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Abstract 
Introduction: Alpha angle (AA) is a widely used measure of hip shape 
that is commonly used to define cam morphology, a bulging of the 
lateral aspect of the femoral head. Cam morphology has shown 
strong associations with hip osteoarthritis (OA) making the AA a 
clinically relevant measure. In both clinical practice and research 
studies, AA tends to be measured manually which can be inconsistent 
and time-consuming. 
 
Objective: We aimed to (i) develop an automated method of deriving 
AA from anterior-posterior dual-energy x-ray absorptiometry (DXA) 
scans; and (ii) validate this method against manual measures of AA. 
 
Methods: 6,807 individuals with left hip DXAs were selected from UK 
Biobank. Outline points were manually placed around the femoral 
head on 1,930 images before training a Random Forest-based 
algorithm to place the points on a further 4,877 images. An automatic 
method for calculating AA was written in Python 3 utilising these 
outline points. An iterative approach was taken to developing and 
validating the method, testing the automated measures against 
independent batches of manually measured images in sequential 
experiments. 
 
Results: Over the course of six experimental stages the concordance 
correlation coefficient, when comparing the automatic AA to manual 
measures of AA, improved from 0.28 [95% confidence interval 0.13-
0.43] for the initial version to 0.88 [0.84-0.92] for the final version. The 
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inter-rater kappa statistic comparing automatic versus manual 
measures of cam morphology, defined as AA ³≥60°, improved from 
0.43 [80% agreement] for the initial version to 0.86 [94% agreement] 
for the final version. 
 
Conclusions: We have developed and validated an automated 
measure of AA from DXA scans, showing high agreement with 
manually measuring AA. The proposed method is available to the 
wider research community from Zenodo.
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Introduction
Alpha angle (AA) is a measure designed to examine the pres-
ence and severity of cam morphology at the hip joint1. Cam  
morphology describes a bulging of the lateral aspect of the  
femoral head that causes the femoral head to become aspherical  
leading to a pistol grip type appearance; it is a key component 
of femoro-acetabular impingement (FAI)2,3. AA is the angle  
measured between two lines, the first line from the mid-point  
of the femoral neck to the centre of the femoral head, and 
a second line from the centre of the femoral head to a point on  
the femoral head where the femoral head or neck leaves a  
circle of best fit placed over the femoral head (Figure 1)1,4. 
The higher the AA the more indicative of cam morphology it  
is – with previously published thresholds of 50°, 55°, 60° and  
83° all being used to define the presence of cam morphology1,4–7.

Cam morphology is an important shape variation of the femo-
ral head. It has been associated with hip osteoarthritis (OA) 
and subsequent total hip replacement (THR), a proxy for  
end-stage OA4,8. Cam morphology is thought to lead to hip 
pain in FAI syndrome9. AA has been used in clinical trials as  
inclusion criteria to investigate the use of surgical procedures 

to treat FAI syndrome, but no agreed standardised approach of  
measuring AA exists7,10. AA was first developed utilising 
magnetic resonance imaging (MRI) before being applied to  
anterior-posterior (AP) and lateral radiographs for large-scale  
epidemiological analyses1,6. One approach to manually meas-
uring AA on AP hip radiographs is to use software such as 
HipMorf or OxMorf11–13. These packages allow the user to  
manually fit a circle over the femoral head and then mark 
where the femoral head leaves this. Alternatively, AA has been  
calculated from outline points which have been placed manually 
around the femoral head4,8. AA derived from outline points has  
been shown to be predictive of hip OA8. When using auto-
matically placed points, concerns have been raised about the  
validity and reproducibility of such an outline points-based 
approach due to the difficulty in deciding where exactly the 
femoral head deviates from the circle of best fit14. To date, no  
reproducibility studies on methods for automatically measur-
ing AA have been published nor is any open source code to  
do this available.

Dual-energy x-ray absorptiometry (DXA) scans are commonly  
used to derive measures of bone mineral density, and are  

Figure 1. Top left image: A representative UK Biobank (UKB) hip dual-energy x-ray absorptiometry (DXA) scan depicting a 
femoral head with cam morphology. Bottom left image: The same DXA as above marked with a red circle of best fit plotted over the 
femoral head. The two blue lines illustrate the lines from which the alpha angle (AA) is calculated; one line goes from the middle of the 
femoral neck to the centre of the circle and the other goes from the centre of the circle to the point at which the femoral head leaves the 
circle of best fit. Top right image: A UKB hip DXA without cam morphology. Bottom right image: The same DXA as above marked with a red 
circle of best fit and blue lines from which the AA is calculated.
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increasingly being used to look at hip shape15,16. In addition, a 
new generation of hip DXA scanner allows for higher resolu-
tion images which has led to the use of DXA scans in detecting  
radiographic OA for research purposes17,18. Compared to radio-
graphs, DXA scans involve lower radiation doses and are avail-
able from larger population studies, such as the UK Biobank 
(UKB) enhanced imaging study19,20. This work aimed to  
(i) develop a method to automatically derive AA from outline 
points placed around the femoral head in DXA scans obtained 
in UKB; and (ii) validate the method against manual measures  
of AA. We also compare values obtained using our method  
to previously published population level statistics. 

Methods
Population
UKB is a UK-based mixed sex cohort made up of 500,000 indi-
viduals aged between 40–69 years at recruitment (2006–2010)21.  
A full data catalogue is available online. A subset of 100,000 
individuals are due to have high resolution iDXA scans done 
on both hips (2013 – ongoing) with over 45,000 already  
completed19. An initial training sample of 2,000 individu-
als with a DXA scan was selected but 70 DXA scans were 
excluded due to poor image quality leaving a training sample of  
1,930 individuals. A further extension sample of 5,000  
individuals with a DXA scan was selected but 123 DXA scans 
were excluded due to poor image quality leaving an exten-
sion sample of 4,877 individuals. The training and extension  
samples were selected from an overall sample of 13,496  
individuals with DXA scans available at the time (January  
2019). The first 20% of both the training and extension  
samples were selected randomly from those with a self-reported  
diagnosis of OA based on a questionnaire completed at the 
same visit as the DXA scan (no joints were specified in the  
question). This was done to increase the number of patho-
logical scans in the training sample as part of a wider research 
programme to automate the assessment of radiographic  
osteoarthritis. It was this wider research programme that guided 
the sample size selection as large samples are needed for 
machine learning. The remainder of the training and extension  
samples (80%) were selected randomly ensuring the sexes were 
equally weighted18. The combined sample is made up of both 
the training and extension sample. All demographic information  
was obtained on the same day as the DXA scan.

DXA images and outline points
As part of UKB, DXA scans of both hips (iDXA GE-Lunar, 
Madison, WI) were obtained from participants positioned with  
15–25° internal rotation using a standardised protocol20. In this 
study, we only examined the left hip DXA scans. All DXAs 
in the training sample had 85 outline points positioned around  
the femoral head, metaphysis, lesser and greater trochanters, 
and the superior acetabulum by four manual annotators. Of the 
85 points, 18 points were placed on anatomical landmarks (key 
points) and the remaining points were placed equidistant apart 
along the edge of the bone. A Random Forest-based machine  
learning algorithm was then trained on these images and used 
to automatically annotate the extension sample with the 85  
outline points22,23. All automatically placed points were checked 
and manually corrected where necessary. The mean correction 

distance was 0.7mm (movement orthogonal to bone boundary:  
0.1mm) with the majority of points remaining unchanged. 
When osteophytes were present the outline points were moved 
manually inside of the osteophyte (if not already correct)  
to avoid including osteophytes in our AA. Of the 85 out-
line points only points 8 to 39 along the femoral head and 
neck were used in this study to derive the AA measurements  
(Figure 2). For each image, all point positions were stored  
as x, y coordinates in a text file.

Manual measure of alpha angle
To provide a manual ‘gold-standard,’ against which to test 
the automated method, AA was measured manually by BF, a  
rheumatology doctor, for a random selection of images divided 
into 5 batches of 100 (n=400 from the training sample and  
n=100 from the expansion sample). This was done using  
custom software (University of Manchester) that allows the user 
to manually (i) place and scale a circle to best fit the femoral  
head; (ii) place a point where the femoral head leaves the circle; 
and (iii) position callipers across the narrowest section of the 
femoral neck (Figure 3). The software saves the centre point of  
the circle, the midpoint of the narrowest section of the femo-
ral neck, and the point at which the femoral head leaves the  
circle. The manual AA was then calculated from these points 
using a custom Python 3 script. Intra-rater variability was 
assessed on a subset of 100 scans, repeating the measurements  
9 months after they were initially obtained.

Automated measure of alpha angle - model refinement 
approach
We followed a sequential experimental design to test and 
iteratively optimise our automatic AA calculation based on  
comparisons with manually derived measures. Initially, a model 

Figure 2. A representative dual-energy x-ray absorptiometry 
(DXA) scan from UK Biobank (UKB) with all femoral head and 
acetabular outline points labelled. The points marked in red are 
key anatomical landmarks. Only points 8–39 were used in this study. 
The acetabular points and the remaining proximal femur points 
were not necessary.
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was designed to derive automatic AA (model 1) and was tested 
on 100 images randomly selected from the training sample  
with manually placed outline points. Refinements were made 
to the way AA was automatically measured (models 2–4) and 
are detailed in the following methods. To test each model itera-
tion a subset of 100 images was analysed, with AA measured  
both manually and automatically in a blinded fashion. The 
method to automatically measure AA was finalised using sub-
sets of the training sample with manually placed outline points  
resulting in model 4. Following this, a final evaluation was 
done to analyse the performance of the method when using  
automatically placed but manually corrected outline points using 
the extension sample.

Model 1 - defining a circle of best fit
All point position text files were read into Python 3 using 
Jupyter Notebook. Within Python 3, a freely available least-
squares regression model package (circle_fit) was used to 
place a circle of best fit to points 15 and 28 on the femoral head  
(Figure 2)24. The circle_fit output gives the x and y coordinates  
of the centre of the circle, the radius of the circle and the  
variance (the variance was not used). Point 15 marked the infe-
rior medial curvature of the femoral head and was chosen to  
be the starting point of the circle fitting. Point 30 marked the 

superior lateral curvature of the femoral head. However, instead  
of point 30, point 28 (i.e. two points medial of point 30) 
was chosen to be the end point of the circle fitting to avoid  
overfitting the circle of best fit to cam-type femoral heads. This 
method of circle fitting was manually qualitatively assessed  
on 500 DXA scans and deemed appropriate.

Model 1 - defining the femoral neck mid-point
Finding the narrowest point of the femoral neck was done using 
a line-segment approach. The femoral neck was demarcated 
by points 8–12 for the medial side and points 32–36 on the  
lateral side (Figure 2). For these two sets of points, a straight 
line was constructed between each pair of consecutive points. 
For each straight line segment, the shortest distance was  
measured between that line and a point on the opposing side 
of the femoral neck. For example, a line would be drawn  
between points 8 & 9 and the shortest distance may be found 
between this line and point 35. The shortest distance across 
all line segments defined the narrowest width of the femoral  
neck; the mid-point on this line is calculated and saved as  
the femoral neck point.

Model 1 - defining the index point
The index point is referred to as the first outline point judged 
to be truly ‘outside’ of the circle of best fit. It is critical to  
defining the intersection position, the coordinates at which 
the femoral head or neck leaves the circle which is the key  
element for calculating AA. For identifying the index point, 
we defined the residual as the distance between each point  
(from points 15–28) and the centre of the circle (distance to 
centre) minus the radius of the circle. For each image, the  
maximum residual is the index point threshold for that image. 
For spherical femoral heads the index point threshold will 
be lower compared to aspherical femoral heads which are  
harder to fit a circle to. The index point was defined to be the 
first point after point 28 which deviated from the circle by  
more than the index point threshold (i.e. the maximum residual)  
with the point afterwards (in clockwise direction) also  
having a residual greater than that of the index point. For  
example, if point 30 deviated from the circle by more than the  
maximum residual and point 31 also deviated from the  
circle by more than point 30’s residual then point 30 would 
be the index point. In contrast, if the residual of point 31 was  
smaller than or equal to that of point 30 then point 30 would 
not be considered to have left the circle and therefore not  
be the index point.

Model 1 - defining the intersection position
Once the index point has been identified, the intersection posi-
tion can be calculated. The calculation of the intersection  
position depends on whether the outline point preceding the 
index point lies inside or outside of the circle of best fit. In 
the former case the intersection position is defined by the  
coordinates at which a line between the index point and the  
preceding point crosses the circle (Figure 4). If the outline point  
preceding the index point lies outside of the circle, but within 
the index point threshold, then there is no clear intersection 
position (Figure 5). In this case, the intersection position is  
approximated to be the outline point before the index point. 

Figure 3. A screenshot of customised software from the 
University of Manchester. A circle is manually scaled and moved 
to fit the circle of best fit to the femoral head. A point is placed 
where the femoral head leaves the circle (cyan dot). Callipers are 
positioned across the narrowest section of the femoral neck. 
The software saves the centre point of the circle (cyan cross), the 
narrowest point of the femoral neck, and the point at which the 
femoral head deviates from the circle of best fit. The manual AA is 
then calculated from these points.
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This is also the case if the line between the index point and 
preceding point is a tangent to the circle where again there is  
no clear intersection position.

Model 2 – index point definition change
Initial testing showed that the index point definition was too 
sensitive in model 1, identifying outline points as having  
left the circle which by manual visual inspection appeared to be 
on the circle. To improve performance and decrease the ‘false 

positive rate’ of cam detection, the index point definition was 
changed in model 2, to now require three consecutive points  
leaving the circle by increasing residual values above the 
index point threshold (Figure 6). Model 2 was no different to  
model 1 with regards to the other key elements: circle fitting,  
femoral neck midpoint and intersection position.

Testing the performance of model 2 against manual measures  
in 100 randomly selected images showed good agreement 

Figure 5. A graphical representation from Python of a set of points where the line between the index point and its preceding 
point does not intersect the circle. In this case, the preceding point (green) is the approximate intersection position as it has a smaller 
residual than the index point.

Figure 4. A graphical representation from Python of the points on a ‘straight forward’ dual-energy x-ray absorptiometry (DXA) 
scan. In this case the intersection position (green) is easily defined between two outline points which lie either side of the circle of best fit.

Page 6 of 11

Wellcome Open Research 2021, 6:60 Last updated: 17 MAR 2021



but there were only two images with manually classified cam  
morphology in this sample. This led to the suspicion that 
the high percentage agreement (see Results) achieved in this 
experiment may be due to the sample being a poor testing set.  
Model 2 was then tested again using a weighted random  
sample such that one third (33%) of the images had an automatic  
AA ≥60°. This improved the discriminatory performance 
for cam morphology compared to model 1. However, it was  
still deemed that there were too many ‘false positive’ results 
where AA was too high as compared to manual assessment.  
From here on all testing subsamples were weighted to include  
one third (33%) of images with an automatic AA ≥60°.

Model 3 – refined index and intersection position 
definitions
To further improve the index point threshold for model 3,  
negative residuals were included for the first time (after  
multiplication by -1) and could now inflate the index point  
threshold; if points 15–28 lay inside the circle then their  
negative residual might show greater deviation from the cir-
cle than those outline points which lay outside of the circle with 
positive residuals. Moreover, a minimum index point threshold 
of 1mm was included for cases of near perfect circle fit (i.e. cases 
where the femoral head was deemed by the automatic method 
to have left the circle but this was not discernible manually),  
aiming to reduce ‘false positives’. A value of 1mm was 
selected as the minimum threshold to represent an approxima-
tion of what was detectable by eye on the images. Prior to the  
minimum index point threshold, a point lying a fraction of 
a millimetre outside of the circle could be incorrectly regis-
tered as the index point (e.g. for very spherical femoral heads). 
In addition, if there was no intersection position on the circle  

then the approximated intersection position was moved to 
the outline point before, on or after the index point depend-
ing on which outline point had the smallest residual. Otherwise,  
model 3 remained the same as model 2 in terms of circle  
fitting and the femoral neck mid-point.

Qualitative analysis of model 3 results and in particular  
outliers indicated the index point definition had become too  
stringent with several ‘false negative’ scans (i.e. non-detected  
cam morphologies).

Model 4 – final model
For the fourth model iteration (model 4), the index point  
definition was modified so that the residual for three consecu-
tive points following the index point had to be greater than  
the index point threshold but they did not need to be ever 
increasing. That is, the point after the index point could have 
a smaller residual than the index point as long as it remained 
above the index point threshold. Otherwise model 4 remained 
the same as model 3 with regards to circle fitting, femoral neck  
mid-point and the intersection position.

Statistical analysis
We report the mean AA along with the AA range for both  
manual and automatic measures. To assess agreement between  
manual and automatic AA measures, the mean absolute differ-
ence is presented along with its standard deviation (SD) and a 
concordance correlation coefficient was calculated, presented  
with its 95% confidence interval (CI)25. Bland-Altman plots 
were used to visualise this agreement and to identify outliers.  
Cam morphology was defined as AA ≥60° based on a recent 
systematic review of previous studies26. To give a broad  

Figure 6. A graphical representation from Python of the same set of points for Experiments 1 and 2. The blue circle shows the 
circle of best fit plotted from point 15 to 28. The left image shows the results of Experiment 1 with the green interception point marked at 
around 12 o’clock giving an automatic alpha angle (AA) of 112°. This was viewed as a falsely elevated AA as on visual inspection of this hip 
dual-energy x-ray absorptiometry (DXA) scan. The slight deviation seen on this graphical illustration of the points from 1 to 2 o’clock was not 
visible by eye. The right image shows the same set of points for Experiment 2 with the green interception point marked close to 3 o’clock, 
giving an automatic AA of 47°. The manual AA for this image was 46°. Experiment 2 yielded improved results because of the optimised 
definition of the index point.
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perspective on the automatic classification of cam, the prevalence 
of cam morphology, derived from the automatically calculated  
AA, is given for each model for either the training sample  
(n=1,930) or the extension sample (n=4,877) depending on 
the test population. Due to the known AA differences between 
sexes the summary results of our final model were stratified by  
sex6. In addition, inter-rater kappa statistics, presented 
with percentage agreement, were used to compare the cam  
morphology classifications based on the manual versus automatic  
AA measurements. Following the described iterative approach, 
we aimed to achieve strong agreement between the manual  
and automatic cam classifications as defined by a target  
kappa of 0.827. All statistical analysis was performed using  
Stata version 15 (StataCorp, College Station, TX, USA).

Results
A description of basic demographic variables is provided for the 
training (n=1930), extension (n=4877) and combined samples  
(n=6807) in Table 1. Each model 1–4 derived AA from the  
manually placed points in the training sample (n=1930) and 
these measures were tested against manually derived AA in 
four subsets of 100 images. Mean manual and automatic AA  
including ranges, mean absolute difference, concordance cor-
relation coefficients and cam-based inter-rater kappa’s for each  
model iteration are given in Table 2.

Final model – model 4
In 100 randomly selected images from the training sample,  
weighted to include one third (33%) with an automatic  
AA ≥ 60°, model 4 gave an automatic mean AA of 56.0° 
[range 35.5–106.2°] compared to a manual mean AA of 53.8°  
[35.3-100.6°]. The mean absolute difference was 2.2° [SD 10.8]. 
The concordance correlation coefficient was 0.83 [95% CI: 
0.77-0.89] and the cam-based inter-rater kappa was 0.84 [93%  
agreement] (Table 2). A Bland-Altman plot (Figure 7) showed 
only five of the 100 images lay outside of the 95% confidence 
interval; all of the five outliers had higher than average AAs.  
On review of the five outlier images, four showed errors in the 
manual AA measurement with poor manual circle fitting. The 

remaining image showed the automatic method had failed to  
recognise a visually noticeable deviation of the femoral head 
from the circle of best fit; the residual for one of the three  
outline points encompassing this deviation was 0.96mm 
(0.04mm beneath the automatic minimum index point threshold 
of 1mm) meaning the algorithm did not measure the AA from 
this area. The kappa statistic for model 4 was above the target  
threshold of 0.8 meaning it was selected as the final model  
to test in the extension sample.

Testing the final model in the extension sample
Our final model (model 4) was applied to the extension  
sample of 4,877 individuals with automatically placed outline  
points which were subsequently manually corrected. From the 
extension sample, a randomly selected subsample of 100 DXA 
scans, weighted to include one third (33%) of images with 
an automatic AA ≥60°, had manual AA derived. Comparison 
between automatic AA based on points that were automatically  
derived but manually corrected and manual AA showed an auto-
matic mean AA of 58.1° [33.2-102.0°] compared to a manual 
mean AA of 54.7° [32.4-99.0°]. The mean absolute differ-
ence was 3.4° [SD 8.6]. The concordance correlation coefficient  
was 0.88 [95% CI: 0.84-0.92] and the cam-based inter-rater  
kappa was 0.86 [94% agreement].

Manual intra-rater comparison
The subsample of 100 images which was used to test model 4  
in the training sample was re-assessed for manually derived  
AA after 9 months. The two sets of manual AA measures were 
compared, giving a concordance correlation coefficient of 
0.83 [95% CI: 0.76-0.89] and the cam-based intra-rater kappa  
was 0.80 (91% agreement).

Automatic alpha angle in the combined sample
Our final model (model 4) was then applied to all the individu-
als in the combined sample (n=6807), the mean AA was 47.8°  
[33.2-115.0°], in males the mean AA was 51.6° [35.8-106.2°]  
and in females the mean AA was 44.2° [35.2-115.0°].

Table 1. Sample demographics. This table shows the age, height, weight and sex of the individuals 
in the training, extension and combined samples. The combined sample is the training and 
extension sample together.

Demographic variables 
Continuous

Training sample 
Mean [range]

Extension sample 
Mean [range]

Combined sample 
Mean [range]

Age (years) 62.3 [45-78] 62.3 [46-80] 62.7 [45-80]

Height (cm) 169.8 [145-198] 170.2 [137-203] 170.1 [137-203]

Weight (kg) 76.8 [42-154] 76.0 [36-160] 76.2 [36-160]

Demographic variables 
Binary

Count [percentage] Count [percentage] Count [percentage]

Sex (male) 949 [49.2] 2433 [49.9] 3382 [49.7]

Sex (female) 981 [51.8] 2444 [50.1] 3425 [50.3]

Total 1930 4877 6807
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Table 2. Comparing of the performance of each automatic model iteration versus manual measurement of alpha angle 
(AA). The manual and automatic means are given for each set of images (n=100) compared in the respective testing samples. The mean 
absolute difference calculated between the manual and automatic means is presented with its standard deviation (SD). The inter-rater 
kappa was calculated between manual and automatic cam classifications. The percentage agreement is presented alongside the kappa 
statistic. The concordance correlation coefficient compares the continuous alpha angle measures and is presented with a 95% confidence 
interval (CI). The prevalence of cam morphology defined as automatic AA ≥60° is given for all 1930 participants in the training sample for 
model iteration 1-4 and all 4,877 participants from the extension sample in the final model test.

Model 
iteration

Test sample Manual AA 
Mean [Range]

Automatic AA 
Mean [Range]

Mean 
absolute 

difference 
[SD]

Kappa 
[percentage 
agreement]

Concordance 
correlation 
coefficient 

[95% CI]

Automatic 
cam 

prevalence

1 Random training 
sample

49.5 [36.4-115.8] 60.2 [38.0-117.9] 10.7 [25] 0.43 [80%] 0.28 [0.13-0.43] 28.7%

2 Random training 
sample

44.1 [34.2-77.3] 46.9 [36.3-103.3] 2.8 [6.9] 0.66 [98%] 0.60 [0.52-0.69] 9.6%

2 Random and 
weighted training 

sample

56.9 [36.7-103.7] 66.7 [39.8-113.2] 9.8 [16] 0.59 [80%] 0.62 [0.52-0.72] 9.6%

3 Random and 
weighted training 

sample

56.9 [36.7-103.7] 59.1 [39.1-106.2] 2.1 [11.0] 0.70 [87%] 0.81 [0.74-0.87] 4.7%

4 Random and 
weighted training 

sample

53.8 [35.3-100.6] 56.0 [35.5-106.2] 2.2 [10.8] 0.84 [93%] 0.83 [0.77-0.89] 7.2%

Final 
model 

Random and 
weighted 

extension sample

54.7 [32.4-99.0] 58.1 [33.2-102.0] 3.4 [8.6] 0.86 [94%] 0.88 [0.84-0.92] 9.1%

Figure 7. A Bland-Altman plot for model 4 testing in the training sample to compare manual and automatic alpha angles. The 
figure shows that all measures were within a 95% confidence interval (dashed lines) apart from 5 outliers. All outliers were examined and 
visually inspected: four outliers showed errors in the manual AA measure where the automatic measure was able to better fit a circle to the 
femoral head; and one outlier where the automatic method ignored a slight bulging of the femoral head as one outline point had a residual 
of 0.96mm, 0.04mm below the threshold of 1mm.
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Discussion
We propose a method to automatically derive AA from AP hip 
DXA scans. The method is based on outline points and has  
been validated against manual AA measures. We have described 
how the method was developed, providing our Python code 
for the final version of the method for wider use by the  
research community28.

Similar methods utilising outline points to calculate AA have 
been reported previously but these studies do not include  
details on method synthesis, validation, nor open source 
code to allow for replication. In addition, some do not incor-
porate automatically placed points and require full manual  
annotation of the outline points which is time-consuming4,8 and 
those methods including automated point placement failed to 
achieve consistent results as compared with manual annotators14.  
In contrast, the work presented here allows for replication of 
our methods and details our comprehensive validation using 
500 blinded manual AA measures. In terms of validation,  
previously reported studies investigating cam morphology 
defined by AA have reported inter-rater kappas of 0.734 and  
0.8329; our method showed an inter-rater kappa of 0.84-0.86 
which compares favourably to these studies. In addition, our  
automatically derived AA from DXA scans in 6,807 UKB par-
ticipants (males: mean AA 51.6°, range 35.8–106.2°; females: 
mean AA 44.2°, range 35.2–115.0°) were closely aligned to  
AA derived manually from radiographs in a large Danish cohort 
(males: mean 52.6°, range 30–108°; females: mean 45°, range 
26–92°) providing further indication that our methods work  
as expected6.

There are limitations to our work. Firstly, although the outline 
point placement is automated it requires manual checking to  
make sure it is correct, and osteophytes are excluded from the 
outline. However, this requires much less time than manually 
placing outline points and makes it feasible to obtain the large  
sample sizes required for genome-wide association studies30.  
Further work is being undertaken to improve automated out-
line point placement, and to develop a flagging system to high-
light images requiring manual inspection where the point  
placement is suboptimal. Secondly, when validating our  

automated method, we compared these measures to one highly 
trained manual operator only. A main contribution of this work is 
that this is the first paper to set out a detailed method of how to  
automatically derive measures of AA on AP hip images. More 
work is needed to see if this code derived from DXA scans 
can be successfully repurposed to radiographs. However,  
if this is not the case then the same experimental approach  
could be used to develop and validate new code for radiographs.

To conclude, we have described the development and valida-
tion of a method to derive AA on AP hip DXA images. We have 
made the proposed method available to other researchers in  
the field, allowing for AA to be derived in a standardised 
way across studies and in particular large population cohorts.  
This will enable the analysis of AA against clinically rel-
evant outcomes such as OA, hip pain and THR, paving the way  
for this technology to be integrated into clinical care.

Data availability
Source data
The outline points for the UKB hip DXA scans used in this 
study are developed by the Wellcome Collaborative Grant  
AUGMENT (project application 17295). The points files used 
in this study will be made available from UK Biobank and they 
will be contained in a subsequent data release. UK Biobank 
control the image specific data developed as part of this  
research (i.e. points files) and hence they cannot be uploaded 
to a separate repository. UK Biobank resources are open to all  
researchers which will allow for replication.

Software availability
Source code available from: https://github.com/benfaber20/Auto-
matic-alpha-angle/tree/v1.2. Archived source code at time of  
publication: https://doi.org/10.5281/zenodo.446277028.

License: GNU General Public License
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