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SUMMARY
We investigated how protein quantity (10%–30%) and quality (casein and whey) interact with dietary fat
(20%–55%) to affect metabolic health in adult mice. Although dietary fat was the main driver of body weight
gain and individual tissue weight, high (30%) casein intake accentuated and high whey intake reduced the
negative metabolic aspects of high fat. Jejunum and liver transcriptomics revealed increased intestinal
permeability, low-grade inflammation, altered lipid metabolism, and liver dysfunction in casein-fed but not
whey-fed animals. These differential effects were accompanied by altered gut size and microbial functions
related to amino acid degradation and lipid metabolism. Fecal microbiota transfer confirmed that the casein
microbiota increases and the whey microbiota impedes weight gain. These data show that the effects of di-
etary fat on weight gain and tissue partitioning are further influenced by the quantity and quality of the asso-
ciated protein, primarily via effects on the microbiota.
INTRODUCTION

The role of diet in driving body composition has been studied for

many decades (Abete et al., 2010; McAllan et al., 2015), but little

progress has been made toward understanding the molecular

mechanisms involved. This is largely because most human and

many animal studies use a rather simplified view of the interac-

tion between diet and body composition, which we know to be

heterogeneous constructs, with many adipose and lean tissue-

associated subcompartments responding differently to energy

challenges (Archer et al., 2018). Second, understanding the ef-

fects of diet have largely been based on simple manipulation of

single macronutrients (Hu et al., 2018; Solon-Biet et al., 2014),

whereas humans and animals rarely consume dietary macronu-
This is an open access article under the CC BY-N
trients in isolation but in combination, which sometimes falls

outside of the acceptable macronutrient distribution range

(AMDR) of 20%–35% fat, 10%–35%protein, and 45%–65%car-

bohydrate (CHO) (Berryman et al., 2018; Wolfe et al., 2017). The

interplay between dietary macronutrients and different tissues is

understudied.

Of the macronutrients, dietary fat has historically attracted the

most attention because its intake has increased in the last cen-

tury, in linewith theobesity epidemic (Caballero, 2007), drivingen-

ergy intake (EI) and adiposity (Hu et al., 2018), in part because of

microbial imbalance in the gut (Brun et al., 2007; Mao et al.,

2013), leading to lipotoxicity, inflammation, and impaired glucose

tolerance (Flegal et al., 2013; Hu et al., 2020). In contrast to dietary

fat, intake of complex CHO and dietary fiber has declined during
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the same period of the last century, whereas intake of dietary pro-

tein remained almost stable (Gortner, 1975; Hamilton and Ander-

son, 1992). Studies suggest that theproportion of total CHO in the

diet (notably, high sugar intake and dietary fiber) differentially af-

fects EI andweight gain (Ludwig et al., 2018; vanDamandSeidell,

2007). However, not all of these findingswere confirmedbyothers

(Huet al., 2018;Smithet al., 2017). Additionally,muchcontroversy

exists regarding the effects of protein quantity andquality onbody

composition (Hu et al., 2018; Patel, 2015; Simpson and Rauben-

heimer, 2005) becausedifferent outcomesoccur during theactive

growth stage (early life) versus adulthood. Although high protein

intake during early childhood is associated with increased weight

gain and adiposity, in part because of overstimulation of the

growth hormone (GH)/insulin growth factor 1 (IGF-1) system

(Hoppe et al., 2009; Pimpin et al., 2018), in adults, high-protein

(30%) diets increase satiety, enhance energy expenditure, and

improvemetabolichealth (Paddon-Joneset al., 2008),with further

effects modulated by protein type (Hall et al., 2003), which,

together, reduce fat mass and increase lean tissuemass. The dif-

ferences in the activity of proteins are dependent, at least in part,

on the associated amino acid quantity and composition. For

example, the known improvement in the body composition asso-

ciated with milk-derived whey proteins (Tahavorgar et al., 2014)

appears to be due to the much higher essential amino acid

composition compared with the corresponding milk-associated

casein and plant and egg proteins (Gorissen et al., 2018). Beyond

the dietary source, the gut microbiota also has the potential to

alter the host nutrient supply. For instance, the microbial meta-

bolism of dietary amino acids causes production of short-chain

and branched-chain fatty acids that can significantly affect the

health of the host (Lin et al., 2017; Neis et al., 2015).

Given the uncertainty regarding how different dietary macro-

nutrient combinations affect the complex responses of all body

tissues, here we wanted to find out to what extent 24 different

body tissues were affected by the interaction between dietary

fat and protein quantity and the source over and beyond the

AMDR range. To test the effects of the proteins, we used casein

and whey protein isolate (WPI), which differ substantially in their

amino acid quantity and composition (Gorissen et al., 2018). We

reasoned that there would be an interplay between dietary pro-

tein quality and quantity in the gut with the microbiome compo-

nent, which would result in a changed host nutrient supply, and

that this, in turn, would affect weight gain and tissue partitioning.

Using adult male mice aged 20 weeks that were beyond the

active growth phase, we show that amuchmore complex dietary

interplay between protein type and quantity with dietary fat is

required to change the microbiota and tissue responses (Fig-

ure 1A; study 1). This work formed the basis of a follow-up study

that assessed the specific role of the microbiota in mediating the

protein effects (Figure 1A; study 2).

RESULTS

Study 1, part 1: High (30%) whey protein content
transiently reduced high dietary fat/low CHO
(HFLC)-induced energy intake
20-week-old C57/BL6J mice were exposed for 12 weeks to a

series of dietary treatments consisting of three different levels of
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dietary fat (20%, 40%, and 55% by energy) combined with three

different levels of protein (10%, 20%, and 30% by energy) with

casein (CAS) or WPI (18 diets in total with 11–12 animals per

diet) (Figure 1A; Table S1; D17052701–D17052718). The CHO

amount was reduced in parallel with an increase in dietary protein

and fat. Univariate factorial ANOVA was used to analyze the ef-

fects of all three dietary factors on EI and body weight (BW).

Only dietary fat content had a significant effect on average EI

(p = 1.51 3 10�17) (Figure 1B; Table S2), where the average EIs

of the entire study period and the first 6 weeks of the mice fed

with 40%and 55% fat dietswere higher than that ofmice fed diets

with20%fatover theentire treatmentperiod (Figure1B).However,

a transient effect of protein type and content was evident, where

the average EI of the 30% WPI group was significantly lower

than the average EI of the group with 30%CAS at 40% fat (Table

S2; p = 0.041) over the first 6 weeks of diet exposure, which then

normalized so that the overall effect showed a trend toward signif-

icance by the end of the treatment period (p = 0.06) (Figure 1B).

High whey protein chronically reduced HFLC-induced
weight gain
The baseline BW was not significantly different between groups

(one-way ANOVAF-statistic(17, 192) = 0.337, p = 0.994) (Figure 1C).

The BW varied significantly over 12 weeks of dietary treatment

(p < 0.0001) (Figure 1C), with significant fat content, protein

type, and content by time interaction (F(44, 698) = 2.9, p < 0.001).

In general, the increase in EI in the 40% and 55% fat groups

was mirrored by an increase in BW (Figures 1C and S1A) over

the treatment period (Figure 1D), with the most significant differ-

ences between 20% and 40% fat and 20% and 55% fat within

each protein type (Figure S1A; Table S2). However, the final BW

and BW gain were dependent on fat content, protein type, and

proteincontent (p=0.031 forBW,p=0.0022 forBWgain).Animals

on 30% CAS with 40% and 55% fat had significantly increased

BW fromweek 2 onward relative to 20% fat (p < 0.05). In contrast,

BWs of animals from 30% WPI groups were significantly lower

than those of animals from 30% CAS groups from week 6 in the

40% fat group and from week 2 in the 55% fat group until week

12 (p < 0.05) (Figures 1C and S1A). This was reflected in BW

gain; a strong effect on BW gain (84% reduction) was observed

inWPI relative toCASat40%fat, andamildeffect (20%reduction)

was present at 55% fat (Figure 1D). The stronger effect is likely to

be due to the abovementioned transient (first 6-week period)

reduction in EI in 30% WPI and 40% fat co-fed mice combined

with an additional effect (related to microbiota; see below) that

maintained the reduction in BW gain beyond the 6-week period

(until the end of the study) (Figures 1C and 1D). The latter effect

is again evident in 55% fat-fedmice with 30%WPI because these

mice consumed the same amount of energy as 30% CAS-fed

mice (Figure 1B) but continued to gain less weight (Figures 1C

and 1D). This indicated a mismatch between energy supply to

the host and its use/deposition at the end of the treatment period.

High WPI maintained the correlation between BW gain
and tissue weight with HFLC feeding
Using a protocol published previously (Mitchell et al., 2015), a Z

score-like transformation was applied to the 24 different tissues

in study 1 using the median instead of the mean weights, and



Figure 1. Effect of macronutrients on energy intake and body weight

Summary of experiments performed and main findings (A), average daily EI per animal over 12 weeks (B), weekly body weight (BW; grams; C), and BW gain after

12 weeks of treatment (D). Groups were compared by fat content (CAS, English; WPI, Greek letters) and protein type (CAS versusWPI, *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001; B–D). Values are represented as mean ± SEM (B and D) and as boxplots (C). n = 4 (cages in B) and 11–12 (animals in C and D) biologically

independent samples. Groups with the same letters are not significantly different (p > 0.05). See Table S2 for the results of pairwise comparison of EI and BWgain

according to protein content.
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then principal-component analysis (PCA)was used to investigate

thecorrelationpatterns betweendifferent tissueswith variable fat

content, protein type, and content. The clustering analysis re-
vealed that fat and protein content explained part of the variance

observed in the PCA (PERMANOVA [permutational multivariate

analysis of variance], p < 0.001 for both), whereas protein type
Cell Reports 35, 109093, May 11, 2021 3



Figure 2. PCA correlation biplot of recorded

tissue weights and correlation matrix

showing the magnitude of correlation be-

tween BW and tissue weights of animals af-

ter dietary interventions

(A) PCA clustering analysis of body composition

based on recorded weights of 24 different tissues.

The loadings (tissues) magnitude is 1003. Median-

based Z score metrics was used to perform a

clustering analysis. The lines represent the direc-

tion of the tissue weights toward macronutrients.

See Table S2 for the results of pairwise compari-

son of body composition between different diets.

(B) Correlation coefficients and p values of BW

versus tissueweight. The scale for the correlations:

increasing intensity of brown indicates positive

correlation, and increasing intensity of blue in-

dicates negative correlation. The dendrogram

shows the similarity in responses of the different

organs to BW changes. EAT, epidydimal AT; MAT,

mesenteric AT; SAT, subcutaneous AT; RAT,

retroperitoneal AT; BAT, brown AT; OAT, omental

AT; AT, adipose tissue; RO, reproductive acces-

sory organs. p value range: *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001). n = 11–12 biologically

independent samples. See Figure S1B for corre-

lation between IGF-1 and tissue weight.
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had a minor effect (PERMANOVA, p = 0.056). The most visible

clustering was based on dietary fat content separating 20%

from 55% fat (Figure 2A). The results of a pairwise comparison

betweendiets further confirm that dietary fatwas themain source

of variation in tissue weight (body composition) (Table S2). Inter-

estingly, the effect of protein type on tissue weight was only

evident in animals on HFLC (40%, 55%)with high protein content

(30%). A cluster analysis illustrated that the body composition is

regulated by all three dietary factors only in HFLC and high pro-

tein content diets. The biplot shows that sizes of adipose tissue

(AT) depots, liver, pelage, carcass, pancreas, and reproductive

organs were strongly associated with high-fat diets (HFDs). In

fact, investigation of the correlation between BW and organ

weight revealed that these organs (except the pancreas) belong

to the same cluster (cluster 1) (Figure 2B). The BW/tissue weight
4 Cell Reports 35, 109093, May 11, 2021
correlation showed that the digestive sys-

tem and the two vital organs (heart and

spleen) cluster together (cluster 2) with

the reproductive organs and the tail (Fig-

ure 2B). On 10% and 20% protein diets

with 20% and 40% fat, cluster 1-related

tissues (AT depots, liver, pelage, and

carcass) are strongly and positively corre-

lated with BW, but this correlation pattern

was lost formost of these tissues at higher

fat content (55%) and even when 30%

CAS was used (Figure 2B). However,

changing the protein type toWPI (30%) re-

tained the correlation at 40%and 55% fat.

In particular, the AT depots and the liver

were positively correlated with BW in
30% WPI groups at 40% and 55% fat, and this correlation was

absent in the corresponding 30% CAS groups. This correlation

extended to IGF-1 levels despite some changes in hierarchical

clustering (Figure S1B).

In summary, intake of 30% WPI reduced the BW gain and al-

lowed mice to maintain the correlation between BW/IGF-1 and

tissue weight during high-fat feeding (40% and 55% fat). There-

fore, in the subsequent experiments, we focused on delineating

the effects of fixed 30% (high) protein intake with variable fat

content and protein type.

Study 1, part 2: Effects of high WPI are evident in tissue
weight and hormone levels
On40%and 55% fat diets, intake of 30%WPI reduced theweight

of individual components of the gastrointestinal tract (including



Figure 3. Effect of 30%protein with variable protein types and fat content onwet tissueweights, small intestine length, and circulating factors

Effect of 30% protein with variable protein type and fat content (percent energy) on (A–D) wet tissue weights (grams), small intestine length (centimeters, B), and

circulating factors (E–J). Values are represented as mean ± SEM. Groups were compared within different fat contents (CAS, English; WPI, Greek letters) and

protein types (CAS versusWPI, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). n = 11–12 (A–D) and 9–12 (E–J) biologically independent samples; n = 2 technical

replicates (E–J).
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intestinal length), structural and reproductive accessory organs,

and several vital organs relative to the equivalent CAS-fed groups

(Figures 3B–3D). However, the effect of WPI on AT differed be-

tween 40% and 55% fat. On 40% fat diets, WPI significantly
reduced the weight of individual fat depots relative to CAS, and

this effect was not present on 55% fat diets, with the exception

of brown AT (Figure 3A) and omental AT (CAS = 122 ± 7 mg,

WPI = 73 ± 9 mg, p < 0.05). The opposite response was observed
Cell Reports 35, 109093, May 11, 2021 5
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for epidydimal AT (EAT) at 55% fat, the WPI group showed a sig-

nificant increase in EAT weight relative to CAS. The EAT weight

increased in parallel with upregulation of genes involved in lipo-

genesis and glucose uptake (Fasn and Glut4), and this effect

was not observed in subcutaneous AT (SAT; Figures S6F and

S6G). In addition, the small intestine weight-to-length ratio was

reduced significantly in WPI relative to CAS at 55% fat (CAS =

20.2 ± 0.4 mg/cm,WPI = 17.7 ± 0.5 mg/cm, p < 0.05), suggesting

that the WPI group would have had a lower cell number and/or

nutrient load per centimeter of tissue than the CAS group. In line

with previous studies (Kakimoto and Kowaltowski, 2016), the liver

weight more than doubled (111% increase) between 20% and

55% fat in CAS-fed animals and only increased by 23% in the cor-

responding WPI-fed animals (Figure 3D), suggesting ectopic fat

accumulation in the livers of CAS- but notWPI-fedmouse groups.

High-fat feeding could also induce splenomegaly, leading toaccu-

mulation of macrophages and other cellular/histological changes

in the spleen (Altunkaynak et al., 2007; Buchanet al., 2018). Impor-

tantly, intake of 40% and 55% fat induced splenomegaly in those

eatingCAS, whereas the increase of dietary fat in the correspond-

ing WPI diets did not change the weight of the spleen (Figure 3D).

Consistentwith the tissue responses, IGF-1, leptin, resistin, and

glucose increased in 30%CASwith the 40%and 55% fat groups

relative to the 20% fat group, and an opposite response was

observed for triglycerides (TAGs) (Figures 3E and 3G–3J), along-

side an increase in AT weight (Figure 3A). The well-established

IGF-1/GH coupling was not apparent; despite a rise in IGF-1 in

plasma, GH did not respond to the increasing fat in CAS diets

(Figure 3F).

On 30%WPI diets, and in contrast to CAS, IGF-1, resistin, and

GH remained unchanged between 20% and 40% fat, with a

modest increase in plasma leptin and glucose; however, a further

increase in dietary fat led to increased IGF-1, resistin, and leptin

and, consistent with IGF-1/GH coupling, decreased GH levels in

the plasma (Figures 3E–3I). Overall, most metabolic parameters

were improved by intake of 30% WPI compared with CAS with

HFLC, with the exception of TAG levels, which did not change

within the 30% WPI groups and was elevated in the plasma in

40% and 55% fat groups compared with the respective CAS

groups (Figure 3J). This highlights a dissociation of TAG storage

and tissue expansion in theWPI groups. High fat intake increased

plasma cytokine levels (tumor necrosis factor a [TNF-a], mono-

cyte chemoattractant protein-1 [CCL2/MCP-1], interleukin-15

[IL-15], and IP-10) inCASbut not inWPI groups,with anexception

of a small increase in IL-15 in WPI from 40% to 55% fat (Figures

S2A–S2D).

High WPI protects the jejunum from high-fat-induced
inflammation and maintains intestinal barrier integrity
Transcriptome analysis (Table S3) revealed that WPI increased

expression of the anti-inflammatory epoxygenase P450 gene

family (Figure 4A) and reduced expression of the Pla2g4c gene,

involved in production of eicosanoid progenitors from arachi-

donic acid, along with eicosanoid signaling in WPI relative to

CAS in 55% fat (Figures 4A and 4C). In line with an effect on

Pla2g4c, where this gene andClca3b are associated with Paneth

cell hyperplasia and increased mucus production, Muc4 and

Muc13 mRNA were reduced in WPI relative to CAS (Figure 4A).
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Remodeling of the epithelium was evident as expression of

adherent junction proteins (except Jam2) increased in WPI in

40% and 55% fat relative to the 20% fat group (Figure 4A), and

the intestinal epithelial barrier function-related protein tyrosine

phosphatase 22 (Ptpn22) increased in WPI relative to CAS in

40%and 55% fat (Figure 4B). This was accompanied by a reduc-

tion in lipopolysaccharide (LPS)-induced TLR4-CD14 activation

in immune cells, specifically in 55% fat (Figures 4C and S2F).

Upstream regulators (lipid A and CD14), known to enhance in-

testinal permeability,were inhibited, anda reduced transcriptomic

profilewas seen formastcells (CD2), cytotoxicCD8Tcells, T help-

er cytokines (Th1 and Th17), and their associated upstream regu-

lators (interferon gamma [IFNG]and ILs) and canonical pathways

(inducible T cell co-stimulator [iCOS] and nuclear factor kB [NF-

kb] signaling) in WPI compared with CAS in 55% fat groups (Fig-

ures 4C, causal networks, and S2E; Table S4). These results

were reflected (and to some extent in the 40% fat group) by

expression of genes encoding pro-inflammatory ligands, their re-

ceptors (ILs and chemokines) and regulators (IL-10RA), genes

involved in immune cell migration (Ccr6, Itgb7, etc.) and activation

(Toll-like receptors [TLRs] and downstreamMYD88), and stimula-

tionof an inflammatory response in the gut (Pax5andFcmr) aswell

as the responses of canonical pathways (Figures 4B and 4C). The

results revealed that jejunal immunity of the CAS-fed groups was

oriented toward pro-inflammatory responses, whereas the WPI-

fed groups showed a reduction in inflammation.

High WPI improved the liver transcriptome affected by
CAS-associated HFLC
Most of the differences in lipid metabolism between CAS and

WPI were observed at 55% fat (Table S3). Expression of genes

involved in lipogenesis was downregulated, and genes associ-

ated with fatty acid (FA) b-oxidation were upregulated in WPI

with 40% and 55% fat relative to corresponding CAS groups,

where most of the differences were observed at 55% fat (Figures

5A and 5B). Similar differential effects were observed on mRNA

levels of regulators of FA synthesis and b-oxidation; namely, the

upstream regulator CHREBP (carbohydrate-response element-

binding protein) and STAT5B (Figures 4B and S3A). Furthermore,

feeding WPI in the 55% dietary fat group showed increased ac-

tivity of catabolic pathways, such as ketogenesis and tryptophan

degradation, relative to feeding CAS and 55% fat (Figure S3B).

Striking differences in hepatic expression of genes involved in

inflammation were observed between CAS and WPI at 40% and

55% fat, in line with the lipid transcriptome. In CAS-fed animals,

intake of 40% and 55% fat increased expression of cytokines,

chemokines, ILs, and other inflammatory markers and activated

pro-inflammatory upstream regulators/pathways (LPS- and

IL-related signaling, etc.) and downregulated the anti-inflamma-

tory regulator HNF4A (Figures 5C, S3A, and S3B). In contrast,

expression of liver inflammation markers and activity of regula-

tors/pathways was largely unaffected by increasing fat in WPI-

fed animals. The WPI and 55% fat-fed group showed reduced

expression of genes involved in hepatic inflammation and inhibi-

tion of pro-inflammatory regulators/pathways relative to the CAS

55% fat group. In particular, the MYD88 causal network was in-

hibited in WPI-fed mice relative to CAS-fed mice at 55% dietary

fat (Figure S2G).



Figure 4. Jejunal transcriptome response to

30% protein with variable fat and protein

types

(A and B) The expression of genes involved in lipid

metabolism and intestinal barrier function (A) and

inflammatory pathways (B). The values are repre-

sented as log2 fold changes between corre-

sponding diets. *p < 0.05.

(C) Heatmap derived from IPA, showing significant

changes (p < 0.05) in selected causal networks,

upstream regulators, and canonical pathways with

activation Z scores higher than 1.5 (activation) or

lower than �1.5 (inhibition). White cells indicate

insignificant changes in the selected pathways/

regulators. n = 11–12 biologically independent

samples. See Table S4 for IPA statistics and

pathway/regulator target molecules.
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Upstream regulators/canonical pathways associated with dis-

ease progression, including hepatic fibrosis and type II diabetes

mellitus signaling, were activated with increasing fat in CAS-fed

animals (20% versus 40% and 20% versus 55% fat), and activa-

tion of these regulators/pathways was not observed in WPI-fed

animals (Figures S3A and S3B). The reduction of liver weight in

WPI relative toCASat 40%and55%fat (Figure3D) thusappeared

to occur in parallel with a reduction of regulators associated with

proliferation and cell cycle control of chromosome replication

(Figure S3B), along with altered lipid metabolism, which together

may underlie the reduced inflammatory response.

To assess whether the transcriptome data support lipid meta-

bolism in the liver, a metabolomics analysis was undertaken.

This showed that the livers of mice ingesting high WPI and

55% fat had reduced C16 and C20 monounsaturated FAs

and polyunsaturated FAs, consistent with transcriptome data

showing increased b-oxidation in WPI relative to CAS feeding

(Figures 5B and S3C). Intriguingly, the 40% and 55% fat groups

with WPI had higher levels of the very-long-chain FAs (VLCFAs)
compared with the corresponding CAS

groups (Figure S3C). The differences in

VLCFA could be related to differences in

processing of the VLCFAs into sphingoli-

pids in the markedly differently sized

livers of WPI- and CAS-fed mice. Notably,

RICTOR (rapamycin-insensitive compan-

ion of mTOR), a component of mTORC2

involved in de novo lipogenesis, synthesis

of sphingolipids, and development of liver

steatosis (Guri et al., 2017), was upregu-

lated in the CAS with 40% and 55% fat

groups relative to the corresponding

WPI groups (activation Z scores of 7 and

8 for HFD-CAS versus 2.5 and 3 for

HFD-WPI) (Figures S3A; Table S4). More-

over, consistent with increased process-

ing of VLCFA, the 40% and 55% fat with

CAS diets showed activation of lactosyl-

ceramide-, sphingosine-1 phosphate-,

and LDL (low-density lipoprotein)-related
signaling and of sphingolipid synthetic/degradation genes

alongside a reduction in the pool of VLCFAs relative to the corre-

spondingWPI groups (Figures 5A, S3A, and S3B). These findings

suggest that de novo sphingolipid synthesis is increased in he-

patocytes of CAS-fed animals, likely leading to glucosylcera-

mide accumulation. Given that the latter is a known stimulator

of cell proliferation and tissue growth, these observations may

explain the differences in liver weight and abundance of VLCFAs

in the CAS and WPI groups.

In summary, analysis of the liver transcriptome revealed that

intake of WPI impeded the negative effects of high-fat feeding

(such as increased lipogenesis, inflammation, and activation of

disease-related pathways), whereas intake of CAS exacerbated

these effects.

Hypothalamic transcriptome responded to high WPI
with high fat
In the hypothalamus, intake of 40% and 55% fat significantly

increased the number of differentially expressed genes
Cell Reports 35, 109093, May 11, 2021 7



Figure 5. Hepatic expression of genes associated with lipid metabolism, fibroblast growth factor (FGF), and IGF-1 signaling for the 30%

protein group with variable fat and protein types

(A–C) Heatmaps show the expression of genes involved in (A) de novo lipogenesis, (B) FA b-oxidation, and (C) cytochromeu-hydroxylation of FAs and IGF-1/FGF-

related genes. The values are represented as log2 fold changes between corresponding diets. *p < 0.05. n = 11–12 biologically independent samples. See Table

S4 for IPA statistics and pathway/regulator target molecules.
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compared with 20% fat (Table S3). The effect of protein quality

on hypothalamic gene expression (CAS versus WPI) was only

seen with the highest fat content (55%), where several changes

in signaling pathways were seen in WPI relative to CAS. These

include ghrelin receptor (Ghsr) and its associated pathways

(G-aq and phospholipase C signaling) as well as increased

oxidative phosphorylation (OXPHOS) and TCA (tricarboxylic

acid cycle) cycle and decreased ROS (reactive oxygen species)

production compared with mice fed CAS and 55% fat (Figures
8 Cell Reports 35, 109093, May 11, 2021
S4A and S4C). Upstream regulators (NFE2L2, PPARGC1A, and

PPARGC1B) that activate expression of genes involved in

OXPHOS were upregulated in mice fed WPI relative to those

fed CAS at 55% fat (Figures S4B and S4D), which occurred

alongside a reduction in IL and chemokine inflammatory path-

ways (Figures S4A and S4C). PTPs and Socs3 are negative reg-

ulators of insulin, IGF-1 and leptin signaling in the hypothalamus

and other tissues (Arroba and Valverde, 2015; Cao et al., 2018;

Shintani et al., 2017). Expression of the Socs3 gene and genes
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from the PTP family and their related signaling (PTPRK and

PTPRO [PTP receptor type K and O, respectively]) were downre-

gulated in WPI relative to CAS at 55% fat (Figures S4A and S4B;

Table S4). In line with this, insulin and IGF-1 receptor pathways

(INSR [insulin receptor] and IGF1R) were upregulated in WPI

compared with CAS (Figure S4B). In summary, the hypothalamic

transcriptome revealed a reduction in hormone-associated

signaling (leptin and insulin) and OXPHOS in CAS- but not

WPI-fed animals at 55% fat.

High WPI increased microbial proteogenic and lipid
metabolism pathways and changed cecal and fecal
metabolites
To reveal the effect of 30%protein intake on the gut microbiome,

shotgunmetagenomic sequencing was applied to cecal content.

At the species level, alpha diversity did not differ across the

groups (Figure S5C). Similar results were obtained with respect

to the alpha diversity of pathways (data not shown). In contrast,

analysis of beta diversity revealed a significant separation be-

tween 30% CAS and WPI with respect to pathways and species

at 40% and 55% fat (Figures 6A and S5A, respectively). Intake of

CAS was associated with an increased relative abundance of

Bacteroides vulgatus, whereas intake of WPI was accompanied

by increased abundance of Akkermansia muciniphila and Bac-

teroides uniformis (Figure 6B). The proteinogenic amino acid

degradation was higher in 30% WPI compared with CAS at

55% fat (Figure 6C). Furthermore, protein type differentially

affected bacterial amino acid biosynthesis with lower valine

and higher glutamate synthesis in WPI-fed relative to CAS-fed

mice. Elevated amino acid degradation was coupled with

increased lipid biosynthesis with higher production of unsatu-

rated (oleate) and saturated (stearate) FAs in WPI-fed relative

to CAS-fed mice at 40% and 55% dietary fat (Figure 6D). In

contrast, CAS-fed groups showed an increase in sugar and poly-

saccharide degradation, pyruvate butanol fermentation, and

alcohol degradation pathways and a reduction in pyruvate prop-

anoate fermentation and acetate formation relative to WPI at

55% fat (Figure S5B; Table S5).

Metabolomics analysis of cecal content (40% and 55% fat

groups only) revealed a clear separation between mice fed two

30% protein types (corrected Wilcoxon rank-sum test, p <

0.001 for CAS versus WPI at 40% and 55% fat) (Figure S6A),

similar to the differences between CAS and WPI for bacterial

pathways/species (Figures 6A and S5A). In line with increased

bacterial amino acid catabolism,WPI-fed groups had lower levels

of branched-chain amino acids (BCAAs) (leucine and valine) and

dipeptides and higher levels of branched-chain FA (BCFA) (2,4-

dimethylpimelic acid) in the cecum relative to CAS 40% and

55% fat-fed groups (Figures S6B and S6C). Notably, odd long-

chain FAs (LCFAs) (C15:0 and C17:0), which were not present

in the diets and could be produced from gut-derived propionic

acid, were enhanced in the WPI-fed 55% fat group (Figure S5B).

Moreover, many other metabolites linked to ROS production and

apoptosis (Chao et al., 2019) (3,5-DMA [3,5-Dimethylaniline]), and

liver cirrhosis (pipecolinic acid, a metabolite of lysine) (Kawasaki

et al., 1988), were reduced (Figure S6D), whereas the levels of

medium-chain dicarboxylic acids (MCDAs) were increased in

WPI relative to CAS (Figure S6D). Azelaic acid possesses anti-in-
flammatory properties, suberic and sebacic acids are microbial

metabolites formed from breakdown of oleic and linoleic FAs,

and andrographolide is a known promoter of growth of

A.muciniphila (Su et al., 2020), as seen inWPI-fed animals. Along

with upregulation of microbial FA biosynthesis pathways, 30%

WPI groups, with their potential to bind dietary fat, had increased

fecal TAGs relative to CAS at 55% fat (Figure S6E).

Study 2: High WPI- and CAS-associated microbiota
differentially affected weight gain
The biggest differences of host tissue transcriptomic responses

and microbial taxonomic/functional diversity were detected

when feeding 30% CAS and WPI at 55% fat (Figures 4, 5, 6,

S4, and S5). Because this occurred when EI was similar between

groups that had contrasting tissue effects, we selected these di-

ets to study whether the functional potential of the microbiota

can alter the host energy supply and, therefore, the host tissue

responses (Figure 7A). First, in this study, similar to study 1,

20-week-old animals were fed for 4 weeks with CAS or WPI in

a 55% fat diet and switched to a 4-week antibiotic (ABX) treat-

ment (i.e., CAS-ABX or WPI-ABX), or they continued to receive

the same diet (CAS-control, WPI-control). The fecal microbiota

was analyzed before ABX treatment (time point 1 [T1]), after

treatment (T2), in the middle of the 4-week fecal material trans-

plantation (FMT) period (T3), and at the end of FMT (T4) (Figures

7 and S7; Tables S6 and S7).

Effect of ABX treatment

The BW gain of CAS-ABX and WPI-ABX was significantly lower

than the gain of the corresponding control groups, where the ef-

fect of ABX treatment was stronger in WPI-fed animals (Fig-

ure 7B). The BW gain of control groups was not significantly

different during this period, similar to the result of a correspond-

ing period in a previous study (study 1; weeks 4–8, CAS = 4.7 ±

0.7 g, WPI = 5.1 ± 0.4 g; Figure 1C), as was the average EI for the

same period in the two trials (Figure S7A). In study 2, WPI fed an-

imals had slightly higher but not significant EI (Figure S7A). ABX

treatment reduced the alpha diversity of species in the CAS and

WPI groups and changed themicrobial composition at the genus

level, resulting in dominance of Escherichia in CAS and

increased abundance of Chryseobacterim and Escherichia in

WPI (Figures 7D and 7E). ABX treatment reduced pathways

associated with energy metabolism (e.g., pyruvate acetate

fermentation), sugar/polysaccharide degradation, and CHO/

lipid biosynthesis more in the WPI-ABX group than in the CAS-

ABX group (Figure 7F). Proteinogenic amino acid degradation

was abolished completely in the WPI- and CAS-ABX groups

(Table S7).

Effect of FMT intervention (T3 and T4)

The WPI group with CAS microbiota (WPI-FMT) gained less

weight than the WPI control group after 2 weeks of FMT (Fig-

ure 7C; T3). The opposite result was observed during the subse-

quent 2 weeks of FMT, with higher BW gain in WPI-FMT relative

to the WPI control group (Figure 7C; T4). This suggested that the

CAS microbiota overrode the initial WPI diet effects on host BW

gain, leading to increased BW gain at the end of the FMT period.

The BW gain of the CAS group receiving the WPI microbiota

(CAS-FMT) did not change after 2 weeks of FMT compared

with the start point of fecal transfer (RM [repeated measures]
Cell Reports 35, 109093, May 11, 2021 9



Figure 6. Effects of 30% protein diets on the cecal microbiome

(A) Ordination of metabolic pathways for both protein types at 20%, 40%, and 55% fat. Group separation becomes more pronounced as fat content increases.

(B–D) Variation of (B) selected bacterial species, (C) protein/amino acid metabolism, and (D) lipid metabolism pathways according to protein type and fat per-

centage. Solid bars indicate significance (adjusted Wilcoxon rank-sum test, p < 0.05). Within-protein-group comparisons are indicated by WPI or CAS, whereas

cross-group differences for fat percentage are indicated by blank bars. n = 11–12 biologically independent samples. See Figure S5 and Table S5 for variation of

other microbial metabolism pathways according to protein type and fat percentage.
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ANOVA, p = 1) and became significantly lower than the BW gain

of CAS-control (Figure 7C; T3). This suggested that the WPI mi-

crobiota was able to initially impede the effects of the CAS diet

on host weight gain (2 weeks). In contrast, after an additional
10 Cell Reports 35, 109093, May 11, 2021
2 weeks of FMT, the BW gain of the CAS-FMT group increased

significantly (RMANOVA, p = 0.0002) to the level of the CAS con-

trol group (Figure 7C; T4). This suggested that prolonged CAS

intake overrode the effect of the WPI microbiota seen initially.



Figure 7. The effect of the gut microbiota on BW gain in animals fed 55% fat CAS or WPI

(A) Design of the ABX/FMT experiment.

(B and C) BW gain changes during the ABX (B) and FMT (C) experiment.

(D) Alpha diversity for species.

(E) Bacterial composition of the different communities at the genus level.

(F) Selected metabolic pathways. Group comparisons are indicated by the following abbreviations: C-treat, CAS treatment; W-treat, WPI treatment. C-treat/

W-treat, comparison between treatment groups; C-treat & W-treat, comparison across time points. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n = 9–10

biologically independent samples. See Table S7 for variation of microbial metabolism pathways according to protein type and time point of treatment. For

bioinformatic analysis, the fecal samples were collected per cage at T1–T3 and from individual animals at T4 with 5 (T1–T3) and 9–10 (T4) biologically independent

samples.

Cell Reports 35, 109093, May 11, 2021 11

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
The FMT restored alpha diversity in CAS andWPI to the level of

the corresponding control groups (Figure 7D). The abundance of

Lactobacillus, Bacteroides, and Mucispirillum increased during

the first 2 weeks of FMT in the CAS and WPI-FMT groups

(Figures 7E and S7D). A further 2 weeks of FMT reduced the

abundance of Bacteroides and Mucispirillum and increased

Lactobacillus in WPI relative to CAS (Figure S7D). In particular,

the WPI-FMT group had a higher relative abundance of Lactoba-

cillus reuteri (L. reuteri) relative to CAS-FMT group at T4. The

beta diversity of pathways/species was not significantly different

between the CAS- and WPI-FMT groups at T3; neither group

gained BW (Table S6; Figure S7C).

Focusing on pathways, the effect of ABX on proteinogenic

amino acid degradation and lipid biosynthesis was reversed after

2 weeks of FMT; the WPI- and CAS-FMT groups had a similar

abundance of these pathways at T3 (Figure 7F), when the BW

gain in the CAS-FMT group was lower than in the CAS controls,

and where WPI-FMT was even lower than WPI-control (Fig-

ure 7C). Both pathways decreased in the CAS-FMT group

(receiving the WPI microbiome) from T3 to T4 to the level of

CAS-control, and, at the same time, the BW gain of the CAS-

FMT group matched that of the CAS controls. In line with a sug-

gestion that proteogenic amino acid degradation pathways and

lipid biosynthesis pathways are needed for WPI microbiota to

affect weight gain, when proteinogenic amino acid degradation

was reduced fromT3 to T4 in theWPI-FMTgroup (Figure 7F), pre-

sumably because of the competing transplanted CASmicrobiota

in the WPI-FMT group, the weight gain of the WPI-FMT group

increased relative to the WPI-control group (Figure 7C; T4).

DISCUSSION

Contrary to the popular view that high protein intake prevents the

unhealthy metabolic outcomes of a high-fat diet, we found that

the effects of dietary fat depends on an interaction between

protein quantity and quality. Although increasing dietary fat

increased BW gain and tissue weight irrespective of protein

quantity and source in adult mice, this increase was accentuated

when high (30%) CASwas used andwas impeded by (30%)WPI,

and this specific effect was observed only in the 40% and 55%

dietary fat-fed groups that had proportionally reduced CHO

(HFLC diets).

In agreement with a recent study (Hu et al., 2018), HFDs

increased EI and high-protein (30%) diets did not reduce intake,

contrasting predictions of the protein leverage hypothesis

(Simpson and Raubenheimer, 2005). Strikingly, 30% WPI

reduced EI relative to 30% CAS (with 40% fat) during the first

6weeks of the study (half of the entire treatment period). Interest-

ingly, the reduction in EI in the WPI group affected BW gain only

at the end of the 6-week period, and the reduced BW gain then

progressed even after EI normalized in the WPI group, leading to

reduced AT weight and lower hormone (e.g., leptin) (McAllan

et al., 2013) and glucose levels in the plasma. Given that the

30% WPI group had an altered microbiota composition and

functional pathways at the end of the study, we propose that

an unique interaction between EI and microbiota arose in WPI

and 40% fat-fed mice during diet intake that allowed the animals

to continue to gain lessweight with support of an activemicrobial
12 Cell Reports 35, 109093, May 11, 2021
component and even in the absence of the EI component

beyond week 6.

In line with the above suggestion, intake of 30%WPI and 55%

dietary fat caused mice to have an EI similar to animals fed CAS

with matching protein, fat, and CHO quantities, but they still

gained less weight and had distinct microbiota composition

and functional pathways. These differences were reflected in

the growth-related signal IGF-1, where the reduced IGF-1 hor-

mone level correlated with BW gain and tissue weight with WPI

intake. The responding tissues were AT depots, pelage, liver,

and organs of the digestive tract (the small intestine and colon),

andWPI fed mice still had much higher plasma TAG levels. Inter-

estingly, similar opposing responses of IGF-1 and plasma TAG

level have been observed in humans fed CAS and WPI (Hoppe

et al., 2009, 2004; Mariotti et al., 2015). This suggested energy

deposition and use in tissues in proportion to circulating levels

of growth signal (IGF-1) with WPI despite an EI similar to CAS-

fed mice. Beyond the difference in IGF-1 and TAG response,

several other pieces of evidence support the suggestion that

the similar EI is supplied differently to tissues in mice fed WPI

compared with CAS.

First, the liver transcriptome revealed genes involved in FA/

lipid uptake and synthesis to be upregulated and genes involved

in FA/lipid degradation to be downregulated following a propor-

tional increase in dietary fat (20% to 55%) in 30% CAS-fed ani-

mals, similar to ectopic fat deposition in the liver, and develop-

ment of insulin resistance and liver disease, whereas these

molecular signatures were absent in the WPI group at 55% fat.

This was reflected in the increased liver weight in CAS- but not

WPI-fed animals.

The second piece of evidence relates to the inflammatory

response, which indicated tissue damage when cell growth

was not matched to energy supply and deposition. The tran-

scriptome analysis showed that WPI reduced the inflammatory

response in the hypothalamus, liver, and jejunum, whereupon

improvements in insulin and IGF-1 receptor signaling (in the hy-

pothalamus) occurred, alongside downregulation of the PTPRJ

(PTP receptor type J) pathway and recoupling of the GH and

IGF-1 axis. Moreover, WPI protected intestinal integrity during

high-fat feeding by upregulation of genes encoded junctional

proteins, Ptpn22 and the IL-10RA regulator known to be involved

in maintenance of intestinal integrity and homeostasis (Spalinger

et al., 2015) and by increased production of andrographolide in

the cecum, which is known to improve intestinal permeability

and mucosal architecture and reduce NAFLD (non-alcoholic

fatty liver disease) (Shi et al., 2020). These effects were further

supported by inhibition of LPS- and MYD88-related transcrip-

tome signaling, linked to reduced liver fat accumulation and

inflammation (Cani et al., 2008), reduced plasma TNF-a/CCL2

levels, and reduced NF-kB and LPS/TLR4 activation in tissues

(Ahmad et al., 2018). The additional reduction of plasma IL-15

and IP-10 cytokines and transcriptomics profile of responding

immune cells in the jejunum (CD2, CD8, Th1, and Th17; Fig-

ure 4C) and liver (CD44; Figure S3A) support a link between in-

testinal T cell density and systemic inflammation and markers

of liver alterations (Monteiro-Sepulveda et al., 2015).

The third piece of evidence supporting a mismatch between

energy supply and deposition (and inflammatory response) in
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30% WPI and 55% fat-fed mice relates to the response of the

gastrointestinal tract, which showed consistently reduced

weights of the stomach, intestine, and colon, with transcriptom-

ics data from the jejunum showing a fewer markers of immune

cells and higher expression of somatostatin receptor 1, which

is known to reduce proliferation of intestinal cells (Modarai

et al., 2016) compared with CAS-fed mice. These data, coupled

with increased cecal availability of LCFAs and fecal TAGs and a

human study showing that WPI intake reduced fat absorption

through the intestine compared with CAS intake (Stanstrup

et al., 2014) and a murine study showing increased fat excretion

(Pilvi et al., 2007), suggested fecal energy loss with 30% WPI

intake. Elevated TAG and FA excretion in the WPI group could

be due to a reduction of gut capacity and associated changes

in digestion and absorption of fat. It could also be due to the

known fat-binding properties of whey proteins (Jeewanthi

et al., 2015), with the exception of cecal BCFAs and LCFAs

(C15:0 and C17:0), which were detected in higher abundance

in the cecum in the high-WPI group, presumably produced by

bacteria (see below). Previous work reported that these LCFAs

were inversely correlated with type 2 diabetes and cardiovascu-

lar disease (Pfeuffer and Jaudszus, 2016).

Reducing tissue expansion with accumulation of ectopic fat is

difficult, but evidence suggests that one way to achieve this

might be to target the gut microbiota (Koutnikova et al., 2019)

and alter the dietary nutrient supply reaching the host. WPI is a

rich source of essential amino acids (EAAs) and BCAAs, and

because BCFAs are derived from BCAAs and produced/utilized

by several Lactobacillus and Bacillus species, it was intriguing

that high (30%)WPI with 55% fat-fed mice had increased bacte-

rial proteinogenic amino acid degradation and increased lipid/FA

biosynthesis pathways. This functional change in theWPI micro-

biota was associated with reduced cecal levels of several amino

acids and increased levels of cecal LCFAs in the WPI groups

alongside elevated BCFAs, heightened levels of which have

been linked previously to reduced enterocolitis via upregulation

of the anti-inflammatory IL-10 cytokine (Ran-Ressler et al.,

2011). Thus, by modifying the host dietary nutrient supply, with

little capacity to absorb through the lower part of the gut (e.g.,

LCFA), the WPI sensitive microbiota may be contributing to the

(fecal TAG-related) energy loss in WPI-fed mice reported previ-

ously and captured here. We cannot also exclude the possibility

that there may be a parallel effect of microbiota-induced change

in nutrient supply affecting tissue metabolism differently in pro-

tein groups. In support of this, although the FA profile and liver

transcriptome supported accumulation of fat and growth of the

liver in CAS, when WPI-fed mice had a reduced response, EAT

appeared to respond in an opposite way in terms of weight

and gene expression, whereas SAT was unresponsive. Diet-

induced changes in the functional repertoire of the studied mi-

crobiota may be due to selective growth of specific species.

For example, WPI intake increased the abundance of cecal

B. uniformis and A. muciniphila, both of which have been shown

to alleviate immunological and metabolic dysfunction in mice

with HFD-induced obesity (Everard et al., 2013; Gauffin Cano

et al., 2012). In further support of a link between diet, microbiota,

and host metabolic responses, a recent study by Ruocco et al.

(2020) showed that a designer diet in which CAS-derived amino
acids were substituted with a mixture of EAAs could prevent and

reverse obesity in mice. In agreement with our study, the meta-

bolic effects of EEA-rich diets were achieved independent of EI

and were dependent on the gut microbiota changes.

Our investigation with ABX and FMT intervention confirmed the

functional potential of the microbiota to modify the nutrient

accessibility to the hosts fed 55% fat and 30% CAS or WPI.

Notably, during the first 2 weeks of FMT (T2–T3),WPI-derivedmi-

crobiota reduced BWgain and increased proteogenic amino acid

degradation and lipid biosynthesis in the recipient CAS (CAS-

FMT) group and the abundance of these pathways was reduced

by the end of FMT period, whereupon BW was regained. This

suggests that continual ingestion of the CAS diet overrode the

initial effects of WPI microbiota supplementation and that the

presence of WPI-derived nutrients such as BCAAs may be

required to maintain the functional and composition effects of

the associated gut microbiota. In line with this suggestion,

CAS-derived microbiota also did not increase the BW gain of

the WPI-ingesting FMT group during the first 2 weeks of the

FMT period, when this group had increased proteinogenic amino

acid degradation and lipid/FA biosynthesis pathways. However,

when the AA degradation pathway was reduced by the end of

the FMT period and lipid/FA biosynthesis increased during the

same period in the WPI-FMT group, presumably because of the

competition in the WPI-FMT group receiving the CASmicrobiota,

the lack of activity in one pathwaywas associatedwith significant

weight regain in the WPI-FMT group, higher than the weight gain

in WPI controls. It is noteworthy that the WPI group (WPI-FMT)

receiving the CASmicrobiota increased the abundance of Lacto-

bacillus genera and L. reuteri, which are known to have anti-

obesity effects on the host (Choi et al., 2020), where L. reuteri

attenuated HFD-induced BW gain via IL-10-mediated induction

of lymphocytes and restoration of the T-regulatory/Th17 cell bal-

ance in the intestine (Poutahidis et al., 2013).

These results suggest a model where the HFLC diet combined

with high CAS protein promoted BW gain via increased nutrients

coming through the gut, which, in turn, triggered low-grade

inflammation and tissue expansion, promoting metabolic

dysfunction, which is driven by a CAS-associated unhealthy

gut microbiota. In contrast, the HFLC diet combined with high

WPI impeded BW gain by modifying host accessibility to nutri-

ents in the gut, achieved by reducing gut size and promoting

growth of a healthy microbiota, allowing the host to stay meta-

bolically healthier. The data highlight the importance of selecting

proteins rich in essential amino acids for improving themetabolic

outcomes of a high-fat diet.

Limitations of study
Although we used over 200 animals in our study and compiled

over 100 observations per animal, our study has limitations.

The experiments were performed in male mice during a specific

age (early adulthood), using 2 protein sources in a single combi-

nation of saturated and unsaturated FAs and one source of fiber.

This contrasts with human nutrition, but our data provide an

incentive for further investigation with different dietary combina-

tions and added measurements of tissue morphology and

cellular behavior (beyond what was shown here). Moreover,

and despite the fact that our study demonstrated the interaction
Cell Reports 35, 109093, May 11, 2021 13
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between specific dietary proteins and microbiotas in regulating

BW, additional work is necessary to identify a mechanical link

between specific dietary components, microbiotas, and tissue

metabolic effects.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

TRI Reagent Sigma-Aldrich Cat# 93289

Ampicillin Domas-beta Cat# 78917A

Neomycin Sigma-Aldrich Cat# N6386

Vancomycin Macklin Cat# V6062

Critical commercial assays

RNeasy Mini Kit QIAGEN Cat# 74104

QIAamp PowerFecal DNA Kit QIAGEN Cat# 12830-50

Triglyceride Assay Kit Abcam Cat# ab65336

Mouse Glucose Assay Kit CrystalChem Cat# 81692

MILLIPLEX Metabolic Hormone Panel: leptin, resistin Millipore Cat# MMHMAG-44K; RRID:AB_2783855

MESO SCALE DIAGNOSTICS cytokine panel:

IL-15, TNF-a, IP-10, CCL2

Meso Scale Discovery Cat# K15069L-1

Growth hormone ELISA kit Merck Cat# EZRMGH-45K

IGF-1 ELISA kit R&D systems Cat# MG100; RRID:AB_2827989

Deposited data

Data for Figure 1 Mendeley doi: https://dx.doi.org/10.17632/3739n57bsn.1

Data for Figure 2 Mendeley doi: https://dx.doi.org/10.17632/db5jzg8nsf.1

Data for Figure 3 Mendeley doi: https://dx.doi.org/10.17632/486s9cr9d9.1

Data for Figure 7 Mendeley doi: https://dx.doi.org/10.17632/7rb9x9xcw3.1

Data for Figure S1 Mendeley doi: https://dx.doi.org/10.17632/8mpc9y9797.1

Data for Figure S2 Mendeley doi: https://dx.doi.org/10.17632/wmp229s3xg.1

Data for Figure S3 Mendeley doi: https://dx.doi.org/10.17632/537n7ppv9f.1

Data for Figure S6 Mendeley doi: https://dx.doi.org/10.17632/7pznvxk5tt.1

Data for Figure S7 Mendeley doi: https://dx.doi.org/10.17632/7rg8c34cpx.1

RNA-seq data NCBI GEO GEO: GSE167498

Microbiota shotgun metagenomics sequences: Study 1 EMBL-EBI ENA ENA: PRJEB43357

Microbiota shotgun metagenomics sequences: Study 2 NMDC NMDC: NMDC10017750

Experimental models: Organisms/strains

Mouse: C57BL/6, Study 1 Envigo Wildtype

Mouse: C57BL/6, Study 2 Charles River Laboratories Wildtype

Software and algorithms

SPSS IBM Version 24

IPA Ingenuity Systems https://www.qiagenbioinformatics.com

R platform R Core Team Version 3.6.1.

SAS 9.4 SAS Institute Inc https://support.sas.com/en/support-home.html

R-studio R Studio Team Version 1.2.555

Inkscape Inkscape Version 0.92

GraphPad Prism version 7 for Windows GraphPad software https://www.graphpad.com/
RESOURCE AVAILABILITY

Lead contact
Further information for resources and reagents is displayed in Key resources table. Requests for resources should be directed to and

will be fulfilled by the lead contact, Kanishka Nilaweera (Kanishka.nilaweera@teagasc.ie).
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Materials availability
No novel reagents were generated by this study.

Data and code availability
RNA-seq data derived frommouse tissues are available at the Gene Expression Omnibus (GEO) data repository under the accession

number (GSE167498).

DNA sequencing data of gut microbiota have been deposited to EMBL-EBI ENA and NMDS under the accession numbers

PRJEB43357 (study 1) and NMDC10017750 (study 2) respectively.

Raw data from Figures 1, 2, 3, 7, S1–S3, S6, and S7 were deposited on Mendeley (see links in Key resources table).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Two studies were performed to assess the impact of dietary macronutrients on body composition (Study 1) and to explore the role of

microbiota in mediating dietary effects on body weight gain (Study 2). All mice were male C57BL/6J WT and were commercially pur-

chased from Envigo, UK and Charles River Laboratories, Beijing (study 1 and study 2, respectively).

Study 1
All animal procedures were licensed under the European Directive 2010/63/EU and associated work adhered with University College

Cork Animal Experimentation Ethics Committee (2015/ 007). Male C57BL/6J mice (Envigo, UK), aged 4-5 weeks, were purchased

commercially (Envigo). All mice were group-housed (3 per cage) in individually ventilated cages with ad libitum access to food

and water throughout the trial. Animals maintained in environmentally controlled conditions (45%–65% humidity, 20-22 �C, 12:12

light-dark cycle (06:00-18:00)) and were monitored for health status on daily basis. Mice were fed a 20% kcal casein, 10% kcal

fat and 70% kcal carbohydrate diet (Research Diets; USA; D12450Bi), until they were aged 20 weeks. Following 15 weeks of intake

of the latter diet (at age 20 weeks), all animals were weight matched and randomly allocated to different groups and switched to

experimental diets for 12 weeks, during which, the body weight and food intake was monitored on weekly basis. The dietary treat-

ments consisted of 3 different levels of dietary fat (20, 40 and 55%) combined with 3 different levels of protein (10, 20 and 30%), each

replicated with the protein coming from either casein (CAS) (diet codes: D17052701- D17052709) or whey protein isolate (WPI) (diet

codes: D17052710- D17052718) (Table S1). The levels of cellulose and sucrose were fixed at 5% by weight and energy respectively.

The 18 different treatments with 12 mice per group, where mice were housed in cages of 3 animals, with the exception of one dietary

group (code) having 11 mice, making the total of 215 individual mice. The sample size was calculated based on our experience that

protein quality (casein and WPI) has the smallest effect on total fat mass, individual fat depots (e.g., EAT) and other tissues (e.g., in-

testine) in diets varying in fat/carbohydrate quantity (McAllan et al., 2013). On average, to observe a 7.8% difference in total fat mass,

whichwas themain driver of bodyweight, with 80%power at alpha = 0.05, a sample size of 12was required. After 12weeks of dietary

interventions all animals were sacrificed and dissected into 24 different body components using protocol previously published

(Mitchell et al., 2015). Animals were fasted for 12-16 hours prior to termination of the trial. At the end of the study, 5 animals were

removed from the analysis due to the physical deformity.

Study 2
All animal procedures were approved by the animal ethical committee of the Institute of Genetics and Developmental Biology, Chi-

nese Academy of Sciences (Beijing, China). Forty C57BL/6J male mice (Charles River Laboratories, Beijing) were caged in pairs be-

tween 22-24�C and subjected to a 12-hour light and dark cycle. They had previously been fed a standard low-fat baseline diet as our

previous study (ID) from the age of 5 to 20weeks. At the beginning of the experiment, when themicewere 20weeks old, all individuals

were weight matched and randomly allocated to one of 4 equally sized groups (10 in each) with 2 animals per cage. Two of the groups

were allocated a 55% HFD containing casein (CAS) (diet code: D17052709) and the other two groups were given a 55% HFD con-

taining whey protein isolate (WPI) (diet code: D17052718), where the protein quantity was at 30%. This initial period of the experiment

lasted for 4 weeks (Figure 7A). After the initial period (4 weeks), 2 groups were given a course of antibiotics consisting of Ampicillin

(1g/1L), Neomycin (1g/1L) and Vancomycin (0.5g/1L) (CAS-ABX, WPI-ABX). Previous study showed that these antibiotics had no

impact on body weight (Rodrigues et al., 2017). The antibiotics were dissolved in the drinking water of the mice which was consumed

ad libitum. The duration of antibiotic treatment was similar to the time course of other studies (Li et al., 2019; Thaiss et al., 2016). The

treatment of the other two groups was unchanged throughout this period of the experiment (CAS-control, WPI-control). For the final

4 weeks of the experiment, the two control groups acted as faecal donors for the two groups which had received antibiotics (Fig-

ure 7A). The faecal samples used for the faecal transplants (FMT) were taken from all the cages of each of the control groups on

the day of the transplant. The faeces were then added to water at a 1:6, faeces: water ratio and mixed until smooth under anaerobic

conditions. This solution was then gavaged into one of the two antibiotic treated groups.WPI-FMT group received CAS fecal material

and CAS-FMT group received WPI fecal material. Each mouse received 0.1 mL of the solution per gavage and the faecal transplants

were carried out every 3 days until the end of the experiment. For the whole duration of the experiment, body weight and food intake
e2 Cell Reports 35, 109093, May 11, 2021
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were measured twice a week. Faecal material was collected from all cages of mice before and after ABX treatment, half way through

FMT period, and from individual animals at the end of FMT. This was stored at �80�C until required for sequencing.

METHOD DETAILS

RNA extraction, transcriptome analysis and qPCR
The hypothalamus, liver, and jejunum of all animals from 30% protein groups (6 diets [D17052703, D17052706, D17052709,

D17052712, D17052715, D17052718], 71 animals) were collected. Total RNA was extracted from hypothalamic blocks using

Tri-reagent (Sigma) and from liver and jejunum using the RNeasy Mini Kit (QIAGEN, 74104) according to manufacture instructions.

Hypothalamic RNA was paired-end (PE) sequenced by PE100 on BGISEQ-500 platform at Beijing Genomic Institute (PE 2 3

75 bp, 150 bp per fragment, 20M read-pairs per sample). Sequencing of liver and jejunal RNA was performed using the NovaSeq

6000 platform (chemistry V4.0 Illumina) at Macrogen Inc Seoul, South Korea (PE 2 3 75 bp, 150 bp per fragment, 25M read-pairs

per sample). Raw sequence reads were obtained in FASTQ format and these sequence reads were quality assessed using the

software FastQC (v 0.111.58; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequences from all samples were

quality trimmed, and cleaned of adaptor sequences using BBDuk java package to trim Illumina adaptor sequences. On average

0.1% of the bases were trimmed per sample. Trimmed reads were aligned to the Mus musculus reference genome assembly

GRCm38 (ftp://ftp.ensembl.org/pub/release-96/fasta/mus_musculus/dna/) using STAR RNA-seq aligner v2.5.2 (Dobin et al.,

2013), and uniquely mapped read counts per Ensembl annotated gene/ transcript were estimated using the STAR–quantMode

option. Genes with zero read counts across all samples as well as non-protein coding genes were removed prior to subsequent

analysis. Differential gene expression analysis and data transformations and visualization were carried out using DeSeq2 v1.18.1

(Love et al., 2014) in R 3.5.2. Sample clustering was carried out on variance stabilizing transformed data and visualized using PCA.

Differentially expressed genes lists were generated using a negative binomial generalized linear model and pairwise comparisons

using each combination of fat and protein content in each tissue. P values were adjusted for multiple comparisons using a Ben-

jamini and Hochberg (B-H) method. DE genes with an adjusted P value < 0.05 were used for further DE gene data exploration and

pathway analysis.

The fold changes and p values were loaded into the Ingenuity Pathway Analysis (IPA) program (Ingenuity Systems; https://www.

qiagenbioinformatics.com) for core analysis. IPA Knowledge Database was used to analyze the dietary impacts on canonical path-

ways and upstream regulators available in IPA. The overall results of IPA and differential gene expression analysis for three different

tissues are presented in Table S3.

The EAT and SAT were collected from two dietary groups (D17052709 and D17052718) and RNA was extracted using the RNeasy

Mini Kit. The mRNA level of target genes were measured in 600 ng of total RNA using Superscript II reverse transcriptase kit (Life

Technologies) and subjected to Real-Time PCR as detailed elsewhere (McAllan et al., 2013; McManus et al., 2015). The correspond-

ing gene expression was determined using 2- DDCp relative to the reference genes (beta-actin, Glyceraldehyde 3-phosphate dehy-

drogenase, Lactate dehydrogenase A and Hypoxanthine-guanine phosphoribosyltransferase). The primer sequences were as

follows: Fasn (F: 50-tccacctttaagttgccctg-30; 50-tctgctctcgtcatgtcacc-30); Glut4 (50-ggcctgcccgaaagagtc-30; 50-aggagctggagcaa
ggac-30).

Plasma metabolites and hormones
Blood was collected at the end of the trial. Plasma and fecal triglyceride levels were measured with the Triglyceride Quantification

Assay kit (Abcam), plasma glucose was measured using the Mouse Glucose assay (Crystal Chem). Hormones were measured using

ELISA kits (IGF1: R&D systems; growth hormone: Millipore), Milliplex kit (leptin and resistin: Millipore) and Meso Scale Discovery kit

(TNF-a, IL-15, IP-10, CCL2/MCP-1) according to manufacturer’s instructions.

Cecal and fecal microbiome
Microbial DNA extraction and sequencing. Genomic DNAwas extracted and purified from cecal (Study 1) and fecal (Study 2) material

using the QIAamp PowerFecal pro DNA kit (QIAGEN) according to themanufacturer’s instructions. Total DNAwas quantified with the

Qubit dsDNA HS Assay kit (Thermo Fisher) in order to normalize DNA to 0.2 ng/ml for input to library preparation. Sequencing libraries

for shotgun metagenomics sequencing were prepared from input DNA using the Nextera XT DNA Library Prep Kit (Illumina,

15031942). Library purification was achieved with AMPure magnetic beads (Beckman Coulter) at a ratio of 1:1.8 (DNA:AMPure).

Libraries were sequenced on the NextSeq 500 platform operating on high-output run mode (kit chemistry V2.5, 300 Cycles) to

generate 150-bp pair-end sequences in the Teagasc sequencing facility (Study 1) and in the Institute of Microbiology, Chinese Acad-

emy of Science, Beijing (Study 2), in accordance with standard Illumina sequencing protocols.

Bioinformatics processing and analysis. Quality control and removal of host contaminant reads from raw FASTQ sequencing files

was performed with KneadData (V.0.72; https://github.com/biobakery/kneaddata) using Trimmomatic (V.0.38.1) (Bolger et al.,

2014) and bmtagger (V.3.101) with Mus musculus (NCBI accession GCF_000001635) as host and standard options. Trimmed

and joined FASTQ files were converted to FASTA using the fq2fa utility from IDBA (V.1.1.3) prior to supplying FASTA files to

the Human Microbiome Project (HMP) Unified Metabolic Analysis Network (HUMAnN2, V.2.8.1) (Franzosa et al., 2018). HUMAnN2

was used with the UNIREF90 option and generated metabolic pathway models in addition to taxonomic profiles via the internal
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call to Metagenomic Phylogenetic Analysis (MetaPhlAn2, V.2.9) (Segata et al., 2012) which were quantified as copies per million

(cpm) and relative abundance (RA) respectively. Metabolic pathways were organized according to the MetaCyc hierarchy using

the CatMap R package. Measures of alpha diversity and ordination of microbial data was achieved with the vegan R package

(V.2.5-6) (Oksanen et al., 2013). Heatmaps were generated with the ComplexHeatmap R package (V.2.4.2) (Gu et al., 2016). All

other graphical elements related to the microbiome were visualized with the R package ggplot2 (V.3.3.1) (Wickham, 2016), and

in-house scripts. Version 3.6.1 of R was used to perform all such analyses. Lactococcus lactis was identified as contributing a

significant number of reads to the microbial sequencing data, which was determined to result from the sterilized diets (data

not shown). These values were excluded from analysis, and prior to the normalization of taxonomic and pathway profiles were

removed.

Metabolomics of cecal content
Cecal water was prepared by homogenizing the cecal content (approx. 100 mg) with 400 ml of sterile water for 5 min using a bead

beater. Samples were centrifuged at 16,000 g for 30 min, after which supernatants were filtered through 0.22 mm column filters

(Costar). Two separate mass spectrometry methods were used to measure metabolites in each sample.

Method 1. Sample analysis was carried out by MS-Omics (Denmark) as follows. Prior to analysis, 20 ml extracts were mixed with

180 ml 10mMammonium formate with 0.1% formic acid. The analysis was carried out using a Thermo Scientific Vanquish LC coupled

to ThermoQ Exactive HFMS. An electrospray ionization interface was used as ionization source. Analysis was performed in negative

and positive ionization mode. The UPLC was performed using a slightly modified version of the protocol described by Catalin et al.

(UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes, Water Application note 2011, 720004042en).

Peak areas were extracted using Compound Discoverer 2.0 (Thermo Scientific). Identification of compounds were performed at

four levels; Level 1: identification by retention times (compared against in-house authentic standards), accurate mass (with an

accepted deviation of 3ppm), and MS/MS spectra, Level 2a: identification by retention times (compared against in-house authentic

standards), accurate mass (with an accepted deviation of 3ppm). Level 2b: identification by accurate mass (with an accepted devi-

ation of 3ppm), and MS/MS spectra, Level 3: identification by accurate mass alone (with an accepted deviation of 3ppm). Selected

metabolites are shown in Figure S6B.

Method 2. Sample analysis was carried out by MS-Omics as follows. Samples were derivatized with methyl chloroformate using a

slightly modified version of the protocol described by Smart et al. (2010). All samples were analyzed in a randomized order. Analysis

was performed using gas chromatography (7890B, Agilent) coupled with a quadrupole mass spectrometry detector (5977B, Agilent).

The system was controlled by ChemStation (Agilent). Raw data was converted to netCDF format using Chemstation (Agilent), before

the data was imported and processed in MATLAB R2018b (Mathworks, Inc.) using the PARADISe software described by Johnsen

et al. (2017). Selected metabolites are shown in Figures S6C and S6D.

Liver fatty acid analysis
Fatty acid extraction from liver tissue was performed using the previously published protocol (Rubio-Aliaga et al., 2011). Liver fatty

acids were analyzed by GC-MS. The frozen sample was resuspended in 300mL of hexane and vortexed vigorously for 1 min. Then

100mL of samplewas combinedwith another 300mL of hexane to dilute the sample, and 200mL solutionwas transferred toGC vial with

250mL insert. The fatty acid composition of liver tissue was analyzed using GC-qTOF-MS (Agilent Technologies) consisting of a

7890B GC system, and a 7200 qTOF mass spectrometer. The column used was an Agilent HP-5MS 5% Phenyl Methyl Siloxane

(Dimension: 30 m 3 250 mm 3 0.25 mm). Helium was used as the carrier gas with a flow rate of 1.2 mL/min and the temperature

of the injector was 250�C. The sample was run under splitless mode and the injection volume was 1 mL. Separation was performed

under the following temperature: 70�C for 2 mins, 15�C /min to 190�C and 190�C for 1 min, 5�C/min to 230�C and 230�C for 5 mins,

20�C/min up to 300�C and 300�C for 5 mins. The total run time is 32.5 mins. The Agilent 7200 qTOF-MS was operated in the electron

ionization (EI) mode at 70 eV, a MS source temperature of 230�C, MS quad temperature of 150�C, and in the scan range of m/z

50–650. The identification of fatty acid was based on fatty acid methyl ester (FAME) standards.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using SPSS 24(IBM), SAS 9.4, and the R statistical programming environment (V.3.6.1) Values

are presented asmean ±SEMor boxplots with minimum,maximum andmedian. Univariate factorial ANOVAwas used to analyze the

effect of dietary factors on body weight, energy intake, body composition, plasma hormones, cytokines and metabolites. General

Liner model (GLM)/repeated-measures (RM) ANOVA was used to compare data across treatment period. Where appropriate,

following factorial ANOVA or GLM/RM, post hoc Bonferroni test was used, to isolate the differences between individual diets. Sig-

nificance was accepted at p < 0.05. Linear regression analysis performed using SAS 9.4. Normality tests were performed on all data

using Kolmogorov-Smirnov test and if necessary, log normalization or other transformation procedure was used prior to analysis. The

independent samples t test followed by false discovery rate procedure was used to analyze the statistical differences between the

groups for cecal and liver metabolites. Non-parametric tests were used to analyze measures related to microbiome data, with all

such analysis performed in R. Pairwise comparisons were done with the Wilcoxon Rank-Sum test from the stats package and

PERMANOVA using the adonis2 function in the vegan package. NMDS dissimilarity matrices were assessed with the analysis of
e4 Cell Reports 35, 109093, May 11, 2021
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similarities (ANOSIM) test, while PCoAmatrices were assessedwith adonis2, both as implemented in the vegan package. Tests were

corrected for multiple comparisons using the qvalue package (V.2.20.0; https://github.com/StoreyLab/qvalue) and a false discovery

rate (FDR) adjusted p value of pFDR < 0.05 to define significance. Murine body composition analysis was carried out in R (V.3.6.1) and

R-studio (V.1.2.555). Principal component analysis (for body composition analysis; Figure 2A) was performed in base R, biplot was

constructed and plotted using the ggplot2 library and the adonis PERMANOVA implementation from the vegan library was used for

statistical testing, using euclidean distance as a distance metric.
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Figure S1. BW changes after 6 and 12 weeks of dietary interventions and correlation of IGF-1 

with body weight and tissue weight, Related to Figure 1 and 2. (A) BW at 6 (upper panel) and 12 

weeks (lower panel). Groups were compared within different fat contents (CAS, English and WPI Greek 

letters) and protein type (CAS vs WPI). Values are represented as boxplots. Group with the same letters 



were not significantly different (p > 0.05). (B) Correlation coefficients (R2) and p-values of IGF-1 vs BW 

and tissue weight. The scale for the correlations: increasing intensity of orange/red indicates positive 

correlation. Dendrogram shows the similarity in responses of the different organs to BW changes. P-

value range (*p < 0.05, **p < 0.01; ***p < 0.001; ****p < 0.0001). N = 11-12 biologically independent 

samples. See Table S2 for the results of pairwise comparison of BW according to protein content. 



 

Figure S2. Plasma profile of cytokines and causal networks associated with the transcriptome 

in the jejunum and the liver responding to 30% protein with variable fat and protein type (% 

energy), Related to Figure 3, 4 and 5. (A-D) TNF-α, CCL2/MCP-1, IL-15 and IP-10 plasma levels. 

Groups were compared within different fat contents (CAS, English and WPI Greek letters) and protein 

type (CAS vs WPI). N = 6-10 biologically independent samples and 2 technical replicates. P-value range 

(*p < 0.05, **p < 0.01; ***p < 0.001; ****p < 0.0001). (E-G) Networks predict (E, F) inhibition of Th1 



cytokine (z-score = - 8.7) and lbp (LPS-binding protein) – LPS (z-score = - 6.5) in the jejunum of WPI 

relative to CAS, and (G) inhibition of MYD88 causal network (z-score = - 4.2) in the liver of WPI relative 

to CAS (p < 0.05 for E-G). Causal networks are based on IPA analysis of the transcriptome data with 

subsequent predicted effects on downstream regulators. Figure parenthesis shows the relationship 

between molecules within the network. N = 11-12 biologically independent samples. TNF-α: Tumour 

necrosis factor α; CCL2/MCP-1: C-C motif chemokine ligand 2/monocyte chemoattractant protein; IL-

15: Interleukin 15; IP-10: Interferon gamma-induced protein 10. 



Figure S3. Liver transcriptome associated pathways and fatty acid profiles affected by 30% 

proteins with variable fat and protein type (% energy), Related to Figure 5. (A, B) Heatmaps 

showing significant changes (p < 0.05) in selected upstream regulators (A) and canonical pathways (B) 

with activation z-scores > 1.5 (activation) or < -1.5 (inhibition), white coloured cells indicate insignificant 

changes in selected pathways/regulators. Data derived from IPA analysis of the transcriptome data. 



See Table S4 for IPA statistics and pathway/regulator target molecules. (C) Fatty acid profile of the liver 

detected by GC-MS. Values are represented as mean ± SEM. P-values: *p < 0.05. N = 11-12 biologically 

independent samples. 



 

Figure S4. Hypothalamic expression of genes and activation of upstream regulators and 

canonical pathways affected by 30% proteins with variable fat and protein type (% energy), 

Related to Figure 4 and 5. (A-C) Heatmaps shows significant changes in gene expression, upstream 

regulators (B) and canonical pathways (C). The values are represented as log2 fold changes (A) and 



z-scores (B, C) between corresponding diets. * p-value < 0.05 (A); activation z-scores > 1.5 (activation) 

or < -1.5 (inhibition) with p < 0.05 (B, C), white coloured cells indicate insignificant changes in selected 

pathways/regulators. (D) Oxidative phosphorylation pathway (z-score 6.94, p < 0.05) of WPI relative to 

CAS at 55% fat, see legend from Figure S3. The heatmaps were generated by IPA analysis of the 

transcriptome data (B, C). N = 11-12 biologically independent samples. See Table S4 for IPA statistics 

and pathway/regulator target molecules. 



 

Figure S5. Effects of 30% protein diets on the cecal microbiome, Related to Figure 6. (A) 

Ordination of Bacteria species at 20, 40 and 55% fat for both protein types. (B) Selected carbohydrate 

and lipid metabolism pathways. Solid bars indicate significance (adjusted Wilcoxon rank sum p < 0.05). 

Within protein group comparisons are indicated by WPI or CAS, while cross-group differences for fat 

percentage are designated with blank bars. (C) Alpha-diversity of Bacteria species for both protein 

groups at 20, 40 and 55% fat. N = 11-12 biologically independent samples.



Figure S6. Effect of 30% protein diet and metabolic profile of caecum content and expression of 

Fasn and Glut4 mRNA in EAT and SAT, Related to Figure 6. (A) PCA of cecal metabolites detected 

by GC-MS. (B) FA profile of caecum content detected by GC-MS. (C, D) Amino acids, dipeptides (C) 

and selected metabolites (D) of cecal content detected by LC-MS. (E) Fecal TAG content. BCFA: C9# 

(2,4-Dimethylpimelic acid). MCDA: medium chain dicarboxylic acid. (F, G) mRNA expression of Fasn 

(F) and Glut4 (G) in EAT and SAT. Values are represented as mean ± SEM. P-values: *p < 0.05, **p < 

0.01, ***p < 0.001, ****p < 0.0001. N = 10-12 biologically independent samples (A-G), N = 2 technical 

replicates (E-G).



 

Figure S7. The impact of antibiotic treatment and FMT on energy intake and gut microbiome, 

Related to Figure 7. (A, B) Energy intake changes during ABX (A) and FMT (B) experiment. (C) Beta-

diversity of pathways demonstrated by PCoA ordination. (D) Selected bacterial taxa. Solid bars indicate 

significance (adjusted Wilcoxon rank sum p < 0.05). Group comparisons are indicated by the following 

abbreviations: C-treat (CAS treatment) and W-treat (WPI treatment). C-treat/W-treat: comparison 

between treatment groups; C-treat & W-treat: comparison across time points. For bioinformatic analysis, 

the fecal samples were collected per cage at T1-T3 and from individual animals at T4. N = 9-10 

biologically independent samples. 
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