IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS

Chaos generation with impulse control: Application
to Non-Chaotic Systems and Circuit Design

Kun Tian, Celso Grebogi, and Hai-Peng Ren, Senior Member, IEEE

Abstract—Chaos has been successfully applied in many fields to
improve the performance of engineering systems, such as com-
munication, vibration compact, and mixing. Generating chaos
from originally non-chaotic systems is a relevant topic because
of potential applications. In this work, the impulse control is
shown to generate chaos from non-chaotic system. Using non-
chaotic Chen system as an example, we prove by analytical
and numerical methods that chaos is indeed generated. The
features of the chaos generated by impulse control are analysed
using Lyapunov exponents, bifurcation diagram, power spectrum,
Poincaré mapping and Kaplan-Yorke dimension. Furthermore,
we demonstrate the chaotic attractor generation by impulse
control using a circuit experiment. The last but not minor point
is that the existence of topological horseshoe is given by rigorous
computer-aided proof.

Index Terms—Chaos generation; Impulse control; Nonlinear
dynamics; Chen Circuit; Topological Horseshoe.

I. INTRODUCTION

S a natural phenomenon, like diverse weather, chaos is an

apparently stochastic motion in deterministic nonlinear
systems. Chaos has been extensively investigated since Lorenz
reported a sensitive dependence on initial condition in a weath-
er prediction model [1], referred by him as the famous butterfly
effect. Chaos attracted a lot of attention from the physics
community once it was reported, because this phenomenon
violates the common cognition about the deterministic and
stochastic concepts. On the one hand, random like motion
of a system in chaotic state was considered to be harmful
in engineering fields. Therefore, lots of efforts were given to
eliminate or control chaos in the systems, which led to the
seminal work of chaos control in 1990, namely, the OGY
control [2]. After the OGY method, time-delay feedback [3],
linear feedback [4], [5], impulse control [6], [7], and others,
were reported to control chaos.

On the other hand, since NASA reported to have sent a
satellite that accomplished its main task to far away cruise
mission just by using sensitive dependence of chaos on initial
condition, the features of chaos were recognized to be useful
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in engineering applications. The broad spectrum property of
chaotic signals is used for decreasing the noise in power
switching converter [8], for improving the randomness of
spreading sequence in spread spectrum communications [9],
[10], for improving the energy efficiency of vibration com-
paction [11], [12] and in liquid mixing operations [13]. The
ergodicity of chaotic systems is used to improve the searching
ability of optimization algorithms [14]-[16]. Additional prop-
erties from chaotic dynamics are being used in engineering
applications to improve the efficiency and/or performance of
practical systems. For example, chaos was reported to be
used in commercial fiber-optic link in Europe to improve
the transmission rate [17] and chaos was proposed to be
used in IEEE standard for local networks [18]. Chaotic signal
in communication system was proved to be optimal in the
sense of the simplest matched filter used to achieve maximum
signal to noise ratio at receivers [19]. Lyapunov invariance
property of chaos, after being transmitted through wireless
communication channel, can be used to resist inter-symbol
interference [20]-[22]. Chaotic shape-forming filter can also
be used to encode arbitrary binary bit sequence together with
differential chaos shift key configuration so as to improve the
bit transmission rate with higher reliability [23].

In view of increasing number of chaos applications, chaos
generation from non-chaotic systems (or enhancing the exist-
ing chaos) with the inherent properties is still an important
and challenging topic, which has also been referred to as anti-
control of chaos [24] or chaotification [25]. In fact, before
[24] and [25], reference [26] had used OGY idea to make the
system trajectory tracking unstable orbit in transient chaos in
order to maintain the trajectory in sustained state. A feedback
chaos anti-control method for discrete systems was proposed
by Lai and Chen [24]. Impulse control is applied to the discrete
system, named heterogeneous cournot oligopoly model, for
chaos generation through constant impulse signal [27]. Chaos
generation from discrete system in the sense of Li-Yorke [24],
[25], [28]-[31] was simpler than that from continuous time
system, because, the dynamical analysis in continuous time
system is more difficult. Numerous works have been reported
to generate continuous time chaotic motion from non-chaotic
systems. They include generating chaos using state feedback
method [32]-[40], adaptive control method [41], [42], non-
linear time delay feedback control method [32], [33], linear
time delay feedback method [34], [35] and piece-wise linear
function feedback [43]-[45]. The resulting chaotic attractor
can be single scroll [41], double scrolls [33], [36], [37], [40],
[42], and multiple scrolls [34], [43]-[45]. Although there are
many efforts to generate chaos using different methods, how to



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS

generate chaos with the required property and by considering
the system constraints—for example, un-manipulated variables
in the system state equations, or state constraints, is still
a challenge and of the practical significance for different
applications. Besides the methods based on continuous state
feedback, an impulse control method was proposed to generate
chaos from a stable periodic orbit of the nonlinear continuous
system [46].

From control engineering perspectives, it is expected to
unify chaos control and anti-control methods by adjusting
parameters of the controller without altering the controller
structure and the system configuration. Linear time delay
feedback is shown to implement this aim by using it to control
chaos [3] and to generate chaos [34]. The impulse control was
shown to be able to control and synchronize chaos [47]-[51].
References [47]-[50] investigated the necessary conditions to
guarantee the asymptotic stability of the synchronization error
by using the Lyapunov theory. In [51], the negative Melnikov
function was considered as a criterion for chaos suppression.
In this paper, we explore the possibility to use the univariate
impulse control to generate chaos from an originally non-
chaotic system. Therefore, it is still interesting to investigate its
ability to generate or to suppress chaos with more flexibility.
To achieve this goal, in this work, we investigate chaos
generation using univariate impulse control.

The univariate impulse control is a novel method for gen-
erating chaos, which is different from the previously existing
methods for generating chaos, in the following aspects: (1) The
impulse control regulates the system in an intermittent way,
which is energy efficient and less state information dependent,
contrary with continuous time control; (2) Comparing with all
variables manipulation impulse method in [46] for generating
chaotic attractor confining to the local region about the limit
cycle, the features of this impulse control method are: first, the
chaos generated by the proposed univariate impulse control
is not confined to the local region of the limit cycle of
the original system, which means that more flexibility is
achieved by the proposed method; second, regulating a single
state equation to simplify the control structure instead of the
multiple manipulated variables in [46]. Compared with the
multi-variate impulse control, the univariate impulse control
faces with added challenge to implement the same task,
because the manipulation dimension is decreased, and the
freedom of the controller is reduced. But the univariate control
is more in line with traditional control theory in which one
variable or one parameter is manipulated. Moreover, for some
special cases, the uncontrolled system to be controlled does not
allow for the manipulation of multi-variables. In such a case,
multi-variate impulse control is not applicable. Therefore, it is
of practical significance to investigate the univariate impulse
control for chaos generation. The univariate impulse control
has a broadened application potential. This is in agreement
with the traditional control theory in which a single parameter
or a single variable is manipulated to achieve the desired
control or, in this case, anti-control of chaos.

In this work, the periodic impulse is applied for chaotifying
the non-chaotic system. In this proposed method, the non-
chaotic Chen system is used as a paradigm to generate double-

scroll attractors using impulse anti-control for the first time.
The Chen circuit and an impulse circuit are built to validate
the analytical results. The generated chaos characteristics
are analysed by evaluating the Lyapunov exponent, power
spectrum, bifurcation diagram, Poincaré mapping and Kaplan-
Yorke dimension. Topological Horseshoe Lemma is used to
confirm the existence of the chaotic attractor.

The organization of the remaining part of the paper is
as follows. Section 2 gives the problem description and the
general form of the controller. Section 3 gives simulation
results of non-chaotic Chen system with the proposed impulse
control, and the analysis of its dynamical properties, including
the power spectrum, bifurcation diagram, Lyapunov exponent,
Poincaré mapping, the coexisting attractors and Kaplan-Yorke
dimension. Section 4 proves the existence of chaos in the
attractor of the Chen system with impulse control using
the Topological Horseshoe Lemma. Section 5 describes the
building of an electrical circuit for the non-chaotic Chen
system with the proposed impulse controller to demonstrate
chaos generation in a circuit experiment. Section 6 gives the
conclusions.

II. CHAOS GENERATION FROM NON-CHAOTIC CHEN
SYSTEM USING IMPULSE CONTROL

A. Problem statement

Consider a non-chaotic dynamical system in the form,

x = f(x), (1)

where x € R", f € R™ — R" is a smooth function, x(¢o) is
the arbitrary initial condition of the system at time %g.
A state feedback impulse controller is given by,

u=K- -x(t;), t =t,

u:Oa t#toa (2)

where u € R is the impulse control input to the system. The
impulse is active at time ¢, satisfying 0 < ¢; < 2 < ... and

lim ¢, = oco. K is a matrix with only one non-zero element
g —00

representing the gain matrix of the impulse control. The row
with non-zero elements is the only one state variable to be
manipulated. Although we refer u to be in R", in fact, only
one component of u is non-zero.

In this paper, controller (2) is used to generate chaos from
the non-chaotic system (1).

B. Univariate state feedback impulse control of non-chaotic
Chen system

Using the non-chaotic Chen system [52] as example, we
describe the paradigm of generating chaos in a non-chaotic
system using univariate state feedback impulse control.

The Chen system is given by:

& =aly —x)
j=(c—ar—zz+cy, 3)

z=uxy—bz
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where z, y and z are the state variables of the system and
a, b and c are the parameters. In this paper, we consider that
a = 35, b =3 and ¢ = 18.5, then the Chen system has stable
equilibrium when no impulse control is applied.

To use a simple form, an impulse control is added to the
y-variable of the system, as given by:

z=aly —x)

y=(c—a)z—zz+cy+u

z=uay—bz , 4)
u=k-y(t,), t=t,

u=0, t#t,

where w is the univariate state feedback impulse controller
to manipulate state y using state y for feedback. During the
time interval between two consecutive impulses, system (4) is
the same as system (3). With the appropriate impulse interval
0 =t, —t,—1(0c =1,2,...) and impulse strength k%, the stable
equilibrium is converted to a chaotic attractor, whose dynamics
is discussed in the next section.

Discussion 1. The proposed method can be extended to not
only some other nonlinear systems with stable parameters, but
also some linear systems. A linear system example has been
described in Appendix A.

III. THE CHAOTIC ATTRACTOR IN THE NON-CHAOTIC
CHEN SYSTEM GENERATED BY UNIVARIATE STATE
FEEDBACK IMPULSE CONTROL

A. Chaos generated in a non-chaotic Chen system using
impulse control

Consider system (4), when the parameters are a = 35, b =
3, ¢ = 18.5 and k = 0, the system is non-chaotic. Trajectories
starting from different attracting basins converge to one of the
two stable equilibrium points Oy, as show in Fig. 1.

When the parameters of the impulse controller are the
impulse interval 6 = 0.4s and gain k = 25, a chaotic
attractor is present in the controlled system, as shown in Fig.
2. It can be seen that the double-scroll attractor is generated
in system (4) when univariate impulse control is activated.
System (4) is invariant under the coordinate transformation
(x,y,2) = (—x,—y, z). Therefore, system (4) is symmetric.

Multi-stability is the coexistence of multiple attractors,
depending on different initial conditions for the same set of
parameters, which shows the rich dynamical characteristics of
the nonlinear system. With parameters a = 35,b = 3, and
¢ = 18.5 for the system (4), the symmetry of the system leads
to the appearance of double coexisting attractors. Two different
initial conditions [1,1,1] and [—1,—1,1] are taken to show
the coexistence of period 1, single-scroll attractor and double-
scroll attractor, as shown in Fig. 3(a), (b), and (c), respectively,
as k varies.

B. Power spectrum

The power spectrum is calculated from the time series of x
as shown in Figs. 2(d) and (e). From Fig. 2(e), the spectrum
of x displays no apparent single peak, which is the feature
of a chaotic signal. The other variables show similar power
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Fig. 1: The system state trajectories in phase space un-
der different initial conditions located in different attracting
basins of two equilibriums; (a) The trajectory approaches
the equilibrium O , (2.449,2.449,2) with the initial condi-
tion [0,1,0]; (b) The trajectory approaches the equilibrium
O - (—2.449, —2.449, 2) with the initial condition [0, —1, 0].

spectrum as that in Fig. 2(e), thus indicating the chaotic
property of the signals.

C. Bifurcation diagrams

We keep § = 0.4s, and use the impulse gain as the
bifurcation parameter to obtain the bifurcation diagram given
in Fig. 4(a). We keep the impulse gain k as 25, and use
the parameter impulse interval as bifurcation parameter to
derive the bifurcation diagram given in Fig. 4(b). We show the
phase trajectory projection on the x — y plane with different
parameters in Fig. 5, from which we learn that the controlled
system demonstrates complicated dynamics, including period-
1 orbit, period-2 orbit, and multi-periodic orbit when the
controller parameter varies, corresponding to the bifurcation
diagram in Fig. 4(a).

D. Lyapunov exponents of the attractors

The estimation of the maximum Lyapunov exponent of the
chaotic sequences is one of the fundamental measures in the
study of dynamical system. This work adopts the method
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Fig. 2: The chaotic attractor generated in the Chen system using univariate state feedback impulse; (a) phase trajectory projection
on the x — y plane; (b) phase trajectory projection on the  — z plane; (c) phase trajectory projection on the y — z plane; (d)
time series of x; (e) the power spectrum of time series x.
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Fig. 3: Coexisting attractors in system (4) for trajectories starting from initial condition x(¢y) = [—1, —1,1] plotted in red
solid line and initial condition x(tp) = [1, 1, 1] plotted in blue line with dots; (a) period-1 trajectories for 6 = 0.4,k = 18.5;
(b) single-scroll attractor for § = 0.4, k = 20; (c) double-scroll attractor for § = 0.4, k = 20.04.

of BBA [53], to estimate the Lyapunov exponents from the E. Poincaré mapping
observed time series. The BBA algorithm first reconstructs
the phase space according to the time series of single variable
using time-delay embedding method. Then, the least square
method is used to extract the Jacobian matrix of the recon-
structed dynamical system. Finally, the Lyapunov exponent
spectrum is calculated from the eigenvalues of the Jacobian
matrix. Using the BBA method, we obtain the Lyapunov
exponent spectrum of the system as given in Fig. 6. It can
be seen from Fig. 6 that there are three Lyapunov exponents F. Kaplan-Yorke dimension
whose values are 0.16, 0.03, and -1.129. The positive largest
Lyapunov exponent indicates that the dynamics is chaotic.

We define the Poincaré-section P = {(z,y,2) € R® : 2 =
6} with the normal vector h = (0,0,1), as shown by the
green plane in Fig. 7. The plane intersects the trajectory and
its mapping points on the section P, as shown in Fig. 8 in a
new coordinate, which shows some continuous points. From
Fig. 8, we know that the system is chaotic.

According to the Kaplan-York conjecture, Dy is calculat-
ed by,
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Fig. 4: The bifurcation diagram of x state as: (a) the impulse strength % is varied from 10 to 50 with the impulse interval
0 = 0.4s; (b) the impulse interval ¢ is varied from 0.15 to 0.9 with the impulse strength k& = 25.

6
3
4 5
> > >
2
2 5
0
2 . 3 1 §(‘ 5 -5 N 5
k=14, =0.4 k=185,0 =04 k=44.9.0 =0.4
(a) (b) (©)
15
> 0
15 "
-10 X 10 -6 4 2 0 10 9 10
k=31.40 =04 k=193.5 =0.4 k=27.605.5 =0.4
(d (©)] ()

Fig. 5: The phase trajectory projection with different parameters on the = — y plane; (a)k = 14, = 0.4; (b)k = 18.5,§ = 0.4;
)k =44.9,6 = 0.4; (d)k = 31.4,6 = 0.4; (e)k = 19.3,6 = 0.4; (DHk = 27.605,5 = 0.4.

R IV. HORSESHOE IN THE CHEN SYSTEM WITH IMPULSE
Ei:l L (5) CONTROL
)
|Lit1]
where L;(i =1,2,3,...,n) is the Lyapunov exponents of the

n-order system, .S represents the number of positive Lyapunov The topological Horseshoe Lemma provides conditions for
exponents. Therefore, the Kaplan-Yorke dimension of system  the existence of a topological horseshoe, which is used as a
(4), using the proposed anti-control method with control  method for the proof of existing chaos.

parameters k£ = 25 and 6 = 0.4, is Dgy = 2.17.

Dy =5+

A. Topological horseshoe

Let X be a metric space; D € X is a compact subset;
f: D — X is a diffeomorphism; and there exists mutually
disjoint compact subsets D, ..., D,, of D such that f|D;
is continuous. According to [54], we have the following
definitions and Lemma.
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Fig. 6: Lyapunov exponent spectrum of the Chen system after
the univariate impulse anti-control is applied.

15

Fig. 7: Poincaré section of the Chen system with impulse anti-
control.

Definition 1: For each 1 < i < m, let D} and D? be two
fixed disjoint compact subsets of D;. A subset [ of D; is said
to connect D} and D? if [N D} # () and [ N D? # (), and we
denote this by D} & D?.

Definition 2: If | contains a connected subset I’ such that

(v
D; <(—>) D3, we define that f(I) across D; with D} and D3,

and it is denoted as f(I) — D,. If f(I) — D, for every
connected subset [ C D; with D;} & D? is satisfied, f(D;) is
suitably across D, and it is denoted as f(D;) — D;.

Lemma 1: If fP(D1) — Dy, fP(D1) — Do, and f9(D3)
D1, then there exists a compact invariant set J C D such
that f2P*4|J is semiconjugate to two-shift dynamics, and
ent(f) = (1/2p + q) log 2.

B. Topological horseshoes in Chen system with impulse anti-
control

The existence of horseshoe in the dynamical systems is
a proof of existence of chaos. We present the construction

-5 0 5
Px

Fig. 8: The Poincaré mapping points on P.

of the topological horseshoe in this sub-section. To select
suitable quadrilaterals in the Poincaré section satisfying across
conditions is complicated.

We select a quadrangle A, B;Cy D1 in Fig. 8, whose vertex
coordinates are A; = [0.4,0.002, 6], B; = [0.427,0.0288, 6],
C, = 1]0.823,-0.167,6], D; = [0.781,—0.209,6], as
shown with the red quadrangle in Fig. 9(a) in the
Pioncaré plane. Quadrangles A;B;C1D; is mapped as
A B{C1Dy = f?(A1B1C1D;) through twice Poincaré map-
ping, and A} B{C{ D] intersects Ay B1C1 D1, as shown in Fig.

15 9(b).

We select a similar quadrangle A;BsCoDs with the co-
ordinates of the four vertices as Ay = [0.373,—0.033, 6],
B; = [0.395,-0.003,6], Co = [0.77,—0.239,6], Dy =
[0.7,—0.286,6], as shown by the green quadrangle in the
Fig. 9(a). The twice mapping A B5CS Db = f2(A2B2Ca D)
is intersecting A; B1C1 D1, and A} B{C{D] is intersecting
Ao ByC5Ds, as shown in Fig. 9(c).

Upon the above simulation results, there exist two
quadrangles satisfying f2(A;B1C1D;) + A1BC1Dy,
f2(A1B1C1Dy) +— AsByCoDsy and f2(A3B2CoDs)
A1B1C1D;. According to the Lemma 1, there exists a com-
pact invariant set J C D such that f®|J is semiconjugate
to two-shift dynamics, and ent(f) > (1/6)log2 > 0.
Consequently, there exists chaos in the sense of topological
horseshoe in system (4).

V. CIRCUIT DESIGN

To implement the Chen circuit, FPGA [55] or FPAA [56]
is an option, which has advantages, like easy implementa-
tion, easy reconfiguration of the parameters, etc. However,
these digital implementations have to numerically integrate
the differential equations, which are the same as done in the
computer simulations, although they in fact implement the
circuit using an integrated circuit chip. Therefore, it has the
same issues as those demonstrated in computer simulations,
like the numerical precision, trunk error, etc. Although the
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Fig. 9: The quadrangles A, B, C, D1, A3 ByC5 D5 and their map f2; (a) Global view of the position A; B;C; D and Ay BoCsyD;
(b) The image of A} B|C|D}, where A\B| = f?(A1B1), B{C| = f*(B1C1), C;D} = f*(C1D1) and A\ D} = f?(A1D1);
(c) The image of A, B5CSD), where A}By = f?(A2Ba), B5C, = f2(B2C3) and AyD) = f2(AsDy).

analog circuit implementation is complex, for example, the
difficulty in changing parameters, parasite parameter, and
inaccurate parameter, it still demonstrates the properties of the
practical circuit, which is not a simulation. To further validate
the chaotic attractors generated by the proposed impulse
controller, we designed an experimental circuit with analog
operational amplifier. The circuit is composed of two blocks,
the non-chaotic Chen circuit and the impulse controller. The
circuit consists mainly of operation amplifiers (LF347N),
multipliers (AD633), and a timer (555). In the circuit design,
the multiplication factor of AD633 is 0.1. Therefore, we adjust
the magnification of the nonlinear factors of the Chen system

are summarized in Table I. The circuit simulation is carried out
using PSIM. The impulse controller block is consisted of op-
amps Ug ~ Ujp, 555 timer and bilateral switch CD4066. Due
to the saturation of the CD4066 is +5V/, the signal amplitude
of y is firstly decreased using Us, then recovers the amplitude
through Uy and U at the moment that the CD4066 is on-state
when the timer 555 output is on high level. In such a way, the
impulse control signal is generated. According to the circuit
schematic diagram, the system parameters corresponding to
the circuit component are given in Eq. (7). The detailed
derivation of Eq. (7) has given in Appendix B.

model as Eq. (6). & =aly - o)
The schematic circuit diagram of the circuit implementation y=(c—ajz—10zz+cy+u
is shown in Fig. 10, the corresponding components parameters 2 =10zy — bz . (6)
u=k-y(t,), t="1t,
u=0, t#t,

o — R3(R1 + R4) )
R1R5C4 (RQ + Rg) ’

R7RsR11 R14R1sR19 (Rg + R12) (R15 + Rig)

cC—a=

c

" RgRoR13R15R20C5 (RsRio + RioR11 + RgRi1) (Ri7Rig + Ri7Rig + RigRio)’
RigR11R14R18R19 (Rg + R12) (Ri5 + Rig)

)

(Ras + Rs31)Rs0

b= .
(R29 + R30)RagR32C'3

The impulse control gain is,

_ RooRos Ro7
Ro1R24Rog R0 Co

k ®)

" RoRi3Ri5R20Co (RsRio + RioR11 + RsRi1) (Ri7Ris + Ri7Rig + RigRig)’

By adding the univariate impulse controller to Chen circuit,
we obtain double-scroll attractors in the experiment, as shown
in Fig. 11. Figures 11(a)-(c) represent the phase space trajecto-
ries projected into the x—y, x—z and y—z planes, respectively.
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Fig. 10: Circuit diagram of the Chen system with impulse anti-control on y-variable.
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Fig. 11: The experimental results of the attractor in the Chen system with impulse anti-control on the y-variable; (a) attractor
projection on x — y plane; (b) attractor projection on x — z plane; (c) attractor projection on y — z plane; (d) the time domain
waveform of z(t) and its power spectrum.
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TABLE I: Circuit component parameters

Component Value
Ri1, Ra, R3, R4, Re, R7, R13, R1a,
Ris, Ri7, Ris, R19, Rog, Rog, R31 10k$2
Rs 2.86 M)
Rs 16.5k€2
Ry 3kQ
Rio 18.5k2
R 60k
Ri2, Ro1, Ra4, Rog, Rar 1kQ
Rie 2092
R2o 3.33MQ)
Ra2o 28002
Ra3 500€2
Ras 3kQ
R3o 17650
R32 10MQ
C1,C3,Cs 10pFQ

Fig. 11(d) represents the time domain waveform of x(t) and
its power spectrum. From Fig. 11, the experiment results are
consistent with the simulation results given in Fig. 2, and
validates the effectiveness of the chaos generation method.

VI. CONCLUSIONS

This paper presents a chaos generation method using u-
nivariate state feedback impulse controller. We use the non-
chaotic Chen system as paradigm to show the effectiveness
and veracity of our method. To explore the basic dynamical
characteristics of the new attractors, the power spectrum,
bifurcation diagrams and the largest Lyapunov exponent are
analysed in this paper. We also designed a circuit to validate
our method in the double-scroll attractor experimentally. The
numerical simulations are consistent with the experimental
results. Moreover, the topological horseshoe proves that the
attractor is chaotic.

The method in this paper offers a flexibility approach
when intermittent and energy efficient controls are preferable
to create chaos. The exploration of a possible principle to
determine the parameter range for chaos generation using
univariate impulse control and the application of the chaos
generated by the proposed impulse control are the future tasks.

APPENDIX A

The proposed univariate impulse control method is capable
for generating chaos from the non-chaotic linear systems, such
as the linear system given by,

i?l = —2(E2
j?g =T . (9)
T3 =14 x5 — 223

If we introduce the proposed impulse controller with the
nonlinear state feedback given by u = 5z%(¢,’) with the im-
pulse interval § = 0.03 to z»-variable, the proposed univariate
impulse controller is capable of generating chaos from system
(9), as shown in Fig. 12 for this impulse control system.

The bifurcation diagram of impulse strength ko are given
in Fig. 13.

Fig. 12: The phase trajectory of the linear system (9) with
univariate impulse controller.

Fig. 13: The bifurcation diagram of state of x; as the impulse
strength ko is varied from 3 to 5.8 with the impulse interval
0 = 0.03.

APPENDIX B

We used PSIM software to simulate the circuit, the print
board is designed using Altium Designer software. Equation
(6) is the final expression of the circuit, which can be derived
using the basic circuit principle like Kirchchoff’s laws, as
given in the following.

From Fig. 14, u, is given by,

(Bi+Ry) Ry uy
(Re+R3)Ry © Ry

1
e dt
B RsCy /U1

Equation (10) can be rewritten as,

:Ul

(10)

Fig. 14: Part I of the circuit diagram in Fig. 10.
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From Fig. 15, u, is given by:,
(R1 + R4) Rs u 1 " —
(Re + R3) RiRsC1 * RiRsCp Y

iy, (11)

g = (R + Ri2) RsRio R (Uy _ Rrug > _ Risug.
Ry (RgR19 + RsRi1 + RioR11) \ Rs  ReRio Ry
Uy = —@M
Rus (12)
e — (Ris + Ris) Rig (usRig + uRi7)
" Ris (Ri7R18 + RigRi9 + Ri7R19)
1
S dt
Yy Ro0Cy /UG
Equation (12) can be rewritten as,
i RigR11R14R1sR19 (Rg + R12) (Ri15 + Rag) v
Y RgRi3R15R20Co (RgR10 + RioR11 + RsRi1) (Ri7Ris + Ri7R1i9 + RigRug) Y
R;R3R11R14R1gR19 (Rg + R12) (Ri5 + Rus) (13)

_ Uy
RsRyoR13R15R20C5 (RgR1p + RioR11 + RsRi1) (Ri7R1s + Ri7Ri9 + RisRig)

B RisR14R18R19 (R15 + Ri6)
R9R13R15R20C5 (R17R1s + Ri7R19 + RigRi9)

Ugz-

Fig. 17: Part IV of the circuit diagram in Fig. 10.

i = Rs; S (Ras + R31) Rso w. (15)
© RogR3:C3 *Y RogR33C3 (Rag + Ryo)
From Fig. 17, u is given by:
Rao Ros Ro7
= - u,. 16
Ro1RoyRog * (16)
From equations (11), (13), (15) and (16), we can obtain the

circuit parameters given by equations (6), (7) and (8).
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