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A B S T R A C T   

The adhesion of fibrillar dry adhesives, mimicking nature’s principles of contact splitting, is 
commonly characterized by using axisymmetric probes having either a flat punch or spherical 
geometry. When using spherical probes, the adhesive pull-off force measured depends strongly on 
the compressive preload applied when making contact and on the geometry of the probe. 
Together, these effects complicate comparisons of the adhesive performance of micropatterned 
surfaces measured in different experiments. In this work we explore these issues, extending 
previous theoretical treatments of this problem by considering a fully compliant backing layer 
with an array of discrete elastic fibrils on its surface. We compare the results of the semi- 
analytical model presented to existing continuum theories, particularly with respect to deter-
mining a measurement system- and procedure-independent metric for the local adhesive strength 
of the fibrils from the global pull-off force. It is found that the discrete nature of the interface 
plays a dominant role across a broad range of relevant system parameters. Accordingly, a 
convenient tool for simulation of a discrete array is provided. An experimental procedure is 
recommended for use in conjunction with this tool in order to extract a value for the local ad-
hesive strength of the fibrils, which is independent of the other system properties (probe radius, 
backing layer thickness, and preload) and thus is suitable for comparison across experimental 
studies.   

1. Introduction 

Micropatterned dry adhesives have been shown to overcome current limitations in industrial handling operations (Hensel et al., 
2018), demonstrating the ability to function in vacuum where suction can no longer be utilized and to grasp miniaturized objects such 
as surface mounted devices (SMDs) (Barreau et al., 2017; Mengüç et al., 2012; Minsky and Turner, 2017; Tinnemann et al., 2019a, 
2019b). 
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In order to evaluate the adhesive performance of micropatterned adhesives, the use of axisymmetric probes has been widely 
favored (Cheung and Sitti, 2009; Greiner et al., 2007; Khaled and Sameoto, 2013; Yu et al., 2018). The intrinsic stiffness of the probe is 
typically much larger than the adhesive. In experiments, the probe approaches the adhesive surface until a specified compressive 
preload or indentation depth is reached. It is then retracted until both bodies separate. The load and displacement are simultaneously 
recorded throughout. The maximum value of the tensile load is defined as the ‘pull-off’ force, although this is strictly only the point of 
unstable detachment in a load-controlled measurement. This value can still be obtained in a displacement-controlled measurement, 
with the distinction being that stable attachment is maintained beyond this point until the surfaces are fully separated and the load 
drops to zero. 

The challenge is to use the pull-off force to obtain an objective measure of adhesive strength, capturing the effects of the geometry 
of the surface microstructures and the character of the interface at the junctions formed but independent of the characteristics of the 
measurement system and procedure. This is required to allow for the comparison of performance across experimental investigations. 

Flat-ended cylindrical probes are challenging to align to the surface of the sample, and alignment imperfections can cause a sig-
nificant reduction in the detachment force (Bacca et al., 2016; Booth et al., 2018). In addition to probe geometry, the compliance of the 
backing layer on which the microstructures are fabricated also results in a characteristic contact edge load concentration (Bacca et al., 
2016; Long et al., 2008), which complicates determination of an objective measure of the adhesive strength of the microstructures. The 
issue of misalignment can be alleviated through use of a spherical probe. However, several complications remain. These are the focus 
of this work. 

Fig. 1 shows the pull-off force and strength as a function of preload for a fibrillar micropatterned adhesive tested using a spherical 
probe, as described in Section 2.3 and in the Supplementary Information (SI). The results of these experiments highlight the primary 
difficulties of obtaining an objective measure of strength using a spherical probe. Firstly, it is observed that the pull-off force depends 
on the preload, P, and on the radius of the spherical probe, R, as has been highlighted in previous work (Greiner et al., 2009, 2007; 
Kroner et al., 2011). As Greiner et al. (2007) warn, this “dependence can obscure comparison of the adhesion data obtained by different 
groups, as measurements are usually performed with different indenter geometries and at different preloads”. 

Several attempts have been made to theoretically describe the dependence of adhesive performance on the preload and probe 
radius. Schargott et al. (2006) present a model which addresses the limit of a rigid backing layer, treating the fibrils as a continuous 
layer of linear elastic springs which sit between spherical and nominally flat surfaces. This result was rederived in terms of the pa-
rameters used in this study in the SI. By prescribing the elastic response and defining the detachment force of an individual fibril, it is 
demonstrated that the pull-off force for the sample initially increases with increasing preload before saturating, as 

Fpull− off = Fmax

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
̅̅̅̅̅̅̅̅̅
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−
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P
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(1)  

where P is the preload applied when making contact, and Fmax the maximum value of the pull-off force (i.e. measured in the saturation 
regime, as shown below). The maximum pull-off force can be stated in terms of the properties of the adhesive and probe as 

Fmax = 2πR
(

ρfmax
2h

2πc2E

)

, (2)  

where R is the radius of the probe, ρ the areal density of fibrils, fmax the detachment force for an individual fibril, h the fibril length, c 
the fibril radius, and E the Young’s modulus of the fibril material. It is observed that the preload required to achieve saturation of the 
pull-off force is equal to the pull-off force itself in the saturation regime. This saturation behavior is apparent in the experimental 

Fig. 1. (A) The pull-off force and (B) the pull-off strength as a function of preload. Spherical probes with radii of 4.7, 9.3 and 15.5 mm, indent a 
fibrillar adhesive. The fibrils have 25 µm radius, 100 µm length, and are arranged in a hexagonal pattern with a spacing of 100 µm. The experiment is 
described in Section 2.3 and in the Supplementary Information (SI). 
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results of Fig. 1. Upon measurement of the detachment force in the saturation regime, Fpull− off = Fmax, the result of equation ( 1 ) can be 
used to determine the detachment force of an individual fibril, fmax. If the assumptions upon which the model is based hold for the 
experiment in question, namely that the backing layer can be considered rigid and the fibril layer continuous, then the detachment 
force of a fibril obtained using this method represents an objective measurement of the adhesive strength of the micropatterned 
surface. 

An alternative approach is to utilize continuum theories of adhesion, assuming that the fibril layer is a feature of the interface and 
adopting an effective work of adhesion, which assumes that the strain energy in a fibril at detachment is not available to drive 
detachment of neighbors, and thus is lost in the separation process (Jagota, 2002). This leads to 

Weff =
ρfmax

2h
2πc2E

. (3)  

When the backing layer is considered as rigid, the spherical probe adhesion test is consistent with the assumptions of the Derjaguin- 
Muller-Toporov (DMT) continuum theory (Derjaguin et al., 1975). The associated maximum pull-off force is 

Fmax = 2πRWeff . (4) 

It is identified that the result of the Schargott model for a rigid backing layer given in Eq. (2), when combined with the effective 
work of adhesion of Eq. (3), is consistent with this result. This is unsurprising given that it is based upon a continuous adhesive layer 
confined between a rigid sphere and nominally flat rigid surface. 

One possibility for consideration of the backing layer compliance is to adopt another continuum theory, namely that of Johnson, 
Kendall, and Roberts (JKR) (Johnson et al., 1971), where the detachment force is given by 

Fig. 2. (A) Mechanical behavior of a single fibril. It is assumed that the compressive loads experienced by fibrils are not sufficiently large to cause 
buckling, and that in tension the contact is maintained until a critical force fmax is reached. (B) Arrangement of the fibril array, showing Cartesian 
and polar coordinate systems. The origin of both coordinate systems is located at the center of the fibril which contacts the rigid sphere first. (C) 
Cross-section of the micropatterned adhesive during approach and (D) during retraction. Relevant geometric and material properties are shown in 
each case. 
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Fmax =
3
2

πRWeff . (5) 

The JKR result is derived using approximations equivalent to linear elastic fracture mechanics, implying that significant defor-
mation and separation of the fibrillar interface occurs in a region at the contact edge, which is very small in comparison to the di-
mensions of the contact itself. The elastic response must be dominated by the deformation of the backing layer. Compliance of both the 
backing layer and fibrils was considered by Long and Hui (2009), although only a two-dimensional plane strain continuum model is 
presented. This formulation does not permit a general analytical solution, however such results were obtained in various limits to 
augment numerical computations for non-limiting cases. 

We note that a method for determining the work of adhesion that is independent of the choice of a model was proposed by Vaj-
payee et al. (2008) and Hui and Long (2012). Their approach requires recording of force, displacement, and contact area simulta-
neously in the compressive regime for loading and unloading curves. Thus, the variation in compliance with the change in contact area 
provides a measure of adhesion energy. 

Common to all of the preceding modeling efforts is the assumption that the layer of fibrils can be modelled as continuous. In this 
work we seek to extend the theoretical treatment of spherical probe adhesion tests on micropatterned surfaces by considering the 
discrete nature of the fibrillar interface, as well as the compliance of both the fibrils and the backing layer. The results will be used to 
assess the validity of continuum theories for the prediction of measurement-independent estimates of the adhesive strength of fibrils in 
a spherical probe test configuration, and ultimately to present clear instructions for obtaining data comparable across experimental 
investigations. 

2. Model 

The model presented considers the micropatterned adhesive as an array of discrete one-dimensional elastic elements on an elastic 
backing layer, as introduced by Noderer et al. (2007), Guidoni et al. (2010), and Bacca et al. (2016). 

2.1. General description 

Fig. 2 shows a schematic representation of components of the model described. The fibrillar adhesives are modeled as a parallel 
array of identical, upright fibrils on an elastic backing layer (BL). The fibrils are modelled as axially loaded linear elastic cylinders with 
a Young’s modulus of E, length h, and radius c. The backing layer is modeled as a linear elastic, isotropic half space of the same elastic 
modulus and Poisson’s ratio ν. The appropriateness of considering the backing layer as a half space is considered in Section 2.3. 

The mechanical behavior of an individual fibril in contact is summarized in Fig. 2A. It is assumed that fibrils respond elastically in 
compression. This is considered an appropriate assumption as fibril buckling should be avoided during experimental characterization. 
It is readily evidenced by loss of contact at the fibril tip (Isla and Kroner, 2015; Paretkar et al., 2013). If accommodated by elastic 
deformation, displacement of the fibril tip relative to the point of connection to the backing layer, ufib

i , results in a force 

fi = kufib
i , (6)  

where k = πc2E/h is the axial stiffness of a fibril. The force fi supported by the fibril must be equilibrated by adhesive tractions at the 
interface between its tip and the substrate or probe. Detachment typically occurs via the propagation of a defect at this interface, with 
the critical load being dependent on the fibril tip geometry and defect character (Tinnemann et al., 2019b). If the variability in defect 
size from fibril to fibril is small, then the detachment criterion will be deterministic (Booth et al., 2019). It can be stated equivalently as 
a critical force fmax, critical length hmax, or critical elongation ufib

max. All three values are connected according to ufib
max = fmax /k = hmax −

h.
We consider fibrils arranged in a hexagonal array as depicted in Fig. 2B. The number density of fibrils is ρ = 2 /(

̅̅̅
3

√
d2). Both the 

Cartesian and cylindrical coordinate systems are chosen such that their origin is coincident with the center of the tip of the fibril at the 
array center. 

Seeking to model a typical adhesion experiment, we consider the rigid spherical probe brought into contact with the array as 
depicted in Fig. 2C. The displacement of the probe u is equivalent to the z-position of its apex. The approach is halted when a specified 
indentation depth or preload condition is satisfied. The indentation depth is the absolute value of the minimum probe displacement, 
Δ = |min(u)|. The preload is the compressive load applied at maximum indentation, P = |min(F)|. 

During attachment, the interface formed by the fibril tips and the probe can be considered as an external crack that heals as the 
contact expands (Long and Hui, 2009). Two limits on the behavior of fibril attachment can be identified. In the first limit, contact is 
formed at fibril i if the surface of the sphere is coincident with the fibril tip. This condition is dependent on the curvature of the probe 
and the applied displacement according to 

(

R −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − r2
i

√ )

+ u ≤ 0, (7)  

where ri is the radial coordinate at the interface (see Fig. 2B). This condition is purely geometric, implying that adhesion does not play 
a role during approach and thus hysteresis is maximized. In the opposite limit, fibril i may jump into contact if the associated increase 
in elastic strain energy is smaller than the adhesive energy gained by formation of contact with the probe at the fibril tip. The condition 
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is therefore 

ΔUel ≤
1
2

fmax

k2 , (8)  

where ΔUel is the difference in elastic strain energy in the array. This implies that the fibril jumps into contact at the same displacement 
as it would detach upon retraction. There is, therefore, no hysteresis in the force-displacement curves for approach and retraction. 
Length scales associated with jump-into-contact on approach and detachment during separation are identified in the SI. Under the 
assumption that the surface interaction is dominated by short-ranged van der Waals forces, the jump-in instability is found to occur 
over distances of ~ 10 nm while the lower bound of elongation of a fibril at detachment is found to be approximately 10 µm. This 
suggests that condition (7), associated with the assumption of non-adhesive approach, is an accurate approximation. We note that the 
presence of surface charge may cause jump-to-contact at much larger separations, thus requiring that this assumption be reconsidered. 

Upon satisfaction of the preload or indentation condition, the probe is retracted as depicted in Fig. 2D. As the displacement u 
becomes positive, fibrils bear tensile load until the detachment criterion, fi > fmax, is satisfied. 

The tip displacement of fibril i, if in contact, is dependent on both the probe displacement and curvature, as given by 

ui =

(

R −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − r2
i

√ )

+ u. (9) 

This displacement is accommodated by deformation of both the fibril and the backing layer ui = ufib
i + uBL

i . The elongation of fibril i 
is ufib

i = fi/k = hfi/(πc2E). The deformation of the backing layer is not as straightforward. The ability of this continuous layer to 
transmit shear dictates that it does not depend only on force transmitted to the backing layer by the fibril itself, but rather on the force 
transmitted by all fibrils in the array. Based on the solution for surface loading of an elastic half space (Johnson, 1985), it is determined 
that the force fj gives rise to deformation of the backing layer such that 

uBL
i

(
fj
)
=

fj

πrijE∗
, for j ∕= i, (10)  

uBL
i

(
fj
)
=

16fj

3π2cE∗
, for j = i, (11)  

with rij being the distance between centers of fibrils i and j, and E∗ = E/(1 − ν2) being the reduced Young’s modulus. Eq. (10) ap-
proximates the load transmitted to the backing layer by each remote fibril, j ∕= i, as a point contact, neglecting the dimensions of the 
fibril cross-section. Bacca et al. (2016) have estimated that the error associated with this approximation is within 3.5%. Eq. (11) is the 
average displacement of the cross-section of the fibril assuming that the load is transferred as a uniform stress. 

The displacement of i-th fibril tip can be rewritten as 

ui = ufib
i +

∑N

j=1
uBL

i

(
fj
)
, (12)  

where N denotes the number of fibrils in contact. Adopting summation convention for repeated indices, this equation is now 
formulated as a matrix product 

ui = cijfj, (13)  

where c is the compliance matrix, composed of the following terms 

cij =
1

πrijE∗
, for j ∕= i, (14)  

cij =
1

πcE∗

(
16
3π +

h
c(1 − ν2)

)

, for j = i. (15) 

The off-diagonal terms of c encompass the mechanical coupling of fibrils by the backing layer (Bacca et al., 2016). 
By defining the stiffness matrix as the inverse of the compliance matrix k = c− 1, it is found that fj = kjiui. The total external force is 

the sum of the forces on all fibrils 

F =
∑N

i=1
fi. (16)  

2.2. Numerical implementation 

For numerical implementation, all equations were restated in a dimensionless form. The force supported by a single fibril was 
normalized by the fibril detachment force as ̃f i = fi/fmax. The total force was also normalized by fmax as ̃F = F/fmax . The dimensionless 
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nominal stress is defined as σ̃ = F/(N0fmax), where N0 = πa2ρ is the number of fibrils in contact at maximum indentation. This stress 
measure can also be interpreted as the load sharing efficiency introduced by Bacca et al. (2016). Values of ̃σ < 1 imply that at the load 
distribution among fibrils is non-uniform at pull-off. Displacements and distances are normalized by the fibril radius c, e.g. ̃ui = ui /c, 
with the exception of the fibril length, which we chose to define such that the normalized variable is the aspect ratio ̃h = h /2c. In order 
to simplify later equations, we introduce the dimensionless groups 

εmax =
fmax

πc2E
and ε∗max =

fmax

πc2E∗
. (17) 

The parameter εmax is the strain on a fibril at detachment, thus large values indicate that the fibril is compliant and the detachment 
force is high. We henceforth refer to ε∗max as the reduced fibril strain to detachment due to its dependence on the reduced Young’s 
modulus, E∗. Note that multiplying ε∗max by the reduced Young’s modulus provides the adhesion strength of the fibril. Approximation of 
the strain to detachment for a typical fibrillar adhesive is discussed in the SI. The deformation of the backing layer, given in Eqs. (10) 
and (11), then is stated as 

ũBL
i

(

f̃ j

)

=
ε∗max f̃ j

r̃ij
, for j ∕= i, (18)  

ũBL
i

(

f̃ j

)

=
16ε∗max f̃ j

3π , for j = i. (19) 

The dimensionless form of the compliance matrix given in Eqs. (14)–(15), is 

c̃ij =
cijfmax

c
=

ε∗max
r̃ij

, for j ∕= i, (20)  

c̃ij =
cijfmax

c
= ε∗max

(
16
3π +

2h̃
(1 − ν2)

)

, for j = i, (21)  

and the matrix product in Eq. (13) is 

ũi = c̃ij f̃ j. (22) 

Simulations begin with the apex of the probe positioned at the origin of the coordinate system, i.e. at the tip of the central fibril. The 
probe is moved downwards until a specified compressive preload is reached. From this point of maximum indentation, the sphere is 
retracted until all fibrils detach. This was implemented computationally in Matlab (MathWorks, Natick MA, USA). 

2.3. Experimental validation of the model 

In order to validate if the model presented accurately captures the elastic response of a fibrillar array in response to approach and 
retraction of a spherical probe, and in particular assess the importance of consideration of backing layer compliance, we seek to 
compare to the results of an equivalent experiment. To do so, it is in general necessary to invoke the geometric properties of the fibril, h, 
c, and d, material properties E and ν, and the fibril detachment force fmax. Of these, it is particularly difficult to obtain an a priori 
estimate of fmax. In fact, the very purpose of such an experiment is to obtain a measurement-system independent adhesive strength 
metric such as fmax (see Section 1). We decide, therefore, to validate the model in the preload phase by measuring the contact area as a 

Fig. 3. The apparent contact area and the number of fibrils in contact as a function of dimensionless indentation depth. Results are shown for three 
probe radii, (A) 4.7 mm, (B), 9.3 mm, and (C) 15.5 mm. Experimental results (black circles) are compared to models assuming a rigid backing layer 
(green triangles) and a fully compliant backing layer (blue squares). 
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function of indentation depth. The results depend only on the geometry and the Poisson’s ratio, for which we assume v = 0.5. No 
assumptions about any other material or system properties need to be considered. 

For the measurements, a custom-built adhesion test setup was employed. It allowed determination of the force, the indentation 
depth, and the contact area in situ. The micropatterned adhesive (see Figure S1 in the SI) consisted of fibrils with a radius of 25 µm, a 
length of 100 µm, and a center-to-center distance of 100 µm. Fibrils were arranged hexagonally, and the backing layer was approx-
imately 1 mm thick. The preparation of the micropatterned adhesives, the experimental procedure, and the analysis are described in 
the SI. The schematic of the setup is depicted in Figure S2 in the SI. 

Fig. 3 shows the apparent contact area vs. the dimensionless indentation depth for the experiment, alongside both the model 
presented for a fully compliant backing layer and the analytical formulation for a rigid backing layer. The latter was introduced by 
Schargott et al. (2006) and is restated for this system in the SI. The experimental results, along with the models for both limits of 
backing layer compliance, demonstrate that the apparent contact area (and thus the number of fibrils in contact) monotonically in-
creases with increasing indentation depth. Comparing the two models at a given indentation, it is observed that the compliant backing 
layer always yields a smaller contact. This is a consequence of backing layer deformation lowering the position of exterior fibrils, 
preventing the formation of contact. This effect becomes more severe as the intention depth is increased, or as the radius of the probe is 
increased, both of which increase the number of fibrils in contact. For the smallest spherical probe, (4.7 mm radius, Fig. 3A), there is 
not a significant difference between the models. The experimental results show good agreement with the models, independent of the 
assumed backing layer compliance. For larger probes (radii of 9.3 and 15.5 mm, Fig. 3B and C), there is significant difference between 
the two models (almost 40% for the largest sphere and the deepest indentation). The compliant limit now provides a much more 
accurate description of the experimental behavior. For the backing layer thickness examined, and in particular for the larger of the 
probe geometries considered, it is clear that compliance of the backing layer cannot be neglected. 

3. Results 

With the goal of obtaining measurement system and procedure independent estimates of adhesive strength of fibrils in mind, we 
begin by examining the role of preload on the behavior of spherical probe adhesion tests of the model micropatterned adhesive 
described in Section 2. 

Fig. 4 shows the dimensionless force-displacement characteristics for approach and retraction of the probe. The fibril aspect ratio is 
h/2c = 4, the dimensionless fibril density πρc2 = 0.223 (corresponding to d/c = 4), the dimensionless probe radius R /c = 1000, and 
the reduced fibril strain to detachment ε∗max = 0.04. The associated insets depict the load supported by each fibril in contact. In Fig. 4A, 
we observe that as the probe indents the adhesive, the number of fibrils in contact increases. Fibrils respond elastically in compression, 
as depicted in inset A1. With increasing indentation depth, both contact area and the compressive load increase. After the specified 
preload is attained, the probe is retracted. The force-displacement curve is linear up to the point at which the tensile force reaches its 
maximum. At this point the fibrils at the contact edge support a force close to fmax, as evidenced in inset A2. Since the maximum tensile 
load is attained prior to the first fibril detachment, the contact area at pull-off under load control is equivalent to the contact area upon 
preload. Further retraction under displacement control leads to the detachment of those fibrils exceeding fmax. The contact area shrinks 
from the outside in a manner comparable to an external crack propagating inward. Each fibril detachment is associated with a drop in 
the load, leading to a zigzagged or “saw-tooth” profile. Fig. 4B depicts the force-displacement characteristics of the same adhesive 
tested with a preload more than one order of magnitude larger than in the previous case. A fundamental difference is observed, namely 

Fig. 4. Dimensionless force-displacement curves of a fibrillar adhesive for two values of the compressive preload, (A) P/fmax = 7.6 and (B) P /fmax =

130. The 2D maps above show the load distribution among the fibrils in contact. Blue indicates fibrils are in compression, whereas yellow indicates 
they are in tension. In (A) the first fibrils detach at the point of maximum load, whereas in (B) the first fibrils detach prior to attainment of 
maximum load. 
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that fibrils detach before the maximum load is reached. The contact area at pull-off is therefore smaller than upon preload, as shown in 
the insets B1 to B3. Consequently, not all fibrils initially brought into contact contribute to the pull-off force. The additional preload, 
required to increase the contact area above the level observed at pull-off, is therefore redundant. 

Fig. 5A shows the pull-off force as a function of the preload for the same set of system parameters. Results are shown for both a fully 
compliant backing layer and a rigid backing layer. In each case the pull-off force initially increases with increasing preload, before 
saturating at a maximum value Fmax. Most significantly, we observe that the magnitude of the maximum pull-off force is larger for the 
fully compliant limit. This is a consequence of backing layer deformation at the contact edge, which reduces the load concentration in 
this region and delays the onset of detachment. Fig. 5B shows the pull-off strength versus preload. The increase in contact area under 
maximum preload dictates that, with increasing preload, the pull-off strength exhibits a monotonic decay due to the use of that contact 
area in the denominator. 

In order to systematically study how the properties of the micropatterned surface control the maximum pull-off force and the onset 
of the saturation regime, we identify the following five dimensionless groups: the fibril aspect ratio ̃h = h/2c; the dimensionless fibril 
spacing ̃d = d/c or equivalently the dimensionless fibril density ̃ρ = πρc2; the dimensionless sphere radius R̃ = R /c; the reduced fibril 
strain to detachment ε∗max = fmax/(πc2E∗); and the Poisson’s ratio ν. We limit attention to cases where ν = 0.5, on account of the 
prevalence of incompressible rubber-like materials in micropatterned adhesive fabrication (Hensel et al., 2019). 

Fig. 6 shows the dependence of the pull-off force on the preload as one parameter is varied and all others are held fixed. Fig. 6A 
displays the pull-off force versus preload for four different values of the dimensionless probe radius R/c. It is immediately apparent that 
the magnitude of the maximum pull-off force increases with increasing radius, and that the onset of the saturation regime is shifted 
towards higher preloads. The same trend holds for increasing the dimensionless fibril aspect ratio h/2c (Fig. 6B), fibril density πρc2 

(Fig. 6C), and fibril strain to detachment ε∗ (Fig. 6D). 
In the limit of a rigid backing layer (Schargott et al., 2006) it was shown that the critical preload required to reach saturation of the 

pull-off force was equal to the maximum pull-off force itself, Pcrit = Fmax. It is now revealed by inspection of Fig. 6 that the same 
relationship holds in the limit of the fully compliant backing layer. 

Fig. 7 shows the maximum pull-off force, or equivalently the critical preload for saturation, as a function of the four dimensionless 
parameters describing the sphere radius R/c, the fibril aspect ratio h/2c, the fibril density πρc2, and fibril strain to detachment ε∗max. 
There is a linear dependency on all parameters. It should be noted that some experimental measurements may make use of indentation 
depth or contact radius in place of preload. These parameters can also be computed numerically and are explored in the SI. The critical 
indentation depth Δcrit/h increases with increasing probe radius, increasing fibril density, and increasing fibril strain to detachment. It 
decreases with increasing fibril length (see Figure S5). The critical contact area acrit/d increases with increasing probe radius, 
increasing fibril length, increasing fibril spacing, and increasing fibril strain to detachment (see Figure S6). Unlike the critical preload, 
the relationships for indentation and contact area are non-linear. 

4. Discussion 

In order to compare designs of micropatterned adhesives across experimental studies, the adhesive strength data must be inde-
pendent of the measurement system and procedure. In line with this goal, the preceding results represent the first theoretical model 
which considers the effects of the discrete nature of the fibrillar interface, as well as both fibril and backing layer compliance, for a 
spherical probe test. 

The first complication encountered is that the pull-off force monotonically increases with increasing preload before saturating. In 
preceding work considering a rigid backing layer (Schargott et al., 2006), it was shown that critical preload required to achieve 
saturation of the pull-off force was equal to the pull-off force itself in this regime. In this work we have shown that this condition will 
hold in the limit of a fully compliant backing layer and, thus, is expected to be independent of the backing layer compliance. It is 

Fig. 5. (A) Dimensionless pull-off force and (B) pull-off strength versus dimensionless preload for the model system, where strength is defined as the 
pull-off force divided by the contact area at maximum preload. The inset shows that the pull-off strength converges to zero for large preloads. 
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therefore essential that measurements are performed with increasing preload until saturation is observed. It should additionally be 
ensured that this saturation is not associated with full contact of all fibrils in the array, as the resulting force would then additionally be 
a property of the array size. 

Saturation of the pull-off force is, however, insufficient to ensure that the results are independent of the properties of the mea-
surement system and procedure. This work has also revealed a dependency of the pull-off force on the compliance of the backing layer 
through the two limiting cases examined. Models capable of extracting an objective measure of strength, including the one presented in 
this paper, exclusively consider the limits of a rigid or fully compliant (elastic half-space) backing layer on account of the lack of a 
closed-form solution for a finite thickness domain subject to normal loading. It may be possible to modify the backing layer compliance 
terms using a semi-empirical correction factor, such as is presented in Long et al. (2008), to account for finite backing layer thickness. 
However, in addition to avoiding reliance on this approximate solution, it is recommended that operation in the fully compliant limit 
be ensured in experiment for the following reason. Typical micropatterned adhesives are fabricated on a backing layer of the same 
component material, with specified thickness. It is more difficult to repeatably fabricate a backing layer which is very thin, and thus 
behaves as rigid on account of the surface to which it is mounted. The backing layer thickness should ideally be increased until an effect 
on the maximum pull-off force is no longer observed. In this work, a thickness one order of magnitude larger than the fibril height was 
seen to be sufficient to operate in the fully compliant limit (Section 2.3), although this will depend on the specific fibril and array 
properties under consideration. 

The final dependency to be considered is on the probe radius. In Section 1, continuum theories were introduced which describe this 
dependency and, in theory, allow for the extraction of an objective measure of strength. The limit represented by DMT theory (or 
equivalently the model of Schargott for a fibrillar interface) is associated with domination of fibril deformation when compared to the 
backing layer. The limit represented by JKR theory implies that deformation of the backing layer is dominant, as linear elastic fracture 
mechanics requires deformation and separation of the interface occurs in a region (termed the ‘fracture process zone’) which is very 
small in comparison to the dimensions of the contact. The validity of this assumption can be assessed by comparing estimates of the 
lateral extent of the fracture process zone to the critical contact radius, or equivalently using the parameter introduced by Tabor 
(Tabor, 1977). The latter can be stated in terms of the system parameters as 

μ =

(
ρ̃2R̃εmax

4h̃

)1
3

, (23)  

Fig. 6. Dimensionless pull-off force versus preload for a range of values of (A) the dimensionless sphere radius R̃ = R/c, (B) the aspect ratio h̃ = h 
/2c, (C) the dimensionless fibrillar density ρ̃ = πρc2 = 2πc2/(

̅̅̅
3

√
d2), and (D) the reduced maximum strain ε∗max = fmax/(πc2E∗). In each case the 

highlighted parameter was varied while other parameters remained constant in the standard configuration of R/c = 500, h /2c = 3, πρc2 = 0.223, 
and ε∗max = fmax/(πc2E∗) = 0.1. The dashed lines have a gradient of 1, and mark the onset of the saturation regime. 
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where validity of the JKR theory requires μ > 5, and validity of the DMT theory requires μ < 0.1. 
We seek to compare the results of the discrete model to these continuum theories by normalizing the results of Fig. 7 as Fmax 

/πRWeff , which is calculated from the dimensionless system parameters according to 

Fmax

πRWeff
=

F̃max

R̃h̃ρ̃εmax
. (24) 

Fig. 8 shows the maximum pull-off force normalized as Fmax/πRWeff , as a function of the four dimensionless system parameters 
highlighted in the preceding section. Additionally, it shows the variation in the Tabor parameter as a function of these parameters. The 
results of the discrete model, in both the limit of a fully compliant and a rigid backing layer, are shown alongside the predictions of 
continuum JKR and DMT theories. 

In general, we observe that the Tabor parameter suggests that the results should fall in an intermediate regime, closer to the DMT 
limit, across the majority of the parameter space. However, the predictions of the normalized detachment force from the discrete 
model, in either limit of backing layer compliance, do not sit between the lower bound of the JKR theory and the upper bound of the 
DMT theory. Instead, they are consistently higher than both. The result of the DMT and Schargott models is only asymptotically 
approached for large probe radii and for fibrils which are compliant relative to the backing layer. The absence of a transition between 
the continuum theory results according to the Tabor parameter, suggests that the discrete nature of the interface plays a dominant role 
in the response of micropatterned adhesives as system parameters are varied in a typical spherical probe adhesion test. 

The dominance of discretization effects ultimately dictate that a discrete simulation should accompany each experimental spherical 
probe adhesion test, in order to extract an objective measure of the fibril adhesive strength. Accordingly, the numerical model utilized 
in this work has been adapted into a convenient tool for use by experimentalists. The user provides the geometric parameters of their 
system (fibrils, array, and probe), the elastic properties of the component material, and the measured saturation pull-off force on a 
fully-compliant backing layer. Given that the model requires a priori specification of the fibril strength, specifically the fibril strain to 
detachment εmax, this parameter must be incrementally varied until a solution corresponding to the users specified pull-off force is 
obtained. The corresponding value of εmax represents a measure of strength suitable for comparison across experimental investigations. 
Alternative measures of strength are also provided, namely the fibril detachment force, fmax, and effective work of adhesion, Weff . 
Matlab code for the main script (‘SphericalProbe_ExtractFibrilStrength.m’) and associated functions is available online (https:// 

Fig. 7. Dimensionless maximum pull-off force Fmax/fmax, or critical preload Pcrit/fmax for a range of values of (A) the dimensionless sphere radius R̃ =
R/c, (B) the aspect ratio h̃ = h/2c, (C) the dimensionless fibrillar density ρ̃ = πρc2 = 2πc2/(

̅̅̅
3

√
d2), and (D) the reduced fibril strain to detachment 

ε∗max = fmax/(πc2E∗). In all cases the critical preload is approximately equal to the maximum pull-off force. In each case the highlighted parameter 
was varied while all other parameters remained constant in the standard configuration of R/c = 500, h/2c = 3, πρc2 = 0.223 (corresponding to d /c 
= 4), and ε∗max = fmax/(πc2E∗) = 0.1. Each data point corresponds to one pull-off force versus preload curve, as shown in Fig. 6. Solid lines show the 
solution for a rigid backing layer. Note that the scales on the y-axis are not uniform across the plots. 
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github.com/jamieabooth/sphericalprobe). This approach has been used in conjunction with the experimental data presented in Fig. 1, 
as well as on a second data set associated with a different fibril and array geometry presented in Figure S7 of the SI. For the first 
adhesive, with 25 µm radius fibrils, fibril strain to detachment extracted by the model is found to be 0.0832, 0.0909, and 0.104 for 
probe radii 4.7 mm, 9.3 mm, and 15.5 mm, respectively. Multiplying these values by the reduced Young’s modulus of PDMS of 2.66 
MPa results in the fibril adhesive strength of 0.24 ± 0.02 MPa (see eq. (17)). For the second adhesive, with 3.5 µm radius fibrils, the 
deviation in the strength across all probe radii is smaller. Fibril strain to detachments extracted by the model are 0.164, 0.170, and 
0.163, respectively. Therefore, the fibril adhesive strength is 0.44 ± 0.01 MPa. This result demonstrates that smaller fibrils create 
larger adhesion in accordance with previous reports, e.g. (Hensel et al., 2018). 

5. Conclusions 

The aim of the present study is to extend previous theoretical treatments of spherical probe tests of micropatterned adhesives by 
considering both the role of backing layer compliance and discretization of the contact. The ultimate goal of any adhesion test is to 
extract a performance metric which is independent of the properties of the measurement system and procedure. Across a range of 
system parameters relevant to the characterization of state-of-the-art synthetic micropatterned adhesives, it is observed that the effect 
of discretization of the contact is dominant and the predictions of continuum theories break down. Accordingly, it is concluded that a 
discrete simulation should accompany each experimental test in order to extract an objective measure of fibril strength. Tests should be 
performed to the point of saturation of the pull-off force with increasing preload, using a compliant backing layer of the same 
component material. The measured maximum pull-off force can be inputted in to the numerical tool (https://github.com/ 
jamieabooth/sphericalprobe) provided for discrete simulation in order to extract an objective measure of the fibril adhesive strength. 

Fig. 8. Normalized maximum pull-off force, Fmax/πRWeff , and the Tabor parameter, μ, versus (A) the dimensionless sphere radius R̃ = R /c, (B) the 
aspect ratio ̃h = h/2c, (C) the dimensionless fibrillar density ̃ρ = πρc2 = 2πc2/(

̅̅̅
3

√
d2), and (D) the reduced maximum strain ε∗max = fmax /(πc2E∗). In 

each case the highlighted parameter was varied while all other parameters remained constant in the standard configuration of R /c = 500, h /2c =
3, πρc2 = 0.223 (corresponding to d/c = 4), and ε∗max = fmax/(πc2E∗) = 0.1. The predictions of DMT and JKR theories are also shown. 
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