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Abstract 

The objective of the present study is to examine the fine structure of vegetative cells of 

Laminaria digitata using both chemical fixation and cryofixation. Laminaria digitata was chosen  

due to its importance as a model organism in a wide range of biological studies, as a keystone 

species on rocky shores of the North Atlantic, its use of iodide as a unique inorganic antioxidant, 

and its significance as a raw material for the production of alginate. Details of the fine structural 

features of vegetative cells are described, with particular emphasis on the differences between the 

two methods used, i.e. conventional chemical fixation and freeze-fixation. The general structure of 

the cells was similar to that already described, with minor differences between the different cell 

types. An intense activity of the Golgi system was found associated with the thick external cell wall, 

with large dictyosomes from which numerous vesicles and cisternae are released. An interesting 

type of cisternae was found in the cryofixed material, which was not visible with the chemical 

fixation. These are elongated structures, in sections appearing tubule-like, close to the external cell 

wall or to young internal walls. An increased number of these structures was observed near the 

plasmodesmata of the pit fields. They are similar to the “flat cisternae” found associated with the 

forming cytokinetic diaphragm of brown algae. Their possible role is discussed. The new findings 

of this work underline the importance of such combined studies which reveal new data not known 

until now using the old conventional methods. The main conclusion of the present study is that 

cryofixation is the method of choice for studying Laminaria cytology by transmission electron 

microscopy. 
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Abbreviations 

TEM – transmission electron microscopy; CCF – Conventional Chemical Fixation; CF-FS – 

Cryofixation - Freeze substitution 
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Introduction 

Brown algae (Phaeophyceae) belong to a lineage that has evolved independently of other 

major photosynthetic lineages, such as green algae (Chlorophyta) and red algae (Rhodophyta) 

(Bringloe et al. 2020). Instead, they are classified within the Stramenopiles and Chromalveolates 

together with Bacillariophyceae, Chrysophyceae and Oomycota (Baldauf 2008, Baldauf 2003). 

They also represent one of the few eukaryotic lineages that have developed multicellularity. As a 

consequence of this singular evolutionary history, brown algae exhibit many unusual, and often 

unique, features. These features are adaptations to the potentially harsh marine coastal environments 

in which brown algae are often the dominant organisms in terms of biomass (Bartsch et al. 2008, 

Küpper and Kamenos 2018). The key role of kelp forests, effectively constituting an interface 

between the ocean, the atmosphere and land masses, in the biogeochemical cycle of halogens is 

well established (Küpper et al. 2008, Küpper et al. 2011). Their role in marine benthic carbon 

sequestration is the subject of ongoing research (Krause-Jensen et al. 2018) and there is concern 

about their regression or changes in keystone composition and ecosystem functioning in the context 

of climate change (Küpper and Kamenos 2018) (Teagle and Smale 2018).  

Since the introduction of electron microscopy for the study of cell structure, many papers 

have been published on the fine structure of brown algal cells. Among them, we should mention the 

pioneering publications of Manton (1957, 1959) and Bouck (1965). Regarding the order 

Laminariales, a number of TEM-based studies have explored the ultrastructure of chloroplasts, the 

cells of haptera, the adhesive “plaques”, as well as gametogenesis, zoosporogenesis, fertilization, 

and sperms, in different Laminaria species (Bercaloff 1961, Motomura and Sakai 1984, Davies et 

al. 1973, Oliveira et al. 1980, Henry and Cole 1982, Motomura 1989, Motomura 1990, Motomura 

1993). Early reports on Laminarialean species have also studied the ultrastructure of sieve tubes, 

sieve plates, and plasmodesmata (Bisalputra 1966, Parker and Philpot 1961, van Went et al. 1973a, 

van Went et al. 1973b, van Went and Tammes 1973, van Went and Tammes 1972, Schmitz and 

Srivastava 1976, Schmitz and Srivastava 1975, Schmitz and Srivastava 1974, Ziegler and Ruck 
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1967). The localization of iodine and bromine in stipes of Laminaria hyperborea, Saccharina 

latissima and L. digitata was also reported by Pedersen and Roomans (Pedersen and Roomans 

1983). More recently, Holzinger et al. (2011) studied the sensitivity of sporogenic and vegetative 

cells of Saccharina latissima to ultraviolet radiation. 

The application of electron microscopy was a revolution for the study of biological materials. 

Since the time of the first electron microscope picture of eukaryotic cells by Porter et al. (1945), 

many papers have been published using the conventional chemical fixation. However, these 

methods have problems in the preservation of biological material. A continuous effort has been 

made since that time, for the improvement of the chemical fixation as well as for the development 

of alternative preservation techniques (Mielańczyk et al. 2015, Kuo 2014). 

Polge et al. (1949) were the first to examine the preservation of biological material using low 

temperature. After that time many papers have been published analysing the details and the 

advantages of physical vs chemical fixation (Franks 1977, Robards and Sleytr 1985, Gilkey and 

Staehelin 1986, McDonald 1994, Giddings 2003). Cryo-specimen preparation followed by freeze-

substitution (CF-FS) can minimize artefact formation which was caused by the CCF. In addition, a 

number of “new” structures have been found by this technique, which were not visible after CCF, 

like the “flat cisternae” found in brown algal cells ((Katsaros et al. 2009). 

The application of CF-FS in large brown algae was relatively delayed due to the problem of 

sample size. That is why the first reports were on small-sized forms, like fucoid zygotes of 

Phyllospora comosa and Hormosira banksii (Schoenwaelder and Clayton 2000) and zygotes of 

Scytosiphon lomentaria (Nagasato and Motomura 2002) and Silvetia babingtonii (Nagasato et al. 

2010). Later, ultrastructural studies using this method expanded to apical cells of Halopteris 

congesta, Sphacelaria rigidula, and Dictyota dichotoma (Terauchi et al. 2012, Katsaros et al. 2009); 

and plurilocular sporangia of Ectocarpus siliculosus (Fu et al. 2013). All the above studies were 

based on the plunging method of cryofixation, which gives good preservation up to a depth of 10-20 
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μm. A detailed review of this cryofixation technique in brown algae was provided by Nagasato et 

al. (2018). For larger samples, high-pressure cryofixation is necessary. 

Laminaria digitata is a major kelp species on North Atlantic rocky shores, including Maine 

and the Canadian Maritimes, Newfoundland and the European Atlantic coast from Brittany (France) 

to Svalbard (Bartsch et al. 2008). It is the strongest accumulator of iodine among all living systems 

investigated so far (Küpper et al. 1998). It was recently discovered that this kelp accumulates iodide 

as a unique inorganic antioxidant in its apoplast in order to protect its surface against several 

aqueous and gaseous oxidants (Küpper et al. 2008). Upon reaction with ozone, volatile molecular 

iodine is released, resulting in aerosol formation and impacting atmospheric processes (Küpper et 

al. 2008, Palmer et al. 2005). The subject has been extensively reviewed (Küpper and Carrano 2019, 

Küpper et al. 2011, Küpper 2015, Küpper and Kroneck 2015).  

A major open question in this context is the exact localisation of iodide in the cellular and 

tissue context – which has major implications for a better understanding of this unique antioxidant 

system, but also its mechanisms of uptake, storage and efflux. A recent study (Ender et al. 2019) 

employed nano-secondary ion mass spectrometry (nano-SIMS) for the ultrastructural localization of 

arsenic in L. digitata. However, for a better understanding of such mechanisms, good knowledge of 

the cytology of this important model organism is essential – which prompted us to conduct the 

present study.  

 

Despite numerous publications on the fine structure of brown algae using conventional 

chemical fixation, studies on the cytology of  L. digitata seem to be missing (also the review by 

Bartsch et al. 2008 does not list any), which is surprising given the ecological and economic 

importance of this species and also as a model organism.  

Therefore, the aim of the present study was  to conduct transmission electron microscopy 

(TEM) of both chemically fixed and cryofixed tissues of L. digitata  from the coasts of northern 

Scotland and Brittany, in order to develop a suitable protocol for the study of kelp ultrastructure 
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which is useful for other studies as well. Particular attention was given to the differences found 

between the two methods used, i.e. Conventional Chemical Fixation (CCF) and the CF-FS – 

Cryofixation - Freeze substitution (CF-FS). 

 

 

Materials and Methods 

For all experiments, two different sporophytes of Laminaria digitata (Hudson) Lamouroux 

approx. 0.5 – 1 m in length were collected by snorkelling at Bullers of Buchan, Cruden Bay, 

Aberdeenshire, on November 10, 2019 and on February 18, 2020, and in the Chenal de l’Ile de 

Batz, Roscoff on October 28, 2019.  

 

Conventional chemical fixation (Roscoff laboratory) 

Small pieces (2-3 mm) of the three thallus areas, i.e. meristem, stipe and phylloids, were fixed 

in a 3% glutaraldehyde in 0.4 M cacodylate buffer + 10% NaCl, washed in cacodylate buffer and 

postfixed in 1% OsO4 in the same buffer. Dehydration was conducted in a graded alcohol series 

(from 30% to 100%) and infiltration in alcohol/Spurr’s solutions (with gradually increasing 

concentration of Spurr’s). Samples were finally embedded in Spurr’s resin (Delta microscopies, 

France; Spurr 1969). All chemicals were from Delta microscopies (22 bis, route de Saint-Ybars – 

31190 Mauressac, France). 

 

Cryofixation – Freeze substitution (Aberdeen laboratory) 

High Pressure Freezing was carried out using a Leica EM PACT2 device (Leica Microsystems, 

Milton Keynes, UK). Since the main problem of cryofixation is the thickness of the samples, in 

order to make them thinner, we first cut small thallus pieces (about 1 x 1 mm), which were split into 

two halves parallel to the thallus surface. Samples were then transferred for freeze substitution 
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using the Leica AFS 2 with the freeze substitution used initially being a standard Leica protocol 

(Table 1).  The time in the 2% osmium tetroxide (TAAB, UK; 2% mix prepared at the University of 

Aberdeen) / acetone mix was increased for the 2
nd

 run with the 2
nd

 step adjusted to 48 h (Nagasato 

et al. 2018).  Subsequently, the following infiltration steps were carried out in a Pelco Biowave 

Pro+ (TED PELLA, Inc., Redding, California, USA) using both microwave and vacuum treatment. 

Samples were then removed and placed in 10% Spurr’s (TAAB, UK): Acetone, then 30% Spurr’s, 

then 50% Spurr’s, then 70% Spurr’s, then 90% Spurr’s and finally embedded in Spurr’s resin at 

60
o
C for 24-48 h 

Thin sections from both methods were cut using a diamond knife on a Leica ultracut UCT™ 

ultramicrotome, stained with uranyl acetate and lead citrate and viewed with a JEOL JEM-1400 

transmission electron microscope (JEOL, Tokyo, Japan). Micrographs were taken using a Gatan 

Orius camera (Gatan, Pleasanton, California, USA). 

 

 

Results 

The method used for the CCF was successful and, despite the usually faced difficulties due to 

the large size of the thallus, gave clear images with well-preserved cells. The shape of the cells 

depends on their type, i.e. the epidermal cells, in transverse thallus sections, appear usually 

orthogonal, while the medullary ones are more rectangular (Fig. 1). In the meristematic region the 

cell shape was similar to non-meristematic phylloid tissue but the cells were smaller. The internal 

structure of the cells was found to be similar to that already described for other brown algae. A 

large nucleus, with variable shape, was usually at a central position in epidermal cells, while in 

medullary cells it was more peripherally located (Fig. 1). Large dictyosomes were observed in the 

perinuclear cytoplasm, occasionally associated with the nuclear envelope (Fig. 2). Active 

dictyosomes were also found in other areas, particularly in the peripheral cytoplasm (Fig. 7). Most 

of the cell space was covered by large vacuoles, sometimes containing masses of electron-dense 
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material (Fig. 1). The vacuole membrane in cells fixed with CCF shows an undulating shape (Fig. 

1). Numerous chloroplasts and mitochondria were mainly located in the cortical cytoplasm (Figs 1, 

3). The chloroplasts were large in relation to the cell size, mainly elongated (Fig. 3). Their internal 

membrane system consisted of the usual bundles of three thylakoids, and the nucleoid localized at 

the poles (genophores) (Figs 3, 4). Large pit-fields were observed in internal cell walls mainly in the 

medullary cells (Figs 7, 11). The external cell wall was thick, consisting of three layers, i.e. an 

internal one with parallel, hardly visible cellulose bundles, a thinner median layer with vesicle-like 

structure, and a thick amorphous external layer (Fig. 5). It was interesting that darkly stained 

elongated structures were observed attached to the plasmalemma of the external wall of epidermal 

cells. This was more obvious in cells which were partially plasmolysed (Figs 1, 5). 

Examination of thin sections of material prepared with CF-FS revealed a general structure 

similar to the above described with CCF (Fig. 6, cf. with Fig. 1). However, a detailed analysis of the 

CF-FS samples revealed some interesting features, which were different or not found with the CCF, 

in particular: 

1. The activity of the dictyosomes was clearer, since the released vesicles and cisternae were 

full of electron-dense material (Fig. 7). 

2. The dark elongated structures associated with the plasmalemma of the external cell wall of 

epidermal cells were not found (Fig. 6, cf. with Fig. 1). 

3. The structure of the pit-fields and their plasmodesmata was clearer compared to those of 

the CCF material (Figs. 7, 9). 

4. A variable number of elongated membranous structures, resembling short detached ER or 

dictyosome cisternae was observed close to the wall of both epidermal and medullary cells 

(Figs. 7-11). These structures were either transparent, showing two parallel membranes, 

obviously cross sections of cisternae, or filled with electron-dense material (Figs 8-11). 

They are similar to the “flat cisternae” found associated with the developing cytokinetic 

diaphragm of a number of brown algae (Katsaros et al. 2009). The flat shape of these 
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cisternae was confirmed in areas where these structures were sectioned parallel to their 

surface, where the cisternae appear round (Fig. 11).  

5. In some cases, these flat cisternae were found in parallel doublets, close to the 

plasmalemma of the external wall of epidermal cells (Fig. 10). 

6. An increased number of flat cisternae was found close to the plasmodesmata of the pit-

fields (Figs. 7, 11). 

7. In areas where flat cisternae are present, invaginations of the plasmalemma were 

observed, sometimes associated with the flat cisternae (Figs. 12, 13). 

 

 

Discussion 

The use of the high-pressure CF-FS technique in the present study allowed us to examine the 

thick blades and stipe of L. digitata thallus with good results. The combination of the two methods, 

i.e. CCF and CF-FS, for the first time, was ideal to compare them, in order to examine: a) whether 

there were artefacts after the application of CCF, i.e. not real structures, e.g. like those found after 

permanganate fixation (Bradbury and Meek 1960 , Johnson 1966); and b) whether there are 

important structures which were not observed with the previously used methods of CCF. 

As far as the first of the above questions is concerned, it can be underlined that after CCF the 

general structure of the cells was quite well preserved. However, after a detailed comparison of the 

two methods applied it was revealed that after CCF the cortical cells of the blades are locally 

plasmolysed, i.e. the external cell wall is detached from the plasmalemma. This is caused by the 

method applied here, since it is not observed after CF-FS.  

Another interesting finding is the observation of electron-dense material attached to the cell 

wall of the plasmolysed areas. Of course it is not sure that this is an artefact, but the absence of 

similar structures in the CF-FS material indicates that some material is not properly preserved, and 
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therefore the explanation of its presence is not correct. This dark material could be caused by the 

rupture of physodes during the process of chemical fixation. 

The membranous structures, like chloroplast membranes, nuclear membrane, endoplasmic 

reticulum and Golgi bodies (dictyosomes) are well-preserved after CCF. The external chloroplast 

membrane and the triplets of the thylakoids, as well as the double nuclear membrane and the 

nuclear pores are clearly distinguished. However, the plasma membrane and the membranes of the 

Golgi bodies appear slightly shrunken and not straight, as they are after CF-FS. The shape of the 

vacuoles appears also shrunken, i.e. their membrane is not round but rather wavy. In some vacuoles 

amorphous randomly placed darkly stained material is observed. Similar images have been 

considered as CCF artefacts by Kellenberger (1991), who suggested that chemical fixatives induce 

leakages, loss of cell turgor and cell shrinkage.  

The cisternae and vesicles of the dictyosomes after CCF appear empty, while after CF-FS the 

cisternae of the maturing face appear to be gradually filled with electron dense material. This is 

more obvious in dictyosomes close to the cell wall, suggesting the transport of material to the cell 

wall. 

There is a difference in the contrast between the two methods. After CF-FS the cell structure, 

and particularly the membranes appear more smooth compared to CCF. This was also noted by 

Hunziker et al. (1984), and Shioda et al. (1990, see also Quintana 1994) and was attributed to the 

cryofixation. Taking into account the good preservation of the cell structure after high pressure CF-

FS, we would suggest that some material is lost during CCF, causing the higher contrast. 

A completely new finding of the present study is the flat cisternae, which are visible only after 

CF-FS. These structures have been found - also after CF-FS - related to the formation of the 

cytokinetic diaphragm of Dictyota dichotoma, Sphacelaria rigidula and Halopteris congesta 

(Katsaros et al. 2009). It was suggested that, together with dictyosome vesicles and ER, they 

contribute to the formation of the cytokinetic diaphragm. A detailed study, using CF-FS combined 

with electron tomography, described the formation of plasmodesmata in D. dichotoma (Terauchi et 
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al. 2012). In this work, flat vesicles were present close to the forming pre-plasmodesmata, during 

cytokinesis. 

In the present study, the appearance of flat cisternae close to the young cell walls suggests 

their participation in the deposition of membranous material in the expanding plasmalemma. The 

same suggestion can be made for the flat cisternae close to the external cell wall. The observation of 

flat cisternae close to active dictyosomes localised in the cortical cytoplasm suggests an interaction 

or collaboration of the two structures, possibly in the synthesis and transport of material to the cell 

wall and the supply of membranous material to the plasmalemma. The increased number of flat 

cisternae close to the pit fields is remarkable and deserves further study. One hypothesis is that they 

participate in the maintenance of the cell wall of pit fields. It can also be speculated that the flat 

cisternae contribute also to the transportation of some material through the plasmodesmata.  Further 

research – especially applying element-specific tomography methods – will be needed to elucidate 

whether this has a function in the accumulation and transport of trace elements such as iodine. 

Therefore, the main conclusion and novelty of the present study is that cryofixation is the 

method of choice for studying Laminaria cytology by TEM. 
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Tables 

 

Table 1. Programme for freeze substitution using the Leica AFS 2. 

Step  Start 

temp 

End temp Time 

(hours:mins) 

Reagent 

1 -95 -90 30 2% OsO4 in acetone 

2 -90 -90 10:00* 2% OsO4 in acetone 

3 -90 -30 08:00 2% OsO4 in acetone 

4 -30 -10 01:00 Acetone 

5 -10 4 01:00 Acetone 

6 4 20 01:00 Acetone 

 

*this is the time for 1
st
 run.  In the 2

nd
 run this was extended to 64 hours. 
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Figure legends 

Fig. 1. Cross section of a blade, showing epidermal cells of Laminaria digitata after 

Conventional Chemical Fixation (CCF). N: nucleus; Ch: chloroplast; V: vacuole; CW: cell 

wall; M: mitochondria. Arrows indicate dark material attached to the plasmalemma of the 

external cell wall. Scale bar = 200 m. 

 

Figs. 2-5. Details of epidermal cells after Conventional Chemical Fixation. Fig. 2. 

Perinuclear dictyosomes (D) of an epidermal cell. Scale bar = 200 m.Fig. 3. Chloroplast of 

an epidermal cell. Arrow indicates the nucleoid (genophore). Scale bar = 200 m. Fig. 4. 

Chloroplast at higher magnification, showing tri-partite structure of the thylakoids. Scale bar 

= 500 nm. Fig. 5. Portion of an epidermal cell showing the external cell wall (CW). Arrows 

indicate darkly-stained material associated with the plasmalemma. Brackets indicate the 

layers of the cell wall. Scale bar = 200 m. 

 

Figs. 6-13. Epidermal cells after Cryofixation - Freeze substitution (CF-FS). Fig. 6. Note the 

difference from similar cells after CCF (Fig. 1). N: nucleus; Ch: chloroplast; V: vacuole; CW: 

cell wall. Scale bar = 5 m. Fig. 7. Active dictyosome (D) in a cytoplasmic area close to a 

pit-field (PF), after CF-FS.  Arrow indicates dictyosome cisternae filled with darkly-stained 

material. FC: flat cisternae. Scale bar = 1000 nm. Fig. 8. Cortical cytoplasm of an internal 

cell (2
nd

 cell layer), showing several flat cisternae (FC) arranged parallel to the cell wall. 

Scale bar = 500 nm. Fig. 9. Young cell wall separating internal cells, with flat cisternae (FC) 

arranged parallel to and on both sides of the wall. Scale bar = 1000 nm. Fig. 10. Cytoplasmic 
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area close to the external cell wall of an epidermal cell. A large number of flat cisternae 

(arrows) are positioned in doublets, parallel to the wall. Scale bar = 500 nm. Fig. 11. Oblique 

section of a cell wall, showing a pit-field (PF) between two internal cells. The flat cisternae 

located on one side have the usual form, while on the other they appear round due to the 

plane of sectioning. Scale bar = 0.2 m. Figs 12, 13. Invaginations of the plasmalemma 

associated with flat cisternae in internal cells. FC: flat cisterna; Pl: plasmalemma; CW: cell 

wall. Scale bars = 200 nm (Fig. 12) and 500 nm (Fig. 13).  
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