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Abstract

Recently, contrastive self-supervised learning has be-

come a key component for learning visual representations

across many computer vision tasks and benchmarks. How-

ever, contrastive learning in the context of domain adap-

tation remains largely underexplored. In this paper, we

propose to extend contrastive learning to a new domain

adaptation setting, a particular situation occurring where

the similarity is learned and deployed on samples follow-

ing different probability distributions without access to la-

bels. Contrastive learning learns by comparing and con-

trasting positive and negative pairs of samples in an unsu-

pervised setting without access to source and target labels.

We have developed a variation of a recently proposed con-

trastive learning framework that helps tackle the domain

adaptation problem, further identifying and removing pos-

sible negatives similar to the anchor to mitigate the effects

of false negatives. Extensive experiments demonstrate that

the proposed method adapts well, and improves the perfor-

mance on the downstream domain adaptation task.

1. Introduction

Over the last few years, Deep Learning (DL) [22] has

been successfully applied across numerous applications and

domains due to the availability of large amounts of la-

beled data, such as computer vision and image processing

[34, 42, 37, 8], signal processing [2, 33, 15], autonomous

driving [26, 41, 11], agri-food technologies [1, 20], medical

imaging [19, 25], etc. Most of the applications of DL tech-

niques, such as the aforementioned ones, refer to supervised

learning, it requires manually labeling a dataset, which is a

very time consuming, cumbersome and expensive process

that has led to the widespread use of certain datasets, e.g.

ImageNet, for model pre-training. On the other hand, unla-

beled data is being generated in abundance through sensor

networks, vision systems, satellites, etc. One way to make

use of this huge amount of unlabeled data is to get super-

vision from the data itself. Since unlabeled data are largely

available and are less prone to labeling bias issues, they tend

to provide visual information independent from specific do-

main styles.

Nowadays, self-supervised visual representation learn-

ing has been largely closing the gap with, in some cases,

even surpassing supervised learning methods. One of the

most prominent self-supervised visual representation learn-

ing techniques that has been gaining popularity is con-

trastive learning, which aims to learn an embedding space

by contrasting semantically positive and negative pairs of

samples [4, 5, 13].

However, whether these self-supervised visual represen-

tation learning techniques can be efficiently applied for do-

main adaptation has not yet been satisfactorily explored.

When, one applies a well performing model learned from

a source training set to a different but related target test set,

generally the assumption is that both these sets of data are

drawn from the same distributions. When this assumption

is violated, the DL model trained on the source domain data

will not generalize well on the target domain, due to the

distribution differences between the source and the target

domains known as domain shift. Learning a discriminative

model in the presence of domain shift between source and

target datasets is known as Domain Adaptation.

Existing domain adaptation methods rely on rich prior

knowledge about the source data labels, which greatly lim-

its their application, as explained above. This paper intro-

duces a contrastive learning based domain adaptation ap-

proach that requires no prior knowledge of the label sets.

The assumption is that both the source and target datasets

share the same labels, but only the marginal probability dis-

tributions differ.

One of the fundamental problems with contrastive self-

supervised learning is the presence of potential false nega-

tives that need to be identified and eliminated; but without

labels, this problem is rather difficult to solve. Some notable

work related to this area has been proposed in [17] and [35],

where both methods focused on mining hard negatives; [16]



developed a method for false negative elimination and false

negative attraction and [7] proposed a method to correct the

sampling bias of negative samples.

Over the past few years, ImageNet pre-training has be-

come a standard practice, but using contrastive learning has

demonstrated a competitive performance without access to

labeled data by training the encoder using the input data

itself. In this paper, we extend contrastive learning also re-

ferred as unsupervised representation learning without ac-

cess to labeled data or pretrained imagenet weights, where

we leverage the vast amount of unlabeled source and target

data to train an encoder using random initialized parame-

ters to the domain adaptation setting, a particular situation

occurring where the similarity is learned and deployed on

samples following different probability distributions. We

also present an approach to address one of the fundamental

problems of contrastive representation learning, i.e. identi-

fying and removing the potential false negatives. We per-

formed various experiments and tested our proposed model

and its variants on several benchmarks that focus on the

downstream domain adaptation task, demonstrating a com-

petitive performance against baseline methods, albeit not

using any source or target labeled data.

The rest of the paper is laid out as follows: Section 2

presents the related work in self-supervised contrastive rep-

resentation learning and domain adaptation methods. Sec-

tion 3 describes our proposed approach, Section 4 presents

the datasets and experimental results on domain adaptation

after applying our model, and finally, Section 5 summarizes

our work and future directions.

1.1. Contributions

The main contributions of this work can be summarised

as follows:

• We explore contrastive learning in the context of Do-

main Adaptation, attempting to maximize generaliza-

tion between source and target domains with different

distributions.

• We propose a Domain Adaptation approach that does

not make use of any labeled data or involves imagenet

pretraining.

• We incorporate false negative elimination to the do-

main adaptation setting, resulting in improved accu-

racy and without incurring any additional computa-

tional overhead.

• We extend our domain adaptation framework and per-

form various experiments to learn from more than two

views.

2. Related Work

Domain Adaptation: Domain adaptation is a special

case of transfer learning where the goal is to learn a dis-

criminative model in the presence of domain shift between

source and target datasets. Various methods have been in-

troduced to minimize the domain discrepancy in order to

learn domain-invariant features. Some involve adversarial

methods like DANN [10], ADDA[39] that help align source

and target distributions. Other methods propose aligning

distributions through minimizing divergence using popu-

lar methods like maximum mean discrepancy [12, 28, 29],

correlation alignment [36, 3], and the Wasserstein metric

[6, 24]. MMD was first introduced for the two-sample tests

of the hypothesis that two distributions are equal based on

observed samples from the two distributions [12], and this

is currently the most widely used metric to measure the dis-

tance between two feature distributions. The Deep Domain

Confusion Network proposed by Tzeng et al.[40] learns

both semantically meaningful and domain invariant repre-

sentations, while Long et al. proposed DAN [28] and JAN

[29] which both perform domain matching via multi-kernel

MMD (MK-MMD) or a joint MMD (J-MMD) criteria in

multiple domain-specific layers across domains.

Contrastive Learning: Recently, contrastive learning

has achieved state-of-the-art performance in representation

learning, leading to state-of-the-art results in computer vi-

sion. The aim is to learn an embedding space where pos-

itive pairs are pulled together, whilst negative pairs are

pushed away from each other. Positive pairs are drawn

by pairing the augmentations of the same image, whereas

the negative pairs are drawn from different images. Exist-

ing contrastive learning methods have different strategies

to generate positive and negative samples. Wu et al.[43]

maintains all the sample representations of the images in

a memory bank, MoCo [13] maintains an on-the-fly mo-

mentum encoder along with a limited queue of previous

samples, Tian et al.[38] uses all the generated multi view

samples with the mini-batch approach, whereas both Sim-

Clr V1 [4] and SimClr V2 [5] use momentum encoder and

utilize all the generated sample representations within the

mini batch. The above methods can provide a pretrained

network for a downstream task, but do not consider domain

shift if they are applied directly. However, our approach

aims to learn representations that are generalizable with-

out any need of labeled data. Recently, contrastive learn-

ing was applied in Unsupervised Domain Adaptation set-

ting [18, 32, 21], where models have access to the source

labels and/or used models pretrained on imagenet as their

backbone network. In comparison, our work is based on

contrastive learning, which is also referred to as unsuper-

vised representation learning, without having access to la-

beled data or pretrained imagenet parameters, but instead

leveraging the vast amount of unlabeled source and target



Figure 1: Overview of our proposed Contrastive Domain Adaptation model. Image on the Left, shows the pipeline of our

model and image on the Right shows the loss function.

data to train a encoder from random initialized parameters.

Removal of false negatives: As the name suggests, con-

trastive learning methods learn by contrasting semantically

similar and dissimilar pairs of samples. They rely on the

number of negative samples for generating good quality

representations and favor large batch size. As we do not

have access to labels, when an anchor image is paired with

the negative samples to form a negative pair, there is a

probability that these images could share the same class,

in which case the contribution towards the contrastive loss

becomes minimal, limiting the ability of the model to con-

verge quickly. These false negatives remain a fundamental

problem in contrastive learning methodology, but relatively

limited work has been done in this area thus far.

Most existing methods focus on mining hard negatives;

[17] developed hard negative mixing to synthesize hard neg-

atives on the fly in the embedding space, [35] developed

new sampling methods for selecting hard negative samples

where the user can control the hardness, [16] proposed an

approach for false negative elimination and false negative

attraction and [7] developed a debiased contrastive objec-

tive that corrects for the sampling bias of negative samples.

[16] use additional support views and aggregation as part of

their elimination and attraction strategy. Regarding our pro-

posed approached, and inspired by [16], we have simplified

and only applied the false elimination part to the domain

adaptation framework. Instead of using additional support

views, we compute the similarity loss between the anchor

and the negatives in the mini-batch, we then sort the corre-

sponding negative pair similarity losses for each anchor and

remove the negative pair similar to the anchor. For each an-

chor in the mini-batch, we remove the exact same number

of negative pairs; for example, in FNR 1 we remove one

potential false negative from a total of 1023 negative sam-

ples with a batch size of 512, totalling 512 total potential

false negatives for all the anchor images in the mini-batch

of 512.

3. Method

3.1. Model Overview

Contrastive Domain Adaptation (CDA): We explore a

new domain adaptation setting in a fully self-supervised

fashion without any labeled data being used from either

source or target domain. In the normal UDA setting, one

has access to the source domain labels, but our goal is to

train a model using unlabeled data sources in order to gen-

eralize visual features in both source and target domains.

The aim is to obtain pre-trained weights that are robust to

domain-shift and generalizable to the downstream domain

adaptation task. Our model uses unlabeled source and tar-

get datasets in an attempt to learn and solve the adaptation

between domains.

Inspired by the recent successes of learning from unla-

beled data, the proposed learning framework is based on

SimClr [4] for the domain adaptation setting, where data

from unlabeled source and target domains is used in a task-

agnostic way. SimClr [4] method learns visual similarity



Algorithm 1: Proposed Contrastive Domain Adap-

tation Approach.

Input : Source Data S:(xs
1, ...., x

s
n),

Target Data T:(xt
1, ...., x

t
n)

Output: Encoder network f(.), Projection-head

network g(.)
for sampled minibatch do

Make two augmentations per source image

as1, a
s
2 ∼ S

# source augmentation-1

hs
1 = f(as1)

zs1 = g(hs
1)

# source augmentation-2

hs
2 = f(as2)

zs2 = g(hs
2)

Calculate LFNR S for zs1, z
s
2 using Eq-3

Make two augmentations per target image

at1, a
t
2 ∼ T

# target augmentation-1

ht
1 = f(at1)

zt1 = g(ht
1)

# target augmentation-2

ht
2 = f(at2)

zt2 = g(ht
2)

Calculate LFNR T for zt1, z
t
2 using Eq-3

Calculate LFNR DA using Eq-4

Calculate LMMD using Eq-5

Update f(.) and g(.) by back propogating

LFNR DA and LMMD

end for

where a model pulls together visually similar-looking im-

ages, while pushing away dissimilar-looking images. How-

ever, in domain adaptation, the same class images may look

very different due to domain gap, so that learning visual

similarity alone does not ensure semantic similarity and

domain-invariance between domains. Therefore, via using

CDA, we aim to learn general visual class-discriminative

and domain-invariant features from both the domains via

unsupervised pretraining. We introduce each specific com-

ponent in detail below, which is also illustrated in Figure-1

and Figure-2 for four views.

From randomly sampled mini-batch of images N , we

augment each image S twice creating two views of same

anchor image si and sj . We use a base encoder (Resnet50

architecture [14]) that is trained from scratch to encode aug-

mented images in order to generate representations hsi and

hsj . These representations are then inputted into a non-

linear MLP with two hidden layers to get the projected vec-

tor representations zsi and zsj . We find that this MLP pro-

jection benefits our model by compressing our images into

a latent space representation, enabling the model to learn

the high-level features of the images. We apply contrastive

loss on the vector representations using the NT-Xent loss [4]

that has been modified to identify and eliminate false nega-

tives, thus resulting in improved accuracy, details of which

are discussed in section 4.2. We also introduce MMD to

measure domain discrepancy in feature space in order to

minimize domain shift, details of which are discussed later

in this section as well. The overarching aim is to obtain the

pretrained weights that are robust to domain-shift and effi-

ciently generalizable. In the later stage, we perform linear

evaluation using the encoder whilst entirely discarding the

MLP projection head after pretraining.

3.2. Contrastive Loss for Domain Adaptation

The goal of contrastive learning is to maximize the simi-

larities between positive pairs and minimize the similarities

of negative ones. We randomly sample mini batch of N im-

ages, each anchor image x is augmented twice creating two

views of the same sample xi and xj , resulting in 2N im-

ages. We do not explicitly sample the negative pairs, we in-

stead follow [4], and treat other 2(N −1) augmented image

samples as negative pairs. The contrastive loss is defined as

follows:

LCONT = −log
exp (sim (zi, zj) /T )

∑2N
k=1 1(k 6=i)sim (zi, zk) /T

(1)

where sim(u, v) is a cosine similarity function

uT v/ ‖u‖ ‖v‖ and T is a temperature parameter.

However, If we use the above contrastive loss as used

in a domain adaptation scenario, considering that the mini-

batch contains image samples from both domains, it may

treat all other samples as negatives against the anchor im-

age even though they may belong to the same class, without

distinguishing domains; this could further widen the dis-

tance between them due to the difference in the domain spe-

cific visual characteristics, and therefore be unable to learn

domain invariance. In order to overcome these problems,

we propose to perform contrastive learning in the source

and target domain independently by randomly sampling in-

stances from both domains. Finally, our contrastive loss for

DA is defined as follows:

LCONT DA = LCONT S + LCONT T (2)

where LCONT S and LCONT T are source contrastive

loss and target contrastive loss

3.3. Removal of False Negatives

Unsupervised contrastive representation learning meth-

ods aim to learn by contrasting semantically positive and

negative pairs of samples. As we do not have access to the

true labels in this type of setting, positive pairs are drawn



Figure 2: Overview of CDA with four views

by pairing the augmentations of the same image, whereas

the negative pairs are drawn from different images within

the same batch. For instance, for a batch of N images,

augmented images form N positive pairs for a total of 2N
images and 2N − 1 negative pairs. From those 2N − 1,

there could be images which are similar to the anchor, hence

treated as false negative.

During training, an augmented anchor image is com-

pared against the negative samples to contribute towards a

contrastive loss, and as a result, there is a possibility that

some of these pairs may have the same semantic informa-

tion (label) as that of the anchor, and therefore can be treated

as false negatives. But in cases where the original image

sample and a negative image sample share the same class,

the contribution towards the contrastive loss becomes min-

imal, limiting the ability of the model to converge quickly,

as the presence of these false negatives can discard seman-

tic information leading to significant performance drop. We

therefore identify and remove the negatives that are similar

to the anchor in order to improve the performance of the

contrastive learning.

After removing the false negatives, the contrastive loss

can be defined as follows:

LFNR = −log
exp (sim (zi, zj) /T )

∑2N
k=1 1(k 6=i,k 6=Si)sim (zi, zk) /T

(3)

where Si is the set of the negative pair that are similar to

the anchor i.
However, If we use the above loss in the domain adapta-

tion scenario – similar to the contrastive loss – considering

that the mini-batch contains image samples from both do-

mains, it may treat all other samples as negatives against

the anchor image even though they may belong to the same

class without distinguishing domains, further widening the

distance between them due to the difference in the domain

specific visual characteristics, hence being unable to learn

domain invariance. In order to overcome these problems,

we propose to use FNR loss in the source and target domain

independently by randomly sampling instances from source

and target domain. Finally, our joint FNR loss for DA is

defined as follows:

LFNR DA = LFNR S + LFNR T (4)

where LFNR S and LFNR T are source contrastive loss

and target contrastive loss

3.4. Revisiting Maximum Mean Discrepancy

MMD defines the distance between the two distributions

with their mean embeddings in the Reproducing Kernel

Hilbert Space (RKHS). MMD is a two sample kernel test

to determine whether to accept or reject the null hypothe-

sis p = q [12], where p and q are source and target domain

probability distributions. MMD is motivated by the fact that

if two distributions are identical, all of their statistics should

be the same. The empirical estimate of the squared MMD

using two datasets is computed by the following equation:

LMMD =

∥

∥

∥

∥

∥

∥

1

N

N
∑

i=1

φ(xs
i )−

1

M

M
∑

j=1

φ(xt
j)

∥

∥

∥

∥

∥

∥

2

H

(5)

=
1

N2

N
∑

i=1

N
∑

i′=1

k(xs
i , x

s
i′)−

2

NM

N
∑

i=1

M
∑

j=1

k(xs
i , x

t
j)

+
1

M2

M
∑

j=1

M
∑

j′=1

k(xt
j , x

t
j′)

where φ (.) is the mapping to the RKHS H, k (., .) =
〈φ (.) , φ (.)〉 is the universal kernel associated with this

mapping, and N,M are the total number of items in the

source and target respectively. In short, the MMD between

the distributions of two datasets is equivalent to the distance

between the sample means in a high-dimensional feature

space.

4. Experiments

4.1. Datasets

We compare and evaluate our method against baseline

approaches on a number of benchmark datasets so that fair

comparisons can drawn. Such datasets are:

MNIST −→ USPS (M→U): MNIST [23] is treated as

source domain; USPS [9] is treated as target domain. As

both these datasets contain grayscale images the domain



Figure 3: Average Accuracy comparision of proposed CDA

frameworks with CDA-Base.

Figure 4: Sample images from datasets: MNIST-USPS

shift between these two datasets is relatively small. Figure-

4 shows sample images from M→U.

SVHN −→ MNIST (M→S): In this setting, SVHN [30]

is treated as source domain and MNIST is treated as the tar-

get domain. SVHN consists of crops of coloured streetview

house numbers (in contrast to the grayscale images of

MNIST), consisting of single digits extracted from images

of urban house numbers from Google Street View. SVHN

and MNIST are two digit classification datasets with a dras-

tic distributional shift between the two of them. The adap-

tation from MNIST to SVHN is quite challenging because

MNIST has a significantly lower intrinsic dimensionality

than SVHN. Figure-5 shows sample images from M→S.

Figure 5: Sample images from datasets: SVHN-MNIST

MNIST −→ MNISTM (M→MM): MNIST [23] is

treated as the source domain and MNISTM is treated as

the target domain. MNISTM is a modification of MNIST

dataset where the digits are blended with random patches

from BSDS500 dataset color photos. Figure-6 shows sam-

ple images from M→MM.

Figure 6: Sample images from datasets: MNIST-MNISTM

4.2. Implementation Details

CDA uses a base encoder ResNet-50 [14] trained from

scratch followed by a two layered non-linear MLP. During

pretraining, we train CDA on two Titan Xp GPUs, using

LARS optimizer [44] with a batch size of 512 and weight

decay of le-6 for a total of 300 epochs. Similar to SimClr[4],

we report performance by training a linear classifier on top

of a fixed representation, but only with source labels to eval-

uate representations which is a standard benchmark that has

been adopted by many papers in the literature [4, 5, 31].

4.3. Evaluation

We conducted various experiments using unlabeled

source and target digit datasets. As mentioned earlier, the

goal of our experiments is to introduce contrastive learn-

ing to the domain adaptation problem in order to maxi-

mize generalization between source and target datasets by

learning class discriminative and domain-invariant features

along with improving the performance of contrastive loss

by eliminating the false negatives. As shown below, We

have performed multiple experiments using two views and

four views [38]. Figure-3 compares the average accuracy of

our proposed two-view CDA frameworks with CDA-Base.

Following are the various experimental scenarios we con-

sidered on the digit datasets.

SimClr-Base: We start our experimental analysis by set-

ting up SimClr. We have trained on source dataset using the

same setup as SimClr, whilst testing on the target dataset.

We treat this as a strong baseline which we call SimClr-

Base and use this as reference for comparison against other

methods.

CDA-Base: We followed the methodology as described

in section-3.2, trained the model based on equation-2 and

evaluated on the target domain. Looking at table-1, we can

clearly observe that the model demonstrates higher perfor-

mance compared to the SimClr-Base. The difference in

performanc can be attributed to the fact that the proposed

model has clearly learnt both visual similarity and domain-

invariance resulting in minimizing the distance between the

domains and maximizing the classification accuracy. Over-

all, the average accuracy for all the datasets has increased by

around 19% compared to the SimClr-Base model. We treat

this result as a second strong baseline and call it CDA-Base.

CDA FNR: We followed the methodology as described

in section-3.3, and trained the model based on equation-4;

the evaluation was done on the target domain dataset. Look-

ing at table-1, in addition to learning visual similarity and

domain-invariance, our model also successfully identified

and eliminated the potential false negatives as they contain

the same semantic information as that of the anchor, result-

ing in faster convergence and increased accuracy. We ex-

perimented on two scenarios; firstly we removed one false

negative which we call FNR1 and in the second case, we



experimented by removing two false negatives which we

call FNR2. The results of these experiments can be seen

in table-1, concluding that removal of false negatives im-

proves accuracy and convergence time. The average accu-

racy has increased by 2.3% after removing one false neg-

ative. Additionally by removing two false negatives, we

observe that the average accuracy has increased by 3.8%

in comparison to CDA-Base and 1.5% in comparison to

FNR1. Compared to the SimClr-Base, the average accuracy

has increased around 21%.

CDA-MMD: We have used the same setup as that of

CDA-Base. Additionally we introduced MMD as described

in section 3.4, which is computed between vector represen-

tations extracted from each domain as per the equation-5,

in order to reduce the distance between the source and tar-

get distributions. Finally, we backpropagate NT-Xent loss

from equation-2 along with MMD loss equation-5. From

table-2, we observe that by minimizing both these losses

together, our model achieves much better alignment of the

source and target domains, demonstrating the advantage of

combined contrastive loss and MMD alignment. In compar-

ison to the CDA-Base method, the performance gain tends

to be comprehensive, as it has increased by 4.5%.

CDA FNR-MMD: We have used the same setup as that

of CDA FNR, and we have also introduced MMD, which

is computed between vector representations extracted from

each domain as per the equation-5, in order to reduce the

distance between the source and target distributions. We

calculate FNR loss both for source and target domains us-

ing equation-4 and backpropagate based on FNR and MMD

loss functions. From table-2, we observe that by remov-

ing the potential false negatives and minimizing the dis-

crepancy together, our model retains semantic information,

hence converging faster and learning both visual similarity

and domain-invariance; this is achieved by aligning source

and target domains efficiently, showing the effectiveness of

this method. In comparison to the CDA-Base method, the

average performance gain tends to be larger as it has in-

creased by a huge margin of 5.1%.

Comparison with the state of art: Using our approach,

we demonstrate that our model can perform very well in

the domain adaptation setting without access to labeled data

and imagenet parameters, just by training using the unla-

beled data itself, in contrast to other unsupervised domain

adaptation methods which have access to the source la-

bels. We have compared our results with those of other

state-of-the-art models, demonstrating that our model per-

forms favorably in comparison with them. From table-3,

we can conclude that our model has outperformed in the

MNIST-USPS and SVHN-MNIST tasks compared to the

other state-of-the-art models like DANN, DAN, ADDA,

DDC and Simclr-Base [10, 28, 39, 27, 40, 4]

Inspired by [38], we have also performed similar experi-

Table 1: Accuracy values on the digits datasets evaluated

using the proposed SimClr-Base and proposed CDA frame-

work, along with the introduction of false negative removal.

The best average is indicated in bold. M:MNIST, U:USPS,

S:SVHN and MM:MNISTM.

Method M→U S→M M→MM Avg

SimClr-Base [4] 92.0 31.7 34.9 53.1

CDA-Base 92.5 64.8 57.9 71.7

CDA FNR1 93.2 69.4 59.5 74.0

CDA FNR2 94.1 71.7 60.6 75.5

Table 2: Accuracy values on the digits datasets evalu-

ated using CDA framework with the introduction of MMD

and compared against base models. The best average

is indicated in bold. M:MNIST, U:USPS, S:SVHN and

MM:MNISTM.

Method M→U S→M M→MM Avg

SimClr-Base [4] 92.0 31.7 34.9 53.1

CDA-Base 92.5 64.8 57.9 71.7

CDA-MMD 93.4 74.8 60.6 76.2

CDA FNR-MMD 94.2 76.2 60.2 76.8

ments using four views on the digit datasets, which we com-

pare with a) CDA-Base and b) Contrastive Domain Adapta-

tion with Four Augmentations(CDAx4aug).

CDAx4aug: We have tested our method by using four

augmentations per anchor per source and followed the

methodology as described in section-3.2 based on equation-

2. The only change is that we now backpropagate four con-

trastive losses two from the source and two from target do-

main. From table-4, we can observe that the additional aug-

mentations have significantly improved the average accu-

racy of the method, compared to the two-view CDA-Base,

due to the availability of additional positive and negative

samples. Overall, by adding two additional views to the

CDA-Base method we have gained an average accuracy of

5.1% compared to the CDA-Base method.

CDAx4aug FNR: We followed the methodology as de-

scribed in section-3.3, and trained the model based on

equation-4 with four augmentations per domain as opposed

to two. We then evaluated the trained model on the tar-

get domains. Looking at table-4, we can clearly establish

that the additional views helped the model learn visual sim-

ilarity and domain-invariance resulting in minimizing the

distance between the domains. It also helped the model to

successfully identify and eliminate the potential false nega-

tives, thus resulting in converging faster along with an aver-

age accuracy increase of 5.8% compared to CDA-Base and

0.7% compared to CDAx4aug-Base.

CDAx4aug-MMD: We have used the same setup as that

of CDAx4aug, but we also introduced MMD computed be-



Table 3: Comparision of the proposed CDA method with

state-of-the-art methods, using ACCURACY as the perfor-

mance metric. The best numbers are indicated in bold.

M:MNIST, U:USPS, S:SVHN and MM:MNISTM.

Method M→S S→M M→MM

SimClr-Base [4] 92.0 31.7 34.9

DDC 79.1 68.1 -

ADDA 89.4 76.0 -

DANN - 73.8 76.6

DAN 81.1 71.1 76.9

CDA FNR-MMD

(our method) 94.2 76.2 60.2

Table 4: Accuracy values on the digits datasets compared

with Base models and evaluated using CDA framework

with four views along with the introduction of false negative

removal. The best average is indicated in bold. M:MNIST,

U:USPS, S:SVHN and MM:MNISTM.

Method M→U S→M M→MM Avg

SimClr-Base [4] 92.0 31.7 34.9 53.1

CDA-Base 92.5 64.8 57.9 71.7

CDAx4aug 92.9 74.1 63.5 76.8

CDAx4aug FNR 93.6 75.0 64.0 77.5

Table 5: Accuracy values on the digits datasets evaluated

using CDA framework with four views, along with the in-

troduction of MMD compared with Base models. The best

average is indicated in bold. M:MNIST, U:USPS, S:SVHN

and MM:MNISTM.

Method M→S S→M M→MM Avg

SimClr-Base [4] 92.0 31.7 34.9 53.1

CDA-Base 92.5 64.8 57.9 71.7

CDAx4aug 92.9 74.1 63.5 76.8

CDAx4aug-MMD 92.7 69.3 58.6 73.5

CDAx4aug

FNR-MMD 92.5 70.6 61.5 74.9

tween vector representations extracted from each domain

as per equation-5. We backpropagate XT-Xent loss for two

pairs of source and two pairs of target domains, along with

MMD loss. From table-5 we can observe that performance

gain using MMD was not significant due to the noise from

additional augmentations, resulting in slow convergence be-

tween the source and target distributions.

CDAx4aug FNR-MMD: We have used the same setup

as that of CDAx4aug FNR, but we have additionally in-

troduced MMD loss computed between vector representa-

tions extracted from each domain as per the equation-5, and

backpropagated along with using FNR loss. From table-

5, we can see that the average performance has increased

compared to CDAx4aug-MMD, due to the false negative re-

moval, but the addition of MMD has comparatively slowed

convergence.

5. Conclusion

Over the past few years, ImageNet pre-training has be-

come a de facto process in a model’s development pipeline.

In reality though, there exist various application areas, e.g.

medical imaging, where getting labeled data is a very oner-

ous, laborious and costly process. Improving upon meth-

ods and/or developing new ones that can extract knowledge

from unlabeled data and then adapting them to a down-

stream task, will enable the adoption of machine learning

algorithms at scale in application areas that have not seen

much of a ”machine learning revolution” yet, e.g. agri-food.

In this paper we demonstrated that via employing our

proposed CDA approach and its variants we can train a

model to perform competitively in a domain adaptation set-

ting, without having access to labeled data or imagenet pa-

rameters, just by training using the unlabeled data itself.

CDA also introduces identification and removal of the po-

tential false negatives in the DA setting, resulting in im-

proved accuracy. We also extend our framework to learn

from more than two views in the DA setting and tested it

using various experimental scenarios, demonstrating that it

can be effectively used for downstream domain adaptation

task. We hope that our work encourages future researchers

to apply contrastive learning to domain adaptation.
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