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31 1 Introduction

32 In coastal areas and islands, seawater intrusion is a major challenge for groundwater 

33 management. Numerical models of seawater intrusion are heavily relied on for groundwater 

34 management decision-support (Werner et al., 2013), as they can help quantify current and 

35 future freshwater resources and support the design of optimal pumping scenarios.

36 Seawater intrusion models are generally based on variable density codes, which simulate mixing 

37 between fresh and saline groundwater. As these codes solve the coupled, non-linear 

38 groundwater flow and advective-dispersive solute transport equations, they require a fine 

39 vertical discretization of the simulated domain and the resulting models are computationally 

40 expensive. Excessive model run times have severely limited the possibility of parameter 

41 estimation, i.e. “automated trial-and-error calibration” (Anderson et al., 2015), especially for 

42 large-scale regional models. While parameter estimation is routinely performed for 

43 hydrogeological inversions, it has remained scarce for seawater intrusion models (Carrera et al., 

44 2010; Werner et al., 2013). Although several studies have recently carried out parameter 

45 estimation with variable density models, with methods to reduce model run times (e.g. Ataie-

46 Ashtiani et al., 2013; Dentoni et al., 2014) or using mixed manual-automated calibration 

47 strategies (e.g. Meyer et al., 2019; Siarkos and Latinopoulos, 2016), manual trial-and-error 

48 calibration is still often applied (e.g. Holding and Allen, 2015; Post et al., 2018c). However, 

49 manual calibration has shortcomings which can be crucial for decision-support models. While 

50 manual calibration can be subjective and does not necessarily lead to the optimum parameter 

51 set, regularized parameter estimation can lead to the minimum error variance parameter set, 

52 which allows for predictions of minimum error variance (Anderson et al., 2015). In addition, 

53 parameter estimation allows for quantitative uncertainty analysis, which is critical for model-

54 based decision-making (Delottier et al., 2016; Hunt et al., 2020).
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55 Sharp-interface codes, like SHARP (Essaid, 1990) or the SWI2 package for MODFLOW-2005 

56 (Bakker et al., 2013), neglect mixing processes and simulate a sharp boundary (or interface) 

57 between freshwater and saltwater. Sharp-interface codes are well adapted to regional seawater 

58 intrusion modeling (Reilly and Goodman, 1985) and their range of applicability has been 

59 explored by Llopis-Albert and Pulido-Velazquez (2014). As they do not solve the solute transport 

60 equation, run times are significantly shorter. In a synthetic case, using the sharp-interface code 

61 SWI2 instead of the variable density code SEAWAT (Langevin et al., 2008) reduced run times 

62 from three hours to a few seconds (Dausman et al., 2010b). The fast run times afforded by 

63 sharp-interface codes have made these practical for coastal pumping optimization (Dhar and 

64 Datta, 2009; Kopsiaftis et al., 2019) and pave the way for parameter estimation. However, even 

65 with sharp-interface models, parameter estimation remains far from common practice. Manual 

66 calibration of such models is still widely used (e.g. Babu et al., 2018; Dokou and Karatzas, 2012; 

67 Gingerich, 2002; Pappa et al., 2017) and on occasion, the SWI2 package has been implemented 

68 in a previously calibrated MODFLOW groundwater model without further calibration (e.g. 

69 Baalousha, 2016; Walter et al., 2016). Only very rarely has parameter estimation been carried 

70 out (Hughes and White, 2014; Rotzoll et al., 2016), such that guidelines and case studies are 

71 lacking which could otherwise be used to help perform this task. Quantification of the predictive 

72 uncertainty of real-world seawater intrusion models also remains scarce (Werner et al., 2013).

73 One of the major knowledge gaps for the parameter estimation of sharp-interface models 

74 concerns the type of observations to be included. Currently, apart from the works of Hughes 

75 and White (2014), who used both head and flow rate observations, or Babu et al. (2018), who 

76 derived the thickness of the freshwater lens from nested monitoring wells, most sharp-interface 

77 model calibrations have been constrained by groundwater levels alone. However, it is known 

78 that using head observations alone is insufficient to constrain the inversion problem uniquely 
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79 (Anderson et al., 2015), and salinity observations are commonly used in variable density models 

80 (Shoemaker, 2004). Literature on data assimilation for sharp-interface models is therefore 

81 limited, and it is unclear which observations should be used, what processing is required and 

82 what weighting strategy should be used to account for contrasting measurement errors. Few 

83 resources are available to guide both data assimilation and parameter estimation in sharp-

84 interface models and considering that these are crucial for decision-support modeling (Doherty 

85 and Moore, 2020), more investigations are warranted in this area. Exploring the links between 

86 data and models was also identified by Werner et al. (2013) as a key area of research for 

87 seawater intrusion modeling. 

88 The objective of this paper is to present a framework for parameter estimation using a regional 

89 sharp-interface seawater intrusion model. A model was developed using the SWI2 package for 

90 MODFLOW-2005, which has shown efficient run times (Dausman et al., 2010b). A diverse 

91 dataset was assembled using typical coastal aquifer observations. Groundwater head 

92 observations were extracted from shallow wells, deep open wells and pumping wells. 

93 Observations of the freshwater-seawater interface, further referred to as interface 

94 observations, were extracted from deep open wells, and from time-domain electromagnetic 

95 (TDEM) and electrical resistivity tomography (ERT) surveys. The uncertainty of these 6 

96 observation groups was quantified and accounted for in parameter estimation through the 

97 weighting strategy, as recommended for PEST (Doherty, 2004). Linear predictive uncertainty 

98 analysis was conducted for 2 types of forecasts: the total freshwater volume and interface 

99 elevations at pumping wells. An examination of residuals (i.e. the difference between simulated 

100 and observed values) then provided insight on the capacity of all 6 observation types to 

101 constrain calibration, while a data worth analysis explored their value for reducing predictive 

102 uncertainties. This modeling and inversion framework was developed for a real-world case in 
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103 the Magdalen Islands (Quebec, Canada), and the findings of the study can help guide data 

104 collection efforts in other coastal aquifers where decision-support models are needed.

105 2 Study area

106 The Magdalen Islands (Quebec, Canada) form an archipelago located in the middle of the Gulf of 

107 Saint-Lawrence (Fig. 1), with an area of 200 km2 and approximately 12,000 permanent 

108 inhabitants (Statistics Canada, 2017). Due to the lack of surface water resources and the 

109 prohibitive cost of seawater desalinization (Chaillou et al., 2012), groundwater is the only 

110 drinking water source. In addition, a high water demand during the summer enhances the risk of 

111 saltwater upconing under pumping wells. Local decision-makers are therefore strongly 

112 concerned by the capacity and management of their groundwater resources (BAPE, 2013). 

113 Grande Entrée Island, lying within the archipelago, was considered for this study as it is one of 

114 the most vulnerable islands due its shallow freshwater-seawater interface.

115 2.1 Conceptual model

116 Grande Entrée Island has an area of 8.5 km2 and is surrounded by water from both the Gulf of 

117 Saint-Lawrence and lagoons. It has a relatively flat topography, with land elevations reaching at 

118 most 43 m above local mean sea level and a gently sloping seafloor (between 5 and 15‰ up to 

119 1 km from the island). The nearby weather station indicated an average precipitation rate of 

120 1040 mm/yr between 1981 and 2010, with relatively uniform rates throughout the year. Past 

121 studies have estimated the potential evapotranspiration as approximately 500 mm/yr 

122 (Dessureault and Simard, 1970) and recharge as 25% to 40% of total precipitation, i.e. 230 to 

123 380 mm/yr (Leblanc, 1994, Poulin, 1977, Sylvestre, 1979b).

124 The main geological unit, both onshore and offshore (Fig. 1), is a red Permian eolian sandstone 

125 with large cross-bedding features (Brisebois, 1981; Rabeau and Thériault, 2013) belonging to the 
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126 Étang-des-Caps Member (Cap-aux-Meules formation) and estimated to be about 300 meters 

127 thick (Brisebois, 1981). Onshore, Quaternary unconsolidated sediments overlie the Permian 

128 sandstone: glacial sediments fill a paleovalley in the middle of the island (fine sand with traces of 

129 silt and gravel) and sand dunes lie on the outskirts. While the paleovalley reaches a thickness of 

130 approximately 110 meters at the center of the island, the thickness of the sand dunes is not well 

131 known (a thickness of 10 to 15 m is observed to the west).

132 The red Permian sandstone is the main aquifer formation, intercepted by all nine municipal 

133 wells and by most industrial and domestic wells. A number of aquifer tests in the archipelago 

134 have shown this formation to be heterogeneous, with a high hydraulic conductivity (4 · 10-5 m/s 

135 on average). The hydraulic conductivity of the other geological formations is less well known. 

136 The sand dunes are considered highly permeable (Sylvestre, 1979a) whereas the sparse aquifer 

137 tests in the glacial sediments yield a lower average hydraulic conductivity of 1 · 10-5 m/s. 

138 Municipal pumping started in 2013 and freshwater is distributed to households, institutions and 

139 industries. Using data on municipal water use and individual consumption estimates, it was 

140 determined that an additional 80 m3/day is being pumped by domestic wells. Industrial 

141 groundwater pumping was neglected in the study. Before installation of the municipal wells, 

142 groundwater pumping was mostly uncontrolled, leading to several episodes of saltwater well 

143 contamination which are not well documented.

144 2.2 Monitoring

145 Few historic observations are available on the Magdalen Islands, whether for head, salinity or 

146 pumping rates. Among the available data, automated meters have recorded pumping rates, 

147 water levels and electrical conductivity at all municipal wells, every minute, since mid-2014. 

148 Data gaps in the records are frequent because of technical issues. At five deep, open monitoring 
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149 wells (Fig. 1), loggers have recorded pressure on an hourly basis since mid-2016 and downhole 

150 electrical conductivity and temperature profiles are carried out once to twice a year using a 

151 graduated water conductivity meter. Few head and salinity observations are available outside 

152 this monitoring network. Additional head observations were collected as part of the study (from 

153 manual measurements and pressure transducers), and electrical conductivity profiles were 

154 obtained from two other deep, open wells. 

155 The results of two geophysical surveys were also used: an ERT campaign from 2004, which 

156 delineated the glacial palaeovalley and mapped the shape of the interface along nine transects 

157 perpendicular to the coast (Madelin’Eau, 2004), and a TDEM campaign carried out in 2019. The 

158 location of all observations used for the study is shown Fig. 1. The electrical conductivity 

159 measurements from the deep wells show that the transition zone from fresh to saline 

160 groundwater is relatively narrow, between 5 and 15 m wide. It is also shallow (on average 45 m 

161 below local mean sea level), suggesting a freshwater lens which does not intersect the bottom 

162 of the aquifer formation (Fig. 2). Inter- and intra-annual fluctuations of the transition zone are 

163 limited.

164 Fig. 1 Simplified geological map of the Grande Entrée Island and locations of head and 

165 freshwater-seawater interface observations. All pumping wells are drilled into the red Permian 

166 sandstone. Multiple observations are available, including interface observations derived from 

167 TDEM (time-domain electromagnetics) and ERT (electrical resistivity tomography) surveys.

168 Fig. 2 Conceptual model: schematic cross-section perpendicular to the island and example of a 

169 downhole electrical conductivity (EC) profile in one of the island’s deep, open wells. In the 

170 freshwater lens, the relatively narrow transition zone from freshwater (FW) to saltwater (SW) is 
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171 approximated as a sharp freshwater-seawater interface. Elevation is expressed in meters above 

172 local sea level (masl).

173 3 Methods

174 3.1 Seawater intrusion numerical model 

175 This study used the SWI2 seawater intrusion package (Bakker et al., 2013) of the finite-

176 difference MODFLOW-2005 groundwater model (Harbaugh, 2005). SWI2 was developed 

177 specifically to simulate regional seawater intrusion. Besides neglecting diffusion and dispersion 

178 effects, SWI2 does not require vertical discretization as an aquifer can be represented by a 

179 single layer containing several zones of constant (or linearly-varying) density. This sharp-

180 interface code was chosen because the narrow transition zone observed in deep open wells 

181 (Fig. 2) suggests that diffusion and dispersion are less important than advection. Also, its short 

182 simulation times allow to efficiently run multiple simulations in the context of parameter 

183 estimation. Finally, model development and execution can be scripted in Python using the FloPy 

184 package (Bakker et al., 2016; 2020). This was advantageous because the whole framework, from 

185 data preprocessing to parameter estimation and uncertainty analysis, was developed in Python. 

186 This workflow was proven efficient for collaborative modeling (Shuler and Mariner, 2020) and to 

187 improve the transparency and reproducibility of decision-support models (White et al., 2020).

188 SWI2 successively solves two modified versions of MODFLOW-2005’s groundwater flow 

189 continuity equation, which are each adjusted with pseudo-source terms representing density 

190 variations. These equations, detailed by Bakker et al. (2013), are rewritten here for a single-layer 

191 model with two constant-density zones (freshwater and seawater), separated by a unique 

192 interface (Fig. 3). Eq. 1 is solved for the whole saturated model domain:
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193 ∇(𝑇∇ℎf)  =     𝑆 
∂ℎf

∂𝑡 ―   𝛾  +   𝑅                                                                                                           𝐸𝑞. 1

194 where T is the transmissivity of the aquifer (m2/s), hf is the freshwater head at the water surface 

195 (m), S is the storage coefficient (dimensionless), γ is a source term (m/s) and R is a pseudo-

196 source term representing the flux caused by density variations below the water table (m/s). Eq. 

197 2 is then solved for the portion of the model domain below the interface:

198 (𝑣2 ― 𝑣1) ∇(𝑇∇𝜁)  =   𝑛e 
∂𝜁
∂𝑡 ―  𝛾2 +  𝑅2                                                                                         𝐸𝑞. 2

199 where ν1 and ν2 are respectively the dimensionless densities of freshwater and seawater, ζ is the 

200 interface elevation approximating the 50-percent seawater salinity contour (m), ne is the 

201 effective porosity (dimensionless), γ2 represents all source terms beneath the interface (m/s) 

202 and R2 is a pseudo-source term representing the flux caused by density variations below the 

203 interface (m/s). At the end of each MODFLOW timestep, after freshwater heads and interface 

204 elevations are updated, the horizontal movement of the interface is computed using a tip-and-

205 toe tracking algorithm (Bakker et al., 2013). 

206 Fig. 3 Implementation of the SWI2 sharp-interface code in the study site: schematic cross-

207 section perpendicular to the island. The aquifer is represented by a single layer in which model 

208 cells contain constant-density freshwater and seawater zones separated by a sharp interface. 

209 The freshwater lens is delimited by the freshwater head at the top of the aquifer (hf) and the 

210 interface elevation (ζ). A general head boundary (GHB) condition is used to simulate exchanges 

211 between the aquifer and the sea.

212 3.2 Model implementation and parameterization
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213 A regular, 20 m x 20 m model grid was built for the island using the Python QGridder package. 

214 The model’s active cells extended seaward up to 1 km from the coast. The aquifer formation 

215 was represented as a single layer containing two constant-density zones (freshwater and 

216 seawater), separated by an interface representing the 50-percent seawater salinity contour 

217 (Fig. 3). The bottom elevation of the aquifer was set to -300 m relative to local mean sea level. 

218 Since insufficient pumping and observation timeseries were available, the model was calibrated 

219 assuming steady-state conditions with a mean pumping rate. This choice was in line with the 

220 objective of the study to simulate long term trends in seawater intrusion, rather than 

221 reproducing seasonal variability. A 5.5-year reference period was selected (mid-2014 to 2019), 

222 constrained by the availability of municipal pumping data at all wells, and during which pumping 

223 conditions were approximately the same. This choice affected the parameterization strategy. As 

224 they have no influence in steady-state conditions, specific yield and effective porosity values 

225 were considered to be homogeneous over the whole model domain. A mixed parameterization 

226 scheme was then used for the hydraulic conductivity field. The sand dunes and glacial sediments 

227 were assigned homogeneous hydraulic conductivities (zones of piecewise constancy), while the 

228 onshore Permian sandstone was parameterized using 52 pilot points distributed along a regular 

229 grid with a 500 m spacing. Hydraulic conductivities at model cells were determined by kriging of 

230 pilot point values based on an exponential variogram, with a range equivalent to 3 times the 

231 pilot point spacing. Since the aquifer was simulated as a single model layer, when several 

232 geological units overlapped (Fig. 1) an equivalent horizontal transmissivity was inferred from the 

233 arithmetic mean of hydraulic conductivities weighted by unit thicknesses. At the exception of a 

234 buffer around the coast, offshore pilot points were tied, effectively implying a homogeneous 

235 hydraulic conductivity for the offshore Permian sandstone. Prior information on hydraulic 
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236 conductivity was based on a compilation of aquifer tests and existing literature (Freeze and 

237 Cherry, 1979), and prior values and ranges are shown in Table 1.

238 All boundary conditions were averaged over the 5.5-year reference period. A homogeneous 

239 recharge representing approximately 40% of total precipitation (900 mm/yr) was implemented 

240 for onshore cells (Table 1). This was supported by the small seasonal fluctuations observed in 

241 groundwater levels. A general head boundary (GHB) condition was implemented for offshore 

242 cells to represent freshwater head at the ocean bottom (Fig. 3). With GHB boundaries, flows 

243 between the aquifer and the sea are controlled by the seafloor elevation, sea level, the ratio 

244 between freshwater and seawater densities (respectively 1000 and 1025 kg.m-3) and the 

245 hydraulic conductivity of the seabed (Hughes and White, 2014; Eq. 25). The seabed was assigned 

246 prior information close to that of the Permian sandstone (Table 1). Municipal pumping was 

247 implemented using the MNW2 package (Revised Multi-Node Well – Konikow et al., 2009), in 

248 order to assimilate water level observations (Section 3.3) and domestic pumping was 

249 implemented using the WEL package.

250 It has been shown that sharp-interface models (including SWI2), which assume saltwater to be 

251 static, tend to overestimate seawater intrusion (Dausman et al., 2010b). An empirical correction 

252 factor was developed by Pool and Carrera (2011) to correct this effect and the Lu and Werner 

253 (2013) modified version of this correction factor was implemented in the model (Eq. 3):

254 𝜀 ∗ = 𝜀[1 ― (𝛼T

𝑏 )
1/4]                                                                                                                                𝐸𝑞. 3

255 where ε* is the corrected density ratio (dimensionless), αT is the transverse (vertical) dispersivity 

256 (m), b is the aquifer thickness (m), ρf and ρs are respectively freshwater and seawater densities 

257 (kg/m3) and ε is the density ratio (dimensionless) given by:
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258  𝜀 =
𝜌s ― 𝜌f

𝜌f
                                                                                                                                                 𝐸𝑞. 4

259 For a transverse dispersivity of zero, the original and corrected density ratios are identical and 

260 the correction factor has no effect. As transverse dispersivity is difficult to characterize, it was 

261 considered as an adjustable parameter (Table 1), with a prior information based on a previous 

262 model of the island (Lemieux et al., 2015) and existing literature (Gelhar et al., 1992). All 

263 parameter distributions were assumed to be Gaussian and upper and lower bounds represented 

264 the 95% confidence interval (i.e. the mean ± 2 times the standard deviation).

265 Table 1 Prior and posterior parameter distributions, described by the mean and the 95% 

266 confidence interval (C.I.). Distributions are assumed normal for recharge and log-normal for all 

267 other parameters. The posterior hydraulic conductivity of all pilot points is specified as the 

268 average of all pilot point values, however the posterior 95% C.I. varies with each pilot point.

Prior distribution Posterior distribution

Parameters Mean 95% C.I. Mean 95% C.I.

Ksand dunes (m/s) 5 x 10-3 5 x 10-5 - 5 x 10-1 5 x 10-4 5 x 10-6 - 5 x 10-2

Ksandstones (m/s) 4 x 10-5 3 x 10-6 - 6 x 10-4 3 x 10-4 4 x 10-5 - 2 x 10-3

Ksandstones (m/s)

(pilot points)
4 x 10-5 3 x 10-6 - 6 x 10-4 2 x 10-4 -

Kglacial sediments (m/s) 1 x 10-5 1 x 10-7 - 1 x 10-3 1 x 10-4 3 x 10-6 - 3 x 10-3

Kseabed (m/s) 2 x 10-5 2 x 10-7 - 2 x 10-3 9 x 10-6 5 x 10-6 - 2 x 10-5

Recharge (mm/yr) 380 180 - 580 547 401-693 

Transverse 

dispersivity αT (m)
1 x 10-1 1 x 10-3 - 10 6 x 10-3 3 x 10-4 - 1 x 10-1

269
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270 3.3 Observations

271 All observations were averaged over the reference period. Freshwater head observations were 

272 extracted from 3 types of locations: shallow wells, deep open wells and municipal pumping 

273 wells. Interface observations were derived from 3 sources of information: deep open wells, 

274 TDEM and ERT surveys. All processing steps are summarized in Figure 4. The uncertainty 

275 associated with all 6 observation types was then estimated.

276 Freshwater head observations

277 Water levels and pressures recorded at wells were converted to heads. Comparing simulated 

278 freshwater heads to observed heads requires an additional preprocessing step: the conversion 

279 of all measured heads to freshwaters heads (Bakker et al., 2013). This procedure, detailed by 

280 Post et al. (2018b), requires knowledge on the average water density in the well (Eq. 5):

281 ℎf =  
𝜌a

𝜌f
ℎ ―

𝜌a ― 𝜌f

𝜌f
𝑧b                                                                                                                              𝐸𝑞. 5

282 where hf is the freshwater head (masl), h is the measured head (masl), ρa is the average density 

283 in the water column between the first and last density measurements (kg/m3) and zb is the 

284 elevation of the bottom of the well screen or open interval (masl). Heads measured in 

285 freshwater wells (i.e. shallow wells and pumping wells) were directly equal to freshwater heads, 

286 as the average density was equal to freshwater density. However, point water heads measured 

287 at deep open wells needed to be converted to freshwater heads (Fig. 4). Features of this 

288 calculation are presented in Appendix A and Table A.1.

289 At pumping wells, the comparison of observed heads with the values obtained with the 

290 relatively coarse model grid required an extra postprocessing step with the MNW2 package. 

291 Simulated heads were corrected for the difference between cell size and well radius, based on 
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292 the Thiem (1906) steady-state flow equation (Konikow et al., 2009). At steady state and using 

293 the prior parameter set (Table 1), heads at pumping wells were on average 0.1 m lower than 

294 those simulated at the cell (with differences ranging from 0.001 m to 0.4 m). This average value 

295 dropped to 0.05 m when using the posterior parameter set, because of higher hydraulic 

296 conductivity values. Although in this study, the correction was relatively small, magnitudes will 

297 increase with increasing pumping rate and cell size, and with decreasing hydraulic conductivity 

298 and well radius (Eq. 4, Konikow et al., 2009).

299 Direct interface observations at deep wells

300 Interface elevations were extracted from downhole electrical conductivity profiles acquired in 

301 deep wells with large open or screened intervals. As the transition zone between freshwater and 

302 seawater spans a dozen meters, an objective method was required to extract interface 

303 elevations from all profiles. In their sharp-interface manual calibration, Babu et al. (2018) 

304 extracted an elevation close to the top of the transition zone, from the specific conductance of 

305 2,500 µS/cm. However it was decided to extract an interface elevation close to the midpoint of 

306 the transition zone, as SWI2 simulates the 50% seawater salinity (Bakker et al., 2013). For each 

307 electrical conductivity profile, an error function (erf) was adjusted to the data points near the 

308 transition zone and the inflection point of this function was defined as the interface elevation.

309 Geophysical interface observations

310 Interface elevations were extracted from inverted TDEM and ERT geophysical data and were 

311 used as indirect interface observations for the hydrogeological inversion. This approach was 

312 preferred to a coupled hydrogeophysical inversion, in which hydrogeological and geophysical 

313 models are linked and inverted sequentially or simultaneously (Comte and Banton, 2007; 

314 Herckenrath et al., 2013; Steklova and Haber, 2016). These allow to use directly the geophysical 
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315 observations instead of inverted geophysical model results, but are computationally demanding 

316 and therefore have mostly been applied on synthetic, small-scale or structurally simple regional 

317 models rather than complex, large-scale models.

318 Inversion of the one-dimensional TDEM measurements was conducted using the CSIRO Airbeo 

319 codes (Chen and Raiche, 1998; Raiche et al., 1985) and formation resistivity and thickness were 

320 adjusted for a three-layer subsurface model. From top to bottom, these layers represented the 

321 unsaturated zone, the freshwater-saturated zone and the seawater-saturated zone. The top of 

322 the seawater-saturated layer was defined as the freshwater-seawater interface elevation. 

323 Inversion of the two-dimensional ERT data was conducted using the RES2DINV software (Loke 

324 and Dahlin, 2002), which adjusted and smoothed the formation resistivity of subsurface model 

325 blocks of 2.5 m to 5 m user-defined thicknesses. The elevation of different threshold resistivities 

326 (from 2 to 15 Ω.m) was extracted at each model block, and a visual inspection showed that the 

327 threshold resistivity of 15 Ω.m yielded ERT interface elevations most consistent with the other 

328 interface observations. This value is close to the 14 Ω.m threshold which was chosen by Meyer 

329 et al. (2019) to extract interface elevations from time-domain airborne electromagnetic data, 

330 and which was based on EU drinking water guidelines (Jørgensen et al., 2012). ERT-derived 

331 interface observations were resampled to 80 m, to increase the statistical independence of the 

332 values obtained at model blocks while maintaining a good description of the interface’s spatial 

333 variability. As the ERT survey was conducted outside of the reference period and under different 

334 pumping conditions, all data points within 100 m of current or past pumping wells were 

335 removed. The remaining points were preserved, since the interface showed minor temporal 

336 variability and no long-term trend (Section 2). A final visual analysis confirmed that all interface 

337 observation types were consistent and allowed the identification and removal of several outliers 

338 from the TDEM dataset. Geophysical surveys provided more interface observations than wells. 
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339 Fig. 4 Summary of the processing steps necessary for the assimilation of freshwater heads and 

340 interface elevations. All initial data are associated with uncertainties and each processing step 

341 adds supplementary uncertainty.

342 3.4 Observation uncertainties

343 For each data type, the total uncertainty was derived from the sum of variances associated with 

344 independent sources of uncertainty (assumed to be Gaussian). For these independent sources of 

345 uncertainty, the 95% confidence interval (C.I.)  of measured values was assessed, and 

346 corresponding standard deviation values were then inferred by dividing the 95% C.I. by 4 (Table 

347 2). Total uncertainties reflected the “level of uncertainty in reproduction of observations“ 

348 (Fienen et al., 2010), including measurement and structural error. Sources of uncertainty and 

349 total uncertainties are summarized in Tables 2 and 3, respectively. Methods are described for 

350 freshwater head observations, direct interface observations at deep wells and finally for 

351 geophysical interface observations.

352 Freshwater head observations

353 For freshwater head observations, the total uncertainty σhf (m) was calculated as follows:

354 𝜎hf = (𝜎hfm
2 + 𝜎temp

2 + 𝜎pump
2)                                                                                                     𝐸𝑞.6

355 where σhfm is the measurement uncertainty associated with the freshwater head (m), σtemp is the 

356 uncertainty due to temporal aggregation over the reference period (m) and σpump (m) is the 

357 uncertainty associated with the reproduction of heads at pumping wells. The calculation of σhfm 

358 depended on the type of well. Where measured heads and freshwater heads were identical (i.e. 

359 shallow and municipal wells), σhfm was equal to the uncertainty of the measured head σhm, which 

360 encompassed operator error, inaccuracies of the measurement devices and of the elevation 
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361 survey, and errors resulting from the conversion of water levels (or pressures) to heads. The 

362 95% C.I. of head measurements was estimated at 0.15 m (Table 2). In deep open wells, the 

363 conversion of measured heads to freshwater heads propagated additional uncertainties to σhfm, 

364 stemming from uncertainties on the average water density (σρa) and on the bottom elevation of 

365 the open interval (σzb). The 95% confidence intervals were inferred from fluctuations of ρa and 

366 from field knowledge, respectively, and calculations of σhfm were performed following the 

367 method described by Post et al. (2018a). σtemp was estimated by calculating the standard 

368 deviation of the mean (Appendix B). σpump was only implemented for head observations at 

369 municipal wells. A 95% C.I. of 0.5 m was chosen to account for modeled-to-measured misfit at 

370 pumping wells, which resulted in a similar uncertainty between deep wells and pumping wells, 

371 considering a null temporal aggregation (Table 3).

372 Direct interface observations at deep wells

373 Similarly, the total uncertainty of direct interface observations, σζ (m), was calculated as follows:

374 𝜎𝜁 = (𝜎ECm
2 + 𝜎temp

2 + 𝜎s
2)                                                                                                            𝐸𝑞. 7

375 where σECm is the measurement uncertainty associated with the electrical conductivity profile 

376 (m) and σs is the uncertainty related to the definition of the interface elevation (‘spatial’ 

377 uncertainty – m). σECm reflected operator error, inaccuracies of the conductivity measurement 

378 devices (resulting from imperfect calibration, instrument drift, varying accuracy) and of the 

379 elevation survey. A 95% C.I. of 0.2 m was assumed for electrical conductivity elevations (Table 

380 2). σs was evaluated as one-sixth of the transition zone width (Table 3). While deep open wells 

381 are influenced by vertical borehole flows, which can lead to artificial electrical conductivity 

382 profiles (Rushton, 1980; Shalev et al., 2009), it was assumed that the relatively large σs values 
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383 accounted for these flows. Total standard deviation values associated with direct interface 

384 observations averaged 2.11 m (Table 3) and therefore 95% confidence intervals nearing 10 m.

385 Geophysical interface observations

386 Uncoupled hydrogeophysical inversions propagate errors into the hydrogeological models 

387 (Hinnell et al., 2010). Uncertainties associated with the inverted geophysical data result from 

388 measurement and elevation errors, from parameters of the geophysical inversion (e.g. 

389 smoothness constraints), from non-unique hydrogeological interpretations (dependence of 

390 resistivity on lithology, saturation, solute concentration) and from electric or electromagnetic 

391 noise. A global, heuristic uncertainty was attributed to the geophysical interface elevations, 

392 which were considered more uncertain than direct interface observations at wells. ERT interface 

393 observations were considered more uncertain than TDEM interface observations because TDEM 

394 has better depth resolution than ERT for mapping conductive layers such as seawater layers 

395 (Christiansen et al., 2006). In addition, the smoothness constraint of the ERT inversion and the 

396 lack of resolution with depth of ERT images could result in missing the interface by a few 

397 meters. Contrary to TDEM data, the use of ERT interface observations also required the 

398 definition of a threshold resistivity. The 95% confidence intervals of the TDEM and ERT interface 

399 observations were set to 15 m and 20 m, respectively, to reflect the relative confidence in all 

400 three interface observations types.

401 Total uncertainty reflected the level of confidence in different observations groups (Table 3). On 

402 average, the uncertainty of freshwater heads at shallow wells (low σhfm, high σtemp) was close to 

403 that of heads at pumping wells (high σpump, low σtemp). Freshwater heads at deep open wells 

404 were more uncertain, as conversion of point water head to freshwater head resulted in a high 

405 σhfm. Interface observations derived from deep wells were more uncertain than head 
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406 observations (high σs). These direct interface observations were less uncertain than TDEM 

407 observations, and ERT observations were the most uncertain dataset. With these uncertainties, 

408 all interface observations were consistent across the island. Quantification of measurement 

409 uncertainties was based on existing methods when available. However, this process required 

410 making a certain amount of choices, based on in-depth knowledge of the study site and 

411 fieldwork methods and on expert judgment. This is further discussed in Section 5.1.

412 Table 2 Individual sources of uncertainty in the observation dataset. The standard deviation 

413 values (designated by σi notations) were obtained by dividing the 95% confidence interval (C.I.) 

414 by 4. Errors are assumed to follow independent Gaussian distributions with a mean of zero.

Sources of uncertainty 95% C.I. Standard deviation

Measured head (m) 0.15 σhm 0.0375

Modeled-to-measured misfit at pumping well (m) 0.5 σpump 0.125

Average water density (kg.m-3) 8 σρa 2

Bottom elevation of the open interval (m) 0.15 – 4 σzb 0.0375 – 1

Elevation of an electrical conductivity measurement (m) 0.2 σECm 0.05

TDEM-derived interface elevation (m) 15 σζ TDEM 3.75

ERT-derived interface elevation (m) 20 σζ ERT 5

415

416 Table 3 Uncertainties associated with freshwater head (hf) and interface elevation (ζ) 

417 observations, in increasing order. The total uncertainty (σ) is a function of independent sources 

418 of uncertainty such as measurement uncertainties (σm), pumping in a model cell (σpump), 
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419 temporal aggregation (σtemp) or spatial definition of the saltwater interface (σs). Given that 

420 settings vary slightly from well to well, average values are provided. σ is calculated using Eq. 6 

421 and 7. The signal-to-noise ratio is equal to the mean absolute observation value (1.5 masl for 

422 freshwater heads and -44 masl for interface elevations) divided by σ.

Observation 

group

Number of 

observations

σm

(m)

σpump

(m)

σtemp

(m)

σs

(m)

σ

(m)

Signal-to-

noise ratio

hf shallow wells 4 0.0375 - 0.1 - 0.11 13

hf pumping wells 9 0.0375 0.125 0.0002 - 0.13 11

hf deep wells 7 0.15 - 0.06 - 0.17 9

ζ deep wells 7 0.05 - 0.33 2.08 2.11 21

ζ TDEM 48 - - - - 3.75 12

ζ ERT 87 - - - - 5 9

423

424 3.5 Parameter estimation

425 The model was calibrated under steady-state conditions representative of the reference period. 

426 For numerical reasons, the solution was obtained after stabilization of a long transient 

427 simulation with constant boundary conditions. Each model run started with an initial run 

428 without the SWI2 package, to compute a steady-state distribution of heads. These were used as 

429 the initial head distribution for a model run with the SWI2 package, using the Ghyben-Herzberg 

430 equation (Post et al., 2018a) to compute the initial interface elevation. This second run 

431 stretched out for 1000 years, to allow the freshwater lens to reach a steady state under the 

432 average stresses prescribed and for the parameter set tested. The total run time was short, 
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433 around 7 min on a desktop computer (1.9 GHz Intel Core i7®) including model run, pre- and 

434 post-processing operations. 

435 Parameter estimation was conducted with PEST (Doherty, 2015), which uses the Gauss-

436 Levenberg-Marquardt algorithm to minimize the square-weighted differences between 

437 simulated and measured values. PEST was selected because this algorithm is particularly 

438 adapted to highly parameterized models, such as the model developed in the study; to 

439 computationally expensive models and to regularized inversion problems (Doherty, 2004). In 

440 addition, pre- and post-processing of PEST files can be readily implemented in Python using the 

441 PyEMU library (Python framework for Environmental Modeling Uncertainty analyses), which 

442 also offers multiple tools for model-independent uncertainty analysis (White et al., 2016). This 

443 was consistent with the overall strategy of developing a complete framework in Python (Section 

444 3.1). The PEST-HP code was selected from the PEST suite as it is designed specifically to improve 

445 inversion performance when model runs are parallelized (Doherty, 2020).

446 The model’s 56 hydraulic conductivities, recharge and transverse dispersivity were adjusted 

447 during parameter estimation. Singular value decomposition was used to regularize the 

448 inversion. Prior information on the 58 parameters (Table 1) was incorporated using first-order 

449 Tikhonov regularization (preferred value) for all parameters and second-order Tikhonov 

450 regularization (preferred homogeneity) for the pilot points (Doherty et al., 2010). A total of 162 

451 freshwater head and interface observations was used to constrain parameter estimation. To 

452 avoid overfitting, the weighting of the regularization objective function was conducted as 

453 detailed by Doherty (2015), with weights defined as the inverse of the standard deviation.

454 3.6 Linear-based uncertainty analysis and data worth
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455 A first-order, second-moment (FOSM) uncertainty analysis was conducted using PyEMU. In a 

456 linearized model, prior parameter uncertainty and epistemic uncertainty (related to 

457 measurement errors) are propagated to the posterior parameter set and then to model 

458 predictions (Fienen et al., 2010; White et al., 2016). All parameter distributions and 

459 measurement errors are assumed to be Gaussian, implying that forecast distributions are also 

460 Gaussian. While the linear-based analysis is approximative, it is less computationally expensive 

461 than nonlinear methods and still provides insight into forecast uncertainty and data worth 

462 (Brunner et al., 2012; Hill et al., 2016; Nolan et al., 2015). Even with the relatively short model 

463 run times afforded by SWI2, nonlinear methods based on random sampling such as Monte Carlo 

464 simulations would be unfeasible. The high dimensionality of the model would require a very 

465 high number of model runs. Furthermore, the linear assumption was proven to be reasonable, 

466 as the integrity of model sensitivities used for the linearization of the model was verified 

467 beforehand using the JACTEST utility of PEST (Doherty, 2004).

468 Two types of forecasts were considered for the analysis: the volume of freshwater (a global 

469 forecast) and the interface elevation at pumping wells (local forecasts). Both types of forecasts 

470 were of interest for groundwater management, under current and future pumping and climate 

471 conditions. The importance of model parameters in forecast uncertainty was quantified by 

472 examining the decrease in forecast uncertainty as a result of parameters being considered as 

473 perfectly known (Fienen et al., 2010). The worth of different observation groups was evaluated 

474 by examining the decrease in prior forecast uncertainty as a result of progressively adding these 

475 observation groups to an initially empty calibration dataset. The worth of each observation 

476 group was therefore considered independently from the others.

477 4 Results
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478 4.1 Parameter estimation

479 The parameter estimation procedure ended after 8 calibration iterations, necessitating 1847 

480 model runs. The initial objective function of 4709 was decreased to a final value of 1175. Using a 

481 total of 70 cores (at 2.1GHz), the procedure ended after 10.5 hours. Summary statistics for each 

482 observation group are provided in Table 4, allowing to assess the fit to available observations: 

483 the root-mean square error (RMSE) is the average of the squared residuals and the mean error 

484 (ME) is the mean difference of the residual errors, with residuals defined as the difference 

485 between simulated and observed values. Freshwater head residuals at shallow and municipal 

486 wells had small RMSE values compared to the average observed value (1.5 masl), although the 

487 presence of an outlier (identified Fig. 5a) increased the average RMSE and ME values for the 

488 municipal wells. This outlier was most probably linked to a technical issue with the automated 

489 meter, but was kept for transparency. For both groups, no bias was identified in simulated 

490 heads, as indicated by an equal distribution of values around the 1:1 diagonal line in Figure 5a 

491 and small ME values (Table 4). The RMSE values for interface observations were small to 

492 intermediate (6 to 11 m), compared to the average observed interface elevation (-44 masl), and 

493 Figure 5b shows TDEM and ERT interface residuals scattered around the 1:1 diagonal line. Small 

494 ME values indicated little bias in simulated interface elevations (Table 4). However, it can be 

495 noted that the highest ME values, whether for freshwater head or interface observations, were 

496 for observations made at deep open wells (Table 4). Almost systematically, simulated heads and 

497 interface elevations were respectively lower and deeper than the observed values (Fig. 5). For 

498 freshwater head observations at these deep wells, the RMSE value was high and bias was clearly 

499 identifiable.

500 Table 4 Summary statistics of the calibration: root-mean-square error (RMSE) and mean error 

501 (ME) of the residuals for each freshwater head (hf) and interface (ζ) observation group. RMSE 
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502 values are small to intermediate compared to the order of magnitude of observed values. The 

503 statistics for heads at municipal pumping wells are high because of an outlier.

hf shallow wells hf pumping wells hf deep wells ζdeep wells ζTDEM ζERT Total

RMSE (m) 0.1 0.6 0.5 6.3 10.8 7.0 7.4

ME (m) 0.05 -0.3 -0.4 -3.7 -2.3 1.0 0.4

504

505 Fig. 5 Scatter plots of simulated to observed data: (A) freshwater heads and (B) interface 

506 elevations. The 1:1 diagonal line represents equal simulated and observed values. Bias is 

507 noticeable for freshwater heads and interface elevations at deep open wells. An outlier is clearly 

508 identifiable within the freshwater head observations at pumping wells (panel A).

509 The final parameters were consistent with prior information, as is shown by the posterior 

510 parameter values being included in the prior 95% confidence intervals (Table 1). Figure 6a shows 

511 the final hydraulic conductivity field post-calibration. A lower hydraulic conductivity zone, which 

512 was not predicted by the geological map (Fig. 1), arose in the south of the island in an area 

513 where all interface observations were deeper. The final transverse dispersivity αT had a low but 

514 hydrogeologically reasonable value, resulting in a corrected density ratio of 0.022 instead of 

515 0.025 (substituting parameters from Table 1 into Eq. 3). The transverse dispersivity parameter 

516 was found to be uncorrelated to other model parameters (by analysis of the correlation 

517 coefficient matrix – White et al., 2016). New maps of the interface elevation (Fig. 6b) and of 

518 freshwater lens thickness were generated by these optimum parameters, and can be used by 

519 groundwater managers to support decision-making.

520 Fig. 6 Post-calibration maps: (A) hydraulic conductivity field and (B) freshwater-seawater 

521 interface elevations. The interface is relatively shallow on the island. The general head boundary 
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522 (GHB) condition is implemented on all cells between the coastline (full line, panel B) and model 

523 boundaries (dotted line, panel B).

524 4.2 Uncertainty analysis and data worth

525 The uncertainty in the posterior parameter set was reduced through parameter estimation, as is 

526 shown Table 1 by the decrease in the 95% confidence intervals. In areas parameterized using 

527 pilot points, the uncertainty of the hydraulic conductivity field was reduced near observations 

528 but remained close to the prior uncertainty far from observations. The uncertainty of model 

529 forecasts was noticeably reduced through parameter estimation, as shown by large reductions 

530 in predictive uncertainties (Fig. 7). 

531 Fig. 7 Prior and posterior probability distributions of the model forecasts: (A) total freshwater 

532 volume and (B) interface elevation in the cell containing pumping well no. 1 (ζmuni 1). 

533 Distributions are represented by 95% confidence intervals. The trend in panel B is representative 

534 of the other pumping wells.

535 The first part of the data worth analysis considered the importance of parameters in forecast 

536 uncertainty (Section 3.5). The analysis showed that hydraulic conductivities were the dominant 

537 source of forecast uncertainty for all forecasts (Fig. 8). For predictions of the freshwater volume, 

538 recharge was a small but non-negligible source of uncertainty while transverse dispersivity had a 

539 minimal contribution (Fig. 8a). For interface elevations at municipal wells, both recharge and 

540 transverse dispersivity had minimal contributions to total forecast uncertainty (Fig.8b).

541 Fig. 8 Percent decrease in posterior forecast uncertainty (standard deviation σpost) when one 

542 parameter group is considered fully known: (A) total freshwater volume and (B) interface 

543 elevation in the model cell containing pumping well no. 1 (ζmuni 1). The hydraulic conductivity (K) 
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544 field accounts for the majority of uncertainty reduction, while recharge (R) and transverse 

545 dispersivity (αT) play a smaller role. Panel B is representative of the other municipal wells.

546 The second part of the data worth analysis considered the importance of observation groups in 

547 reducing prior forecast uncertainty (Section 3.5). For all the forecasts evaluated, the analysis 

548 revealed that interface observations, and particularly geophysical observations, were most 

549 effective to reduce predictive uncertainty (Fig. 9a, b). For the freshwater volume (Fig. 9a), using 

550 only one group of geophysical interface observations, whether ERT or TDEM, resulted in a larger 

551 predictive uncertainty reduction (around 85%) than using all freshwater head observations 

552 combined (70% reduction). This also indicates that the observation dataset was redundant: 

553 using less data, small predictive uncertainties could also have been obtained. For interface 

554 elevations at pumping wells, while data worth varied slightly depending on the well, interface 

555 observations were systemically responsible for the top two uncertainty reductions (Fig. 9b) and 

556 for 7 municipal wells out of 9, the geophysical interface observations occupied this rank.

557 For all local forecasts (at pumping wells), freshwater heads from deep wells were systematically 

558 the least effective observations to reduce predictive uncertainties (Fig. 9a). For the freshwater 

559 volume, they were equally informative as all the other freshwater head observations (Fig. 9a). 

560 When looking at individual observation worth, the observations closest to the wells were more 

561 informative of interface elevations at pumping wells (Fig. A.1).

562 Fig. 9 Percent decrease in prior forecast uncertainty (standard deviation σprior) when one or 

563 several observation groups is added to the initially empty calibration dataset: (A) total 

564 freshwater volume and (B) interface elevation in the model cell containing pumping well no. 1 

565 (ζmuni 1). Interface observations, particularly geophysical observations, lead to a considerable 

566 decrease in prior forecast uncertainties. The order in panel B varies depending on the well.



28

567 5 Discussion

568 The discussion reviews the procedure used for measurement uncertainty quantification, the 

569 results of parameter estimation and the findings of the linear-based uncertainty analysis. 

570 Additional points are ultimately discussed, regarding the use of different interface observations 

571 and limits to the study. Findings and recommendations are summarized in Table 5.

572 5.1 Observation uncertainties

573 The quantification of measurement uncertainties was a challenging process, because many 

574 sources of uncertainty were not truly known and a certain amount of subjective choices had to 

575 be made. The final uncertainty values that were used for the study reflected site-specific 

576 considerations. For instance, using σρa = 2 kg/m3, σzb = 0.0375 – 1 m and σhm = 0.0375 m (Table 2) 

577 resulted in deep well freshwater head uncertainties around 0.15 m (σhfm, Table 3). This is higher 

578 than the values obtained by Post et al. (2018b) at their study site (σhfm = 0.02 – 0.08 m), resulting 

579 from the choices σρa = 1 kg/m3, σzb = 0.01 m and σhm = 0.02 m. For interface observations, the 

580 uncertainty on the location of the 50% seawater salinity contour will increase with the width of 

581 the transition zone. At this study site the transition zone was narrow, so the estimated 

582 uncertainties might be in the lower range compared to other coastal areas with larger transition 

583 zones (for example due to more heterogenous and/or lower hydraulic conductivity geological 

584 formations). For direct interface observations from deep open wells, the uncertainty depends 

585 on the manner in which the width of the transition zone is defined. For ERT-derived interface 

586 observations, a more heterogeneous system might also make the extraction of a threshold 

587 resistivity more challenging, resulting in more uncertain observations (Section 5.4). Total 

588 uncertainty values were also affected by temporal aggregation uncertainty, which was specific 

589 to each well. The uncertainty values reflected model-specific considerations. An uncertainty for 
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590 modeled-to-measured misfit at pumping wells was indeed defined to account for the structural 

591 error introduced by the finite-difference model and coarse grid (20 m x 20 m). This might not 

592 have been necessary with a refined finite-difference grid or a finite-element model mesh.

593 While absolute values of uncertainties are site- and model-specific, what is most important is 

594 that total uncertainties reflect the relative level of confidence in each observation type. Heads 

595 measured directly at shallow wells were less uncertain than freshwater heads derived from 

596 deep open wells. Heads at shallow wells were also less uncertain than heads simulated at 

597 pumping wells by the finite-difference model, although uncertainty linked to modeled-to-

598 measured misfit at pumping wells (σpump, Table 2) could be explored in more depth. Head 

599 observations were less uncertain than saltwater interface observations. Direct interface 

600 observations from deep, open wells were less uncertain than geophysical interface 

601 observations, although this assumption could be challenged for wide transition zones and 

602 downhole profiles heavily affected by borehole flows. TDEM-derived interface observations 

603 were less uncertain than ERT-derived interface observations. These general trends, which are 

604 linked to the nature of the measurements (or model) and to the amount of pre- and post-

605 processing associated with the measurements, will likely be the same in other studies. 

606 Therefore, the relative weighing scheme will likely be similar, which is determining for the 

607 results of the inversion and of the data worth analysis (Section 5.3).

608 5.2 Parameter estimation

609 The final parameter set was hydrogeologically reasonable and conformed to the conceptual 

610 model. Recharge was worth approximately 60% of total precipitation, which is higher than past 

611 estimates of 25% to 40% of total precipitation (Section 2.1) but seems to be more consistent 

612 with the negligible runoff observed on the whole island (no streams or surface water). The 
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613 hydraulic conductivity of the sand dunes was greater than values for the Permian sandstone, 

614 which were in turn greater than the hydraulic conductivity of the seabed and of the glacial 

615 sediments (Table 1). In the final hydraulic conductivity map, the glacial paleovalley delineated in 

616 the geological map (Fig. 1) was overshadowed by a lower conductivity region that arose from 

617 parameter estimation (Fig. 6A). More generally, the thickness-averaged hydraulic conductivity in 

618 model cells containing glacial sediments or sand dunes remained close to the hydraulic 

619 conductivity of the sandstone, as the sandstone had a predominant thickness compared to the 

620 overlying formations.

621 The signal-to-noise ratio, i.e. the ratio of a signal to the level of background noise, was defined 

622 as the average measured head (or interface) value to the total standard deviation. The signal-to-

623 noise ratio of the observations was low (Table 3) because uncertainties were high compared to 

624 the magnitude of the observations, which made parameter estimation challenging. As the 

625 uncertainties of coastal aquifer observations are high, due to many factors highlighted in Section 

626 3.3, they should not be underestimated to avoid overfitting parameters to measurement error 

627 (which would reduce the predictive capacity of the model). However, conservative uncertainty 

628 estimates resulted in uncertainties so high that the observations could not be reliably 

629 differentiated from the noise and were unable to constrain model parameters. Thus, the 

630 uncertainties defined in our framework aimed to balance these effects. Since calibrated 

631 parameters were consistent with prior information, a suitable model-to-observation fit was 

632 obtained for the majority of observation groups and no overall model bias was noted for both 

633 freshwater head and interface observations, parameter estimation was considered successful. 

634 The implementation of weighted Tikhonov regularization prevented PEST from excessive 

635 reduction of model-to-measurement misfit.
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636 Important observations were made when independently examining the residuals of observation 

637 groups. The assimilation of heads at pumping wells in the regional model was successful through 

638 the use of the MNW2 package with the Thiem (1906) correction (Section 3.3). Head and 

639 interface observations from deep open wells were biased (Fig. 5), possibly because of vertical 

640 flows (Shalev et al., 2009). The displacement of the salinity profile in a well due to borehole 

641 flows could indeed affect both the measurement of the interface elevation and the calculation 

642 of the freshwater head (through a modification of the average water density in the well, Eq. 5). 

643 For instance, an upward flow could result in a shallower observed interface elevation and a 

644 higher observed freshwater head (because of an artificially higher average water density) than 

645 the ones simulated for the aquifer, as shown respectively in Figures 5B and 5A. Therefore, 

646 parameter estimation should not be conducted against data from deep open wells alone, as this 

647 could bias model calibration. Characterizing the vertical flows through temperature or flow 

648 profiles could help evaluate the magnitude of the bias. Furthermore, acquiring and 

649 preprocessing heads at deep open wells was costly and time-consuming, but these were unable 

650 to constrain the calibration because of their low signal-to-noise ratios (Table 3). In contrast, not 

651 only were head observations from shallow wells easier to process, but they were more 

652 beneficial for calibration because of their higher signal-to-noise ratios. Finally, the dispersion of 

653 TDEM and ERT interface residuals (Fig. 5b) showed this data to be noisy and it was considered 

654 that fitting parameters to the mean of the geophysical observations (i.e. targeting little model 

655 bias) was an acceptable target rather than trying to fit each individual observation.

656 Parameter estimation resulted in a non-null correction factor for the density ratio. However, it 

657 should be noted that the applied correction factor was developed for lateral seawater intrusion 

658 (without upconing effects) and generally has not been used for freshwater lenses (Werner et al., 

659 2017), in which both longitudinal and transverse dispersivity affect seawater intrusion.
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660 5.3 Uncertainty analysis and data worth

661 This framework allowed to quantify the uncertainty of model forecasts of interest to water 

662 managers, and the large uncertainty reduction of forecasts during parameter estimation (Fig. 7) 

663 then demonstrated that model forecasts were constrained by the calibration process. This 

664 shows the importance of the parameter estimation framework in a decision-support context. It 

665 should be noted that the prior uncertainty of the forecasts was already informed by data, before 

666 the parameter estimation process was undertaken. Before assimilating the information 

667 contained in the calibration dataset, multiple site characterization data and expert knowledge 

668 were assimilated to develop the conceptual model and the parameterization scheme, and to 

669 inform the prior parameter values. This may explain why the observation dataset appeared to 

670 be redundant (Fig. 9), as the forecasts were already informed by the work preceding calibration.

671 The results of the data worth analysis are somewhat specific to the context, as data worth is 

672 dependent on observation uncertainty, which can be site-specific and model-specific (Section 

673 5.1), but also on the number and location of observations relative to the forecasts and to aquifer 

674 configuration. However, this investigation is valuable because data worth analyses of seawater 

675 intrusion models have traditionally focused on variable density and mostly synthetic models 

676 (Baker, 2010; Dausman et al., 2010a; Sanz and Voss, 2006; Shoemaker, 2004) and some 

677 conclusions can be generalized.

678 It was found that further characterization of the hydraulic conductivity field would most reduce 

679 forecast uncertainties, while further characterization of recharge and of transverse dispersivity 

680 (as a correction factor) would be less beneficial (Fig. 8). However, because of scaling effects and 

681 parameterization assumptions, it is difficult to quantify how field measurements can reduce 

682 prior parameter uncertainty (White et al., 2016) so conclusions are more easily drawn regarding 
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683 the worth of observations. Interface observations were essential to reduce predictive 

684 uncertainties (Fig. 9), even though they are much more uncertain than head observations (Table 

685 3). This was expected for interface elevations at pumping wells, as the observations and 

686 predictions are of the same nature (interface elevations). Because pilot point parameterization 

687 was implemented onshore, the worth of direct vs TDEM vs ERT observations then depended on 

688 which observations were closest to the wells (Fig. A.1). Freshwater head observations from deep 

689 wells were the least effective observations for reducing predictive uncertainty, because of the 

690 high uncertainty resulting from conversion to freshwater head. For the total freshwater volume, 

691 interface observations were also crucial to reduce predictive uncertainties, with geophysical 

692 surveys being most informative (Fig. 9a). This is because the geophysical surveys provided a 

693 much greater number of interface observations compared to the total number of wells, and 

694 they provided observations for areas on the island otherwise uncharacterized by the wells (Fig. 

695 1), giving an extensive view of the shape of the freshwater-seawater interface on the island.

696 5.4 Additional considerations on coastal aquifer observations

697 The data worth analysis (Section 5.2) showed that interface observations closest to the pumping 

698 wells were most informative of predictions of the interface at these wells. However, other 

699 aspects need to be considered for the design of a data collection strategy. For instance, it has 

700 been shown that deep open wells drilled near pumping wells present a risk of saltwater 

701 contamination for the pumping wells (Rotzoll, 2010). Also, TDEM data points can generally not 

702 be acquired too close to pumping wells, as they are affected by electromagnetic noise due to 

703 pumping and fencing installations. In our case, acquiring additional ERT transects close to the 

704 pumping wells might be useful to obtain additional interface observations.
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705 The analysis of model residuals showed that freshwater head and interface observations from 

706 deep open wells were biased. However, having at least one deep open well on the study site 

707 was essential to estimate the approximate width of the transition zone: in the present study, a 

708 narrow transition zone oriented the choice of a sharp-interface model. It was also essential to 

709 observe the temporal variability of the transition zone, and in the study small variability led to 

710 the assimilation of ERT interface data outside of the reference period. Finally, for the 

711 assimilation of ERT interface observations, having at least one deep open well was important to 

712 choose a threshold resistivity defining ERT-derived interface elevations.

713 In order to assimilate ERT interface observations, it was critical to have at least one other type of 

714 interface observation (e.g. from deep open wells or from a TDEM survey) to define the threshold 

715 resistivity (Section 3.3). This threshold could depend on the lithology and choosing an arbitrary 

716 threshold with no means of verification could have biased the ERT interface observations. For 

717 example, using a threshold resistivity of 5 Ω.m instead of 15 Ω.m yielded mean interface 

718 elevations of -60 masl rather than -43 masl. Additionally, the choice of a fixed threshold relied 

719 on the reasonable assumption that the sandstone aquifer was relatively homogeneous and that 

720 resistivity spatial variations were due to salinity variations only, however reliable identification 

721 of such a threshold could be challenging in more heterogeneous aquifer systems (González-

722 Quirós and Comte, 2020). It appears that the only interface observations that could have been 

723 used alone were TDEM data inverted with a limited-layer model. This might be the best 

724 alternative to constrain the calibration of sharp-interface seawater intrusion models, in cases 

725 where the interface depth is within the range of the depth of investigation and where the land 

726 cover is not too urbanized. Including interface data from several sources made the identification 

727 of TDEM outliers easier, and the uncertainty of the TDEM observations was defined based on 

728 the uncertainty of the other interface observations. More generally, assimilating multiple 
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729 interface observation types (at least two) seemed essential, due to the numerous uncertainties 

730 and possible biases associated with each of them. Having an area where all interface 

731 observations coexisted (e.g. having geophysical data points near a deep open well) was valuable 

732 to check for consistency, uncertainty and biases.

733 Finally, for future water level collection efforts, it was found that installing loggers in shallow 

734 freshwater wells was more beneficial than installing loggers in deep open wells, where the total 

735 uncertainty would remain high due to the uncertainty on average water density (Table 3). The 

736 assimilation of flow observations was not considered for this study, as none were available (no 

737 streams, no tracer tests). Hughes and White (2014), through the calculation of composite 

738 parameter sensitivities, inferred that their model parameters were informed by the head and 

739 flow observations in their dataset. In future research, it would be interesting to quantify the 

740 worth of flow observations, including observations of submarine groundwater discharge, for 

741 model calibration and for reducing predictive uncertainties.

742 A limit of this framework is that the interface elevation forecasts at cells containing pumping 

743 wells are not directly representative of the true interface elevation below wells. Just as the 

744 drawdown at pumping wells is averaged over the cell area, the upconing of the interface under 

745 the well is also averaged over the cell area. This effect was considered for simulated heads (with 

746 the MNW2 package), but the simulated interface should be corrected for this as well. Local 

747 hydraulic conductivities near pumping wells may also not be represented accurately by the 

748 regional model. Finally, the modeled interface should be corrected from neglected dispersion 

749 and diffusion effects, which are no longer negligible under pumping wells. These interface 

750 values should therefore be interpreted as indicative values. However, we still believe this 

751 regional model can prove a useful and informative tool for groundwater management decision-



36

752 support. The impact of uncertain storage parameters on forecast uncertainty was not accounted 

753 for, therefore this will need to be considered for transient simulations.

754 Table 5 Main conclusions on coastal aquifer observations, for data collection, parameter 

755 estimation and data worth.

Observations        Main conclusions

Freshwater 

heads (hf)

1. Acquire and assimilate hf observations from shallow wells in priority (high signal-

to-noise ratios), compared to hf observations from deep open wells (time-

consuming preprocessing, bias, low signal-to-noise ratios)

2. If their number is limited, placing pressure loggers in shallow wells reduces total 

uncertainty σhm more than for deep open wells

3. If available, assimilate hf observations from pumping wells using the MNW2 

package and the Thiem (1906) correction

Interface 

elevations (ζ)

1. Implement a correction factor (e.g. Lu and Werner, 2013) to correct for the 

overestimation of seawater intrusion by the sharp-interface model

2. Acquire ζ observations, as they are valuable to reduce model predictive 

uncertainty. TDEM and ERT surveys are especially valuable

3. Acquire ζ observations as close as possible to pumping wells to lower the 

uncertainty on pumping well interface predictions (considering the risk of 

saltwater contamination posed by deep open wells and electromagnetic noise 

near pumping installations)

4. Acquire ζ observations over different portions of the study area to lower the 

uncertainty on the freshwater volume prediction
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5. Assimilate at least two ζ observation types, as ζ observations at deep open wells 

are biased (vertical flows), ζ observations from ERT can be biased (if the 

threshold resistivity is incorrectly defined) and all ζ observations have a low 

signal-to-noise ratio

6. Have an area where all ζ observations coexist to check for consistency, 

uncertainty and bias

7. Use ζ observations at deep open wells and/or ζ observations from TDEM to 

define a threshold resistivity for ζ observations from ERT

8. Geophysical data is noisy: during parameter estimation, aim for no model bias 

rather than fitting each observation individually

9. Have at least one deep monitoring well on the study site, to guide the choice of 

the model and data assimilation

All 1. Coastal aquifer observations have a low signal-to-noise ratio: evaluate 

uncertainties of observation groups adequately and implement weighted 

Tikhonov regularization, to avoid overfitting to measurement errors (if 

uncertainties are too low) while allowing flexibility for parameter estimation (if 

uncertainties are too high)

2. Parameter estimation should not be conducted against data from deep open 

wells alone, as this data is biased by vertical flows which could bias model 

calibration

756

757 6 Conclusions
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758 Using multiple head and interface observations from various well types and geophysical surveys, 

759 parameter estimation of the sharp-interface model was carried out successfully, and provided 

760 the basis for a linear-based uncertainty analysis. It was demonstrated that parameter estimation 

761 led to an important decrease in predictive uncertainty for two important decision-support 

762 model forecasts: the volume of freshwater and interface elevations near municipal pumping 

763 wells. The methodology that was developed in the study is relatively straightforward, showing 

764 that parameter estimation and linear uncertainty analysis could be carried out more 

765 systematically for regional sharp-interface models developed for decision-support. The 

766 complete framework is highly reproducible as it was scripted using Python (open-source and 

767 documented packages) and it is shared in the Supplementary Material. It could be implemented 

768 in multiple other coastal areas, as it was developed for a common hydrogeological setting (an 

769 unconfined aquifer), it used typical coastal aquifer observations from wells and geophysical 

770 surveys and it examined typical seawater intrusion model forecasts.

771 The analysis of residual errors and a data worth analysis provided further insight on data 

772 assimilation for sharp-interface models. Interface observations were critical to reduce predictive 

773 uncertainties, especially geophysical observations as they provided a large number of data 

774 points and a wide spatial coverage. While deep open wells were essential to select a sharp-

775 interface approach (through the identification of a narrow transition zone), preprocessed heads 

776 and interface observations from these wells were biased, which deterred their reproduction by 

777 the model. All coastal aquifer observations had a low signal-to-noise ratio, requiring a careful 

778 evaluation of measurement uncertainties. These findings can help guide future data assimilation 

779 and data collection efforts in similar contexts.

780 To conclude, this study highlighted several advantages of the sharp-interface approach for 

781 modeling regional seawater intrusion, compared to the variable density approach. Fast model 
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782 run times allowed to conduct parameter estimation (yielding minimum error variance 

783 predictions) and uncertainty analysis (quantifying predictive uncertainties and their sources). 

784 Also, in relatively homogeneous aquifers with a narrow transition zone, extracting interface 

785 observations from geophysical data is more straightforward, and likely as reliable, than 

786 extracting salinity observations from geophysical data, as is usually done for the calibration of 

787 variable density models. Further applications of this sharp-interface approach are being 

788 explored, for example its use for municipal pumping optimization and to explore climate 

789 projections. In future research, predictive uncertainties could be evaluated using non-linear 

790 uncertainty analysis methods. The uncertainty of the interface elevation modeled at municipal 

791 wells is being explored in more detail. Although this methodology was developed for a 

792 freshwater lens, the findings are transferable to continental settings (with lateral seawater 

793 intrusion only) and the location of the toe of the saltwater wedge could be explored as an 

794 additional model forecast.
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795 7 Appendices

796 Fig. A.1 Percent decrease in prior forecast uncertainty (standard deviation σprior) when an 

797 individual observation is added to the initially empty calibration dataset, for the interface 

798 elevation in the model cell containing municipal well no. 1 (ζmuni 1).

799 Appendix A Conversion of point water heads to freshwater heads in deep open wells

800 Downhole electrical conductivity and temperature profiles are used to estimate water density 

801 profiles, using the UNESCO 1980 equation of state (Post, 2012). The average density of the 

802 water column is then estimated using Eq. (A.1) (Post et al., 2018b):

803 𝜌a =
∫𝑧n

𝑧1
𝜌(𝑧d)𝑑𝑧d

𝐷                                                                                                                             𝐸𝑞. (𝐴.1)

804 where ρa is the average density in the water column between the first and last density 

805 measurements (kg/m3), the numerator represents the integration of density measurements ρ 

806 (kg/m3) at elevations zd (masl), between the first and last density measurements (at elevations z1 

807 and zn), and D is the distance between the first and last density measurements (m). The average 

808 density ρa is then used in Eq. 5. Table A.1 summarizes the principal parameters intervening in 

809 Eq. 5 for the study site’s 7 deep open wells.

810 Table A.1 Conversion of measured heads to freshwater heads in the island’s deep open wells 

811 and associated uncertainties. Freshwater heads (hf) are calculated from measured heads (h), 

812 average water density (ρa) and the bottom elevation of the open or screened interval (zb), using 

813 Eq. 5. The uncertainties σρa, σzb, and σhm are defined in Table 2 and σhfm is calculated following 

814 the method in Post et al. (2018b). Freshwater heads are systematically higher than point water 

815 heads and the highest freshwater heads are obtained at wells intersecting larger portions of 

816 saline groundwater. Wells pz01, pz02, pz03 and pz04 are located in a transect perpendicular to 
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817 the coast and a seaward horizontal gradient can be observed after conversion to freshwater 

818 heads.

Well name ρa ± σρa (kg/m3) zb ± σzb (masl) h ± σhm (masl) hf (masl) σhfm (m)

pz01 1009 ± 2 -96.05 ± 0.0375 1.24 ± 0.0375 2.14 0.20

pz02 1009 ± 2 -76.78 ± 0.0375 1.12 ± 0.0375 1.97 0.16

pz03 1005 ± 2 -59.11 ± 0.0375 1.07 ± 0.0375 1.59 0.12

pz04 1008± 2 -56.21 ± 0.0375 0.81 ± 0.0375 1.58 0.12

pz05 1011 ± 2 -76.28 ± 0.0375 0.87 ± 0.0375 1.73 0.16

pz07 1003 ± 2 -84.71 ± 1 1.15 ± 0.0375 1.44 0.17

pz08 1010 ± 2 -73.84 ± 1 0.7 ± 0.0375 1.43 0.15

819

820 Appendix B Calculation of temporal aggregation uncertainty

821 The temporal aggregation uncertainty σtemp represents the uncertainty in a mean value, 

822 resulting from averaging observations over a given time period. It is estimated by calculating the 

823 standard deviation of the mean. This method was described by Hughes and Hase (2010) and is 

824 rewritten here for head observations. It is the same method for interface observations. For a 

825 given well, a mean head value  (m) can be calculated from the arithmetic mean of individual ℎ

826 head observations acquired at different times (Eq. (A.2)):

827 ℎ =
1
𝑁 

𝑁

∑
𝑖 = 1

ℎ𝑖                                                                                                                                       𝐸𝑞. (𝐴.2)

828 where N is the total number of head observations hi (m) made at the well during the time 

829 period. The standard deviation σN-1 (m) of the head observations at the well can be calculated 

830 using Eq. (A.3):
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831 𝜎𝑁 ― 1 =
1

𝑁 ― 1 
𝑁

∑
𝑖 = 1

(ℎi ― ℎ)2                                                                                                       𝐸𝑞. (𝐴.3)

832 The less the number of head observations available at the well, the greater the uncertainty in 

833 the calculated mean. A standard deviation of the mean  (m), also named standard error, can 𝜎ℎ

834 be calculated to evaluate this uncertainty, using Eq. (A.4):

835 𝜎ℎ =
𝜎𝑁 ― 1

𝑁                                                                                                                                            𝐸𝑞. (𝐴.4)

836 As the number of head observations in the well increases, the uncertainty in the mean  𝜎ℎ

837 decreases. However, for small sample sizes, Eq. (A.4) cannot be used, as this would result in a 

838 standard deviation of the mean equal to the standard deviation of the measurements. A 

839 threshold of six observations was chosen, over which the error on  is smaller than 32% 𝜎ℎ

840 (Hughes and Hase, 2010, Eq. 2.8)  i.e.  continues to reflect a 68% confidence interval. Under 𝜎ℎ

841 this threshold, the uncertainty in the mean was defined as an average uncertainty σa (m). σa 

842 represents the global variability of head observations in all wells and was calculated as the 

843 square-root of the mean of all head variances in the model (Hughes and Hase, 2010). Therefore, 

844 the uncertainty due to temporal aggregation σtemp (m) was defined using Eq. (A.5):

845 {𝜎t𝑒𝑚𝑝 = 𝜎ℎ              𝑖𝑓 𝑁 ≥ 6
𝜎t𝑒𝑚𝑝 = 𝜎𝑎              𝑖𝑓 𝑁 < 6                                                                                                                   𝐸𝑞. (

846 𝐴.5)
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