending on the number of bilayers con-
stituting the liposome. As opposed to micelles, liposomes contain a
hydrophilic core and a hydrophobic lipid outer bilayer which allows the
encapsulation of hydrophilic and hydrophobic drugs, respectively.
[205,208]. Among the different attractive properties of liposomes,
particular attention is given to their elevated degree of biocompat-
ibility, the possibility of encapsulating drugs of different nature, and
their wide range of functionalization possibilities [205]. Similarly, to
micelles, liposomes have highly versatile physical and chemical prop-
erties that can be tailored according to the intended use. Different
components can be added to the lipid bilayer to achieve longer circu-
lation times, targeting of specific tissues and controlled release profiles.

The use of liposomes for treatment of joint diseases has been ex-
plored in the last decades. For instance, a study demonstrated the fea-
sibility of targeted liposomal-based delivery of plasmid DNA to chon-
drocytes [209]. Efficient in vivo gene transfer and expression in
chondrocytes was observed upon intra-articular injection in rats. Ex-
pression of the exogenous gene was limited to chondrocytes located in
both superficial and middle layer. The limited penetration and trans-
fection of the 200 nm vesicles again draws attention to the importance
of the particle size for efficient full depth diffusion, and therefore effi-
cacy. Multilamellar liposomes were used for intra-articular controlled
delivery of dexamethasone and diclofenac [210]. The liposomes were
composed of soybean phosphatidylcholine and dipalmitoyl phosphati-
dylethanolamine, and further functionalized with HA and collagen to
increase their bioadhesive properties and affinity for extracellular ma-
trix [210,211]. Single or combined delivery of dexamethasone and di-
clofenac reduced knee-joint inflammation in a monoiodoacetate (MIA)-
induced rat model of OA over a time span of 17 days [210]. Further-
more, HA-coated liposomes were shown to have a greater effect when
compared to the collagen-coated counterpart, which was attributed to
higher cartilage? binding affinity [210,211]. Similarly, liposomes for-
mulated from soybean phosphatidylcholine and cholesterol for en-
capsulation and delivery of celecoxib and embedded within a HA gel
protected cartilage from degeneration as compared to the free celecoxib
in a rat model of OA [212]. However, as the effect of the liposome alone
was not evaluated, the beneficial effect cannot be attributed with cer-
tainty to the controlled and sustained release of celecoxib, especially as
liposomes are known to increase joint lubrication [213,214]. Never-
theless, this dual treatment modality of liposomes does increase their
attractivity as therapeutic strategy in degenerative joint disease.

The use of liposomes for IVDD treatment has been minimally in-
vestigated so far, but a study optimized lipofectamine for the trans-
fection of a human telomerase reverse transcriptase construct in cul-
tured NP cells [215]. Liposomal siRNA could also downregulate
Caspase 3 and ADAMT5 levels in a rabbit model of disc degeneration,
showing beneficial effects compared to saline control [216].
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In the past years, also drug delivery systems derived from cell
membranes have been a subject of research as, due to their autologous
nature, they can reduce adverse effects observed with exogenous lipo-
somes. One example of cell-derived particles are nanoghosts, MSC-de-
rived nanoparticles obtained after removal of the cell content and
subsequent extrusion [217]. Nanoghosts have been recently applied for
drug delivery in mouse models of cancer, leading to significant results
in terms of tumor regression and mouse survival [217]. In addition,
because of the possibility to produce these nanoparticles in larger scale,
they also offer a significant advantage in comparison with exosomes,
which lack satisfactory scalable production methods [218].

4.3. Hydrogels

Similarly to microparticles, hydrogel can be used as drug delivery
systems for small and big molecules, acting as a localized drug depot.
Hydrogels are 3D water-containing structures formed by crosslinked
natural or synthetic polymers. Importantly, their physical properties
such as density and porosity can be tuned by adjusting polymer com-
position and concentration, therefore allowing for optimal drug in-
corporation and release [219,220]. While the high water content gives
the hydrogel a biocompatible profile, the polymer mesh provides ad-
justable mechanical properties [219,220]. Moreover, drug release
profiles can be further modified by adjusting polymer crosslinking and
degradability. Hence, many hydrogel formulations have been explored
for intra-articular and intra-discal drug delivery, ranging from natural-
derived (alginate, chitosan, collagen, gellan gum, hyaluronic acid) to
synthetic materials (PEG, poly-N-isopropylacrylamide, polyvinyl al-
cohol, polyvinylpyrrolidone). Natural polymers which are exploited to
mimic the original ECM have the advantage of not inducing in-
flammatory reactions at appropriate ratio of purity and dosage [221].
On the other hand, synthetic hydrogels might be less biocompatible but
with the advantage of being more tailorable, which may be desired if
they need to meet certain biomechanical demands. For hydrogels, the
degradation mechanism seems to be the main factor influencing bio-
compatibility, as the degradation products can potentially trigger in-
flammation, leading to a exacerbated biomaterial response and, ulti-
mately, compromising the therapeutic goals [222].

For OA treatment, HA-hydrogels represent the most frequently used
formulation because of the improvement of joint function through slow
release of HA and the possible loading of several drugs. For instance, a
HA-doxycycline hydrogel was demonstrated to have improved phar-
macokinetic and therapeutic profiles over HA or doxycycline alone
[223]. Upon partial meniscectomy and unilateral fibular ligament
transection in rabbits, the proposed system displayed decreased oc-
currence of cartilage fibrilation and osteophyte formation. Importantly,
lower degrees of pain were observed for rabbits treated with the HA-
doxycycline formulation. A HA-based hydrogel was also shown to im-
prove SDF-1α delivery and recruitment of MSCs in an ex vivo model of
nucleotomy [224].

Stimuli-responsive hydrogels have also attracted great interest due
to their ability to release the drug after chemical or physical stimuli
[225,226]. A thermoresponsive hydrogel composed by poly-
caprolactone (PCL)-PEG-PCL triblock copolymer loaded with celecoxib
was demonstrated to have a sustained drug release of about 4–8 weeks
upon intra-articular injection in rats [227,228]. The same system was
then used for intra-articular injection in a horse model, and celecoxib
release was observed for up to 28 days [229].

In addition, hydrogel systems in which the release of therapeutics is
triggered by the overexpression of tissue remodeling enzymes have
been developed [226,230]. Using this strategy, TAA-loaded hydrogel
disassembly and drug release were demonstrated to be specifically
triggered by synovial MMP levels in vitro, and dependent on arthritis
flares in vivo [230]. In a canine model of IVD degeneration, a thermo-
responsive poly-N-isopropylacrylamide MgFe-layered double hydroxide
hydrogel was used for celecoxib delivery [231]. Despite the excellent in

vivo biocompatibility, the strategy only led to a limited reduction of
prostaglandin levels in a canine model of mild IVD degeneration, re-
quiring further investigation in models with a more severe phenotype
[231]. In a large animal model of disc degeneration, BMP-2 and BMP-2/
7 heterodimers were conjugated to a HA hydrogel and intradiscally
injected [232]. Even though conjugation was shown to be effective, no
improved disc regeneration was observed, which the authors hy-
pothesized to be related to low dosage and low release from the hy-
drogel.

Finally, hydrogels represent a very versatile drug delivery systems
which has also been applied for gene therapy such as modulation of
disease-causing genes or anti-chondrogenic factors through the delivery
of siRNA, antisense oligonucleotides and anti-miRNA drugs
[137,138,233,234].

As for other drug delivery systems, the release rate of hydrogels is
highly dependent on their degradation profiles and physicochemical
characteristics. A thermoresponsive PCLA–PEG–PCLA hydrogel was
shown to promote celecoxib release for 4 and 8 weeks in a horse and
mice model, respectively [227–229]. Regarding intradiscal and intra-
articular injection of hydrogels, the main limitation is the hydrogel
extrusion or fragmentation due to mechanical loading and high pres-
sure [228,235,236] (Fig. 4). Hence, a rapidly solidifying hydrogel
would in theory have a lower probability of extrusion [237]. Ad-
ditionally, fast integration of the hydrogel with the surrounding tissue
can limit extrusion or fragmentation [238].

Importantly, an advantage of hydrogels over other delivery systems
is the fact that, besides providing prolonged release of bioactives, they
can act as scaffolds for endogenous tissue repair in both AC and IVD
[138,239–242]. This can be further enhanced by functionalizing hy-
drogel matrices with bioactive components that will promote en-
dogenous cell migration, differentiation and matrix production.

5. Conclusions and future perspectives

The articular cartilage and intervertebral disc are tissues with si-
milar structural and biochemical properties. There is an unmet clinical
need for new therapeutic molecules that can act on the effector path-
ways that lead to degeneration, aiming at repair and regeneration.
Different disease modifying drugs have been proposed and extensively
tested in vitro and in pre-clinical models. However, the undesired side
effects and limited efficacy observed in clinical trials have delayed their
clinical approval. One of the factors greatly affecting therapeutic effi-
cacy lies on the short-term retention of many drugs within joints and
limited targeting to specific tissues. Thus, the combination of an ef-
fective disease-modifying drug with a safe delivery strategy is a crucial
step forward towards regeneration.

In terms of drug delivery strategies applied in OA and IVDD, mi-
croparticles and hydrogels are currently being used as site-specific drug
depots. Both systems can derive from different synthetic or natural
polymers and, depending on the production methods, degradation and
drug release profiles can be tuned according with the application and
target tissue. Besides the enhanced bioavailability and prolonged
therapeutic periods, these systems reduce the need for multiple injec-
tions and systemic drug exposure. In addition, hydrogels can also be
applied for cell delivery or recruitment and differentiation of en-
dogenous MSCs. On the other hand, the selective targeting of different
cell/tissue types in different disease stages using functionalized nano-
particles could allow a more selective and patient-specific therapeutic
strategy. Positive outcomes have been obtained in preclinical models
using either polymeric nanoparticles, liposomes or micelles. For carti-
lage targeting, small size and positive charge are ideal requirements for
efficient drug delivery within the cartilage matrix. Nanoparticle func-
tionalized with cartilage-binding peptides and liposomes are also at-
tractive platforms due to their ability to favor drug accumulation in
specific areas and intrinsic lubricative properties, respectively. IVDD
therapy have been less explored so far. Microparticles demonstrated
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how enhanced therapeutic outcomes can be obtained through sustained
delivery of off-the-shelf drugs. Hydrogels have still only been largely
explored for cell homing or delivery properties, yet more drug delivery
applications in preclinical models are needed. Since the ideal strategy
should adapt the drug delivery to the actual disease stage, enzyme-re-
sponsive hydrogels are an exciting option which was proven effective.
Furthermore, since the NP is more prone to degeneration, more atten-
tion has been paid to the regeneration of this tissue. However, future
therapies should aim at restoration of both NP and AF.

Importantly, also the choice of drug is a crucial step towards the
design of an efficient therapy. Current disease modifying disease drugs
for OA and IVDD allow wide intervention on many aspects of the dis-
eases, ranging from blockage of matrix-degradative enzymes, in-
flammation and bone resorption to stimulation of new ECM synthesis.
Selecting the best drug and intervention time goes in parallel with the
necessity of the identification of novel disease biomarkers. It is also
conceivable that multiple drugs or different drugs at different disease
stages might be more effective, favoring the parallel development of
multiscale-drug delivery platforms.

A final consideration for the development of any drug delivery ap-
proach regards their biocompatibility and cytotoxicity. In the future, a
larger focus on studies of specific methods to identify local and systemic
off-target effects might facilitate the screening and translation of safe
and effective drug delivery systems into clinical practice.

To sum up, ongoing studies on the pathophysiology of OA and
IVDD, the development of therapeutic aimed at blocking disease pro-
gression or inducing a regenerative response, and the optimization of
drug delivery strategies have the potential to meet the current neces-
sities for curative therapies.
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