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SUMMARY

A key target for the improvement of Oryza sativa (rice) is the development of heat-tolerant varieties. This

necessitates the development of high-throughput methodologies for the screening of heat tolerance. Pro-

gress has been made to this end via visual scoring and chlorophyll fluorescence; however, these approaches

demand large infrastructural investments to expose large populations of adult plants to heat stress. To

address this bottleneck, we investigated the response of the maximum quantum efficiency of photo-

system II (PSII) to rapidly increasing temperatures in excised leaf segments of juvenile rice plants. Seg-

mented models explained the majority of the observed variation in response. Coefficients from these mod-

els, i.e. critical temperature (Tcrit) and the initial response (m1), were evaluated for their usability for

forecasting adult heat tolerance, measured as the vegetative heat tolerance of adult rice plants through

visual (stay-green) and chlorophyll fluorescence (ɸPSII) approaches. We detected substantial variation in

heat tolerance of a randomly selected set of indica rice varieties. Both Tcrit and m1 were associated with

measured heat tolerance in adult plants, highlighting their usability as high-throughput proxies. Variation in

heat tolerance was associated with daytime respiration but not with photosynthetic capacity, highlighting a

role for the non-photorespiratory release of CO2 in heat tolerance. To date, this represents the first pub-

lished instance of genetic variation in these key gas-exchange traits being quantified in response to heat

stress in a diverse set of rice accessions. These results outline an efficient strategy for screening heat toler-

ance and accentuate the need to focus on reduced rates of respiration to improve heat tolerance in rice.

Keywords: chlorophyll fluorescence, stay-green, photosynthesis, heat stress, Oryza sativa, high-throughput

phenotyping, technical advance.

INTRODUCTION

Global climatic change is a key contributor to the multi-

faceted challenge of achieving food security. The increase

in average Earth surface temperatures is a fundamental

aspect of climate change and is well understood to be par-

ticularly detrimental to agricultural productivity. In concur-

rence, independent model estimates have indicated that

with each incremental increase in surface temperature (per °C)
there are concurrent decreases in rice yields of up to 3.2%

(Zhao et al., 2017). Moreover, empirical evidence from

field-based temperature manipulation studies have demon-

strated that an increase in air temperature of approxi-

mately 3°C can significantly reduce carbon fixation and

grain yield (Chaturvedi et al., 2017). When this evidence is

taken in the context of the forecasted increases in average

surface temperatures of 0.2°C per decade (IPPC, 2007), it is

evident that the development of elite rice varieties that pro-

duce stable yields during heat stress events is a key prior-

ity for future crop improvement.

Heat stress upregulates the expression of intrachloro-

plastic proteases that perturb chloroplast structure and

function through protein degradation (Sinvany-Villalobo

et al., 2004). The degradation of Rubisco and other proteins

involved in carbon fixation with intensifying temperatures

reduces photosynthesis (Jagadish et al., 2015; Chen et al.,

2019). As photosynthesis is the ultimate basis of yield (Zhu
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et al., 2010), reductions herein are of critical importance for

crop production. Prolonged instances of temperatures

above optimal for typical plant functionality disrupt photo-

synthetic carbon fixation. This disruption of photosynthe-

sis commonly co-occurs with early-onset and accelerated

leaf senescence, which results from chlorophyll degrada-

tion caused by reactive oxygen species (ROS; Khanna-Cho-

pra, 2012; Jajic et al., 2015), as well as through vacuolar

collapse and the disruption of cellular homeostasis (Lim

et al., 2007; Cossani and Reynolds, 2012). These processes

are developmentally pre-programmed to initiate and con-

trol senescence during reproductive growth (Sekhon et al.,

2019). Delayed and/or reduced senescence is typically

referred to as ‘stay green’ (SG). SG is recognized as a key

physiological trait and physical marker for stress adapta-

tion, as it permits the maintenance of photosynthesis (Lim

et al., 2007). Furthermore, as SG can be evaluated rapidly

across a population, it has been phenotypically and geneti-

cally linked to yield in key crops, such as Triticum aestivum

(wheat; Kumar et al., 2010; Vijayalakshmi et al., 2010),

Sorghum bicolor (sorghum; Rama Reddy et al., 2014) and

Oryza sativa (rice; Yoo et al., 2007; Fu et al., 2011). Despite

this link, it is important to note that the developmental tim-

ing of reductions in foliar carbon fixation and concurrent

senescence can define yield consequences. For example,

senescence triggered or accelerated by heat stress during

grain filling is typically important for stabilizing yield, as it

facilitates the remobilization of carbon from vegetative

sources or stores to reproductive sinks (Uauy et al., 2006).

Selection on SG pre-anthesis, and sometimes during and

post-anthesis, can afford yield benefits under heat stress,

however, through the assimilation of extra photosynthates

that are directly translocated to reproductive processes or

are stored as water-soluble carbohydrates in the stem and

subsequently remobilized (Blum, 2009; Jagadish et al.,

2015).

Heat stress is also particularly damaging to the oxygen-

evolving complex of photosystem II (PSII), the initial site

of light-dependent photosynthetic reactions (Murata et al.,

2007). The repair mechanism of PSII is inhibited by heat-

induced ROS production, leading to increased photoinhi-

bition, which impairs photosynthesis (Allakhverdiev et al.,

2008). PSII efficiency can be quantified in vivo through

chlorophyll fluorescence techniques (Baker, 2008), where

the associated methodologies are relatively accessible

and can provide a general measure of the photosynthetic

response to stress (Murchie et al., 2018). The usefulness

of chlorophyll fluorescence for understanding crop heat

tolerance has been successfully employed in a series of

studies focusing on natural variation in wheat (Sharma

et al., 2012, 2015; Sharma et al., 2017). In these studies,

the response of the maximum quantum efficiency of PSII

(Fv/Fm) to heat stress was observed to correlate with traits

linked to heat tolerance, such as chlorophyll content and

biomass accumulation after heat stress (Sharma et al.,

2015). Subsequently, genetic loci underlying variation in

the response of Fv/Fm to heat stress were detected

through quantitative trait loci (QTLs) mapping, and were

observed to co-localize with known heat-tolerance genes

(Sharma et al., 2017).

Introducing and developing heat tolerance into modern

germplasm requires the ability to screen large populations

of natural genotypes, or mutants, for breeding or forward-

genetic screens (Driedonks et al., 2016). Visual assess-

ments of SG or measurements of chlorophyll fluorescence

are somewhat amenable to this end, as they are relatively

quick, do not require expensive equipment and provide a

good indication of the maintenance of carbon fixation and

heat tolerance that can be associated with yield. As physi-

cal markers of heat tolerance they can be limiting, how-

ever, in that they require substantial infrastructure

investment, such as facilities to induce heat stress or

access to multiple field sites to leverage naturally occurring

heat stress. Additionally, adequate space to grow plants to

adult and reproductive developmental stages can be sub-

stantially limiting. For example, Sharma et al. (2012)

required considerable glasshouse and climate chamber

space in order to quantify the heritable variation of the

heat response of Fv/Fm in a panel of over 1200 wheat vari-

eties at adult developmental stages. Consequently,

employing SG or chlorophyll fluorescence as physical

markers for selection can represent a phenotyping bottle-

neck for adapting crops to future environments.

With this study we sought to develop a novel and rapid

methodology for understanding the temperature response

of PSII photochemistry. Through broken-line analyses we

hypothesized that it would be possible to accurately char-

acterize this response and that this characterization could

be used to forecast the heat tolerance of foliar tissue,

through the relationship between the maintenance of pho-

tosynthesis under heat stress and SG. Consequently, we

tested the efficiency of the initial response of Fv/Fm to tem-

perature and the critical temperature of Fv/Fm in excised

juvenile tissue segments for predicting SG in adult plants.

Finally, we explored how this related to traditional metrics

of photosynthetic responses to heat stress, demonstrating

the first published example of the assessment of the

genetic variation of key photosynthetic traits in response

to heat stress in rice to date.

RESULTS

Genotypic variation in the response of excised juvenile

leaf segments to rapidly increasing temperatures

A small portion of leaf tissue was excised from the young-

est leaf of 10-day-old rice plants in order to measure Fv/Fm
at incrementally increasing temperatures (approx. 21–50°C)
within a closed chlorophyll fluorescence system
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(Figure 1a). This allowed for the detection of genotypic

variation in minimum chlorophyll fluorescence (Fo) and Fv/Fm
at multiple temperatures (Figures 1b and 2a,b). In general,

all seven genotypes demonstrated the same trend of an

exponential increase in Fo, where small increases were

induced by the initial lower temperatures and rapid

increases were induced by the higher temperatures (Fig-

ure 2a). The response of Fo to temperature was reflected

by Fv/Fm, where all genotypes demonstrated a response to

temperature similar to a logistic decay (Figure 2b). We

tested whether the process of removing the plant material

encased in glass plates into and out of a water bath before

measuring chlorophyll fluorescence impacted the values of

Fo and Fv/Fm, irrespective of temperature changes, but

noted no change in either parameter when performing the

regular experimental procedure without incremental tem-

perature changes (Figure S1).

At the initial temperatures there was little variation in

chlorophyll fluorescence between the genotypes (Fig-

ure 2a,b). As temperatures increased, significant genetic

variation was detected: for example, Fv/Fm at 35°C varied

from 0.62 for Black Gora (SE = 0.03) to 0.80 for BJI

(SE = 0.00). A repeated-measures one-way analysis of vari-

ance (ANOVA) demonstrated that there were significant

genotype and temperature effects on both Fo and Fv/Fm (Fig-

ure 2a,b). Additionally, a significant interaction between

genotype and temperature was detected (Figure 2a,b), sug-

gesting that genotype differences in fluorescence parame-

ters were dependent on temperature. This is evident when

comparing the Fo response to temperature of IR 64: for

example, IR 64 had the highest value of all genotypes at

30°C (149.14; SE = 11.42) but the lowest value at 48°C
(262.05; SE = 10.51). A similar effect is seen with the BJI

genotype and the Fv/Fm parameter, where BJI demonstrated

the highest value of all genotypes at 30°C (0.81; SE = 0.00)

but the second lowest value at 48°C (0.04; SE = 0.02).

We modelled the response of Fv/Fm to temperature of

each individually excised leaf segment through a linear

model and a quadratic model. The coefficient of determi-

nation (R2) of the linear models varied moderately within

genotypes, where within-genotype standard errors ranged

from 0.02 to 0.05, suggesting that linear models do not

describe the relationship between Fv/Fm and temperature

in a wholly consistent manner (Figure 3). Moreover, the

variation in the linear model R2 between genotypes was

significantly different (P < 0.01), where the mean ranged

from 0.57 to 0.81 (Figure 3), thereby indicating that linear

models are better at describing this relationship for certain

genotypes than others. Conversely, intragenotypic varia-

tion in the R2 values of quadratic models varied little,

where within-genotype standard errors were consistently

≤0.01 (Figure 3). Furthermore, the variation between geno-

types for R2 varied much less for quadratic than linear

models, where the lowest genotype mean value was 0.91

and the highest was 0.96. This still represented a signifi-

cant difference according to a one-way ANOVA, however

(P <0.01; Figure 3).

The fitted linear models were used to produce seg-

mented models through broken-line analyses (see ‘Experi-

mental procedures’). Segmented models out-performed

linear and quadratic models with respect to minimizing

intra- and intergenotypic variation (Figure 3). The within-

genotype standard errors of R2 were <0.00 for all geno-

types, and the genotype mean values varied from 0.97 to

0.99 (P = 0.06). Therefore, this suggests that segmented

models do not bias certain genotypes in their modelling of

the response of Fv/Fm to temperature to the same extent as

linear or quadratic models.

Fitting segmented models to the response of Fv/Fm to

temperature allowed us to characterize this relationship in

three ways. For all individual models only one breakpoint

in the relationship was ever detected. We term this so-

called breakpoint as the critical temperature of Fv/Fm (Tcrit),

as it defines the temperature point at which Fv/Fm transi-

tions from a slow to a rapid decline (Figure 2c). Genotype

mean values for Tcrit varied from 36.48°C (SE = 1.18°C) for

25°C 35°C

BRRI 28

Black Gora

(a) (b)

F
v /F

m

Figure 1. (a) Experimental set-up showing leaf segments encased between glass plates inside the fluorcam imaging platform under actinic light. After chloro-

phyll fluorescence measurements at each temperature, the glass plates are removed and submerged within plastic bags into a pre-set water bath for the period

of time required to reach subsequent temperatures. (b) Variation in maximum quantum efficiency of photosystem II (Fv/Fm) of the same three biological repeats

of two genotypes (BRR 28 and Black Gora) after incubation in the water bath at 25 and 35°C.
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Black Gora to 39.89°C (SE = 0.32°C) for BJI (Figure 4a). The

slopes of the linear regressions fitted before and after Tcrit

were extracted and designated as m1 and m2, respectively.

m1 and m2 define the strength of the relationship of Fv/Fm
and temperature before and after Tcrit. The genotype mean

values of m1 varied from 0.0008 (SE = 0.0001) for Aus

Kushi to 0.0125 (SE = 0.0016) for Black Gora (Figure 4b). A

linear model regressing Tcrit on m1 demonstrated a nega-

tive relationship between the two parameters (Figures 4d

and 5; Table S1), where the lines that respond more

strongly to initial temperature changes had the lowest Tcrit.

Genotype means for m2 varied from 0.051 (SE = 0.008) for

Black Gora to 0.088 (SE = 0.006) for BJI (Figure 4c). Tcrit

and m2 did not show a discernible association (Figure 5;

Table S1); however, m1 and m2 demonstrated a significant

negative association, suggesting that the lines that

respond most strongly to temperature before Tcrit respond

least strongly after Tcrit, and vice versa (Figure 5;

Table S1).

Genotypic variation in vegetative heat tolerance in adult plants

We subjected adult plants to an 8-day-long period of heat

stress (42°C day temperature) at 60 days post sowing. At

this point, the majority of plants were transitioning from

the tillering to the stem elongation growth stage (Lan-

cashire et al., 1991). This stage was chosen because of the

importance of the heat tolerance of foliar tissue and the

maintenance of photosynthesis just prior to reproductive

growth (Jagadish et al., 2015). During the heat-stress per-

iod, the operational efficiency of PSII in light (ɸPSII) was

assessed every day to determine the impact of heat stress

on the photosynthetic biochemistry of all genotypes (Fig-

ures 6 and S3). ɸPSII decreased across the duration of the

heat-stress period for all genotypes except BRRI 28. The

most substantial reductions were observed from 6 days

after heat-stress initiation (Figure S3). We calculated the

percentage reduction in ɸPSII from day 1 to day 8 of the

heat-stress experiment (Figure S3). BRRI 28 did not
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Figure 2. The response of key chlorophyll fluores-

cence parameters to incrementally increasing tem-

peratures. (a) The response of minimum

chlorophyll fluorescence (Fo) to increasing tempera-

tures in the seven genotypes. (b) The response of

the maximum quantum efficiency of photosystem II

(Fv/Fm) to increasing temperatures in the seven

genotypes. (a–b) Filled circles denote the mean of

each genotype and error bars denote the standard

error of the mean. The P values of all terms – geno-

type (G) and temperature (T) – from a one-way

repeated measures analysis of variance are inset.

(c) Example of the segmented analyses used to

assess the response of Fv/Fm to temperature. The

crosses represent individual data points of Fv/Fm at

all temperatures measured for a single biological

repeat of BRRI 28 (red) and Black Gora (green). The

solid lines represent the segmented models that

describe the response of Fv/Fm to temperature for

each biological repeat.
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respond to heat stress in terms of ɸPSII (Figures 6 and S3),

indeed ɸPSII actually increased marginally during this per-

iod for BRRI 28, yielding a negative percentage decrease

(Figure S3d). The remainder of the genotypes showed sig-

nificant reductions in ɸPSII, leading to a range in percent-

age declines from 8.06 for IR 64 to 34.59 for Black Gora

(Figure S3).

After 7 days fromheat-stress initiation,SGwasvisually scored

as the stay-green rating (SGR) on all plants. SGR describes the

extent of fully expanded foliar tissue that is senesced and varies

from1 (no senescence) to 5 (total leaf and stemdeath).Genotype

means of SGR varied from 1.50 (SE = 0.29) for BRRI 28 to 3.75

(SE = 0.25) for Black Gora. Four statistically significant different

genotypegroupswere established forSGR (Figure 7a).

Model type
Linear model (P-value <0.001)
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R
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Figure 3. Effectiveness of the broken-line analyses

for describing the relationship between the maxi-

mum efficiency of photosystem II (Fv/Fm) and tem-

perature. Box plots describe the variation in the

coefficient of determination (R2) of models – linear

(red), quadratic (green) and segmented (blue) – that

predict Fv/Fm from temperature for each genotype.

Each box plot denotes the interquartile range (IQR;

25th–75th percentile), with the 50th percentile

marked. The whiskers extend to maximum values

within 1.5 times the IQR, with values outside of this

range being indicated by black dots. The P values

from a one-way analysis of variance describing R2

as a function of genotype for each model are indi-

cated within parentheses in the inset legend.
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relationship between m1 and Tcrit. The blue crosses indicate individual data points and the linear regression for Tcrit as a function of m1 is denoted by the solid

red line. The associated P value and R2 value of the linear model are inset.
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Temperature driven plasticity of photo-physiological traits

We measured the response of net photosynthesis (An) to

incrementally increasing intracellular CO2 concentrations

(ci) for all genotypes 3 days before and 5 days after heat-

stress initiation. This allowed us to model the maximum

rate of carboxylation by Rubisco (Vcmax) and the maximum

rate of electron transport for RuBP regeneration (Jmax).

These parameters reflect the CO2-limited and electron

transport-limited rates of photosynthesis, respectively. We

also calculated the ratio Jmax:Vcmax to provide information

on electron usage per Rubisco carboxylation event. Addi-

tionally, An–ci response measurements were used to model
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Figure 5. (a) Variation in the visual scoring of the stay-green rating (SGR) of the seven genotypes. Individual dots represent means of each genotype and the

error bars extend to the maximum and minimum values. Statistically significant differences between genotypes are denoted by different colours and by differ-

ent letter groups above each genotype. (b) The relationship between Tcrit and SGR. The linear model regressing SGR on Tcrit is denoted by the solid red line.

The associated P value and R2 value of the linear model are inset. (c) The relationship between m1 and SGR. The linear model regressing SGR on m1 is denoted

by the solid red line. The associated P value and R2 value of the linear model are inset.
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Figure 6. The response of Black Gora and BRRI 28

to 7 days of heat stress. (a) Dot and line plot show-

ing the operating efficiency of photosystem II

photochemistry (ΦPSII) every day at midday during

the heat-stress period. Each filled circle denotes the

genotype mean and the error bars denote the stan-

dard error of the mean. (b) Two representative

plants of BRRI 28 following 5 days of heat stress.

(c) Two representative plants of Black Gora follow-

ing 5 days of heat stress.
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daytime respiration (Rd) as non-photorespiratory release of

CO2 (Figure 8a,b).

Significant variation was detected in Vcmax between pre-

and post-heat-stress initiation (Figures S4a and S5a). Heat

stress was also observed to have a significant impact on

Vcmax, reducing rates substantially in all genotypes except

Pachodi 427 (Figure 8c). Heat stress did not alter the rank

order of genotypes for Vcmax significantly, as no
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genotype 9 temperature (G 9 T) interaction was identified

(Figure 8c). Rates of Jmax also varied significantly between

genotypes before and after heat-stress initiation (Figures

S4b and S5b). The heat-stress period had a significant

impact on Jmax, with rates increasing substantially for the

majority of genotypes, except for IR 64 and BRRI 28 where

only minor increases were noted. Conversely, the Jmax of

DJ 123 showed the opposing response to heat stress and

decreased. A significant G 9 T interaction was observed

for Jmax. The Jmax:Vcmax ratio demonstrated very little vari-

ation before and after heat-stress initiation (Figures S4d

and S5d), but was upregulated significantly under heat

stress in all genotypes without demonstrating any G 9 T

interaction (Figure S6a).

When testing the variation for Rd before and after heat-

stress initiation separately, significant genotypic variation

was detected (Figures S4c and S5c). Combining this varia-

tion into a multiple test demonstrated marginally insignifi-

cant genetic variation with no G 9 T interaction, however,

but heat stress was observed to increase the rate of Rd sig-

nificantly in all genotypes (Figure 8e).

With respect to the non-modelled photo-physiological

parameters, only intrinsic water-use efficiency (iWUE)

demonstrated a significant response to heat stress

(Figure S6), and this was primarily associated with the

>50% reduction experienced by IR 64 (Figure S6e). In con-

currence, iWUE was the only parameter herein where a

significant G 9 T interaction was observed (Figure S6).

We calculated the plasticity of photo-physiological

traits using the phenotypic plasticity index (PPI) in order

to gauge the response of these traits to 5 days of heat

stress, where values close to 0 denote a lack of

response and values close to 1 denote a strong

response. The non-modelled metrics of photosynthetic

assimilation of CO2 demonstrated the lowest phenotypic

plasticity for all genotypes, where plasticity for A400 ran-

ged from 0.03 to 0.19 (Figure S7e) and plasticity for

Amax ranged from 0.02 to 0.23 (Figure S7f), suggesting a

relatively reduced response to temperature of instanta-

neous rates of photosynthesis. Conversely, when focus-

ing on particular photosynthetic processes, the modelled

rates of Vcmax and Jmax demonstrated much higher

degrees of phenotypic plasticity, ranging between 0.01

and 0.41 (Figure S7a) and between 0.04 and 0.37 (Fig-

ure S7b), respectively. The final trait modelled from An–
ci response measurements, Rd, demonstrated by far the

greatest plasticity to heat stress, where the phenotypic

plasticity index ranged from 0.64 to 1.00 (Figure S7c),

suggesting a substantial response in leaf-level respira-

tion to elevated temperature.

Vegetative heat tolerance can be predicted from novel

coefficients extracted from segmented models of the

Fv/Fm temperature response

To determine the efficiency of the coefficients extracted

from the segmented models, i.e. Tcrit and m1, for forecast-

ing heat tolerance, we compared the variation in these

parameters obtained from juvenile leaf tissue to variation

in heat tolerance parameters resulting from the heat-stress

experiment performed on adult plants. m1 demonstrated a

tight positive correlation with SGR (P = 0.02; R2 = 0.72; Fig-

ures 5 and 7c; Table S1), thereby suggesting that the geno-

types in which the leaf tissue responds less strongly, in

terms of Fv/Fm, to the initial incremental temperatures in

the chlorophyll fluorescence assay were the same as those

that demonstrated an enhanced maintenance of chloro-

phyll content and heat tolerance. Similarly, Tcrit demon-

strated a negative correlation with SGR (P = 0.08;

R2 = 0.50; Figures 5 and 7b; Table S1), highlighting that

the genotypes that demonstrated the highest temperature

breakpoint in the response of Fv/Fm to temperature were

the most heat tolerant.

We also gauged heat tolerance in adult plants as the per-

centage reduction in ɸPSII from the first to the last day of

the heat-stress period. The percentage reduction in ɸPSII
was positively associated with SGR (P = 0.08; R2 = 0.50;

Figure 5; Table S1), suggesting a good level of agreement

between the two metrics of heat tolerance. Moreover, the

percentage reduction in ɸPSII was negatively correlated

with Tcrit (P = 0.02; R2 = 0.72; Figure 5; Table S1), further

highlighting the efficiency of Tcrit for forecasting heat toler-

ance.
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Figure 8. Corrplot describing correlations between all measured traits. All

associations where the P value from a pairwise test of association is ≤0.1
are indicated by a coloured circle. The colour of the circle indicates the Pear-

son product–moment correlation coefficient (r). Traits measured before and

during the heat stress are designated as pre- or post-HS and the plasticity

of those traits is also included. Table S1 lists the P and r values for each

pairwise trait interaction.
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Daytime respiration (Rd) was the photo-physiological

trait that demonstrated the greatest plasticity to heat stress

(Figure S7c), indicating a role for respiration in heat toler-

ance. In concurrence, Rd after heat-stress initiation demon-

strated a positive association with SGR (P = 0.10; R2 = 0.45;

Figure 5; Table S1). Furthermore, Rd after heat-stress initia-

tion was positively associated with Tcrit (P = 0.01;

R2 = 0.76; Figure 5; Table S1) and negatively associated

with m1 (P = 0.07; R2 = 0.40; Figure 5; Table S1), suggest-

ing that the lines forecast to have elevated heat tolerance

had the most reduced rates of respiration during heat

stress. Variation in Rd before the initiation of heat stress

did not correlate with any of these aforementioned param-

eters, notwithstanding the lack of a G 9 T interaction, sug-

gesting that Rd under optimal conditions is not a suitable

indicator of future heat tolerance.

DISCUSSION

m1 and m2 as proxies of heat tolerance and heat

resistance, respectively

Assessing heat tolerance across many genotypes is con-

strained by issues related to space for growing plants and

facilities and equipment for experimentally increasing the

temperature, both in controlled (Wang et al., 2012) and

field environments (Thomey et al., 2019). Here we detail a

rapid methodology for assaying heat tolerance that does

not require substantial space to grow plants and that is

correlated with independent estimates of heat tolerance in

genetically diverse adult rice plants. The novel coefficients

m1 and Tcrit represent high-throughput proxies for heat tol-

erance that can be used as specific targets for developing

climate-resilient rice.

Photo-physiological screening of excised leaf material

through chlorophyll fluorescence has recently been

demonstrated to be equivalent to screening intact material

(McAusland et al., 2019), even over extended time periods

(>3 h) similar to those employed in the present study. In

addition, the lack of response in Fo and Fv/Fm to the experi-

mental procedure performed without temperature changes

(Figure S1a,b) suggests that the demonstrated responses

observed for these parameters primarily result from the

rapid incremental temperature changes (Figure 2a,b). In

general, very few plant species exhibit deleterious effects

on photosynthesis at temperatures below 30°C (Zhang and

Sharkey, 2009), indeed the optimum temperature for rice

cultivation can be as high as 35°C (Ghadirnezhad and Fal-

lah, 2014). Indeed, the majority of the accessions studied

here did not demonstrate substantial changes in Fv/Fm
below 30°C (Figure 2b). Interestingly, IR 64 did show a rea-

sonable response in this range, explainable in part by it

being a mega indica variety developed in the Philippines,

where quarterly average temperatures have never

exceeded 27°C (Stuecker et al., 2018). Conversely, the

remaining accessions in this study are aus indica varieties

from the Indian subcontinent that are typically cultivated

during much warmer summer periods (Travis et al., 2015).

Furthermore, IR 64 has been demonstrated to be fairly

susceptible to moderate temperature increases (Kilasi

et al., 2018). The heat tolerance of the aus varieties

employed in this study have never previously been empiri-

cally tested.

The slow reduction in Fv/Fm up to Tcrit can be used to

assess the reduction in photosynthesis that can be consid-

ered manageable for maintaining growth and reversible

upon the return of optimal temperatures (Crafts-Brandner

and Salvucci, 2000; Sage and Kubien, 2007; Zhang and

Sharkey, 2009). At these temperatures, reductions in

photosynthesis result from reduced carbon metabolism

and reduced electron transport. The reduction in carbon

metabolism is primarily caused by decreased Rubisco acti-

vation (Perdomo et al., 2017). The reduction in photosyn-

thesis quantified by our rapid assay is caused by perturbed

electron transport, however, in line with long-standing

work that recognizes PSII as a heat-labile component of

photosynthesis (Berry and Bjorkman, 1980; Williams et al.,

1985). More specifically, the initial reduction in Fv/Fm as a

result of moderate temperatures (Figure 2b) can reflect an

increase in the leakiness of thylakoid membranes (Havaux,

1996), which in turn accelerates photophosphorylation

(Bukhov et al., 1998), denoted here by the concurrent rise

in Fo (Figure 2a) indicating a reduction in the plasto-

quinone pool. As PSII complexes are embedded in the lipid

bilayers of thylakoid membranes, their functional efficiency

is affected by the condition of the membranes. Under

these moderate initial temperatures, however, thylakoid

membranes can easily unfold and allow PSII repair

machinery to access damaged protein complexes (Theis

and Schroda, 2016; Yoshioka-Nishimura, 2016). For this

reason, it is appropriate to consider m1 as a metric of the

adaptive photosynthetic response to temperature, as it rep-

resents the slope of the initial Fv/Fm response (Figure 2c).

Genotypes with reduced m1 can therefore be considered

heat tolerant, as they are able to maintain close-to-optimal

photosynthesis under heat stress.

As temperatures increase beyond the adaptive range,

tolerating heat and maintaining close-to-optimal photosyn-

thesis is no longer viable, and the response of Fv/Fm to

temperature reflects the innate susceptibility of photosyn-

thetic biochemistry to elevated temperatures. The Tcrit

parameter reflects this transition in response (Figure 2c).

The response of Fv/Fm to temperatures beyond Tcrit

represents a sequence of well-characterized steps in heat-

induced disassembly and denaturation of chlorophyll-

containing protein complexes (L�ıpov�a et al., 2010). For PSII

complexes, this initially involves the release of the man-

ganese-stabilizing protein perturbing the oxygen evolution

reaction (Thompson et al., 1989; Yu et al., 2006), and
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culminates in the formation of a complex that is non-fluo-

rescent and cannot return to an active state (Satoh et al.,

1998). As m2 represents the rapid response of Fv/Fm to tem-

perature that occurs after moderate heat stress (Zhang and

Sharkey, 2009), it can be considered a measure of the rate

of deconstruction of PSII (Thompson et al., 1989). To this

end, lines that demonstrate reduced rates of m2 can be

considered heat resistant, which in this case is distinct

from heat tolerance as benchmarked by m1, in that it

gauges the capacity to restrain permanent damage as

opposed to maintaining typical plant function.

We observed an expected negative correlation between

m1 and Tcrit (Figures 4d and 5; Table S1), which highlights

how lines that are not able to tolerate moderate heat stress

efficiently transition to the m2 phase more rapidly. Con-

versely, m2 was not correlated with Tcrit (Figure 5;

Table S1), which demonstrates that the temperature point

at which leaf segments enter the rapid-response phase

does not influence this secondary rate. Interestingly, we

also observed a highly significant negative correlation

between the two response phases (Figure 5; Table S1).

This suggests that the lines with improved heat tolerance

have reduced heat resistance. That is to say, the lines that

are better equipped to maintain photosynthetic biochem-

istry under moderate heat stress are the same lines in

which PSII protein complexes are disassembled more

quickly following the transition to the rapid-response

phase, i.e. m2 and vice versa. As m2 is not a function of

Tcrit (Figure 5; Table S1), the uncoupling of m1 and m2 is

potentially related to the three-dimensional structure of

thylakoid membranes within chloroplasts. Photoinhibition

stimulated through increasing temperatures (Murata et al.,

2007) can be addressed by the PSII repair machinery. As

noted previously, this repair system requires alterations to

the thylakoid membrane, and consequently the PSII repair

cycle and thylakoid membrane dynamics share a close

relationship (Yoshioka-Nishimura, 2016). To this end, it is

conceivable that membranal characteristics, e.g. curvature,

thickness, stromal gaps, etc., that determine the ease of

access to reversibly damaged PSII complexes under mod-

erate heat stress, thus determining m1, may also accelerate

non-reversible protein complex damage after Tcrit, thereby

also defining m2. This represents an interesting avenue for

future research and crop improvement, as many of the

genes that control these membranal characteristics have

been elucidated (Fristedt et al., 2009; Samole et al., 2012;

Armbruster et al., 2013). Future work to this end could, for

example, perform incremental temperature-response

assays of thylakoid structure between wild-type lines and

lines transformed to differentially express key genes

involved in thylakoid membranal characteristics. Similarly,

a key signal of moderate heat stress is the de-phosphoryla-

tion of important PSII component proteins (Sharkey 2005),

and consequently it would also be highly interesting to

determine how incremental temperature increases impact

this de-phosphorylation, and whether this stimulates cyclic

electron flow around PSI more in transgenic lines with

altered thylakoid membrane structures than in wild-type

lines.

It is important to note that previous work has adopted

similar strategies to assess the temperature response of Fo
and/or Fv/Fm (Schreiber and Berry, 1977; Laz�ar and Il�ık,

1997; Xu et al., 2014; Ribeiro et al., 2015; Marias et al.,

2017); however, these studies were constrained by equip-

ment issues, meaning at best only three species (Schreiber

and Berry, 1977), genotypes (Xu et al., 2014) or develop-

mental stages (Marias et al., 2017) were able to be com-

pared in terms of their photosynthetic response to

incrementally increasing temperatures. A fundamental aim

of this present study was to determine the efficacy of the

coefficients extracted from the segmented models for fore-

casting heat tolerance. As a result of the commonly

encountered space constraints for performing heat experi-

ments on adult plants, we limited the number of genotypes

in this study to seven. Despite this, the experimental proce-

dure to assay the response of chlorophyll fluorescence to

incrementally increasing temperatures could easily be

employed to screen >200 leaf segments at a time (McAus-

land et al., 2019), thereby opening up the possibility of sur-

veying large populations or many species. A further

advance in this present study compared with the afore-

mentioned studies is with respect to the determination of

Tcrit or its equivalent. In all cited studies, Tcrit is calculated

manually by the authors selecting the points that they best

believe represent the slow and fast portions of the temper-

ature-dependent response, fitting linear models to those

points and determining where those models transect

(Schreiber and Berry, 1977; Laz�ar and Il�ık, 1997; Xu et al.,

2014; Ribeiro et al., 2015; Marias et al., 2017). Through this

approach, these studies introduce substantial human bias

in their calculation of Tcrit. This bias is alleviated in our

study through the broken-line analysis that computation-

ally determines Tcrit (Figure 2c). Furthermore, these cited

studies do not attempt to characterize the linear portion of

the models for any purpose, nor define their relevance.

m1 and Tcrit effectively forecast vegetative heat tolerance

in adult rice plants

To determine the usefulness of the coefficients extracted

from the segmented models for forecasting heat tolerance

in adult plants, we subjected 60-day-old rice plants to a

heat-stress period of 7 days (Figures 6, S2 and S3). At this

point, all accessions were transitioning from the tillering to

the stem elongation growth phase. This developmental

timing was selected because of the importance of the SG

phenotype at this stage for assessing abiotic stress toler-

ance, as it relates to the maintenance of photosynthesis

and thus contributes to floral development and eventual
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seed set and seed filling (Cossani and Reynolds, 2012;

Jagadish et al., 2015; Pinto et al., 2016). SG is best defined

as ‘heritable delayed foliar senescence’ (Thomas and Stod-

dart, 1975). It has been demonstrated to be a highly effec-

tive physical marker for chlorophyll content and has been

used as a selection tool for crop breeding (Xu et al., 2000;

Cossani and Reynolds, 2012; Thomas and Ougham, 2014;

Pinto et al., 2016). We detected substantial variation in

SGR 7 days after heat-stress initiation (Figure 7a). Our

visual assessment of SGR follows on from those well-

established and cited studies in providing low-variance

estimates of senescence; however, we recommend that

future work to characterize plant- or leaf-level senescence

could be improved in throughput and objectivity through

the development and adoption of software facilitating

machine-based image assessments of SG. Multiple types

of SG have been characterized in cereals and these can

essentially be divided into two forms: cosmetic and func-

tional. Cosmetic SG refers to the capacity to delay senes-

cence without maintaining photosynthesis, in contrast to

the functional form (Thomas and Howarth, 2000; Thomas

and Ougham, 2014). The strong correlation between the

percentage decline in ɸPSII and SGR demonstrates that the

SG variation assessed in this study was of the functional

form (Figure 5; Table S1). That is to say, the visual assess-

ment of SG screened for the capacity to stabilize photosyn-

thesis. This corroborates previous work in wheat that

demonstrated strong links between SG, biomass accumu-

lation and PSII efficiency (Sharma et al., 2012, 2015;

Sharma et al., 2017).

Variation in SGR was associated with both Tcrit (Fig-

ures 5, 7b, Table S1) and m1 (Figures 5, 7c, Table S1),

thereby demonstrating the effectiveness of these parame-

ters determined from juvenile leaf segments for forecast-

ing vegetative heat tolerance in adult plants. The negative

association between Tcrit and SGR (Figures 5 and 7b;

Table S1) demonstrates that the lines that enter the rapid

temperature response phase at higher temperatures also

have improved vegetative heat tolerance as adult plants.

As previously discussed, we interpret m1 to be the most

applicable predictor of heat tolerance, as it directly relates

to the ability to maintain close-to-optimal photosynthetic

biochemistry before heat resistance to restrain PSII disas-

sembly becomes necessary as the heat stress intensifies.

This is reflected by the variation in SGR being more

explainable by variation in m1 (R2 = 0.72) than by variation

in Tcrit (R2 = 0.50). Furthermore, we did not observe any

association between m2 and SGR or the percentage reduc-

tion in ɸPSII; this is probably because these gold-standard

assessments performed on adult plants during heat stress

quantify heat tolerance and not heat resistance. It is impor-

tant to note that this study was limited to just seven acces-

sions for determining the efficiency of m1 as a proxy for

heat tolerance. Despite this, we still demonstrated a very

strong correlation between m1 and SGR, and we propose

that this minor limitation could be addressed in future

studies that employ this methodology for screening

diverse germplasm, such as mapping or mutagenized pop-

ulations, through the selection of a set of accessions that

fall along a wide range of m1 values, and testing them for

measured vegetative heat tolerance (SGR) for confirmation

purposes. The assessment of such populations in this

manner offers a clear strategy for future crop development

via forward genetics and would also unequivocally confirm

the efficiency of this methodology as a high-throughput

phenotyping platform.

Respiration is more responsive to heat stress than

photosynthetic capacity, and is linked to forecasted and

measured heat tolerance

We measured the response of An to incrementally increas-

ing ci before and after heat-stress initiation in order to test

the response of photosynthetic capacity to temperature

(Figure 8a,b). From the An–ci response measurements, we

modelled Vcmax and Jmax to gauge the efficiency of car-

boxylation by Rubisco and the rate of electron transport,

respectively. These parameters are frequently assessed to

determine the photo-physiological response to heat stress

(Perdomo et al., 2016; Haworth et al., 2018; Thomey et al.,

2019; Chen et al., 2019); however, we believe that this is

the first instance of genetic variation in these parameters

being tested under heat stress in rice in a substantial and

genetically diverse set of lines. All accessions demon-

strated a downregulation in Vcmax (Figure 8a), which is

likely to be linked to Rubisco activase thermosensitivity

(Feller et al., 1998; Makino and Sage, 2007), as well the

degradation of other Calvin-cycle enzymes (Sharkey, 2005)

and general metabolic reprogramming in the chloroplasts

(Wang et al., 2018). Despite this, the observed reduction in

the rate of consumption of RuBP by Rubisco did not

appear to limit An (Figure S6b,c). This is in agreement with

previous work that has demonstrated that when operating

away from the thermal optimum, the capacity of Rubisco

is not a rate-limiting factor for light-saturated CO2 assimila-

tion (Sharkey, 1985; Kubien and Sage, 2008). Curiously, in

all but one of the seven accessions we observed a signifi-

cant upregulation in Jmax after heat-stress initiation, sug-

gesting a substantial alteration to the energy sink balance.

Under optimal conditions, the vast majority of energy is

supplied to photosynthetic carbon reduction (Dani et al.,

2014); however, heat and other abiotic stressors can sub-

stantially alter this balance as the electron demand from

non-photosynthetic processes, primarily elevated photo-

respiration (Noctor et al., 2002) and isoprenoid emissions

(Dani et al., 2014), increases. To this end we calculated the

ratio of Jmax to Vcmax to determine the balance of electron

transport to carboxylation events, and noted an increase in

this ratio (Figure S6a) in response to heat stress, thereby
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confirming an increase in non-photosynthetic electron

demand and highlighting an adjustment in leaf nitrogen

investments in response to temperature (Benomar et al.,

2019).

Reflecting the increased non-photosynthetic energy

demand, we also observed a hugely significant upregula-

tion in Rd, modelled as non-photorespiratory release of CO2

from An–ci response curves, in response to heat stress.

Indeed, of all the photo-physiological traits measured pre-

and post-heat stress initiation, Rd demonstrated by far the

greatest degree of phenotypic plasticity in all accessions

(Figure S7). It is worth noting, however, that the An–ci
response measurements of heat-stressed plants were per-

formed 5 days after heat-stress initiation, which is before

substantial reductions in ɸPSII were observed (Figures 6

and S3). Consequently, this demonstrates that at the leaf

level, respiration appears to respond earlier to heat stress

than photosynthetic processes. We propose that future

work should seek to better understand how and why respi-

ration responds earlier to heat stress in rice than photosyn-

thesis does. This will allow for the determination of direct

photo-physiological targets for mitigating heat stress per-

turbations. For example, diurnal measurements of dark res-

piration would elucidate the extent to which both night-

time and daytime respiration contribute to senescence and

yield reductions. Additionally, more specific estimates of

respiration, via gas-exchange measurements under low O2

or via direct measurements of leaf level O2 exchange, would

allow for a higher resolution overview of natural variation

in heat stress-induced respiration within diverse germ-

plasm. For this reason, respiration may represent a more

efficacious physical marker than photosynthesis for the

early detection of heat-stress sensitivity. The upregulation

of Rd here reflects our understanding of the temperature

sensitivity of respiration (Kruse et al., 2011; Gauthier et al.,

2014), which is a major limiting factor for ecosystem and

agricultural productivity because it increases the percent-

age of fixed CO2 that is re-released into the atmosphere,

thereby reducing the portion of total photosynthates avail-

able for growth and productivity (Huntingford et al., 2013).

Indeed, leaf-level and whole-plant respiration have been

attributed to substantial yield losses in rice (Mohammed

and Tarpley, 2009) and other species (Nadeem et al., 2018;

Posch et al., 2019). Reflecting the detrimental impact of

heat-induced respiration on plant growth and productivity,

we observed a positive association between Rd measured

during heat stress and SGR, implying that the lines that

demonstrated greater visual symptoms of senescence were

respiring more. Furthermore, this association reflects the

fact that senescence is a hugely energy-intensive process

that requires substantial biochemical and metabolic repro-

gramming (O’Leary et al., 2017). Interestingly, the m1 and

Tcrit parameters were also significantly associated in the

expected direction with Rd during heat stress, but not prior

to heat stress, further highlighting the efficiency of these

parameters for forecasting overall heat tolerance. Con-

versely, the variation in photosynthetic capacity assessed

as Vcmax and Jmax during heat stress was not associated

with the percentage decline in ɸPSII or SGR.

Conclusion

In summary, this article details the development of a high-

throughput phenotyping methodology for assessing the

response of Fv/Fm to temperature and demonstrates the

use of a novel modelling approach to characterize this

response in terms of heat tolerance and heat resistance.

Moreover, we have demonstrated that the coefficients

extracted from these segmented models that pertain to

heat tolerance represent accurate proxies of measured heat

tolerance in adult plants. Additionally, our forecasting and

assessment of adult heat tolerance was closely linked to

daytime respiration, but not photosynthetic capacity,

thereby highlighting the importance of non-photorespira-

tory CO2 release as a target for developing heat tolerance

in rice. A natural progression for this work is to employ

this platform for forward genetics by screening popula-

tions of natural or induced genetic variants with the ulti-

mate aim of elucidating genetic loci linked to heat

tolerance. Similarly, this platform represents a strategy for

varietal selection in a plant breeding context.

EXPERIMENTAL PROCEDURES

Plant material and growing conditions

A random selection of six genotypes from the Bengal and Assam
Aus Panel (BAAP; Norton et al., 2018) and the reference rice
genotype IR 64 were selected for this study (Table 1). We had no
prior information regarding the response of any of these geno-
types to heat stress. Six biological repeats of each genotype were
sown directly into a specialized rice compost (50:50; John Innes
3:Levington M3, The Scotts Company, Ipswich, UK). Prior to sow-
ing, all seeds were heat treated to prevent fungal infection by
submerging them in water within a 2.0-ml screwcap tube and
heating them to 50°C for 40 min. Plants were initially sown just
beneath the soil surface in 5-cm 9 5-cm cell trays before being
transplanted into 2-L pots filled with the same soil type 2 weeks
after germination.

All plants were grown in the same GEN1000 reach-in growth
chamber (Conviron, https://www.conviron.com) at the University
of Nottingham in 2019. The growth chamber was set to a 12-h
photoperiod (06:00–18:00 h) with the following conditions: 32°C
day temperature, 27°C night temperature, 65% day relative humid-
ity (RH) and 60% night RH. The light level was set to maximum,
where the average light level above the plants increased from 600
to 1000 µmol m�2 photosynthetic photon flux density (PPFD) as
the plants grew. On day 60 post sowing, when all plants were in
the stem elongation growth stage, the day temperature of the
growth chamber was increased to 42°C and the night temperature
was increased to 37°C.

At 7 days after heat-stress initiation, the SG of five biological
repeats of each genotype was scored via a visual rating system.
Scoring used a scale from 1 to 5 based on the proportion of leaf
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area of normal sized leaves that had prematurely senesced or
died. An SGR of 1 indicated no senescence, an SGR of 3 indicated
approximately 50% leaf death and an SGR of 5 indicated complete
leaf and stem death. This visual assessment of SG has been suc-
cessfully employed for rice and has been shown to be highly cor-
related with chlorophyll content (Xu et al., 2000; Jiang et al., 2004;
Hoang and Kobata, 2009).

Chlorophyll fluorescence

At 10 days post germination, a leaf segment approximately
8 mm 9 20 mm was excised from the youngest leaf of five bio-
logical repeats of each genotype. Each leaf segment was placed
on top of damp filter paper in a random order defined using a ran-
dom list generator. The filter paper and leaf segments were then
encased between glass plates (approx. 1 cm thick) on either side.
Glass plates containing leaf segments (adaxial side up) were then
arranged inside a closed 800C FluorCam chlorophyll fluorescence
imager (Photon System Instruments, https://psi.cz). Leaf segments
were dark adapted for 1 h before measurements. After dark adap-
tation, the standard Fv/Fm protocol of the associated FLUORCAM 7
software (Photon System Instruments) was run (McAusland et al.,
2019). Here, a measuring light pulse (PPFD 0.09 µmol m�2) pro-
vides a measure of minimal chlorophyll fluorescence (Fo) and a
follow-up saturating light pulse (PPFD 5500 µmol m�2) provides a
measure of maximum chlorophyll fluorescence (Fm). Variable fluo-
rescence (Fv) is calculated as Fm – Fo and the maximum quantum
efficiency of PSII is calculated as Fv/Fm. All fluorescence parame-
ters measured in this way were averaged across the entire leaf
segment.

The initial measurements of Fv/Fm were performed at room tem-
perature (approx. 21°C). Following this, the glass plates were
removed from the closed chlorophyll fluorescence imager and the
room was kept dark to maintain the dark-adapted states of the leaf
segments. The glass plates were then placed inside sealed plastic
bags. The sealed plastic bags were then placed into a water bath
set to 25°C for 15 min. The plates were then removed from the
water bath and plastic bags and re-positioned within the closed
chlorophyll fluorescence imager. Fv/Fm was then measured again
using the protocol described above. This process was then
repeated at the following temperatures: 27.5, 30, 32, 34, 35, 37, 38,
39, 40, 42, 44, 46, 48 and 50°C. The only adjustment being the
water bath incubation time, which was temperature dependent
and selected based on the time taken for the leaf segments to
reach the target temperature. The period of time needed to reach
target temperature was defined by placing a thin-wire thermocou-
ple next to leaf segments during protocol development. Sampling
of leaf material occurred between 07:30 and 08:00 h. Dark

adaptation of leaf material occurred between 08:15 and 09:15 h
and the chlorophyll fluorescence measurements at the incremen-
tal temperatures occurred between 09:20 and 13:20 h.

To test whether the above protocol without any temperature
changes initiated chlorophyll fluorescence responses, we per-
formed the protocol exactly as above but without altering the
water bath temperature until the final three steps, where it was
changed to 30, 40 and 45°C. This testing was performed using five
biological repeats of the IR 64 rice genotype.

To characterize the response of Fv/Fm to the incrementally
increasing temperatures we employed segmented (or broken-line)
relationships using the ‘segmented()’ function from the R package
SEGMENTED (Muggeo, 2017). Initially, and for each individual leaf
segment, a linear model is built where Fv/Fm is expressed as a
function of temperature using the base ‘lm()’ function in R. The
‘segmented()’ function then estimates a new model based on the
initial linear model. The new model is characterized by a seg-
mented relationship through the introduction of breakpoint(s)
based on changes in the relationship of Fv/Fm and temperature.
Individual linear models are then fitted before and after any break-
point(s). It is possible to define the approximate location and
number of breakpoints; however, we opted against this to avoid
introducing any human bias. Despite this, only one breakpoint
was ever detected in all of the segmented models constructed.
Three coefficients were extracted from each segmented model
(Figure 2c): (i) the breakpoint or critical temperature of Fv/Fm (Tcrit);
(ii) the slope of the initial response of Fv/Fm to temperature before
Tcrit (m1); and (iii) the slope of the secondary response of Fv/Fm to
temperature after Tcrit (m2). The R code to generate segmented
models across multiple independent Fv/Fm temperature responses
is available at: github.com/johnferguson1989/tpj_paper_Fergu
son2020.

Chlorophyll fluorescence measurements made during the adult
heat-stress experiment were performed using a FluorPen portable
fluorometer (Photon System Instruments). The ‘QY’ protocol was
used to initially achieve a measure of steady-state fluorescence in
light (F0) via a measuring light pulse (PPFD 0.09 µmol m�2). Sub-
sequently, a measure of maximal fluorescence in light (Fm

0) was
achieved through a saturating light pulse (3000 µmol m�2). The
operating efficiency of PSII photochemistry (ɸPSII) was then calcu-
lated as: Fm

0 – F0/Fm0. This protocol was performed on five biologi-
cal repeats of each genotype every day during the heat-stress
period. For each biological repeat (n = 5 per genotype), four tech-
nical repeat measurements of ɸPSII were performed on the young-
est fully expanded leaf of the main tiller and then averaged. These
measurements were performed between 12:00 and 13:00 h each
day. We determined the percentage decrease in ɸPSII of all plants
measured based on the ɸPSII values on day 0 and day 7 of the
heat stress. These percentage decrease values were then averaged
for each genotype.

Leaf gas exchange

Infra-red leaf level gas exchange was performed using three LI-
6800 gas exchange systems (LI-COR, https://www.licor.com). To
minimize time and instrument effects, the order of measurements
and the system used for each plant was determined by a random
list generator.

Initial gas-exchange chamber conditions were set as follows:
32°C heat-exchange temperature; 65% RH; 400 µmol mol�1 refer-
ence CO2 concentration; and 1000 µmol m�2sec�1 PPFD. For the
gas-exchange measurements performed 5 days after heat-stress
initiation, the heat-exchange temperature was set to 42°C. The
middle portion of the youngest fully expanded leaf of the main

Table 1 List of genotypes used in this study. For each genotype,
where applicable, ID codes corresponding to the Bengal and
Assam Aus Panel (BAAP; Norton et al., 2018), the International
Rice Germplasm (IRGC) and Genetic Stocks Oryza (GSOR) collec-
tions are provided, along with the country of origin

Genotype BAAP ID IRGC ID GSOR ID Country of origin

BRRI 28 256 – – Bangladesh
Aus Kushi 111 66688 – Bangladesh
BJI 200 – 301006 India
DJ 123 213 – 310307 Bangladesh
Pachodi 427 274 – 311589 India
Black Gora 201 – 301017 India
IR 64 285 117268 – Philippines

© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2020), 104, 839–855

PSII temperature response forecasts rice heat tolerance 851

https://psi.cz
http://github.com/johnferguson1989/tpj_paper_Ferguson2020
http://github.com/johnferguson1989/tpj_paper_Ferguson2020
https://www.licor.com


tiller of each measured plant was selected for gas exchange. Once
clamped on, the leaves were allowed to equilibrate to the cham-
ber conditions, which typically took between 30 and 40 min. Upon
stability, rates of photosynthesis (A400) and stomatal conductance
to water (gs) were logged, from which the intrinsic water-use effi-
ciency (iWUE) was calculated as A400/gs. Subsequently, an An–ci
response curve was initiated, where the reference CO2 concentra-
tion was altered incrementally to the following steps: 300, 200,
100, 50, 400, 600, 800, 1000, 1200, 1400 and 1600 µmol mol�1. At
each incremental step, rates of gas exchange were allowed to sta-
bilize for a minimum of 90 sec and a maximum of 120 sec accord-
ing to standard error stability criteria based on gs and An. An at
the final An–ci step was logged as Amax. These measurements
were performed between 08:00 and 15:00 h 3 days before heat-
stress initiation and 5 days after heat-stress initiation. Between
four and six biological repeats of each genotype were measured.

The photosynthesis model of Farquhar et al. (1980) was fitted to
all An–ci response curves using the bilinear method of the ‘fitacis
()’ function from the R package PLANTECOPHYS (Duursma, 2015). This
fitting method provides estimates of Rubisco carboxylation capac-
ity (Vcmax), potential electron transport rate (Jmax) and daytime res-
piration (Rd, also referred to as the non-photorespiratory CO2

release rate). We also calculated the ratio Jmax:Vcmax. The ‘photo-
syn()’ function from PLANTECOPHYS was used to obtain photosynthe-
sis model estimates of An from 50 to 1000 ci for visualization
purposes.

The phenotypic plasticity of photosynthesis-related traits to heat
stress was calculated according to the PPI (Valladares et al., 2006).
Here, the mean values for each photosynthetic trait of each geno-
type 3 days before and 5 days after heat-stress initiation was used
to calculate plasticity as: (maximum mean – minimum mean)/
maximum mean.

A glossary of all chlorophyll fluorescence and leaf gas-exchange
parameters measured and modelled in this study can be found in
Table 2.

Statistical analyses

All data processing, analyses and figure generation were per-
formed within the R software environment (R Core Team, 2014).
Additional post-processing of figures was performed in AFFINITY

DESIGNER (Serif, https://www.serif.com).

A repeated-measures two-way analysis of variance (ANOVA)
was performed to determine the effect of genotype and tempera-
ture, and their interaction, on Fo and Fv/Fm. This was achieved
using the ‘anova_test()’ function from the RSTATIX package.

To determine the effectiveness of the segmented model
approach for characterizing the response of Fv/Fm to temperature,
we additionally characterized this response through linear and
quadratic models. For each individual biological repeat, the coeffi-
cient of determination (R2) of the segmented, linear and quadratic
models was extracted. All models were fitted using the base ‘lm()’
function in R. One-way ANOVA comparison of means testing was
used to determine whether there were significant genotype effects
on the R2 value for all three model types using the base ‘aov()’
function in R.

For all measured traits, except ɸPSII (on all days measured), a
single one-way ANOVA was performed to determine whether
there were significant genotype effects for traits of interest. Sub-
sequently, post-hoc Tukey tests were performed to facilitate mul-
tiple comparisons between genotypes. Post-hoc Tukey tests were
performed using the ‘HSD.Test()’ function from the R package
AGRICOLAE (Mendiburu et al., 2015), with the alpha significance
threshold being set to 0.10. For the traits measured through
infra-red gas analysis, a three-way ANOVA was initially per-
formed to determine whether the LI-6800 instrument used and
the hour the measurement was performed, as well as genotype,
had a significant effect on the trait of interest. Neither instrument
nor hour of measurement were observed to have a noticeable
effect on any measured trait (P > 0.05). In addition, and to test
for genotype 9 treatment (G 9 T) interactions for the photo-
physiological traits measured before and after heat-stress initia-
tion, a two-way ANOVA with an interaction term was performed
for all traits.

To test for associations between putative dependent and
explanatory variables, e.g. SGR and Tcrit (Figure 7a), or ɸPSII and
days following heat-stress initiation (Figures 6a and S3), linear
models were fitted. To more generally determine the existence of
trait associations, tests for associations between paired samples
using the Pearson’s product–moment correlation coefficient were
performed for all pairwise trait interactions using the ‘rcorr()’ func-
tion from the R package HMISC, which was subsequently visualized
using the ‘corrplot()’ function from the R package CORRPLOT

(McKenna et al., 2016).

Table 2 Glossary of physiological parameters measured in this study

Trait Units Description

Fv/Fm Dimensionless ratio Maximum quantum efficiency of photosystem II (PSII)
Fo Arbitrary Minimum chlorophyll fluorescence
Tcrit °C Critical temperature point for Fv/Fm, as determined by the segmented analyses
m1 Slope of regression (m) Slope of linear response of Fv/Fm to temperature before Tcrit

m2 Slope of regression (m) Slope of linear response of Fv/Fm to temperature after Tcrit

SGR Arbitrary Visual stay-green rating
ΦPSII Dimensionless ratio Apparent efficiency of PSII
Vcmax lmol CO2 m�2 sec�1 Maximum carboxylation efficiency of Rubisco
Jmax lmol electrons m�2 sec�1 Maximum electron transport rate
Rd lmol CO2 m�2 sec�1 Day respiration
Jmax/Vcmax lmol electrons lmol CO2

�1 Ratio of Jmax to Vcmax

An lmol CO2 m�2 sec�1 Net photosynthetic rate
A400 lmol CO2 m�2 sec�1 Light-saturated net photosynthetic rate at ambient CO2

Amax lmo CO2 m�2 sec�1 Light-saturated net photosynthetic rate at CO2 saturation
gs mol H2O m�2 sec�1 Light-saturated rate of stomatal conductance to water at ambient CO2

iWUE lmol CO2 mol H2O
�1 Intrinsic water-use efficiency, calculated as the ratio of A400 to gs
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