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Highlights

• Tool-workpiece friction introduces large-amplitude chatter for unsafe cutting

• Perturbation method is valid for UZ estimation only when friction is neglected

• The cutting safety is estimated by basin stability and Monte Carlo simulation

• The large-amplitude hardly occurs in the unsafe zone from statistical viewpoint
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Abstract

In our previous discussion on regenerative and frictional cutting dynamics, a new one degree-of-freedom

(DOF) model considering both time-delayed regenerative effect in chip thickness and Stribeck effect in

frictional velocity as sources of cutting instability has been proposed, which improved the prediction of

linear stability in the zone of low cutting velocity. Based on the new model, this investigation focuses on

complex nonlinear cutting dynamics. More specifically, the criticality of Hopf bifurcation on the cutting

stability boundaries is studied by perturbation analysis, with the co-existence of stationary cutting and

chatter obtained in the linearly stable region, i.e., the unsafe zones (UZs) are located for chatter avoid-

ance. Then this analytical estimation is compared with numerical simulations, revealing the possibility of

underestimation due to the large-amplitude frictional chatter entering the stable region, which extensively

expands the UZs. Beside this local perturbation analysis, global bifurcation diagrams are constructed by

numerical simulations, yielding various complex cutting dynamics including multiple stability, regener-

ative chatter with loss of tool-workpiece contact and stick-slip frictional vibration. Finally, the cutting

safety in the UZs is studied based on basin stability estimation, where the functional initial conditions

are approximated by Fourier series and chatter occurrence is estimated via Monte Carlo simulation. It is

found that from the statistical point of view, the large-amplitude frictional chatter hardly influences the

UZs.

Keywords: Cutting process, Regenerative and frictional chatters, Unsafe zones, Complex dynamics,

Basin stability.
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1. Introduction

By considering time-delayed workpiece regeneration [1], velocity-dependent Stribeck friction [2] and

process damping [3], the new model improves the prediction of cutting stability, especially in the zone

of low cutting velocities. Moreover, the influences of Stribeck effect [4], lubrication [5], rake and shear

angles [6] on the stability boundaries have been discussed as well. In [7–11], by introducing new models,

the authors tried to bridge the gap in understanding of regenerative and frictional chatters. However,

prior to those valuable studies had been being separately performed focusing on individual types of cut-

ting instabilities. As stated in [12], various cutting chatters can be classified into frictional (primary),

regenerative (secondary), mode-coupling and thermo-mechanical types, while the primary and secondary

have attracted majority of attention from the dynamical systems and manufacturing research commu-

nities. For example, the regenerative turning [13], boring [14], milling [15], grinding [16], and drilling

[17] chatters attract many attentions while the investigations of frictional types of cutting instabilities in

those operations [18–21] are performed simultaneously.

The regenerative chatter theory blames a successive regeneration of workpiece surface for the occur-

rence of secondary chatter [22]. With workpiece material layers being continuously removed by a tool

pass in cutting operations, surface profile recording previous tool displacement is generated perturbing

the chip thickness for the current tool pass, which introduces time-delayed effects [23, 24], representing

the previous tool deformation in the governing equation of cutting dynamics. This regenerative delay

varies with the change of spindle rotary velocity, significantly affecting the system’s stability [25]. Mean-

while, the cutting stability can also be influenced by frictional effects on the chip-tool interface, especially

in the low-velocity zone where negative damping is significant [4]. On the tool-workpiece the primary

shear zone is created where the plastically deformed chip sticks to the tool tip before slides along the

tool’s rake surface, yielding complex velocity-dependent frictional interactions [5, 26]. This effect plays

the role of negative damping, leading to non-smoothness frictional chatter with stick-slip motion [2, 19].

To avoid this scenario, one can increase the spindle rotary speed to weaken the Stribeck effect [27]. Beside

the two sources of cutting instability, contact between tool’s flank surface and wavy workpiece surface

introduces process damping inversely proportional to cutting velocity, expanding the stable region in the

low-velocity zone [3, 28, 29].

By using the dynamic model described above, a good prediction of the linear cutting stability can

be obtained [7]. However, it has been gradually realized in the past decade, the linear analysis alone

is insufficient for guaranteeing the cutting stability due to multi-stability introducing large-amplitude

chatter into linearly stable regions, making them unsafe [30]. The unsafe cutting (UC) was postulated
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by Stépán [13], who showed that the global stability of stationary cutting can only be guaranteed when

system parameters are chosen to be 8-10% below the linear stability limit. Insperger et al. in [31]

supported this hypothesis with the theory of subcritial Hopf bifurcation, which generates a branch of

unstable periodic solution on the stability boundaries bending towards the linearly stable region until it

reaches loss of tool-workpiece contact for stable chatter. Based on this concept, the cutting multi-stability

and its corresponding unsafe zones (UZs) can be estimated [1, 32–34].

Then the discussion on UC was extended by Yan et al. [35], who estimated the cutting safety in

the UZs to predict the possibility of chatter occurrence. Multi-stability in ordinary differential systems

are normally studied by basin of attraction or basin stability, which sweeps the spaces of potential

initial conditions and tracks their trajectories towards each attractors [36]. However, this method is

cumbersome for time-delayed systems, which have infinite many dimensions as their initial conditions are

defined in functional spaces [37]. To solve this problem for the estimation of basin of attraction or basin

stability of delayed systems, one has to map the infinite many dimensions onto some finite dimensional

spaces. Possible solutions are artificially cutting off delayed control signals at the very beginning [38],

assuming constant functional initial conditions [39], using polynomials [40] or orthogonal bases [41] for

approximation, etc. Given the periodic property of workpiece surface, Yan et al. [35] used Fourier series

to approximate the functional initial conditions of a regenerative turning process, with the basin stability

estimated to discuss the influences of surface waviness, cutting geometry and tool deflection on the cutting

safety. Recently, this method was further extended by Yan et al. [42], who combines Fourier series and

Monte Carlo principle for a better approximation of various types of wavy workpiece surface.

Based on the new model proposed in [7], the rest of this paper focuses on nonlinear cutting dynamics

involving both regenerative and frictional effects. Firstly, the model with its prediction of linear stability

is briefly revisited in Section 2. Then Section 3 employs both the perturbation analysis and numerical

simulations to locate the UZs, revealing that the estimation by perturbation methods could be invalid,

especially when the bifurcation pattern is dominated by frictional chatter with large amplitudes. After

that, the cutting safety is evaluated based on approximation of functional initial conditions with Fourier

series and Monte Carlo principle in Section 4, which unveils that the large-amplitude frictional chatter

does not expand the UZ from statistical viewpoint. Finally, some conclusions are drawn in Section 5.

2. Revisiting of the new model

An orthogonal cutting which occurs in a typical turning operation is illustrated in Fig. 1, with the

cutting zone enlarged to show the details of tool-workpiece interaction. As the workpiece rotates with

an spindle speed N [r min−1], the material is fed into the cutting tool with a workpiece speed Vc = RπN
30
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Figure 1: (a) Regenerative cutting operation, where (b) the chip flows along the tool’s rake surface and the uncut workpiece
is compressed by the tool tip. (c) Cutting and feeding forces are generated by chip-tool interaction on the rake surface, and
process damping force is exerted by the workpiece on tool’s flank surface. (d) Stribeck effect in the chip-tool friction for
different workpiece materials [7, 8].

[m s−1], where R [m] is the workpiece radius. In the primary shear zone [12], the material to be removed

is deformed to be chips flowing along the tool’s rake surface, exerting horizontal cutting and vertical

feeding forces, Fc [N] and Ff [N], on the tool’s rake face. Meanwhile, the uncut material flow along the

tool’s flank surface, introducing a process damping force, Fd [N], in Y -direction [3].

2.1. Modelling of regenerative and frictional cutting dynamics

The vertical response of the tool displayed in Fig. 1(c) is governed by

mŸ (t) + cẎ (t) + kY (t) = Ff + Fd, (1)

where m [kg], c [N s m−1] and k [N m−1] are equivalent mass, damping and stiffness of the cutting tool.

In Eq. (1), the dots over Y represent derivatives of Y with respect to time t [s]. The process damping

force can be expressed as [3, 29]

Fd = Cyap
Ẏ (t)

Vc
, (2)

where Cy [N m−1] and ap [m] are process damping coefficient and radial depth of cut, respectively. The

feeding force consists of Y -components of both normal and tangential tool face forces, Fγn and Fγ .
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The simplest model of the normal force, Fγn can be represented as follows [8, 28, 43]:

Fγn = KapH(t), (3)

whereK [N m−2] andH(t) [m] are cutting force coefficient and and chip thickness, respectively. According

to the regenerative theory shown in Fig. 1(a), the upper and lower surfaces of the chip are respectively

generated by previous and current tool passes, yielding the following instantaneous chip thickness [35]

H(t) = HD − Y (t) + Y (t− tw), (4)

where HD [m] and tw = 60
N [s] are nominal chip thickness and rotational period of the workpiece, respec-

tively. The normal force, Fγn, also induces tangential frictional force expressed as

Fγ = µFγn, (5)

where µ is equivalent frictional coefficient shown in Fig. 1(d). It is velocity-dependent expressed as

[6, 26, 44–46]

µ = sign(Vγ)

(
µd + (µs − µd) exp

(
−|Vγ |
Vs

))
, (6)

where Vγ [m s−1] and Vs [m s−1] are frictional chip velocity relative to the tool and Stribeck velocity, and

µs and µd are static and dynamic coefficients of friction, respectively [20, 47].

Given the tool geometry and chip movement, the feeding force and the frictional velocity of the chip

along the rake face can be represented as

Ff = Fγ cos(γ)− Fγn sin(γ). (7)

and

Vγ = Vch − Ẏ (t) cos(γ), (8)

where Vch [m s−1] and γ are the chip velocity and the rake angle of the tool shown in Fig. 1(b). By

applying the mass conservation principle in the primary shear zone, one obtains the chip velocity as

follows

Vch = V
sin(φ)

cos(φ− γ)
, (9)

where φ is the shear angle displayed in Fig. 1(b) [12].

The above model can be nondimensionalized for further linear and nonlinear analyses by introducing
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the following dimensionless parameters [35, 48]

ξ =
c√
mk

, w = ap
K

k
, vs =

30Vs cos(γ − φ)

πR sin(φ)

√
m

k
, cy =

30Cy
πRK

,

ν =
HD

Vs

√
k

m
, n = N

√
m

k
, τw =

60

n
= tw

√
k

m
, Ω =

2π

τw
,

(10)

and variables:

τ = t

√
k

m
, y1(τ) =

Y (t)

HD
, y2(τ) = y′1(τ) =

Ẏ (t)

HD

√
m

k

h(τ) =
H(t)

HD
= 1− y1(τ) + y1(τ − τw),

vγ(τ) =
Vγ
HD

√
m

k
=
n

vs
− ν cos(γ)y2(τ).

(11)

Then the governing equation is changed into a set of first order ODEs as follows

y′1(τ) = y2(τ),

y′2(τ) = −y1(τ)− ξy2(τ) + w (µ cos(γ)− sin(γ))h(τ)− wcy
y2(τ)

n
,

(12)

with

µ = sign(vγ) (µd + (µs − µd) exp (−|vγ |)) . (13)

The prime over y1(t) and y2(t) in Eqs (11) and (12) represents the derivative with respect to the dimen-

sionless time, τ .

2.2. Linear stability analysis of the cutting process

For a stationary cutting without oscillation in the tool’s deformation, (y1(τ), y2(τ)) ≡ (y10, 0), Eq. 12

yields

y10 = w

(
µd + (µs − µd) exp

(
n

vs

))
cos(γ)− w sin(γ). (14)

This steady state represents a stable cutting operation when the linear part of Eq. (12),

y′(τ) = Ay(τ) + Dy(τ − τw), (15)

has a stable equilibrium [20]. The vector and coefficient matrices in Eq. (15) are as follows

y(τ) =



y1(τ)− y10
y2(τ)


 , A =




0 −1

1 + wa ξ + wb


 , D =




0 0

−wa 0


 , (16)
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where

a =

(
µd + (µs − µd) exp

(
− n
vs

))
cos(γ)− sin(γ),

b =
cy
n

+ (µd − µs)ν cos2(γ) exp

(
− n
vs

)
.

(17)

The linear stability is mathematically determined by the eigenvalues of Eq. (15), i.e., the solutions of

the following eigenvalue equation [49]

det(λI−A−D exp(−λτw)) = 0, (18)

where det() and λ represent the determinant and eigenvalues, respectively. A stable equilibrium requires

all the eigenvalues having negative real parts, but any λ with positive real part destabilises the stationary

cutting. Thus the critical stability corresponds with a pair of imaginary eigenvalues, λ = ±iω, which

changes Eq. (18) into [35]

det(iωI−A−D exp(−iωτw)) = 0, (19)

or

ω2 − 1− wa(1− cos(ωτw)) = 0,

(ξ + wb)ω − wa sin(ωτw) = 0.

(20)

From Eq. (17), it is known that a and b depend on n = 60
τw

, making Eq. (20) transcendental for its

analytical solution (see [32] for a less involved problem). Therefore the following analysis will use a

numerical method based on the Newton-Raphson iteration method and continuation scheme for the

cutting stability (see more details in Appendix A [20]).

2.3. A case study

This new model can be validated by comparing the stability diagram with the one obtained by Altintas

et al. [3] and Eynian [50]. They used a carbide grooving tool with 2.4 [mm] clearance edge with 0◦ rake

angle to cut a turning cold rolled AISI 1045 steel workpiece with a diameter of 30 [mm]. According to

their identification, the cutting process is of the parameter values as follows

m = 0.561 [kg], c = 145 [N s m−1], k = 6.48× 106 [N m−1],

K = 6.02× 109 [N m−2], Cy = 6.11× 105 [N m−1],

R = 0.0175 [m], HD = 0.0005 [m], γ = 0 [degree], φ = 45 [degree].

(21)
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Figure 2: Stability boundaries (dashed black) obtained by numerical solving Eq. (20), compared with the green solid curve
from Eynian’s model and the experimental results in [50] marked by black circles (stable) and red crosses (unstable).

In the analysis of cutting stability, they considered the regenerative effect and process damping in the

tool-workpiece interface, without considering the Stribeck frictional force. As seen in Fig. 2, the original

boundary failed to discriminate the chatter from the stationary cutting in the low-velocity region. To

improve the stability analysis, we consider the frictional effect while adopting the above parameters.

However, there is no identification of frictional coefficient between carbide tools and cold rolled AISI

1045 steel to the best of the authors’ knowledge. Thus, we use the equivalent frictional coefficient between

a carbide tool and cold AISI 4140 steel which was identified by Claudin et al. [51]. The fitted coefficient

of Eq. (6) are listed as follows [7]

Vs = 0.65 [m s−1], µd = 0.23, µs = 0.54, (22)

and

ξ = 0.07605, vs = 0.10436, ν = 2.61434, cy = 0.05541. (23)

With the above values, Eq. (20) yields the dashed black curves in Fig. 2 for the stability limit, which is

in accordance with the experimental results in [50].

3. Unsafe zones

In addition to the linear cutting stability, it has been gradually realized in the last decade that

the nonlinearity in the cutting force also crucially affects the cutting dynamics in the neighbourhood
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[rev min−1]) are qualitatively correct.

of the stability boundaries, which introduces multi-stability to deteriorate the linear cutting stability

[31, 32, 34, 35]. Due to the uncertainty of cutting dynamics induced by this multi-stability, such scenarios

are deemed as unsafe cutting (UC) and the regions are unsafe zones (UZs) [1]. As claimed by Insperger

et al. [31], typical UZs are introduced by subcritical instability on stability boundaries, which yields a

branch of unstable periodic orbit bending into the stable region until the cutting tool loses its contact

with the workpiece for stable chatter orbit. Therefore, the UZs can be estimated by using perturbation

method, tracking the unstable periodic orbit and checking its non-smoothness.

Based on this theory, the method of multiple scales (MMS) is employed to estimate the UZs illustrated

in Fig. 3(a), where the angles are chosen as γ = 4◦ and φ = 40◦ corresponding with the last result given

in [7]. More details of the MMS analysis can be found in Appendix B or Refs [52, 53]. However, this

analytical estimation has a discrepancy when compared with the numerical result presented in Fig. 3(b).

More specifically, the analytical result underestimates the UZ in the high-velocity zone but overestimates

it in the low-velocity zone. In addition, as depicted in the blown-up window in Fig. 3(c), the analytical

estimation is qualitatively correct only in the shaded regions, but fail to predict the UZs in the other
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Figure 4: Bifurcation diagrams of (a) chip thickness H and (b) frictional velocity Vγ as functions of the depth of cut ap for
N = 3600 [rev min−1], with phase portraits of (c) large-amplitude frictional and (d) small-amplitude chatters and (e) time
series of stationary cutting for ap = 0.88 [mm] added. Linearly, the stationary cutting should be stable in both the grey
and yellow regions, but the cutting safety in the yellow region is deteriorated as the stationary cutting may jump to the
large-amplitude frictional chatter in Panel (c) under unexpected external perturbations. As a result, the available depth of
cut and its corresponding efficiency are decreased by this multi-stability.

regions. To demonstrate the difference, we consider three different speeds of N = 3600 [rev min−1], 3700

[rev min−1] and 3750 [rev min−1] marked as A B and C in Fig. 3 for further bifurcation analyses.

To begin with, the bifurcation diagrams for speed A (N = 3600 [rev min−1]) are constructed in Fig. 4,

with the minimum and maximum values of H and Vγ plotted as functions of the depth of cut ap. With

respect to the increase of ap, the stationary cutting is globally stable until ap reaches 0.82 [mm] where

a large-amplitude chatter marked by red squares turns up to co-exists with the stable cutting, so that

the grey stable region is transformed into the yellow UZ. When ap further increases to 0.86 [mm], as

seen in the small blown-up window, another small-amplitude chatter marked by blue dots shows up for

tristability. The stable cutting then disappears for ap ≥ 0.89 [mm] where the cutting process enters the

unstable region. Thereafter, two kinds of cutting chatters co-exist until ap reaches 1.1 [mm], where the

small-amplitude one disappears, leaving only the stronger vibration. For a clear observation of these

cutting dynamics, phase portraits and time series for ap = 0.88 [mm] are illustrated in Figs 4(c), (d)

and (e). It is seen that the large-amplitude chatter in Fig 4(c) has a sticking phase (Vγ = 0), which is a

typical characteristic of frictional chatter. By contrast, the small-amplitude chatter has non-smoothness

12

                  



3

2

1

0

-1

-2

15

10

5

0

1.21.00.80.60.40.2

Depth of cut ap [mm]

M
ax

(H
)/

M
in

(H
) 

[m
m

]
M

ax
(V

γ)
/M

in
(V

γ)
 [

m
 s

-1
]

(a)

(b)

0.45

0.5

0

H
 [

m
m

]

t [s]

0
-2 0 2

0

0

5

15

-2 0 2
H [mm]

V
γ 

[m
 s

-1
]

(c)

(d)

(e)

(f)

Stick

MMS

H [mm]

V
γ 

[m
 s

-1
]

V
γ 

[m
 s

-1
]

10.5 1.5

10

5

15

10

5

15

10

1.4

Stable

Chatter without stick

Stable

Unsafe

Unstable

Chatter with stick

MMS

Figure 5: Bifurcation diagrams of (a) chip thickness H and (b) frictional velocity Vγ as functions of the depth of cut ap for
N = 3700 [rev min−1], with phase portraits of (c) large-amplitude frictional and (d) small-amplitude regenerative chatters
for ap = 1.01 [mm] and (e) phase portrait of small-amplitude regenerative chatter and (f) time series of stationary cutting
for ap = 0.88 [mm] added. The UZ is relative small and influenced only by the small-amplitude regenerative chatter,
yielding the most accurate estimation of UZ by the MMS.

only in the cutting depth H, indicating a regenerative chatter.

The bifurcation diagram in Fig. 4 reminds us that the discrepancy between the analytical and numer-

ical estimations is originated from the branch of large-amplitude frictional chatter which is beyond the

capability of local perturbation methods. This assumption can be validated by the bifurcation diagram

for speed B (N = 3700 [rev min−1]) in Fig. 5, where the MMS yields a much better estimation. As seen,

the UZ for ap ∈ [1.01, 1.03] [mm] in Fig. 5 is much smaller than that in Fig. 4 as it is determined only by

the small-amplitude chatter and the non-smoothness in the cutting depth (H ≤ 0). The large-amplitude

chatter with sticking phases (Vγ = 0) is absent until ap is increased for the coexistence of two chatters for

ap ∈ [1.09, 1.34] [mm]. As the frictional chatter does not affect the UZ, this case is in accordance with the

theory proposed by Insperger et al. [31], so that the estimation is qualitatively correct. In application,

this case is more reliable as it has the smallest UZ for the avoidance of cutting chatter from the global
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Figure 6: Bifurcation diagrams of (a) chip thickness H and (b) frictional velocity Vγ as functions of the depth of cut ap
for N = 3750 [rev min−1], with phase portraits of (c) large-amplitude frictional and (d) small-amplitude chatters, and (e)
time series of stationary cutting for ap = 1.1 [mm] added. The large-amplitude frictional chatter has a crucial influence on
the cutting multi-stability, which yields a very large UZ and extensively deteriorates the cutting efficiency as the depth of
cut should be very small (ap < 0.5 [mm]) for chatter avoidance. Therefore, the spindle speed in application should be in
the shaded regions depicted in Fig. 3 for deep cutting.

viewpoint.

When N further grows to 3750 [rev min−1], which corresponds to C beyond the shaded region in

Fig. 3, the bifurcation diagrams are suddenly dominated by the large-amplitude frictional chatter, yielding

a very large UZ in Fig. 6. Based on the analytical estimation, the UZ is supposed to have a very small

span, ap ∈ [1.2, 1.21] [mm]. However, the large-amplitude frictional chatter with sticking phase begins

to co-exist with the stable stationary cutting for ap = 0.5 [mm], which extensively expands the UZ to

be ap ∈ [0.5, 1.21] [mm]. Therefore, the perturbation method without considering the large-amplitude

frictional chatter underestimates the UZ in the high-velocity zone in Fig. 3.

The difference between the UZs in Figs 5 and 6 is significantly influenced by the large-amplitude

frictional chatter, indicating a sudden switch between two distinct vibrations. To reveal the mechanism

and study the influence of spindle speed on the cutting dynamics, next bifurcation analysis is performed

along D marked in Fig. 3 for ap = 1.4 [mm] and N ∈ [200, 4000] [rev min−1]. Corresponding bifurcation

diagrams of H and Vγ are displayed as functions of N in Figs 7(a) and (b), where the blue dots and
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length, lw and hw, in the original workpiece surface.

red squares represent the results obtained from backward (N decreases from 4000 [rev min−1] to 200

[rev min−1]) and forward (N increases from 200 [rev min−1] to 4000 [rev min−1]) simulations, respectively.

As can be seen in Fig. 7, the cutting is absolutely stable only for small spindle speed until N increases

to 260 [rev min−1] for the co-existence of stationary cutting and frictional chatter in the left-most UZ in

Fig. 7. To illustrate, the stable cutting and frictional chatter for N = 300 [rev min−1] are displayed in

Figs 7(c) and (d). For N > 330 [rev min−1], the instability features only a monostable frictional chatter

until its amplitude is large enough to incur the loss of tool-workpiece contact at N = 770 [rev min−1].

Thereafter, the cutting dynamics is dominated by multi-stability and the chatter motion keeps jumping

among various periodic branches with its amplitude gradually increased. Corresponding with the branches

for the large-amplitude frictional chatter shown in Figs 5 and 6, the co-existing vibrations for N = 3750

[rev min−1] are displayed in Figs 7(e) and (f), respectively. Given the bifurcation diagrams shown in

Figs 5 and 6, it is known that the frictional chatter in Fig. 7(e) will disappear immediately if ap is

decreased, leading to the bifurcation pattern similar to that in Fig. 5 showing the accurate estimation of

UZ. On the contrary, the chatter in Fig. 7(f) persists with respect to the decrease of ap, yielding a large

UZ as shown in Fig. 6. Simply put, the “jump” among different large-amplitude frictional vibrations

determines the co-existing cutting chatters in the UZs.

4. Safety estimation

In addition to the estimation of the size and location of UZs, cutting safety in the UZs is also very

critical for global cutting stability. This is normally analysed by calculation of basin stability or basin of
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attraction, indicating the percentage of initial conditions leading to various attractors [54, 55]. However,

the initial spaces of time-delayed systems, such as the turning dynamics discussed here, have infinite

many dimensions, so the calculation and visualization of their basins of attraction are very hard, if

not impossible [37]. Thus next estimation of the cutting safety will use only the basin stability, i.e., the

percentage of initial conditions leading to chatter, based on the approximate method proposed in [35, 42].

To this end, the outmost layer of the workpiece displayed in Fig. 8(a) is unfold and mapped onto the

θ − p plane in Fig. 8(b), where the static and dynamic tools passes, pu and pd, are displayed as dashed

and solid lines, respectively. Correspondingly, the difference between the two passes is the bending

deformation of the tool in Y -direction:

y1 = pd − pu. (24)

Moreover, the initial surface waviness, s, can be regarded as a special dynamic pass left by a former

manufacturing operation, thus the tool displacement before the tool cuts into the workpiece can be

represented by

y1(τ) = s(θ(τ))− pu(θ(τ)) θ(τ) ∈ [0, 2π), (25)

where pu(θ(τ)) = 1− θ(τ)
2π and θ(τ) = 2π + τΩ (τ ∈ [−τw, 0)).

It is noted from Figs 8(a) and (b) that s(θ) is a periodic function with s(0) = s(2π) = 0, which can

be represented by the following Fourier series [42]

s(θ(τ)) ≈
N∑

i=1

ai (sin (iθ + iφ)− sin (iφ)) +
N∑

i=1

bi (cos (iθ + iφ)− cos (iφ))

=
N∑

i=1

ai (sin (iΩτ + iφ)− sin (iφ)) +
N∑

i=1

bi (cos (iΩτ + iφ)− cos (iφ)) ,

(26)

where ai and bi depend on the waviness length and height (lw and hw in Fig. 8(c)) in the workpiece

surface, and φ ∈ [0, 2π) reflects the geometry when the tool cuts into the workpiece [35]. For a limited

waviness height, one can confine the selection of ai and bi by using a positive constraint parameter, α,

for initial conditions [41] as follows
N∑

i=1

a2i + b2i ≤ α2. (27)

In addition, another constraint parameter, β, is employed to restrict the strength of tool’s initial free

vibration as follows

y1(0) ∈ [−β, β] and y2(0) ∈ [−β, β]. (28)

With the functional initial conditions approximated in Eq. (26), the basin stability of each co-

17

                  



100

75

50

25

0

%

2418126

N=3 N=6 N=9 N=12

N=15 N=18 N=21 N=24

2418126 2418126

40

50

60

%

0 2.5 5 7.5 10 ×10
3

Sample size M

B
as

in
 s

ta
b

il
it

y
 S

s

Number of basis functions N

B
as

in
 s

ta
b

il
it

y
 S

s

(a)

(b) (c) (d)

Figure 9: (a) With various numbers of harmonics for initial condition approximation, basin stabilities of stationary cutting,
Ss, for N = 3600 [rev min−1] and ap = 0.88 [mm] are estimated and displayed as functions of the sample size. The influence
of N on the estimation for (b) M = 200, (c) 2000 and (d) 10000 are added as well.

existing cutting dynamics can be estimated based on Monte Carlo principle, which randomly generates

M groups of coefficients, {a(j)1 , · · · , a(j)n , b
(j)
1 , · · · , b(j)n , y1(0)(j), y2(0)(j), φ(j)}Mj=1, to sample the functional

initial space. By letting Ms, Msc and Mlc respectively denote the numbers of initial conditions leading

to stationary cutting, small- and large-amplitude chatters, the basin stabilities can be correspondingly

estimated by

Ss =
Ms

M
× 100%, Ssc =

Msc

M
× 100%, and Slc =

Mlc

M
× 100%. (29)

When the sample size and the number of basis functions, M and N , are large enough, this estimation is

anticipated to be convergent [42].

To illustrate the estimation of basin stability, the co-existing attractors displayed in Figs 4(c-e) for

N = 3600 [rev min−1] and ap = 0.88 [mm] are to be studied as an example. More specifically, constraints

for the initial conditions, α and β, are fixed as 4 first, with the number of basis functions and sample

size, N and M , gradually increasing from 1 until the convergence of estimation. Corresponding results

in Fig. 9(a) displays Ss as functions of the sample size, which significantly oscillates at the beginning but

convergent for M ≥ 2000, no matter how many harmonics are chosen to approximate the initial functions.
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makes the cutting process unsafer as the occurrence of small-amplitude chatter is increased, but the large-amplitude chatter
hardly appears in this case.

In addition, the influence of N on the estimation is displayed in Figs 9(b-d), showing the convergence of

Ss for N > 18 provided a large sample size (M ≥ 2000) is used. Thus the following discussion will use

M = 2000 and N = 21 for a valid estimation of basin stabilities.

Then the influences of the constraint parameters on the basin stability is studied with α and β

selected in [0, 10]. As seen in Figs 10(a) and (b), larger constraints corresponding with rougher surfaces

and stronger tool vibrations generally result in worse cutting safety, i.e., smaller basin stability of the

stationary cutting, Ss, and larger possibility of the small-amplitude chatter, Ssc. The influence of β for

α = 0, 3, 6 and 9 are displayed in Figs 10(c-f), revealing that the large-amplitude chatter hardly occurs in

practise as Slc always stays around 0. For α = 0 in Fig. 10(c), neither the large- nor the small-amplitude

chatter shows up until the initial free tool vibration is strong enough (β > 2). For α = 3 and 6 in

Figs 10(d) and (e), the cutting safety keeps decreasing with respect to the increase of β as more and more

initial conditions move towards the small-amplitude chatter. By contrast, Fig. 10(f) for α = 9 is almost

constant, with a local maximum of the cutting safety showing up for β = 4.

Finally, the cutting safety along the bifurcation diagram in Fig. 4 is estimated with various constraint

parameters. The bifurcation diagram for N = 3600 [rev min−1] is replotted in Fig. 11(a), showing a

large unsafe zone for ap ∈ [0.82, 0.89] [mm]. Then the basin stabilities in this UZ are estimated for a

small initial constraint (α = β = 1), with Ss, Ssc and Slc displayed as functions of ap in Fig. 11(b).

It is seen that the UZ from the statistical viewpoint is extremely small, as the possibility of chatter
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occurrence is non-zero only in a very small region close to the unstable zone. This result is in accordance

to the “boundary layer” observed in [35, 42], demonstrating a high safety level in the UZ. By contrast,

an intermediate initial constraint (α = β = 4) significantly increases Ssc, but has no influence on Slc

in the UZ. The statistical UZ correspondingly expands leftwards, but does not enter the region without

small-amplitude chatter. Similar result is obtained in Fig. 11(d) for a large initial constraint (α = β = 7),

showing an insignificant influence of the large-amplitude frictional chatter on the cutting safety. Besides,

Figs 11(c) and (d) reveal that a stronger initial perturbation increases the occurrence of chatter with more

energy, i.e. Fig. 11(d) has larger values of Ssc for ap ∈ [0.86, 0.89] [mm] and of Slc for ap ∈ [0.97, 1.1]

[mm] compared with Fig. 11(c). This confirms the obvious from the metal cutting knowledge that a fine

workpiece surface and a static tool result in a better cutting safety.

5. Conclusions

Based on our previous modelling and analysis of regenerative and frictional cutting dynamics, we have

explored nonlinear cutting dynamics with efforts specially put on multi-stability. With the UZs located

by analytical and numerical bifurcation analyses and the functional initial conditions approximated by

Fourier series, the cutting safety has been estimated by basin stability, revealing the relationship between

20

                  



initial constraints and the possibility of chatter occurrence.

Perturbation analysis unveiled subcritical instabilities of the linear stability boundaries, demonstrat-

ing multi-stability in the linearly stable region adjacent to the boundaries (UZs). However, the additional

nonlinearity and non-smoothness introduced by the chip-tool friction significantly influences the bista-

bility near linear stability boundaries, resulting in an invalid estimation of the UZ by the perturbation

method. We resolved this problem by the numerical bifurcation analysis and an extended UZ induced by

the persistence of large-amplitude frictional chatter in the linearly stable region, was determined. Thus

the size of the UZ estimated by the perturbation method could be qualitatively valid only for the chatter

with no sticking phases resulting form frictional interactions.

To further assess the cutting safety in the UZs, Fourier series and Monte Carlo principle were used

to approximate the functional initial conditions, with the waviness height, cutting geometry and initial

tool deformation randomly generated to estimate the basin stabilities of stationary cutting, small- and

large-amplitude chatters, respectively. This estimation gradually converged when more and more samples

and basis functions were used.

It was then revealed that the influence of large-amplitude chatter on the UZ is insignificant from

the statistical viewpoint. The cutting dynamics never jumped onto this orbit when it co-exists with the

stable stationary cutting, showing that the UZ estimation by perturbation method is statistically valid.

Appendix A. Continuation scheme

Section 2.2 employs a numerical continuation scheme solve the transcendental eigenvalue equation,

Eq. (20), to locate the critical boundaries for the cutting stability. As illustrated in Fig. A.1, this method

requires two initial solutions for the guess of their adjacent solution, which is used to start the Newton-

Raphson iteration for the new solution. If the iteration fails to convergent, a new guess will be given

with the relaxing parameter, r, decreased. This procedure is be repeated until the boundary of interested

parameter regions is reached or the number of solutions is more than the pre-defined maximum step.

Appendix B. Nonlinear analysis by MMS

To track the periodic branch born on the stability boundary for the UZs, the method of multiple

scales (MMS) is adopted [52]. To begin with, the dimensionless depth of cut, w, is detuned into

w = wc + ε2wε, (B.1)
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Figure A.1: Numerical continuation scheme for continuously solving Eq. (20), yielding the stability boundaries in Fig. 2.

where wc is the critical depth of cut on the boundaries, and ε is a bookkeeping dimensionless parameter

indicating that w is in the neighbourhood of wc. Then T0 = τ and a slow time scale T2 = ε2τ , are

introduced with the solution of (Eq. 12) expanded into

y(τ) = εy1(T0, T2) + ε2y2(T0, T2) + ε3y3(T0, T2) + · · ·

= ε



y11(T0, T2)

y21(T0, T2)


+ ε2



y12(T0, T2)

y22(T0, T2)


+ ε3



y13(T0, T2)

y23(T0, T2)


+ · · · .

(B.2)

Correspondingly, the delayed term is expanded into

y1(τ − τw) =εy11(T0 − τw, T2 − ε2τw) + ε2y12(T0 − τw, T2 − ε2τw)

+ ε3y13(T0 − τw, T2 − ε2τw) + · · ·

=εy11(T0 − τw, T2) + ε2y12(T0 − τw, T2)

+ ε3
(
y13(T0 − τw, T2)− τ ∂y11(T0 − τw, T2)

∂T2

)
+ · · · .

(B.3)

Then, substituting Eqs (B.1), (B.2) and (B.3) into Eq. (12) and collecting the coefficients of ε and ε2
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yield

∂y11
∂T0

− y21 = 0,

∂y21
∂T0

+ y11 + ξy21 + wc

(
µd cos(γ) + (µs − µd) e−

60
vsτw cos(γ)− sin(γ)

)
(y11 − y11τ )

+ wc

(
cy
τw
60
− (µs − µd)e−

60
vsτw ν cos2(γ)

)
y21 = 0,

(B.4)

and

∂y12
∂T0

− y22 = 0,

∂y22
∂T0

+ y12 + ξy22 + wc

(
µd cos(γ) + (µs − µd) e−

60
vsτw cos(γ)− sin(γ)

)
(y12 − y12τ )

+ wc

(
cy
τw
60
− (µs − µd)e−

60
vsτw ν cos2(γ)

)
y22

= wε

(
µd cos(γ) + (µs − µd) e−

60
vsτw cos(γ)− sin(γ)

)

− wc(µs − µd)e−
60
vsτw ν cos2(γ)(y11 − y11τ )y21 +

wc

2
(µs − µd)e−

60
vsτw ν2 cos3(γ)y221,

(B.5)

where yij = yij(T0, T2) and y1iτ = y1j(T0 − τ, T2) (i = 1, 2 and j = 1, 2, 3, · · · ). As Eq. (B.4) corresponds

with Eq. (15), it has the non-decaying solution

y1 =



y11

y21


 =



r1

r2


A(T2)eiωT0 + c.c. (B.6)

where c.c. is the complex conjugate of its preceding terms, and (r1, r2)T = (1, iω)T denotes a right

eigenvector with respect to the critical eigenvalue λ = ±iω. Substituting Eq. (B.6) into Eq. (B.4) yields

∂y12
∂T0

− y22 = 0,

∂y22
∂T0

+ y12 + ξy22 + wc

(
µd cos(γ) + (µs − µd) e−

60
vsτw cos(γ)− sin(γ)

)
(y12 − y12τ )

+ wc

(
cy
τw
60
− (µs − µd)e−

60
vsτw ν cos2(γ)

)
y22

= wε

(
µd cos(γ) + (µs − µd) e−

60
vsτw cos(γ)− sin(γ)

)

− wc(µs − µd)e−
60
vsτw ν cos2(γ)(1− e−iωτw)iω(A(T2)2e2iωT0 −A(T2)A(T2))

+
wc

2
(µs − µd)e−

60
vsτw ν2 cos3(γ)ω2(A(T2)A(T2)−A(T2)2e2iωT0) + c.c.,

(B.7)
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where • denotes the complex conjugate of •. For brevity, we introduce

C0 = −A−D,

C2 = 2iωI−A−De−i2ωτw ,
(B.8)

and

χ0 =wε

(
µd cos(γ) + (µs − µd) e−

60
vsτw cos(γ)− sin(γ)

)

− wc(µs − µd)e−
60
vsτw ν cos2(γ)(1− e−iωτw)iω(−A(T2)A(T2))

+
wc

2
(µs − µd)e−

60
vsτw ν2 cos3(γ)ω2A(T2)A(T2) + c.c.,

χ2 =− wc(µs − µd)e−
60
vsτw ν cos2(γ)(1− e−iωτw)iωA(T2)2e2iωT0

+
wc

2
(µs − µd)e−

60
vsτw ν2 cos3(γ)ω2(−A(T2)2e2iωT0) + c.c.,

(B.9)

to represent the particular solution of Eq. (B.7) as follows

y2 =



y12

y22


 = C−10




0

χ0


+ C−12




0

χ2


+ c.c.. (B.10)

Next, substituting Eqs (B.1), (B.2), (B.3), (B.6) and (B.10) into Eq. (12), collecting the coefficients

of ε3 and eliminating the secular terms which are proportional to eiωT0 by Fredholm Alternative [52], one

can obtain the governing equation of A(T2) as

∂A(T2)

∂T2
= Λ1A(T2) + Λ3A(T2)2A(T2), (B.11)

where Λ1 and Λ3 depend on all of the dimensionless parameters. Their detailed expressions are omitted

here as they are too tedious. Lastly, substituting A(T2) obtained by solving Eq. (B.11) in Eq. (B.6) yields

the first order approximation of the periodic chatter, following which one can estimate the UZs shown in

Fig. 3(a) by checking the non-smoothness in the cutting depth [34].
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