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Abstract

Simulations of the interaction between flexible cylinders attached to a solid surface

and a laminar shear flow have been performed. The flow simulations fully resolve the

geometrical details and are based on the lattice-Boltzmann method. An immersed

boundary method is used to impose the no-slip conditions at the cylinder surfaces

and to determine the distribution of hydrodynamic forces over the cylinder. The lat-

ter are responsible for the bending deformation of the cylinders. We first study sim-

ple shear systems under steady conditions for which experimental data are available

that we use for validation. We then study flexible cylinders in Poiseuille flow that

exhibit vortex shedding and demonstrate that the flexibility of the cylinders has a

pronounced effect on the temporal behavior of the flow system.
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1 | INTRODUCTION

Fluid–structure interaction (FSI) is a topic with extensive implications

in natural and man-made systems and playing out on a vast range of

length scales. On one side of the length scale spectrum, there are the

interactions between large engineered structures such as bridges and

high-rise buildings with an airflow surrounding them that have length

scales of tens to hundreds of meters. As an example on the opposite,

microscopic, side: at the intracellular level, the cytoskeleton interacts

with the flow of cytosol, the liquid inside cells, at scales of tens to

hundreds of nanometers. In between these eight to ten orders of

magnitude there is a rich collection of phenomena that involve FSI:

deformation of red blood cells in hemodynamics,1,2 flow–plant inter-

actions in biomechanics,3,4 vortex-induced vibrations of cylinders in

cross flow,5 and flight of insects and birds and airplanes6,7 to name

just a few.

A number of physics-related distinctions in FSI are relevant. At

small length scales—roughly up to the submillimeter level—flow

dynamics are well captured by the Stokes equations. Many micro-

scopic biological systems fall in this category.8 Extensive experimental

and modeling research has been done on—for example—motion of

fibrous bacteria through liquids.9 At larger scales, the effects of fluid

inertia become appreciable with the Navier–Stokes equations

governing fluid flow and eventually—at still larger scales—leading to

turbulence as an important component of FSI, for example, in flow–

plant interaction.3 The elastic properties of the structural components

of FSI also give rise to various classes of phenomena. This can be

appreciated in terms of the natural frequencies of the structures in

relation to the time scales of the fluid flow. For instance, if the

eigenfrequencies of structural elements are much higher than the fre-

quencies associated to the temporal behavior of the fluid flow, the lat-

ter governs the time-dependent behavior of the entire system with
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the structural elements following the flow in a quasi-static manner.

Inertial effects of the structural elements are then unimportant. In

other cases, FSI results in a strong interference between structural

and fluid flow time scales. Many systems that involve vortex-induced

vibrations are examples of the latter.5

The present article deals with detailed numerical simulations of

FSI at an intermediate length scale of the order of millimeters. It is

inspired by experimental work on soft hair beds by Alvarado et al10 in

which they show nonlinear behavior as a direct consequence of linear

elastic cylinders (“hairs”) bending under the influence of a laminar

shear flow. Soft hair beds are encountered in biology; in humans, in

blood vessels and intestines. Since they play a role in regulating fluid

flow and mass transfer at the microscale, they also might be relevant

in (nature-inspired) applications in chemical engineering.

In the experimental work,10 a Couette flow of a Newtonian liquid

between two parallel solid surfaces was created with the flexible cyl-

inders attached to one of the surfaces in a regular pattern. The shear

stress was measured as a function of the shear rate. The authors

observed apparent shear-thinning behavior as a result of the hairs

bending under the influence of the shear flow, which then leaves

more room for fluid flow above the hairs and thus a sublinear relation

between shear rate and shear stress. These were experiments at low

Reynolds numbers with a steady stimulus (shear rate) and steady

response (shear stress).

It is well known that beyond a certain Reynolds number the flow

past cylinders develops time-dependent instabilities known as vortex

shedding.11 We have an interest in studying—through detailed

simulations—how flexible cylinders in soft hair beds respond to flow

conditions for which vortex shedding occurs. This interest stems from

questions about the impact of vortex shedding on the overall drag of

the soft hair beds as well as the role vortex shedding could play in

mixing and mass transfer of the unsteady fluid flow through and

above the hair beds.

Our particle-resolved numerical approach for flexible cylinders in

fluid flow has been developed recently.12 It has been verified and vali-

dated for a few special cases. In the present paper, first, the steady-

state experimental results by Alvarado et al10 have been used for fur-

ther validation of the computational methodology. The main aim of

the paper is, however, to show how flexibility of the cylinders influ-

ences the dynamics of soft hair beds under laminar conditions for

which vortex shedding occurs.

There is—of course—a vast body of literature on vortex shedding

behind a single, rigid cylinder and also on vortex shedding behind

arrangements of multiple cylinders. For the latter situations, the vor-

tex patterns and shedding frequencies have been mapped out as a

function of “gap ratios” and Reynolds numbers, mostly based on

numerical simulations.13-15 Where for a single cylinder onset of vortex

shedding occurs at a Reynolds number of �50, systems with multiple

cylinders can show—dependent on how the cylinders are arranged—

significantly lower critical Reynolds numbers.15

Given the experiments by Alvarado et al10 that involve flexible

cylinders arranged in regular arrays in a Taylor–Couette device, our

simulations apply periodic boundaries in the streamwise and spanwise

directions and no-slip walls in the third direction with flexible cylin-

ders clamped on the bottom wall to mimic soft hair beds experiencing

shear. In the simple-shear (Couette) simulations, the top wall is mov-

ing parallel to the bottom wall. In the simulations that involve vortex

shedding, the flow is driven by a pressure gradient, and the top and

bottom wall are static (planar Poiseuille flow).

The organization of the article is as follows. In the next section,

the flow systems will be introduced. We then give a brief account of

the numerical methods that have been applied and discuss the choice

of numerical parameters. The results of the simulations of Alvarado

et al10 validation case will be presented next, after which we will go

into the simulations that involve vortex shedding. First—as a

reference—two-dimensional vortex shedding and then three-dimen-

sional. At the end of the article, conclusions will be reiterated and

options for future research discussed.

2 | FLOW SYSTEM

Two flow configurations have been considered: A shear flow system

that mimics the experimental study of Alvarado et al,10 and a planar

Poiseuille flow in which the cylinders induce vortex shedding. The

flow configurations along with a Cartesian coordinate system are

shown in Figure 1. They consist of a rectangular volume L×W×H

with no-slip walls at top z = H and bottom z = 0. One or more flexible

cylinders with diameter d, length ℓ, and bending stiffness EI are

attached to the bottom wall. The domains contain a Newtonian liquid

that has density ρ and kinematic viscosity ν. In the simple shear sys-

tem, flow in the x-direction is generated by moving the top wall with a

constant velocity Uw in the positive x-direction. The Poiseuille flow

F IGURE 1 Flow geometries including coordinate systems. Both
geometries are periodic in x and y directions. Left: top and side view
of the simple-shear system with—in this case—cylinders placed in a
periodic hexagonal arrangement with W = 2s and L=

ffiffiffi
3

p
s. Right: top

and side view of the planar Poiseuille system with one cylinder and
the flow driven by a uniform body force fx0
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system is driven by a uniform body force (force per unit volume) fx0

acting in the positive x-direction. Periodic boundary conditions apply

in the x (streamwise) and y (spanwise) directions. This mimics an infi-

nite, two-dimensional array of cylinders.

For reference, as well as to relate to findings in the literature, we

also will report briefly on two-dimensional simulations in the xy plane

(refer to Figure 1) and homogeneous conditions in the z-direction.

They will teach us about the onset of vortex shedding by infinitely

long rigid cylinders in a periodic configuration.

The flow systems as described above have been characterized

and analyzed mostly in dimensionless terms. Conditions are such that

even in the absence of cylinders, the flow in between the no-slip walls

is laminar. The shear flow has Reynolds numbers Rew = UwH
ν of order

10. Without cylinders, the Poiseuille flow has superficial velocity

U0 =
fx0H

2

12ρν . The average superficial velocity (with cylinder[s] present) is

denoted by the symbol U. These definitions give rise to the following

Reynolds numbers: Re0 =
U0d
ν = fx0H

2d
12ρν2 , Rech = UH

ν (Reynolds number

based on the channel height) and Re= Ud
ν that are all well below 200 in

this study. Note that only Rew and Re0 are based on input parameters;

the velocity U is an output parameter and so are Re and Rech.

The flexibility of the cylinder has been characterized by its bend-

ing stiffness EI with E Young's modulus and I the moment of inertia of

the cross-sectional area of the cylinder (I = πd4/64). Dimensionless

flexibility for Poiseuille flow systems has been defined as

χ = ρU2ℓ4/EI. This can be interpreted in terms of beam deflections. A

clamped cylinder experiencing a uniform load (force per unit length)

q deflects at its free tip by δ= 1
8qℓ

4=EI. If we scale q with ρU2d then χ

is a scale for cylinder deflection relative to the cylinder's diameter.

For the shear flow systems, we follow the scaling procedures and

notation of Alvarado et al.10 The authors of Alvarado et al10 define a

rescaled velocity as ~v = ρνℓ2Uw

Eϕd2H
1− ℓ

H

� �−3=2
with ϕ the hair area packing

fraction, i.e. the fraction of the bottom surface area occupied by cylin-

ders. Rescaled velocity is an input parameter to the simulations and

includes the bending stiffness of the cylinders. With increasing ~v ,

bending increases.

Vortex shedding gives rise to periodic fluctuations with frequencies

for which the symbol f has been used. This defines a Strouhal number

St = fd/U. When it comes to vortex shedding, this article is concerned

with “slow” fluctuations. In this respect, slow means that the frequen-

cies induced by the flow are much smaller than the first natural fre-

quency of a clamped beam, which is fn1≈2π�1:8752�
ffiffiffiffiffiffiffiffiffiffiffiffi

EI
ρs

π
4d

2ℓ4

q
16 with ρs

the density of the cylinder material. “Slow” then implies f/fn1�1. In

physical terms, it means that the inertial effects of the cylinder associ-

ated with its deformation can be discarded.

A list of dimensionless numbers—including definitions—is pro-

vided in Table 1.

3 | SIMULATION METHOD AND
NUMERICAL SETTINGS

The simulations described in this article build on earlier work of ours

on particle-resolved simulations involving nonspherical particles.

Bending flexibility of cylindrical particles was introduced in Derksen.12

Here, we give a brief overview of the numerical methodology and

refer to Derksen12 for the details.

Fluid flow is solved by the lattice-Boltzmann (LB) method, more

specifically the scheme that has been introduced in Somers17 and

Eggels and Somers.18 This scheme discretizes three-dimensional space

with a uniform cubic lattice of cells with side length Δ and provides

velocity and pressure data at points in the centers of each cell. The

scheme evolves explicitly in time with a time step Δt. The top and

bottom wall are aligned with the lattice and no-slip is imposed there

by a half-way bounce-back process.19 No-slip conditions on other

surfaces—notably the surfaces of the deforming cylinders—have been

imposed by an immersed boundary (IB) method.20 In this method, a

cylinder surface is defined by a set of closely spaced marker points.

The spacing between these points typically is 0.5Δ. Our version of the

IB method is based on forcing.21 At each marker point we determine,

by linear interpolation from the lattice points, the velocity. We then

locally apply a force on the fluid so as to make its velocity at the

marker point approach the required velocity of the solid surface at

that marker point. For a static solid surface, the required velocity

would be zero.

As a result, this forcing-based IB method not only imposes the

no-slip condition at the cylinder surfaces, it also provides the distribu-

tion of forces exerted by the fluid flow over the cylinder surface. This

hydrodynamic force distribution then allows for determining the

bending deformation of the cylinder.12 It must be noted that this is a

process that tightly couples cylinder deformation and fluid flow. The

fluid flow induces deformation of the cylinder with the deformation

impacting the fluid flow as a result of the cylinder changing shape.

In determining the deformation of the cylinder, we make two

major assumptions: quasi-static deformations and small deformations.

The quasi-static assumption implies that the deformation responds

instantaneously to a changing hydrodynamic load. This is a justified

approach if the natural frequencies of the cylinder are much larger

than those associated with the hydrodynamics, in this case vortex

shedding. The small deformations assumption allows for relatively

TABLE 1 Definitions of dimensionless numbers

Expression Description

Rew = UwH/ν Couette flow Reynolds number

Rech = UH/ν Channel flow Reynolds number

Re = Ud/ν Cylinder Reynolds number based on

superficial velocity U

Re0 = U0d/ν Cylinder Reynolds number based on Poiseuille

flow velocity U0

χ = ρU2ℓ4/EI Flexibility parameter

St = fd/U Strouhal number

~v = ρνℓ2Uw

Eϕd2H
1− ℓ

H

� �−3=2 Rescaled velocity (according to Alvarado

et al10)

~Z� Z−Z∞
Z0−Z∞

Rescaled impedance (according to Alvarado

et al10)
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simple relationships between force distributions and bending

moments and between bending moments and deflections.22

Previous work has assessed the impact of numerical settings on

the outcomes of simulations.12 Also, in this article, we will perform

such assessments. Most importantly, this is about spatial and temporal

resolution of the simulations. Spatial resolution is then expressed in

the number of grid spacings spanning a cylinder diameter. As a default

resolution, we will be using d = 16Δ. For collections of rigid cylinders,

this has proven to be an adequate resolution for cylinder-based Reyn-

olds numbers of order 10 in view of comparisons with simulations

that had d = 12Δ and d = 24Δ.
23 This also was the case for a single

flexible cylinder settling under gravity.12 Since—in principle—vortex

shedding might pose specific resolution challenges, also in this article

some simulations at the default d = 16Δ are compared to those with

d = 12Δ and d = 24Δ.

Temporal resolution is such that the viscous time scale d2/ν com-

prises 1.02�104 time steps. Also, the effect of this choice has been

tested by performing simulations that have significantly less time

steps per viscous time scale. The length of a typical simulation is 20–

40 viscous time scales, that is, in the range of 2�105 to 4�105 time

steps.

The bending of cylinders is accomplished by dividing the cylinder

into equal-size segments along its centerline. Previous work has

assessed the sensitivity with respect to the number of segments per

cylinder.12 Based on the results of this assessment, we will be using

segments with a length of 0.25d throughout this paper, that is, 20 seg-

ments over a cylinder with ℓ/d = 5.

For the Poiseuille flow systems, we define a base-case. It has

aspect ratios L/d = 20, W/d = 5, H/d = 6.25, and ℓ/d = 5. The body

force that drives the flow is such that Re0 = 64.

4 | RESULTS

4.1 | Steady simple shear simulations

The response of clamped flexible cylinders to shear flow is shown in

Figure 2. One observes increased bending with increased rescaled

velocity ~v . Increased bending leaves more room for the shear flow

above the cylinders. This reduces the shear rate and—as a

consequence—the shear stress. This apparent shear-thinning effect as

a function of geometrical and process parameters has been docu-

mented experimentally in great detail in Alvarado et al.10 Approxi-

mately universal behavior was observed when plotting the rescaled

impedance ~Z as output parameter versus ~v as input parameter. Imped-

ance has been defined as Z≡ τ/Uw with τ the shear stress at the top

surface, which is a measurable quantity.10 Rescaled impedance is10

~Z� Z−Z∞
Z0−Z∞

with Z0 and Z∞ the impedance under near-zero and infinite

shear, respectively. In the experiments,10 Z0 has been determined by

averaging data measured at ~v≈0:1 , while the determination of Z∞

involves a fit parameter. Since we do not have extensive simulation

data in the ~v≈0:1 range and want to avoid the use of a fit parameter,

we base our estimates of Z0 and Z∞ on the space available for fluid

shear above the hair beds at very low shear when the hairs hardly

bend and at very high shear when they lie almost flat on the bottom

surface: Z0 = ρν/(H−ℓ) and Z∞ = ρν/(H− d).

We plot the relationship between ~v and ~Z obtained from simula-

tions in Figure 3 in the same manner as was presented in Alvarado

et al10 (their Figure 1c). Figure 3 also shows model results from

Alvarado et al10 that were shown to closely follow the experimental

data. The simulation results correctly show the transition toward a

reduction of impedance that sets in at ~v≈1 and for larger ~v scales as
~Z� ~v−1=2 . The set of simulations presented in Figure 3 includes a

number of parameter variations: a hexagonal versus a square arrange-

ment of cylinders, variation in surface coverage ϕ, as well as in aspect

ratios. We observe that ~v as an overarching input parameter captures

the overall trend in simulated impedance well, as it does in the experi-

mental work.10

The simulations being slightly below the model line for ~v <1 is

due to the way we have determined Z0: without taking into

account the effect of flow penetration in an undeformed hair bed. An

estimate of the penetration depth that involves—among more—

surface coverage by Alvarado et al,10 supplementary material, results

in a reduction of impedance by a factor 0.75–0.95 (for 0.1≤ϕ≤0.3),

which are values for ~Z actually observed in the low end of ~v in

Figure 3.

It is clear from Figure 2 that the simulations go beyond the small

deformations limit. However, the results in Figure 3 indicate that also

for larger deformations the simulations capture the essential features

of the fluid–structure interaction.

F IGURE 2 Fibers in a hexagonal arrangement bending in simple shear. From left to right the reduced velocity is ~v = 0.234, 2.34, 4.58, 11.7,
respectively. All cases have ϕ = 0.11, ℓ/d = 10, and ℓ/H = 0.73. The panels show three hexagonal unit cells. The periodic condition in x-direction
makes that parts of fibers that cross the x = L boundary reappear at the x = 0 boundary [Color figure can be viewed at wileyonlinelibrary.com]
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We thus conclude that the simulations are able to reproduce

experimental results on cylinders bending under the influence of

steady laminar fluid flow. In the remainder of this section, we will

explore situations where the flow gets unsteady—but remains

laminar—as a result of vortex shedding by the cylinders.

4.2 | Two-dimensional vortex shedding results

Before presenting and discussing vortex shedding results of three-

dimensional simulations with flexible cylinders, we first make a brief

excursion into two-dimensional simulations on the flow around cylin-

ders in periodic domains. This allows us to relate to the literature on

vortex shedding behind multiple cylinders and will help in interpreting

the three-dimensional results. The situation is as sketched in Figure 4

(top-right panel). Given the periodic and two-dimensional nature of

the simulations, we are dealing with a rectangular array of infinitely

long (in the third, z-direction) rigid cylinders that are exposed to a

cross flow. This is a situation akin to flow around side-by-side cylin-

ders, tube bundles, and “coupled wakes” that have been studied in

the literature.13 Coupled wakes give rise to fluctuation patterns that—

as opposed to the wake behind a single cylinder—potentially have

multiple frequencies24 and go through Hopf bifurcations.13 Next to

the Reynolds number, the literature results indicate that the trans-

verse distance of cylinders (the gap ratio13) is a parameter that

strongly influences the dynamic behavior of the wake flow. For this

reason, we study the effect of the domain width W on the wake

dynamics.

The flow in the two-dimensional simulations is driven by a body

force that has been chosen such that a Reynolds number of approxi-

mately Re≈44 is achieved. There are methods for controlling the

body force such that the Reynolds number precisely attains a certain

value.25 It was, however, decided not to apply such methods as they

might result in a slightly fluctuating body force that could interfere

with the natural fluctuations of the flow system.

Figure 4 shows a range of vortex shedding scenarios as a function

of the width W of the periodic domain. The spectra presented in

Figure 4—and also later in the article—are based on time series after

the instability has reached a dynamically steady state having a length

of at least 10d2/ν. The spectral response of the flow to the presence

of the cylinder is a marked function of domain width. At W/d = 5

there is vortex shedding with a single frequency and thus one

Strouhal number. Increasing the domain width induces multiple shed-

ding frequencies to occur simultaneously and the vorticity fields to be

more complex. At W/d = 17.5, the system again tends to a single

Strouhal number that, however, is lower (by almost a factor of two)

than for W/d = 5. The time series shows some level of irregularity that

reflects back as minor peaks in the power spectral density.

As is clear from the vorticity fields shown in Figure 4, as a result

of the periodic boundaries in streamwise direction, the flow impacting

on the cylinder is unsteady and complex as a result of the unsteady

wake of the “upstream” cylinder—which in fact is the cylinder itself.

This interaction between the cylinders in the streamwise—but also in

the spanwise direction—leads to complex vorticity fields.

In the literature, two-dimensional simulations have probed vortex

shedding behind side-by-side cylinders with various cross-sectional

shapes13 as well as cylinders arranged in periodic configurations26

with an emphasis on the effect of the spacing between cylinders on

the dynamics of vortex shedding. It is reassuring to see multi-peak

spectra appearing24 dependent on gap widths and Reynolds numbers

with Strouhal numbers comparable to those observed in Figure 4.

For an isolated cylinder with circular cross section, the generally

agreed critical Reynolds number for the onset of vortex shedding is

Re ≈ 47.27 For cylinders in periodic arrays as well as in side-by-side

configurations, the critical Reynolds number can get well below those

for isolated cylinders.24 This is also what we observe in Figure 4.

4.3 | Pressure-driven shear flow with periodic
conditions in streamwise and spanwise direction

Figure 5 gives an impression of the flow in the base-case geometry

around a rigid cylinder, exposed to planar Poiseuille flow at Re = 27.1.

The vorticity field in the mid-xy-plane indicates mild vortex shedding,

i.e. a minor meandering of the wake behind the cylinder. The isometric

view of the velocity magnitude contours shows the three-

dimensionality of the flow with relatively high velocities (up to two

times the superficial velocity) at lateral periodic boundaries (i.e. in the

lateral space between the periodically placed cylinders), boundary

F IGURE 3 Rescaled velocity ~v versus rescaled impedance ~Z for
soft hair beds experiencing simple shear. The symbols represent
simulations in various geometrical systems as indicated—where sq is a
square pattern of hairs and hx a hexagonal pattern. The blue curve is a
model due to Alvarado et al.10 In Alvarado et al,10 it has been shown
that experiments closely follow the model curve [Color figure can be
viewed at wileyonlinelibrary.com]
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layers at the upper and lower wall with the upper boundary layer

perturbed by the flow over the tip of the cylinder, and a three-

dimensional wake characterized by low-velocity magnitudes.

For this specific geometry, the onset of vortex shedding is at

a Reynolds number in the interval of Re = 20–22, see Figure 6

that shows time series of the velocity in lateral (y) direction in a

monitor point in the near wake of the cylinder. For the range of

Reynolds numbers investigated (up to Re≈ 35), vortex shedding

occurs with a single frequency with—beyond the critical Reynolds

number—the Strouhal number only weakly dependent on the

Reynolds number at St≈ 0.12 − 0.13. This Strouhal number is not

that much different from the two-dimensional result with the same

streamwise and lateral domain size as used in the 3D simulation—

as shown in the top panels of Figure 4—which has St = 0.099. This

merely demonstrates that the superficial velocity is an appropriate

velocity scale to be used in the Strouhal number in the 3D

simulations.

As also shown in Figure 6, the Reynolds number based on the

superficial velocity monotonically—though non-linearly—increases

with Re0. Overall Re≤0.5Re0, which indicates that roughly 50% or

more of the resistance to flow can be attributed to the cylinder, and

the remainder to the channel walls.

F IGURE 4 Two-dimensional
simulations in periodic domains
with length L = 20d and width
W as indicated. Top right:
geometry, coordinate system, and
monitor point p. From left to
right: time series of dimensionless
y-velocity in the monitor point;
the corresponding power spectral

density; an instantaneous
z-vorticity field at a moment
when uy in the monitor point
peaks. Reynolds numbers as
indicated [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 5 Instantaneous realizations of the three-dimensional
flow around a clamped rigid cylinder. Top: z-component of the
vorticity in the plane z = H/2. Bottom: velocity magnitude in the
planes z = H/2 and y = W/2 Base-case geometry with Re = 27.1
[Color figure can be viewed at wileyonlinelibrary.com]
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Flexibility of the cylinder has quite an impact on the flow field,

including the vortex shedding process. In Figures 7 and 8, we look in

detail to one situation that only differs from the rigid cylinder case of

Figures 5 and 6 in terms of flexibility. The flexibility parameter is

χ = ρU2ℓ4/EI = 3.94. We note that the Reynolds number for the flexi-

ble case is slightly lower than for the rigid cylinder, Re = 25.8 (flexible)

versus 27.1 (rigid). Given that the body force driving the flow is the

same in the two situations, this means that flexibility has slightly

increased the flow resistance. This is an effect opposite to the drag

reduction observed in the (steady) shear flow systems discussed ear-

lier. As can be seen in the single realization in Figure 7 and in the time

series in Figure 8, the cylinder bends in the flow direction and

reaches—after t≈10d2/ν—a deflection in streamwise direction of wx≈d

along with minor periodic fluctuations in wx. This bending in the flow

direction in itself would reduce flow resistance but this is apparently

more than compensated for by increased resistance as a result of the

lateral bending motion of the cylinder. We note that—as before in the

simple shear system—the simulations go beyond the small deformations

assumption, which we justify by the favorable agreement with empirical

data as shown in Figure 3.

In terms of fluid flow (see Figure 7), the flexible cylinder has a

shorter wake and a smaller vortex shedding wavelength as compared

to the rigid cylinder (Figure 5).

The bending motion for this specific case is rather complex; see

the middle panel of Figure 8 that shows the trajectory the tip of the

cylinder is going through in x and y directions. It is a periodic motion,

i.e. the same trajectory is traveled over and over again. The power

spectral density of the tip deflection in y direction (wy) is shown in the

right panel of Figure 8; it has two distinct peaks (at St = 0.13 and

0.38) and one minor peak (at St = 0.65). As shown in the same figure,

the spectrum of the velocity component in y-direction (uy) in the mon-

itor point defined in Figure 6 closely follows the wy defection spec-

trum. The first spectral peak at St = 0.13 is at the same location as the

one found for a rigid cylinder. The cylinder's flexibility thus adds addi-

tional frequencies to the velocity and deflection fluctuation levels. It

needs to be noted here that the frequencies observed so far are well

below the first eigenfrequency of the flexible cylinder:

f=fn1≈ St
2π�1:8752 �

ffiffiffiffiffiffiffiffiffi
π
4
ρs
ρ χ

q
. With a typical density ratio of ρs/ρ = 2, χ = 3.94

and the highest Strouhal number discernable in Figure 8 (St = 0.65),

f/fn1≈0.07�1. It also is important to realize that—given the periodic

conditions in streamwise and lateral direction—we are dealing with

arrays of cylinders moving in perfect phase with frequencies that

depend on cylinder (ℓ/d) aspect ratio and the spacing/arrangement of

the cylinders, i.e. on the periodic domain size. In short, the systems

are very specific, which makes it difficult to cover a full geometrical,

material properties, and flow properties parameter space. In what

F IGURE 6 Top four panels: time series of (dimensionless)
transverse velocity (uy) in the near wake of a rigid clamped cylinder
(x = L/2 +5d/4, y = W/2− d/16, z = H/2). Bottom two panels: Re as a
function of Re0 and St as a function of Re. Base-case geometry [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Instantaneous realizations of the three-dimensional
flow around a clamped flexible cylinder with χ = 3.94. Top: z-
component of the vorticity in the plane z = H/2. Bottom: velocity

magnitude in the planes z = H/2 and y = W/2 base-case geometry at
Re = 25.8 [Color figure can be viewed at wileyonlinelibrary.com]
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follows, we will be mainly focusing on the effect of the cylinder flexi-

bility (i.e. the parameter χ) for two domain widthsW. Involving domain

width is motivated by the observations we made for two-dimensional

cases that are shown in Figure 4.

In Figure 9, we study the role of flexibility on the bending motion

of the cylinder in the base-case configuration that—among more—has

W/d = 5. We keep the flow system—geometry, driving force, fluid

properties—the same and only vary the bending stiffness EI of the cyl-

inder. We plot the trajectory of the cylinder tip as well as the wy spec-

tra. So far, we have scaled cylinder deflections with the diameter of

the cylinder (wx/d and wy/d). In order to facilitate comparison of simu-

lations over a wide range of bending stiffness, the deflections wx and

wy are from now on scaled with the deflection δ= 1
8ρU

2dℓ4=EI a

clamped cylinder would experience if it were loaded with a uniform

force per unit length equal to q = ρU2d.

As noted in the caption of Figure 9, there is a weak but consistent

decrease in the Reynolds number based on the superficial velocity

with increased flexibility of the cylinder, that is, an increased

resistance to flow with increased flexibility. Given that the lateral

deflections scaled with δ increase with increasing flexibility makes that

the lateral bending more than proportionally increases with flexibility

χ. For the highest value of χ considered in Figure 9 (χ = 4.16), the tra-

jectory of the tip of the cylinder ceases to be periodic.

All simulations in Figure 9 show a principal frequency of the

bending motion wy of St = 0.13. Between χ = 2.20 and 3.70, a second

spectral peak appears at St = 0.38. For χ = 4.16, additional frequencies

can be observed.

At this stage, it is important to ascertain that the effects observed

are of a physical, as opposed to a numerical, nature. For this, we have

looked into the effects of time and space resolution on the results of

the simulations. When it comes to time resolution, the default simula-

tions have a kinematic viscosity of ν = 0.025 in lattice units (Δ2/Δt).

With the default spatial resolution such that the cylinder diameter is

spanned by 16 lattice spacings d = 16Δ, this implies that one viscous

time scale d2/ν = 10240Δt. If we increase the viscosity and keep

d = 16Δ, we thus decrease the number of time step per viscous time

F IGURE 8 Left: onset of the instability in terms of the end-point deflection in streamwise and spanwise directions wx and wy as a function of
time. Middle: path traveled by the endpoint after periodic motion has set in (with �wx the time-averaged x-deflection). Right: power spectral
density of the wy signal and the transverse velocity uy in the same monitor point as used in Figure 6. Base-case geometry at χ = ρU2ℓ4/EI=3.94
and Re = 25.8 [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 Cylinder tip deflection wx− �wx versus wy normalized by δ= 1
8ρU

2dℓ4=EI (top row) and power spectral density of wy (bottom row)
with—from left to right—increasing flexibility χ = 0.156, 1.49, 2.20, 3.70, 3.94, and 4.16, respectively. In all cases Re0 = 64, while Re = 27.0, 26.4,
26.2, 25.9, 25.8, and 25.5 (from left to right). Base-case geometry [Color figure can be viewed at wileyonlinelibrary.com]
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scale, which means increasing the time step in physical terms. In

Figure 10, we show a comparison between three simulations that all

are identical in terms of dimensionless input parameters and spatial

resolution but that have different physical time step. We see good

agreement of the trajectory traveled by the tip of the cylinder as well

as of the wy spectrum. The Strouhal numbers of the spectral peaks are

within 0.01, where the resolution of the spectra is ΔSt≈0.005. As

indicated in the caption of Figure 10, the Reynolds numbers—based

on the superficial velocity—of the three simulations are within 0.1.

The effects of spatial resolution (d = 12Δ, 16Δ, 24Δ) have been

tested for two different values of the flexibility (χ ≈2.2 and χ ≈3.9);

the results are shown in Figure 11. The superficial velocities are such

that the Reynolds numbers associated with the various resolutions

agree within 1% and 1.5% for χ ≈2.2 and 3.9, respectively. The spec-

tra largely overlap. There is a weak trend with resolution when it

comes to the path traveled by the cylinder tip: for both flexibilities,

increasing the resolution leads to a weak decrease in the amplitude of

the motion of the tip in y-direction. The amplitudes for d = 16Δ and

24Δ, however, differ by less than 1%.

We thus observe decent grid size and time step size indepen-

dence, which then justifies the default lattice spacing and time step

that are defined by d = 16Δ and d2/ν = 10240Δt, respectively.

The spectral results of a significant set of simulation for a range

of flexibility parameters and for two domain widthsW are summarized

in Figure 12. We show the location of main spectral peaks as a func-

tion of χ. Looking at the relatively narrow system with W/d = 5 first,

we see a few step-changes/bifurcations. The single Strouhal number

St = 0.13 that is associated with vortex shedding behind a rigid cylin-

der persists until χ ≈4.5. At χ ≈3.3, however, a second frequency at

St = 0.38 appears in the spectrum. We noted before (Figure 9) that

beyond χ = 4 the motion of the cylinder tip is not periodic anymore.

This transition is associated with a small shift of the high frequency

from St = 0.38 to St = 0.42. At the highest level of flexibility we simu-

lated, χ = 5.6, we observe a spectrum with four distinct peaks, as

shown as an inset in the left panel of Figure 12.

A similar series of simulations were performed for a wider

domain: W/d = 7.5. Here we have included a rigid cylinder (χ = 0)

result. The (only) frequency St = 0.067 associated to that simulation

persists until χ = 4.5. From χ = 0.68, however, this base frequency is

joined by higher frequencies, first St = 0.20, later St = 0.18. At χ = 4.5,

there is a bifurcation into a flow system with a low frequency of St≈

0.13 and a second frequency that starts at St≈0.31 and gradually

decays to St = 0.28 when the flexibility parameter has

become χ = 7.8.

From the above exercise, we see that bending stiffness adds com-

plexity to the vortex shedding process with oscillations that eventually

F IGURE 10 Effect of time step on tip deflection (left) and power
spectral density of wy (right). Base-case geometry with Re0 = 64. In all
three cases Re = 27.1 ±0.1 and χ = 0.0157±0.002 [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 11 Effect of spatial resolution (in terms of number of
grid spacings Δ spanning d) on tip deflection and (left) power spectral
density of the wy signal (right). Base-case geometry with Re0 = 64.

Top: χ = 2.20 ±0.02; bottom χ = 3.94 ±0.05 [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 12 Frequencies associated to peaks in the power
spectral density of the wy signal as a function of flexibility parameter
χ. Left: base-case conditions, including a domain width of W = 5d;
right: same as left except that now W = 7.5d. The inset in the left
panel is the spectrum at χ = 5.6, which has four frequencies
represented by the four red symbols [Color figure can be viewed at
wileyonlinelibrary.com]
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become quasi-periodic. Given the numerical (time and space resolu-

tion) checks that have been performed, we deem the scenarios

observed of a physical nature and will welcome experimental results

that may confirm or falsify the numerical results.

5 | SUMMARY, CONCLUSIONS, AND
OUTLOOK

In this article, we have performed fully resolved simulations of soft

hair beds bending under the effect of a laminar shear flow. The inspi-

ration comes from experimental work due to Alvarado et al10 and has

been extended toward situations where the hairs (flexible cylinders

attached to a solid wall) facilitate vortex shedding. The simulations

represent the experimentally observed flow response of the soft hair

beds well and thereby confirm the scaling properties of the response.

In this scaling, the surface coverage fraction ϕ and the hair aspect

ratio ℓ/d play prominent roles.

Two-dimensional simulations of vortex shedding in periodic

domains highlight the impact the domain size (i.e. the spacing

between cylinders) has on the spectral response, in agreement with

findings from the literature on flow past multiple cylinders of various

cross-sectional shape and in various arrangements.

The three-dimensional planar Poiseuille flow simulations with a

cylinder attached to one of the walls have been verified with respect

to the numerical settings. Time-step coarsening and grid coarsening

and refinement have marginal effects on the bending motion of the

cylinder, even under challenging conditions when the trajectory trav-

eled by the cylinder tip shows fine detail and multiple frequencies.

Cylinder flexibility has significant impact on the vortex shedding

process. Most importantly it adds frequencies to its spectral behavior.

It also—weakly—adds to the flow resistance of the cylinder. The

Poiseuille system goes through a number of bifurcations when

increasing the flexibility of the cylinder. It was demonstrated that the

bifurcation scenarios strongly depend on the domain width and thus—

given the periodic nature of the simulations—the spacing between cyl-

inders. The periodic boundary conditions in streamwise and spanwise

directions make that all periodic copies of the cylinder deform in-

phase. By performing simulations with two side-by-side cylinders and

two cylinders aligned in the streamwise direction, we will be

investigating—through simulation—the consequences of deviations

from periodicity on the temporal behavior of the cylinders’
deformations.

A clear challenge in the study we have performed is a meaningful

variation of parameters. The dimensionality of the parameter space is

large, specifically with respect to flow geometry and flow conditions.

As also noted above, experimental data—specifically covering the vor-

tex shedding regime—will be very useful for validation as well as for

guidance toward relevant parameter variations.

Given that in biology soft hair beds are considered to have a func-

tion in regulating mass transfer (e.g. in blood vessels), future work that

involves adding scalar transport to the fluid–structure interaction sim-

ulations described above will be a very interesting avenue for future

research. In nature, active soft hair beds (motile cilia28,29) generate

fluid flow—for example, for enhancing mass transfer or for

locomotion—by performing a collective, wave-type deformation. The

simulation methodology as described and used in this article is well

suited to investigate such metachronal waves in detail.
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