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Abstract 
Ductile metals undergo a considerable amount of plastic deformation before failure. Void nucleation, 

growth and coalescence is the mechanism of failure in such metals. 𝛼 – 𝛽 titanium alloys are ductile 

in nature and are widely used for their unique set of properties such as specific strength, fracture 

toughness, corrosion resistance and resistance to fatigue failures. Voids in these alloys have been 

reported to nucleate on the phase boundaries between 𝛼 and 𝛽 phase. Based on the findings of crystal 

plasticity finite element method (CPFEM) investigations of the void growth at the interface of 𝛼 and 𝛽 

phases, a void nucleation, growth, and coalescence model has been formulated. An existing single-

phase crystal plasticity theory is extended to incorporate underlying physical mechanisms of 

deformation and failure in dual phase titanium alloys. Effects of various factors (stress triaxiality, Lode 

parameter, deformation state (equivalent stress), and phase boundary inclination) on void nucleation, 

growth and coalescence are used to formulate a phenomenological constitutive model while their 

interaction with a conventional crystal plasticity theory is established. An extensive parametric 

assessment of the model is carried out to quantify and understand the effects of the material 

parameters on the overall material response. Performance of the proposed model is then assessed 

and verified by comparing the results of the proposed model with the RVE study results. Application 

of the constitutive model for utilisation in the design and optimisation of the forming process of 𝛼 – 

𝛽 titanium alloy components is also demonstrated using experimental data. 

Keywords: Crystal Plasticity, Dual Phase Titanium Alloys, Ductile Damage, Metal Forming, Forming 

Limit Prediction 

1. Introduction  
Dual-phase 𝛼 – 𝛽 titanium alloys are used to a greater extent than any other titanium alloy. The unique 

properties and mechanical behaviour of dual-phase  −  alloys, including specific strength, high and 

low cycle fatigue resistance, ductility, toughness, corrosion resistance make them an ideal candidate 

for the applications in areas ranging from aerospace, automotive, energy, and oil & gas sectors. 𝛼 – 𝛽 

titanium alloys have 𝛼 and 𝛽 phases present in the microstructure in various morphologies which 

undergo considerable plastic deformation before failure. Their deformation behaviour has been linked 

and found to be greatly influenced  by the underlying microstructure [1]–[3]. Furthermore, void 

nucleation, growth and coalescence has been reported as the failure mechanism in dual phase  -  
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alloys [4], and it was also identified that voids nucleate on 𝛼 – 𝛽 phase boundaries [5]. Such 

phenomena were studied by Asim et al. [6], [7] utilizing a crystal plasticity finite element method 

(CPFEM) approach based on a representative volume element. It is a purpose of the current paper to 

present a homogenised constitutive model of the Gurson-Tvergaard-Needleman (GTN) type that 

encompasses not only the elastoplastic response of dual phase  -  titanium alloy, but also the special 

nature of void nucleation, growth and coalescence at phase boundaries in such alloys that leads to 

their ductile failure.  We also verify, validate and characterise the constitutive model, and illustrate its 

application to sheet metal forming, including the forming limit associated with ductile necking and 

fracture. 

A brief but broad review of prior efforts to develop constitutive models that can predict the elastic-

plastic deformation behaviour of 𝛼 – 𝛽 titanium alloys is presented in the following. 

CPFEM based studies to understand the effect of microstructure morphology for dual phase titanium 
have been performed in the past [6], [8]–[15] using a representative volume element based approach 
(for details see ref [6], [7] and references therein). We note that most of the research to formulate 
constitutive models of 𝛼 – 𝛽 titanium alloys is focused on high temperature elasto-plastic deformation 
[16]–[27]. The constitutive models for this alloy can be classified into those that are empirical or semi 
empirical models [16]–[19], [23], [24] and those that are physics based [20]–[22], [25]–[27].  Empirical 
or semi empirical models have the advantage of lesser number of parameters. However such models 
cannot capture microstructural evolution and deformation mechanisms at the crystalline level. The 
relevant research [16]–[27] has focused on predicting work hardening [16]–[20], [22], [23], [27], 
dynamic recrystallisation [16], [21], [24]–[26], and ductile damage [21]. Most of these works were 
focused on uniaxial tension or compression simulations and did not consider loading complexities, 
such as the effects of  stress triaxiality and the Lode parameter, that are associated with sheet metal 
forming processes [6], [7], [28], [29]. 

In the context of analytical and numerical modelling of ductile behaviour of general porous metallic 

materials, a detailed description of the state of the art has been recounted in earlier work [7] and is 

summarised here to justify the novelty of the current paper. The pioneering works of Rice & Tracey 

[30] and Gurson [31] are the backbone of almost all subsequent models [9], [23], [29], [32]–[53]. Some 

recent and relevant works are discussed briefly below and the reader is directed to the references 

therein for further details and history. Stewart & Cazacu [36] developed a macroscopic yield criterion 

including the effects of material anisotropy, incompressibility and tension-compression asymmetry. A 

macroscale homogenisation based model, accounting for the stress triaxiality and the Lode parameter 

to understand evolution of void shape and orientation, was presented by Danas and Ponte Castañeda 

[38]. The localisation of plastic flow around a void in a rate-independent, isotropic, elastic-plastic Levy-

von Mises material was studied by Dunand and Mohr [40] under different stress states considering 

shear loading and the Lode parameter. Similar studies were carried out by Tekoğlu et al. [41] and Torki 

and Benzerga [42]. Zhou et al. [9] enhanced the GTN model by combining volumetric and shear 

damage in low-stress triaxialities. Song and Ponte Castañeda [43], [44] presented a macroscale 

homogenisation-based constitutive model for a porous, single phase, polycrystalline material, while 

Niordson and Tvergaard [46] developed a macroscale constitutive model for porous materials based 

on strain gradient plasticity theory. In addition, Siddiq [29] incorporated the effects of various 

parameters including initial porosity, stress triaxiality and crystal orientation on void growth and 

failure in a porous crystal plasticity constitutive model for single phase FCC material using the results 

obtained from an extensive RVE study of the same material [54]. 

It can be seen that previous works have concentrated mostly on single phase materials with the 

majority of the constitutive models being at the macroscale. Such models do not consider void 
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nucleation and growth mechanisms inside the grains and at the grain/phase boundaries and hence 

cannot be used to accurately predict failure in single- or bi-crystals. Also, these models do not take 

into account the combination of various effects that can be important, such as state of deformation 

(equivalent strain), stress triaxiality, Lode parameter and phase boundary inclination (PBI), on the void 

growth at the interface of the 𝛼 and 𝛽 phases of dual phase titanium alloys. PBI is defined as the angle 

between the normal to the bicrystal interface and the major loading direction. In the text, PBI refers 

to the abbreviation of phase boundary inclination, and 𝑝𝑏𝑖 as the quantity. 

As noted above, it is a purpose of the current paper to present a comprehensive homogenised 

constitutive model for a dual phase  -  titanium alloy. Based on work carried out earlier on the 

modelling of dual phase titanium alloy [6], [7], it was established that a constitutive model for this 

material needs to take into account anisotropy, other relevant microstructural features, and the 

effects of deformation state (equivalent strain), stress triaxiality, Lode parameter and PBI with 

particular reference to void nucleation, growth and coalescence at the interface of the 𝛼 and 𝛽 phases 

of the dual phase titanium alloy. In the previous studies of void growth at the interface of dual-phase 

𝛼-𝛽 titanium alloy [6], [7], a non-porous crystal plasticity model was calibrated for single crystals of 

each of the two phases (𝛼 and 𝛽) using experimental data from the literature. In addition, the research 

[6], [7] showed that the terminal mechanism for dual phase titanium alloys is ductile failure, and must 

be incorporated in the constitutive model to make it effective for the design and optimisation of 

forming processes which are used for the fabrication of parts and components. In the present paper, 

results from these studies [6], [7] are used to extend the non-porous single phase crystal plasticity 

model to include the effects of various factors including stress triaxiality, the Lode parameter, 

deformation state (equivalent strain), and PBI on void nucleation, growth and coalescence in dual 

phase titanium alloys. The resulting constitutive model is able to capture elastoplastic deformation 

and failure, and so can be used to predict performance of the alloy in processes such as sheet metal 

forming. As noted above, in this paper we verify, validate and characterise the constitutive model, and 

illustrate its application to sheet metal forming including failure at the forming limit. 

The article is organised as follows. In Section 2, we present the crystal plasticity based constitutive 

model which accounts for void nucleation, growth and coalescence. In Section 3, we present a 

parametric assessment of the proposed model. The model verification and validation are presented 

in Section 4 followed by constitutive model application in the context of forming limit curve 

simulations in Section 5. We finally present the conclusions in Section 6. The numerical 

implementation of the proposed model is described in detail in Appendices. 

2. Constitutive model 

2.1 Updated kinematics 
The total deformation gradient is multiplicatively split into elastic and plastic parts and the elastic part 

is further split into an elastic stretch, 𝑽𝑒 and a rigid body rotation, 𝑹𝑒 using the following relations: 

 𝑭 = 𝑭𝑒𝑭𝑝;                   𝑭 = 𝑽𝑒𝑹𝑒𝑭𝑝 (1) 

Figure 1 shows the decomposition of the total deformation gradient. The rigid body rotation and the 

plastic part of the deformation gradient can be combined to form an unloaded intermediate 

configuration given by:  

 𝑭 = 𝑽𝑒𝑭∗;  𝑭∗ = 𝑹𝑒𝑭𝑝 (2) 
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Figure 1:The multiplicative decomposition of total deformation gradient 

The plastic deformation gradient can further be split into the part dealing with shape change due to 

plastic slip, 𝑭𝑠
𝑝

, and volume change without shape change due to void growth, 𝑭𝑣
𝑝

, using: 

 𝑭𝑝 = 𝑭𝑠
𝑝
𝑭𝑣
𝑝

 (3) 

This decomposition follows the classical work of Gurson [31] and consequent models based on his 

work. The total velocity gradient, 𝒍, is given by: 

 𝒍 = 𝑭̇𝑭−1 = 𝑽̇𝑒𝑽𝑒
−1
+ 𝑽𝑒𝑳̃∗𝑽𝑒

−1
 (4) 

Here 𝑳̃∗ is velocity gradient in the intermediate unloaded configuration which can be related to the 

plastic velocity gradient, 𝑳̅𝑝, using: 

 𝑳̃∗ = 𝑭̇∗𝑭∗−1 = 𝑹̇𝑒𝑹𝑒𝑇 + 𝑹𝑒𝑳̅𝑝𝑹𝑒𝑇 (5) 

The plastic velocity gradient can then be divided into the slip and the void growth parts using the 

following relation: 

 𝑳̅𝑝 = 𝑭̇𝑝𝑭𝒑−1 = 𝑭̇𝑠
𝑝
𝑭𝑠
𝑝−1

+ 𝑭𝑠
𝑝
𝑳̂𝑣
𝑝
𝑭𝑠
𝑝−1

 (6) 

Here 𝑳̂𝑣
𝑝

 is the velocity gradient due to void growth. The velocity gradient due to slip, 𝑳̅𝑠
𝑝

, can be related 

to shear strain rate due to slip, 𝛾̇𝜒, using: 

 
𝑳̅𝑠
𝑝
= 𝑭̇𝑠

𝑝
𝑭𝑠
𝑝−1

= ∑ 𝛾̇𝜒 𝒔̅𝜒⊗ 𝒎̅𝜒

𝑁

𝜒=1

 (7) 

Here 𝒔̅𝜒 and 𝒎̅𝜒 are the unit vectors along the slip direction and normal to the slip plane in the crystal 

coordinate system and ⊗ is the outer or dyadic product. The velocity gradient due to void growth is 

related to the rate of change of a non-dimensional strain like quantity, 𝜉, which depends on the 

amount of void growth, using the following relation:  

 
𝑳̂𝑣
𝑝
=
1

3
𝐴𝑛𝜉̇𝟏 (8) 

Here 𝐴𝑛 is a material parameter and 𝟏 is the second-order identity tensor. 



5 
 

The total plastic velocity gradient can then be defined by: 

 
𝑳̅𝑝 = ∑ 𝛾̇𝜒 𝒔̅𝜒⊗𝒎̅𝜒

𝑁

𝜒=1

+ 𝑭𝑠
𝑝 1

3
𝐴𝑛𝜉̇𝟏𝑭𝑠

𝑝−1
 (9) 

Since the void growth part of the velocity gradient only deals with volume change, transformation of 

the volume part using 𝑭𝑠
𝑝
 will have no effect and the total plastic velocity gradient will then be:  

 
𝑳̅𝑝 = ∑ 𝛾̇𝜒 𝒔̅𝜒⊗ 𝒎̅𝜒

𝑁

𝜒=1

+
1

3
𝐴𝑛𝜉̇𝟏 (10) 

The relation for the total velocity gradient given in (4) can be rearranged to give the velocity gradient 

in the intermediate configuration and can then be additively decomposed into the pure elastic stretch, 

the rigid body rotation and the plastic deformation as: 

 𝑳̃ = 𝑽𝑒
−1
𝒍𝑽𝑒 = 𝑽𝑒

−1
𝑽̇𝑒 + 𝑳̃∗ (11) 

Spin due to the rigid body rotation, 𝛀̃𝑒, can then be defined and substituted in (5) as: 

 𝑳̃∗ = 𝛀̃𝑒 + 𝑹𝑒𝑳̅𝑝𝑹𝑒
𝑇
;        𝛀̃𝑒 = 𝑹̇𝑒𝑹𝑒

𝑇
 (12) 

The value of 𝑳̅𝑝 from (10) can then be substituted into (12) to obtain:  

 
𝑳̃∗ = 𝛀̃𝑒 + 𝑹𝑒∑𝛾̇𝜒 𝒔̅𝜒⊗𝒎̅𝜒

𝑁

𝜒=1

𝑹𝑒
𝑇
+ 𝑹𝑒

1

3
𝐴𝑛𝜉̇𝟏𝑹

𝑒𝑇 (13) 

Again, since the void growth part of the velocity gradient is volumetric, rotation, 𝑹𝑒, will not affect 

it. But the rotation of 𝒔̅𝜒 and 𝒎̅𝜒 by 𝑹𝑒 will yield: 

 
𝑳̃∗ = 𝛀̃𝑒 +∑ 𝛾̇𝜒 𝒔̃𝜒⊗ 𝒎̃𝜒

𝑁

𝜒=1

+
1

3
𝐴𝑛𝜉̇𝟏 (14) 

Here 𝒔̃𝜒 and 𝒎̃𝜒 are given by: 

 𝒔̃𝜒 = 𝑹𝑒𝒔̅𝜒, 𝒎̃𝜒 = 𝒎̅𝜒𝑹𝑒𝑇 (15) 

The total velocity gradient can be decomposed into symmetric, 𝒅 and skew, 𝒘 parts given by: 

 𝒍 = 𝒅 +𝒘 (16) 

The rate of deformation tensor, 𝒅 and the spin tensor, 𝒘 can then be defined using (4) as: 

 𝒅 = sym(𝑽̇𝑒𝑽𝑒
−1
) + 𝑽𝑒

−𝑇𝑫̃∗𝑽𝑒−1, 𝒘 = skew(𝑽̇𝑒𝑽𝑒
−1
) + 𝑽𝑒

−𝑇𝑾̃∗𝑽𝑒−1 (17) 

Here 𝑫̃∗ and 𝑾̃∗ are given by: 

 𝑫̃∗ = sym(𝐂̃𝑒𝛀̃𝑒) + 𝑹𝑒𝑫̅𝑝𝑹𝑒
𝑇 , 𝑾̃∗ = skew(𝐂̃𝑒𝛀̃𝑒) + 𝑹𝑒𝑾̅̅̅𝑝𝑹𝑒𝑇 (18) 

where 𝐂̃𝑒 = 𝑽𝑒𝑇𝑽𝑒 and, in the next equation, 𝑪̅𝑒 = 𝑭𝑒𝑇𝑭𝑒 are the elastic right Cauchy-Green tensors, 

and 𝑫̅𝑝 and 𝑾̅̅̅𝑝 are defined below: 

 𝑫̅𝑝 = sym(𝑪̅𝑒𝑳̅𝑝) = sym{𝑪̅𝑒(𝑳̅𝑠
𝑝
+ 𝑳̂𝑣

𝑝
)}, 𝑾̅̅̅𝑝 = skew(𝑪̅𝑒𝑳̅𝑠

𝑝
) (19) 

It can be seen in (19) that the rate of deformation tensor due to plastic deformation, 𝑫̅𝑝, depends on 

both the slip and void growth based plastic deformations, but the spin tensor due to the plastic 

deformation, 𝑾̅̅̅𝑝, only depends on the deformation due to slip, because void growth does not change 

the shape of the lattice.  
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The definition of 𝑳̃ given in (11) along with 𝑫̃ = sym(𝑪̃𝑒𝑳̃) can be used to get 𝑫̃ = 𝑽𝑒
𝑇
𝒅𝑽𝑒 in which 

the value of 𝒅 can then be substituted from (17) to get: 

 𝑫̃ = 𝑽𝑒𝑇(sym(𝑽̇𝑒𝑽𝑒
−1
) + 𝑽𝑒

−𝑇𝑫̃∗𝑽𝑒−1)𝑽𝑒 (20) 

This relation can then be reduced with the help of 𝑬̇̃𝑒 = 𝑽𝑒
𝑇
(𝑽̇𝑒𝑽𝑒

−1
)𝑽𝑒 obtaining the following 

relation: 

 
𝑫̃ = 𝑬̇̃𝑒 + 𝑫̃∗ = 𝑬̃

∇
𝑒 +𝑹𝑒𝑫̅𝑝𝑹𝑒

𝑇
 

(21) 

Here 𝑫̃∗ is then transformed into 𝑫̅𝑝 using 𝑹𝑒 and 𝑬̃
∇
𝑒 = 𝑬̇̃𝑒 + 𝑬̃𝑒𝛀̃𝑒 − 𝛀̃𝑒𝑬̃𝑒 is the Green-McInnis-

Naghdi type rate of 𝑬̃𝑒 based on the elastic spin of lattice, 𝛀̃𝑒. 

In a similar way, the spin tensor in the intermediate configuration can be evaluated using the total 

spin tensor, 𝒘 and then additively split into the elastic and the plastic part. 

 𝑾̃ = 𝑽𝑒
𝑇
𝒘𝑽𝑒 = skew(𝑽𝑒

𝑇
𝑽̇𝑒) + 𝑾̃∗ (22) 

Anisotropic elasticity is used to calculate the 2nd Piola-Kirchhoff stress from the elastic strain tensor. 

Here ℂ̃𝑒 is fourth-order stiffness tensor. 

 𝑺̃ = ℂ̃𝑒: 𝑬̃𝑒 (23) 

The final relations for the plastic part of the deformation rate, containing both slip based and void 

growth parts, along with lattice rotation, can then be found using (10), (18) and (19). Here 𝒁̃𝜒 is the 

Schmid tensor in the intermediate configuration and is equal to 𝒔̃𝜒⊗ 𝒎̃𝜒. 

 
𝑫̃∗ = sym(𝐂̃𝑒𝛀̃𝑒) +∑ 𝛾̇𝜒sym(𝑪̃𝑒𝒁̃𝜒)

𝑁

𝜒=1

+
1

3
𝐴𝑛𝜉̇sym(𝑪̃

𝑒),

𝑾̃∗ = skew(𝐂̃𝑒𝛀̃𝑒) +∑ 𝛾̇𝜒 

𝑁

𝜒=1

skew(𝑪̃𝑒𝒁̃𝜒) (24) 

An assumption of small elastic strains is made because their magnitude will be negligible compared to 

strains associated with plastic flow. The small elastic strains assumption for 𝑽𝑒 was introduced using: 

 𝑽𝑒 = 𝟏 + 𝝐𝑒 ,         ‖𝝐𝑒‖ ≪ 𝟏 (25) 

The following results can be obtained using the above relations: 

 𝑽̇𝑒 = 𝝐̇𝑒 ,         𝑽𝑒−1 = 𝟏 − 𝝐𝑒 + 𝒪‖𝝐𝑒‖2 (26) 

An infinitesimal difference will be left between the final state and the unloaded intermediate state. 

The following relations can be derived using these assumptions along with the consideration that 

higher-order terms, 𝒪‖𝝐𝑒‖2 and terms like (∎)𝝐𝑒 and 𝝐𝑒(∎), as compared to (∎), will be negligible 

[55]: 

 𝑫̃ ≈ 𝒅,            𝑾̃ ≈ 𝒘,       skew(𝑽𝑒
𝑇𝑽̇𝑒) ≈ skew(𝝐̇𝑒𝝐𝑒) 

𝑪̃𝑒 ≈ 𝟏, 𝑬̃𝑒 ≈ 𝝐𝑒 ,       𝑺̃ ≈ 𝝉  

𝑫̃∗ ≈ 2sym(𝝐𝑒𝛀̃𝑒) +∑ 𝛾̇𝜒sym(𝒁̃𝜒)

𝑁

𝜒=1

+
1

3
𝐴𝑛𝜉̇𝟏,

𝑾̃∗ ≈ 𝛀̃𝑒 +∑ 𝛾̇𝜒 skew(𝒁̃𝜒)

𝑁

𝜒=1

 (27) 
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After incorporating the results given in (27), (21) and (22) can then be written as: 

 𝒅 = 𝝐
∇
𝑒 + 𝑫̃𝑝,            𝝐

∇
𝑒 = 𝝐̇𝑒 + 𝝐𝑒𝛀̃𝑒 − 𝛀̃𝑒𝝐𝑒 

𝒘 = −skew(𝝐̇𝑒𝝐𝑒) + 𝛀̃𝑒 + 𝑾̃𝑝, 𝛀̃𝑒 = 𝑹̇𝑒𝑹𝑒𝑇 
(28) 

The elastic constitutive equation given in (23) can then be updated to: 

 𝝉 = ℂ̃𝑒: 𝝐𝑒 (29) 

And the plasticity relations can then be written as: 

 
𝑫̃𝑝 = 𝑹𝑒𝑫̅𝑝𝑹𝑒𝑇 = ∑ 𝛾̇𝜒sym(𝒁̃𝜒)

𝑁

𝜒=1

+
1

3
𝐴𝑛𝜉̇𝟏 

𝑾̃𝑝 = 𝑹𝑒𝑾̅̅̅𝑝𝑹𝑒
𝑇
= ∑ 𝛾̇𝜒skew(𝒁̃𝜒)

𝑁

𝜒=1

 (30) 

For the case of elastically isotropic and rigid metals, the above porous crystal plasticity formulation 

converges to a simpler version which is given in Appendix A. 

2.2 Void volume fraction evolution 

2.2.1 Nucleation and growth 
The void volume fraction 𝑓, normalised by the initial value of void volume fraction 𝑓0, is treated as a 

strain like quantity, 𝜉 that represents the volumetric plastic deformation of a material point due to 

void growth. The void volume fraction evolution is treated in two steps, namely nucleation/growth 

followed by coalescence. The nucleation and growth stage, 𝜉𝑔 is found to be a function of the applied 

equivalent strain, 𝜖𝑒𝑞, the stress triaxiality, 𝑋, and the Lode parameter, 𝐿 among others. This is based 

on the experimental findings and the RVE studies discussed in the introduction. Power law functions 

are used for these quantities to relate their effect on the evolution of 𝜉𝑔, given by: 

 

𝜉̇𝑔 =
𝑓̇

𝑓0
=
(1 + 𝑋)𝒜 (

𝜖𝑒𝑞
𝒞
)
ℬ

(1 + 𝐿)𝒟
(𝒜

𝑋̇

1 + 𝑋
+ ℬ

𝜖𝑒̇𝑞
𝜖𝑒𝑞

−𝒟
𝐿̇

1 + 𝐿
) , 𝒟 = {

𝒟,       𝐿 > 0
0,       𝐿 ≤ 0

 (31) 

The condition in (31) implies that the effect of the Lode parameter will only be present when its value 

is positive and greater than 0, otherwise it will not affect void growth. This feature is based on the 

findings of representative volume element studies that showed that void growth slows down at values 

of 𝐿 higher than 0 in contrast to void growth when 𝐿 is negative [41], [52], [53], [56]. 

Stress triaxiality is defined as the ratio between the hydrostatic stress, 𝑝𝜏, and von Mises stress and is 

given by 𝑋 =
𝑝𝜏

√
3

2
dev𝝉:dev𝝉 

, equivalent strain is defined as 𝜖𝑒𝑞 = √
2

3
dev𝝐: dev𝝐 and the Lode parameter 

is given by 𝐿 = −
27

2

|dev𝝉|

√
3

2
dev𝝉:dev𝝉

. 

The values of material parameters 𝒜 and 𝒞, in (31), are found to be the functions of the phase 

boundary inclination angle (𝑝𝑏𝑖) in the case of void growth at the interface of the two phases in dual 

phase alloys [7]. They are related to 𝑝𝑏𝑖 using:  

 𝒜 = ℰsech(ℱ(𝑝𝑏𝑖) − 𝒢) 
𝒞 = ℋsech(ℐ(𝑝𝑏𝑖) − 𝒥) 

(32) 

Here ℰ, ℱ, 𝒢, ℋ, ℐ and 𝒥 are material parameters.  Their values are found using RVE calculations [6], 

[7] and depend on the mechanical behaviour of the two phases and the value of the initial porosity. 
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Here it should be noted that, for the case of single crystals, the values of 𝒜 and 𝒞 will be constant and 

not functions of 𝑝𝑏𝑖. 

2.2.2 Coalescence 
The void growth rate during the coalescence stage is accelerated using two parameters, 𝒶1 and 𝒶2 

that control the rate of void growth and the change in the rate of void growth respectively. A similar 

formulation has been used by researchers in the past [29], [39], [50]. It results in a relation which is a 

function of 𝜉𝑔, and its cut-off value, 𝜉𝑔𝑐 at which the mechanism will shift from void growth to 

coalescence, which is given below: 

 𝜉𝑐𝑜𝑎𝑙 = 𝜉𝑔𝑐 + 𝒶1(𝜉𝑔
𝒶2 − 𝜉𝑔𝑐

𝒶2) (33) 

The condition for the choice between 𝜉𝑔 and 𝜉𝑐𝑜𝑎𝑙 is based on the accumulated value of 𝜉; if the value 

is less than 𝜉𝑔𝑐 then it will be calculated using the void nucleation and growth relation given in (31) 

otherwise, (33) will be used, and therefore: 

 
𝜉 = {

𝜉𝑔,            𝜉 < 𝜉𝑔𝑐
𝜉𝑐𝑜𝑎𝑙 ,       𝜉 ≥ 𝜉𝑔𝑐

 (34) 

2.3 Updated flow rule 
The flow rule used in the formulation of a non-porous crystal plasticity theory by Marin [55] was 

updated to incorporate the effects of void growth in porous single crystals. The lattice tends to soften 

with the evolution of the void volume fraction because the presence of a void induces a stress 

concentration around the void. This softening is added in the existing flow rule as an exponential 

function of 𝜉, which will reduce the slip system strength as the void volume fraction increases. Here 

the coefficient 𝓈1 is  a material parameter (a similar relation has been used previously [29]) which 

regulates this effect of softening. The resulting relation is given as: 

 
𝛾̇𝜒 = 𝛾̇0 [

|𝜏𝜒|

𝜅𝑠
𝜒
exp(−𝓈1𝜉)

]

1/𝑚

sign(𝜏𝜒) (35) 

2.4 Updated hardening evolution 
The hardening evolution law, given in (37), is the same as the one used by Marin [55], but the value 

of the critical resolved shear stress (CRSS), 𝜅0
𝜒

 was updated to be a function of stress triaxiality and 

PBI. The equivalent stress – equivalent strain results obtained from the RVE simulations [7] showed 

that yielding starts at a lower stress magnitude in higher stress triaxialities as compared to the uniaxial 

case. An exponential function of stress triaxiality is used to model this behaviour (see (36)), with 𝓈2 as 

a material parameter which is used to scale this effect. This function is made to have no effect in the 

uniaxial case where 𝑋=1/3. 

As discussed elsewhere [7], the mechanical behaviour of a bicrystal of 𝛼 and 𝛽 phases of titanium 

alloys is significantly different than the homogenised response of the non-porous crystals of 𝛼 and 𝛽 

phases (i.e. the volume averaged stress, given in Appendix B.4). This is because of the fact that the 

deformation of one phase in the bicrystal is affected by the other phase. Also, the effect of PBI further 

complicates the situation as the response of the bicrystal will then depend on the relative stiffness of 

the single crystals of the 𝛼 and 𝛽 phases. The value of PBI defines whether the two crystals have their 

deformations (1) constrained to be equal to the total deformation (𝑝𝑏𝑖 = 90°), (2) are such that the 

sum of their deformations in the major loading direction is equal to the total deformation (𝑝𝑏𝑖 = 0°), 

or (3) such that the behaviour is in between (0° < 𝑝𝑏𝑖 < 90°). This anisotropy affects void growth and 

the equivalent stress – equivalent strain response in a way that cannot be captured by existing crystal 

plasticity formulations. In order to capture this effect, a simple linear function of 𝑝𝑏𝑖 (taken in radians) 
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is used. A material parameter, 𝓈3 normalised by the CRSS of a selected slip system, 𝜅0|𝑟𝑒𝑓
𝜒

, is used to 

scale this effect. The value of 𝜅0
𝜒

 of a prismatic slip system of the 𝛼 phase is used as 𝜅0|𝑟𝑒𝑓
𝜒

. The value 

of 𝓈3 will be zero for the case of single crystals. 

The above results in a relation that takes into account these effects and is:  

 
𝜅0
𝜒
= {𝜅0

𝜒
(1 +

𝓈3(𝑝𝑏𝑖)

𝜅0|𝑟𝑒𝑓
𝜒 )} exp (−𝓈2 |𝑋 −

1

3
|) (36) 

The evolution law for the hardening of a slip system [55] is given by: 

 

𝜅̇𝑠
𝜒
= ℎ0 (

𝜅𝑠,𝑆 − 𝜅𝑠
𝜅𝑠,𝑆 − 𝜅𝑠,0

)∑|𝛾̇𝜒|

𝑁

𝜒=1

, 𝜅𝑠,𝑆 = 𝜅𝑠,𝑆0 [
∑ |𝛾̇𝜒|𝜒

𝛾̇𝑠0
𝜒 ]

1
𝑚′

 (37) 

where ℎ0, 𝜅𝑠,0, 𝜅𝑠,𝑆0, 𝛾̇𝑠0
𝜒

 and 𝑚′ are material parameters. The value of 𝜅0
𝜒

 will be used during 

integration of (2.37). 

Details of numerical implementation and the homogenisation scheme are given in Appendix B. Two 

levels of homogenisation may be required for a given problem, (a) the response of individual crystals 

having different crystal structure in a bicrystal; for example, alternating lamellae of α (HCP) and β 

(BCC) phases in a grain of α-β titanium alloy and/or (b) of an aggregate of multiple grains to simulate 

the response of a polycrystalline material. For both of them, volume fractions of each of the 

phase/grain is required, and for (b) orientations of each grain is required as well. For the purpose of 

sections 3 and 4, homogenisation of only type (a) is required and the volume fractions of α (HCP) and 

β (BCC) phases are half and half. Other homogenisation schemes which particularly takes into account 

the deformation and consequent texture [57], [58] and delamination [59] of lamella type (sub)grains 

can also be used to better model their behaviour. 

3 Parametric assessment of the model 
An extensive parametric assessment is carried out to study the capability of the model. Elastic and 

plastic parameters including, those required for the original flow rule, the hardening law, and the 

volume fractions of 𝛼 and 𝛽 phases of the titanium alloy (Ti-10V-2Fe-3Al) are required for this study. 

The values of these parameters are extracted from the RVE study [7]. The elastic constants 𝐶11-𝐶44 

are in Voigt notation and follows local crystal reference frame. The values of parameters required in 

(31) and (32) have already been found by calibrating the void growth model in (31) (with 𝐷=0) using 

the RVE results [6]. These two sets of parameters are given in Table 1 and Table 2 and the Euler angles 

used in this section for the two PBIs are given in Table 3. The value of 𝒟 is set to 0 because comparison 

will be made with the RVE study results for the Lode parameter value of -1. 

Table 1: Material parameters for CPFEM of Ti-1023 𝛼-𝛽 phases 

𝜶 phase Properties 

Elastic Properties C11 C12 C13 C33 C44 

(GPa) 143.0 94.0 49.3 191.0 18.0 

Plastic Properties 𝛾̇0 𝑚 ℎ0 𝜅0
𝜒

 𝜅𝑠,0 𝜅𝑠,𝑆0 𝛾̇𝑆0 𝑚′ 

   (MPa)   

Basal 0.01 0.05 10 190 1 100 5x1010 0.005 

Prismatic 0.01 0.05 10 160 1 60 5x1010 0.005 

Pyramidal 0.01 0.05 10 400 1 420 5x1010 0.005 

𝜷 phase Properties 

Elastic Properties C11 C12 C44   
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(GPa) 120.0 108.0 30.0   

Plastic Properties 𝛾̇0 𝑚 ℎ0 𝜅0
𝜒

 𝜅𝑠,0 𝜅𝑠,𝑆0 𝛾̇𝑆0 𝑚′ 

   (MPa)   
{110}⟨111⟩ 0.1 0.05 10 150 1 50 5x1010 0.005 
{110}⟨112⟩ 0.1 0.05 10 170 1 75 5x1010 0.005 
{110}⟨123⟩ 0.1 0.05 10 200 1 120 5x1010 0.005 

 
Table 2: Parameters of the model calibrated for 𝑓0=0.01, Ti-1023 alloy 

ℬ 𝒟 ℰ ℱ 𝒢 ℋ ℐ 𝒥 
1.20 0 5.30 1.20 1.25 7.00 1.80 2.50 

Table 3: The Euler angles of 𝛼 and 𝛽 phases for different phase boundary inclinations tested 

No. 𝑝𝑏𝑖 𝛼-phase 𝛽-phase 

Ψ Θ 𝜙 Ψ Θ 𝜙 
1 90° 0° 0° 180° 324.74° 45.00° 180.00° 

2 30° 180° 60° 0° 231.59° 31.40° 073.67° 

The detailed procedure followed to obtain the values of parameters given in Table 1 and Table 2 are 

found elsewhere [6], [7], [60],  and not repeated here for brevity. The method for the identification of 

the rest of the parameters, i.e. for the plastic deformation due to void growth and its effect on slip-

based plasticity, are presented next. The parameters 𝐴𝑛, 𝓈1, 𝓈2, 𝓈3, 𝜉𝑔𝑐, 𝒶1 and 𝒶2, used in (8) and 

(33) to (36) were tested for their effects on the equivalent stress – equivalent strain response of a 

bicrystal with a void, and on the evolution of normalised void volume fraction with applied equivalent 

strain. The effect of all these parameters is studied at two levels of applied stress triaxiality, 𝑋= 1/3 

and 3, and at 𝑝𝑏𝑖=90°, except for the parameter 𝓈2 whose results are presented at 𝑋= 1 and 3. The 

effect of the parameter 𝓈3 is investigated at 𝑝𝑏𝑖=30° and 90°. Performance of the model for different 

values of stress triaxialities at two different values of PBIs, and for different values of PBIs at two 

different values of stress triaxialities is evaluated in terms of equivalent stress – equivalent strain 

response and normalised void volume fraction evolution (Figure 4 and Figure 5). The values of the 

parameters at which this study was carried out and the values of stress triaxialities and PBIs at which 

the performance was assessed are given in Table 4. 

Table 4: Parameter and their values chosen for parametric study (* value of the parameter which is used while testing 
another parameter) 

Parameter Values Tested at 

𝑋 𝑝𝑏𝑖 
𝐴𝑛 0.0 0.01 * 0.02 0.03 0.05 0.1 1/3, 3 90° 

𝓈1 0.0 0.01 * 0.02 0.03 0.05 0.1 1/3, 3 90° 

𝓈2 0.0 0.1 * 0.2 0.3 0.5 1.0 1, 3 90° 

𝓈3 (MPa) 0 10 20 50   1/3, 3 30°, 90° 

𝜉𝑔𝑐 
1.1 1.11 1.12 1.13 1.15 * 1.2 1/3 90° 

7.50 * 7.75 8.00 8.50 9.00 10.0 3  

𝒶1 
1 10 20 30 50 100 * 1/3 90° 

1.0 2.0 * 3.0 5.0 10.0  3  

𝒶2 1.0 1.1 1.2 1.3 1.5 2.0 1/3, 3 90° 

𝑋 1/3 1/2 3/4 1 2 3  30°, 90° 

𝑝𝑏𝑖 0° 30° 45° 60° 75° 90° 1/3, 3  
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It was found that the effect of a certain parameter may differ considerably at the two values of stress 

triaxiality. For example, the effect of 𝓈1 on the results is very prominent for the case of 𝑋=3, unlike at 

𝑋=1/3. This is because of a very small difference between the results at different values of a given 

parameter (except 𝐴𝑛) or because of the physics involved at these different stress triaxialities (in the 

case of 𝐴𝑛). The effect of individual parameters is discussed in the following. 

Figure 2 (a) and (b) shows the effect of the parameter 𝐴𝑛 at 𝑋=1/3 and 3. It can be inferred that this 

parameter does not have a significant effect for either of these two stress triaxiality values, but it is 

almost indiscernible in the case of 𝑋=1/3. 𝐴𝑛 is the scaling factor for the strain like parameter 

characterising void growth 𝜉, which in turn affects the volumetric part of the stress as per the relation 

given in (8). Since 𝜉 in the case of 𝑋=1/3 is very small (Figure 2 (a)), it does not have a strong effect on 

the equivalent stress – equivalent strain response. In contrast, a significant effect of 𝐴𝑛 can be 

observed in the case of 𝑋=3 (Figure 2 (b)). The effect of 𝐴𝑛 on void growth can also be observed at 

both stress triaxialities in Figure 2 (a) and (b), and is found to be insignificant, which is a desirable 

condition. Figure 2 (c) and (d) show the effect of the parameter 𝓈1 at 𝑋=1/3 and 3. This parameter 

helps to simulate the effect of stress concentrations around the void which results in the softening of 

the crystal, by scaling the CRSS of the crystal. This parameter is a multiplier in the exponential function 

of 𝜉 given in (35) which controls the rate of softening with void growth. In the case of 𝑋=1/3, the 

magnitude of 𝜉 is small (Figure 2 (c)) and that is why the amount of softening is small. However, for 

the same values of 𝓈1 in 𝑋=3 case (Figure 2 (d)), softening is very high which is due to the higher 

magnitude of 𝜉. This parameter does not have a significant effect on void growth as can be seen in 

Figure 2 (c) and (d), which is a desirable situation. 

The effect of the parameter 𝓈2 on the equivalent stress – equivalent strain response and void growth 

is shown in Figure 2 (e) and (f) at 𝑋=1 and 3, respectively. This parameter is a multiplier in an 

exponential function of stress triaxiality which scales the CRSS of a crystal with the change in stress 

triaxiality as per the relation given in (36). This relation is formulated such that there is no effect in the 

case of 𝑋=1/3 but the value of CRSS decreases exponentially with the increase in stress triaxiality and 

𝓈2 scales the decrease. The reduction in the value of CRSS is smaller for 𝑋=1, but a large reduction 

was observed for 𝑋=3 for the same values of 𝓈2. The parameter 𝓈3, having dimension of stress, was 

introduced to account for the change in strength of a bicrystal with a change in 𝑝𝑏𝑖 which was 

observed during the RVE study [7]. Its effects on equivalent stress – equivalent strain and void growth 

are shown in Figure 2 (g) and (h) for 𝑝𝑏𝑖=30° and 90°, respectively at 𝑋=1/3 and 3. The parameter 𝓈3 

is a multiplier of 𝑝𝑏𝑖 with which the value of CRSS is scaled linearly as 𝑝𝑏𝑖 increases from 0° to 90°, 

(refer to (36)). It can be inferred from Figure 2 (g) and (h) that the value of CRSS increased with an 

increase in the value of 𝓈3 at both values of stress triaxiality, and this increase is higher in the case of 

𝑝𝑏𝑖=90°. This parameter has no effect on void growth, which is a desirable situation. 
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(c) (d) 

(e) (f) 

(a) (b) 
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Figure 2: Effect of parameter (a) 𝐴𝑛 at 𝑋=1/3 and (b) 𝑋=3, (c) 𝓈1 at 𝑋=1/3 and (d) 𝑋=3, (e) 𝓈2 at  𝑋=1 and (f) 𝑋=3, and (g) 

𝓈3 at 𝑝𝑏𝑖=30° and (h) 𝑝𝑏𝑖=90° on void growth and equivalent stress – equivalent strain response 

The effect of void coalescence parameters on equivalent stress – equivalent strain and evolution of 

normalised void volume fraction is shown in Figure 3 (a) to (f) at 𝑋=1/3 and 3. The parameter 𝜉𝑔𝑐 is 

the value of 𝜉 at which the mechanism of void volume fraction evolution shifts from simple growth to 

coalescence. Void coalescence is modelled as an accelerated void growth in this formulation. This can 

be observed in Figure 3 (a) and (b) where there is a sudden increase in void growth at different values 

of 𝜉 as 𝜉𝑔𝑐 was changed. This switch from void growth to void coalescence accelerated the softening 

at the corresponding value of equivalent strain. The softening is more pronounced in the case of 𝑋=3 

because the magnitudes of 𝜉 are large and after the onset of coalescence, they become even larger. 

The function of parameters 𝒶1 and 𝒶2 is to accelerate the void growth to simulate void coalescence. 

Their effects on normalised void volume fraction evolution and equivalent stress – equivalent strain 

response are shown in Figure 3 (c-d) and (e-f) at 𝑋=1/3 and 3. Apparently, their effects seem to be 

similar but, in combination, they are used to control the rate of change of normalised void volume 

fraction evolution. The parameter 𝒶1 simply scales the void coalescence rate, but careful use of 

suitable values of 𝒶2 can control the shape of the void volume fraction evolution curve. 

  

(g) (h) 
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Figure 3: Effect of parameter (a) 𝜉𝑔𝑐 at 𝑋=1/3 and (b) 𝑋=3, (c) 𝒶1 at 𝑋=1/3 and (d) 𝑋=3, and (e) 𝒶2 at  𝑋=1/3 and (f) 𝑋=3 on 

void growth and equivalent stress – equivalent strain response 

  

(a) (b) 

(c) (d) 

(e) (f) 
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The performance of the model at various values of stress triaxiality and for 𝑝𝑏𝑖=30° and 90° was 

investigated and the results are shown in Figure 4 (a) and (b), respectively. It can be seen that void 

growth has increased with the increase in stress triaxiality for both PBIs. This increase is higher at 

𝑝𝑏𝑖=30° as compared to 𝑝𝑏𝑖=90°, in agreement with the results of the RVE study [7]. Also, it can be 

seen in the equivalent stress – equivalent strain response that the case with 𝑝𝑏𝑖=30° has higher yield 

stresses at all stress triaxialities than the 𝑝𝑏𝑖=90° case, because the strengths of the bicrystal are 

different in these two orientations. 

Figure 5 (a) and (b) shows the performance of the model at different PBIs at 𝑋=1/3 and 3, respectively. 

It can be seen that the yield stresses are changing with variation in PBI; this is due to the fact that (i) 

CRSS depends on the crystal orientation, and in order to change the PBI, the bicrystal was rotated 

which changes their crystal orientation; and (ii) the CRSS was made a function of PBI to simulate the 

results obtained from RVE study [7]. The void growth in the cases of 𝑋=1/3 and 3 follows the trends 

seen in the RVE study [7]. 

  
 

Figure 4:  Effect of applied stress triaxiality (𝑋) on void growth and equivalent stress – equivalent strain response at (a) 
𝑝𝑏𝑖=30° and (b) 𝑝𝑏𝑖=90°. Results are shown using markers of 𝑋=1/3 (+), 1/2 (x), 3/4 (*), 1 (□), 2 (●) and 3 (○) 

  
 

Figure 5:  Effect of phase boundary inclination (𝑝𝑏𝑖) on void growth and equivalent stress – equivalent strain response at (a) 
𝑋=1/3 and (b) 𝑋=3. Results are shown using markers of 𝑝𝑏𝑖=0° (+), 30° (x), 45° (*), 60 ° (□), 75° (●) and 90° (○) 

(b) (a) 

(b) (a) 
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4 Model verification and validation 
To demonstrate model performance, validation and verification, results from the RVE study of void 

growth in a bicrystal of a 𝛼-𝛽 titanium alloy (Ti-1023) [7] are compared with those for the model 

presented above. Calculations are carried out at a single integration point under the stress states at 

which the RVEs were tested [7] and using the proposed model. Details of boundary conditions for 

these stress states can be found in earlier work [7]. Sets of material parameters required for this study 

include those for non-porous single crystal plasticity, void nucleation and growth. The values of the 

first set of material parameters (for nonporous crystal plasticity) are kept the same as used for the 

RVE simulation of the bicrystal of 𝛼-𝛽 phases of Ti-1023 titanium alloy [6], [7] and are given in Table 1 

and Table 2. The values of material parameters required for void nucleation, growth and coalescence 

were calibrated using the results of the RVE study [7] through an inverse modelling approach and are 

given in Table 5. The volume fraction of phases is kept at 0.5 for each of the phases. A comparison is 

made for 4 𝑝𝑏𝑖 angles and the crystal orientations of each of the two phases of these 4 𝑝𝑏𝑖 are given 

in terms of Euler angles in Table 6. 

Table 5: Parameters for the porous plasticity model calibrated via the results of the RVE study of Ti-1023 alloy [7] 

𝐴𝑛 𝓈1 𝓈2 𝓈3 (MPa) 𝜉𝑔𝑐 𝒶1 𝒶2 

0.02 0.018 0.16 70 2.4 10 1.1 
Table 6: The Euler angles of 𝛼 and 𝛽 phases for different phase boundary inclinations tested 

No. 𝑝𝑏𝑖 𝛼-phase 𝛽-phase 

Ψ Θ 𝜙 Ψ Θ 𝜙 
1 90° 0° 0° 180° 324.74° 45.00° 180.00° 

2 60° 180° 30° 0° 289.73° 25.70° 138.27° 

3 30° 180° 60° 0° 231.59° 31.40° 073.67° 

4 0° 180° 90° 0° 210.00° 54.74° 045.00° 

The comparison is made on the basis of the equivalent stress – equivalent strain response for each of 

the 4 𝑝𝑏𝑖 angles at 𝑋=1, 2 and 3, which are given in Figure 6 (a-d). It can be seen that the model 

predictions are in good agreement with the RVE response.  

  

(a) (b) 

(d) 
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Figure 6: A comparison of the equivalent stress – equivalent strain responses of the RVE study and the prediction of the 

developed model in (a) PBI 1, (b) PBI 2, (c) PBI 3, and (d) PBI 4. Results from RVE are plotted with open markers for 𝑋=1 (+), 
2 (x) and 3 (*) and corresponding results from model are in same colour with closed bullets, readers should refer the online 

version for correct colours.  

5 Application of the constitutive model 
To demonstrate model application and capability the constitutive model is assessed for a real example 

of sheet metal forming. In metal forming applications, the forming limit diagram/forming limit curve 

(FLC) is used for designing the process. Plasticity models are calibrated from data obtained from the 

FLC and then these models are used to develop and optimise the manufacturing process on a case-by-

case basis. 

Most of these models are at the macroscale and they are unable to provide insight into 

micromechanical aspects of the forming process. There has been a limited effort in the past to get 

insight into the micromechanics of ductile failure (for details see references [61], [62] and references 

therein). Viatkina et al. [61] used strain localisation as the criterion for failure in the polycrystalline 

aggregate and the response of each of the single crystals in the aggregate was solved using the CPFEM 

method. Gupta et al. [62] used the Marciniak-Kuczynski (M-K) model at the macroscopic scale of the 

polycrystalline aggregate to simulate sheet-necking along with the CPFEM formulation for the non-

porous single crystals.  The constitutive model presented here tries to overcome this shortcoming by 

extending the current crystal plasticity finite element method to incorporate the effects of crystal 

anisotropy and the phase boundary orientation in the context of porous crystal plasticity. 

In order to show the model capability, the FLC results for a Ti-6Al-4V titanium alloy with a mill-

annealed structure are used [63]. A small amount of 𝛽 phase (6.14%) was present in the 

microstructure within a large quantity of 𝛼 phase (93.86%) [63]. It can be seen in the tensile stress – 

strain response, shown in Figure 7 that the material underwent considerable plastic deformation, and 

necking was also reported before failure [63]. Void nucleation, growth and coalescence was reported 

as the failure mechanism in this alloy [4]. It was also reported that voids nucleated on 𝛼 – 𝛽 phase 

boundaries [5]. Hence, our formulation of void growth on the interface of the 𝛼 – 𝛽 phases is 

applicable for this case. The values of material parameters for the void nucleation and growth model 

are assumed to be same as given in Table 2. For the rest of the parameters, an inverse modelling 

approach, based on published results [63], was used to calibrate our model.  

5.1 Parameter identification for Ti-6Al-4V alloy 
Uniaxial tensile test results [63] were used first to calibrate the material parameters required for the 

flow and hardening laws. This test was carried out at room temperature, at a test speed of 2mm/min, 

(c) 
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and for specimens cut at 0° to the rolling direction. It was reported that the microstructure had 94% 

by volume of 𝛼 phase and 6% of 𝛽 phase. It was assumed that microstructure is composed of randomly 

oriented grains of same size and each of the grain has this same phase volume fractions. An inverse 

modelling approach, details of which can be found in [7], was used to identify the values of material 

parameters for use in the constitutive model presented in this work and are given in Table 7. A 

comparison between the stress-strain response from the experiment and that due to our constitutive 

model is given in Figure 7. 

Table 7: The material parameters for 𝛼-𝛽 phases of Ti-6Al-4V for the constitutive model  

𝜶 phase Properties, 𝒗𝟏=0.94 

Elastic Properties C11 C12 C13 C33 C44 

(GPa) 143.0 94.0 49.3 191.0 18.0 

Plastic Properties 𝛾̇0 𝑚 ℎ0 𝜅0
𝜒

 𝜅𝑠,0 𝜅𝑠,𝑆0 𝛾̇𝑆0 𝑚′ 

   (MPa)   

Basal 0.01 0.05 10 190 1 100 5x1010 0.005 

Prismatic 0.01 0.05 10 160 1 60 5x1010 0.005 

Pyramidal 0.01 0.05 10 400 1 420 5x1010 0.005 

𝜷 phase Properties, 𝒗𝟐=0.06 

Elastic Properties C11 C12 C44   

(GPa) 120.0 108.0 30.0   

Plastic Properties 𝛾̇0 𝑚 ℎ0 𝜅0
𝜒

 𝜅𝑠,0 𝜅𝑠,𝑆0 𝛾̇𝑆0 𝑚′ 

   (MPa)   
{110}⟨111⟩ 0.1 0.05 10 150 1 50 5x1010 0.005 
{110}⟨112⟩ 0.1 0.05 10 170 1 75 5x1010 0.005 
{110}⟨123⟩ 0.1 0.05 10 200 1 120 5x1010 0.005 

Void growth model parameters (for 𝜶 and 𝜷 phases) 

ℬ 𝒟 ℰ ℱ 𝒢 ℋ ℐ 𝒥 

1.20 0 5.30 1.20 1.25 7.00 1.80 2.50 

Porous plasticity parameters (for 𝜶 and 𝜷 phases) 

𝐴𝑛 𝓈1 𝓈2 𝓈3 (MPa) 𝜉𝑔𝑐  𝒶1 𝒶2 𝜉𝑐𝑟𝑖𝑡 

0.02 0.018 0.16 70 0.16 10 1.1 0.65 
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Figure 7: Comparison of the constitutive model prediction with experimental results [63]. Predicted void growth is also 
shown. 

5.2 Forming limit curve simulations 
The constitutive model presented in this work was calibrated using FLC results reported in the 

literature [63]. To replicate the FLC test, a single 3D cubic element is modelled utilising the material 

behaviour discussed in the previous sections. Three mutually perpendicular faces are constrained to 

remain stationary in the directions normal to those faces. Two opposite faces are assigned 

displacements normal to the faces such that: 

 𝜖2 = 𝑛𝜖1 (38) 

Here 𝜖1 and 𝜖2 are the major and minor principal strains, respectively and 𝑛, no greater then unity, is 

a proportionality factor. The remaining face of the cube is left unconstrained and free of traction, 

representing the through-thickness behaviour of the thin sheet. The factor 𝑛 in equation (38) is also 

the slope of a line drawn from the origin to a point on an experimental FLC curve. The value of 𝑛 is set 

to be between -0.3 and 1.0 with the extremes representing uniaxial (-0.3) and biaxial (1.0) tension. 

Results are obtained at incremental values of n equal to 0.1 in between these extremes. The values of 

𝜖1 and 𝜖2 at which the 𝜉𝑐𝑟𝑖𝑡 is achieved are then recorded to characterise the strain state at failure, 

and the resulting value of major strain is plotted in Figure 8 against the value of minor strain. 

It has been reported in the literature that as the Lode parameter value is increased from 0 to 1 (right 

hand side of FLC) at higher values of stress triaxialities, void coalescence is delayed and failure is 

delayed to an even greater extent [41], [52], [53], [56]. To account for this effect of non-proportional 

straining of material points, a phenomenological relation for 𝜉𝑔𝑐 is proposed. In this relation, for 𝐿𝑀 

greater than 0, the value of 𝜉𝑔𝑐 is replaced by 𝜉𝑔𝑐
′ , where 𝜉𝑔𝑐

′  is a function of the macroscopic value of 

the Lode parameter, 𝐿𝑀 and is given by: 

 𝜉𝑔𝑐
′ = ℊ1𝜉𝑔𝑐 exp(ℊ2(𝐿𝑀 − 0.45)) , 𝐿𝑀 > 0 (39) 

Here ℊ1 and ℊ2 are the material parameters which are to be calibrated with the experimental FLC 

results. The parameter 𝜉𝑐𝑟𝑖𝑡 is needed in this application as the value of 𝜉 at which a material fails, 

and the element is deleted. The values of material parameters used in the void growth and 

coalescence part of the constitutive model were then found iteratively by an inverse modelling 

approach until the model predictions are in agreement with experimental FLC results from the 
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literature, and are given in Table 8. Comparison of the two FLCs is given in Figure 8 which shows good 

agreement between the experimental FLC and the model prediction. 

Table 8: Void growth and coalescence parameters for the constitutive model calibrated from FLC results from Ti-6Al-4V 

Void growth model parameters (for 𝜶 and 𝜷 phases) 

ℬ 𝒟 ℰ ℱ 𝒢 ℋ ℐ 𝒥 

1.20 5.00 5.00 1.20 1.25 1.00 1.80 2.50 

Porous plasticity parameters (for 𝜶 and 𝜷 phases) 

𝐴𝑛 𝓈1 𝓈2 𝓈3 (MPa) 𝜉𝑔𝑐  ℊ1 ℊ2 𝜉𝑐𝑟𝑖𝑡 

4.5x10-5 0.05 0.16 70.00 0.6 0.70 2.50 0.601 

 

Figure 8: The comparison of the constitutive model prediction and the experimental FLC curve of Ti-6Al-4V [63] 

6 Conclusion 
A new constitutive model based on a crystal plasticity formulation is presented for dual phase titanium 

alloys which captures all stages of deformation, i.e. elasticity, plasticity, and ductile failure, under 

different loading conditions. The results of a CPFEM RVE study of void growth on the interface 

between the 𝛼 and 𝛽 phases of a titanium alloy (Ti-10V-2Fe-3Al) reported recently are used to develop 

a void nucleation, growth and coalescence model. This model takes into account the effects of 

deformation state (equivalent strain), stress triaxiality, the Lode parameter and phase boundary 

inclination (PBI) on void growth. The proposed model is then incorporated in the classical CPFEM 

formulation to extend its capability to cater for void nucleation, growth and coalescence. The resulting 

dual phase crystal plasticity model is then implemented as a user-subroutine in a commercially 

available finite element solver. An extensive parametric study has been carried out to explore the 

effects of material parameters used in the formulation. The performance of the model for various 

stress triaxialities and PBIs is also presented. The verification of the model is carried out by comparing 

the results of the RVE study of void growth at the interface of the 𝛼 and 𝛽 phases of a titanium alloy 

and the model predictions, which showed good agreement. Application of the model is then 

demonstrated by simulating the experimental forming limit curve (FLC) for an 𝛼 – 𝛽 titanium alloy. 
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The constitutive model calibrated to an 𝛼 – 𝛽 titanium alloy can be utilised for the design and 

optimisation of metal forming processes for dual phase titanium and similar alloys. 

Acknowledgement 
This work was supported through a University of Aberdeen Elphinstone Scholarship which covered 

the tuition fee for PhD study. 

Appendices 

A. A crystal plasticity model with void growth in metallic single 

crystals that are almost elastically isotropic, have infinitesimal 

elastic strain and remain isotropic during void growth  
The contribution of slip to the rate of deformation is given by: 

 
𝑫𝑠
𝑝
= ∑ 𝛾̇𝜒sym(𝒁𝜒)

𝑁

𝜒=1

 
(A-1) 

where 𝒁𝜒 = 𝒔𝜒⊗𝒎𝜒, is the Schmid tensor. And the void growth contribution is: 
 

𝑫𝑣
𝑝
=
1

3
𝐴𝑛𝜉̇𝟏 (A-2) 

The total rate of deformation is given by: 
 

𝒅 =
1

2
(𝒍 + 𝒍𝑇) 

 (A-3) 

Here 𝒍 = 𝑭̇𝑭−1, is the total velocity gradient. The total rate of deformation is the sum of slip and void 
growth contributions plus an elastic part, which in terms of the Green-McInnis-Naghdi type of small 

elastic strain rate, 𝝐
𝛁𝑒, is given by: 

 
𝒅 = 𝑫𝑠

𝑝
+𝑫𝑣

𝑝
+ 𝝐
𝛁𝑒 = ∑ 𝛾̇𝜒sym(𝒁𝜒)

𝑁

𝜒=1

+
1

3
𝐴𝑛𝜉̇𝟏 + 𝝐̇

𝑒 + 𝝐𝑒𝒘−𝒘𝝐𝑒 
(A-4) 

where 𝒘 is the spin tensor given by: 

 
𝒘 =

1

2
(𝒍 − 𝒍𝑇) (A-5) 

The dilatational rate is given by: 

 𝑑𝑘𝑘 = tr(𝒅) = tr (𝝐
𝛁𝒆) + 𝐴𝑛𝜉̇ (A-6) 

so that the plastic part is 

 𝑑𝑘𝑘
𝑝
= tr(𝑫𝑝) = 𝐴𝑛𝜉̇ (A-7) 

A.1 Elasticity 
Elasticity is modelled as isotropic. Since elastic strain is infinitesimal and the elasticity is isotropic, we 

can write the elasticity relation as: 

 𝝈
∇
= 𝕄: 𝝐

∇
𝑒 (A-8) 

where 𝝈 is Cauchy stress, 𝝈
∇

 is the Green-McInnis-Naghdi rate of change of Cauchy stress, given by: 

 𝝈
∇
= 𝝈̇ + 𝒘𝝈 − 𝝈𝒘 (A-9) 
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and the isotropic elasticity tensor is 𝕄, which can be a function of the normalised void volume fraction, 

𝜉. 

Therefore, the constitutive law can be written as: 

 
𝕄:𝒅 = ∑ 𝛾̇𝜒(𝕄: sym(𝒁𝜒))

𝑁

𝜒=1

+
1

3
𝐴𝑛𝜉̇(𝕄: 𝟏) + 𝝈̇ + 𝒘𝝈− 𝝈𝒘 

(A-10) 
or 

 

𝝈̇ = 𝕄: [𝒅 −∑ 𝛾̇𝜒sym(𝒁𝜒)

𝑁

𝜒=1

−
1

3
𝐴𝑛𝜉̇𝟏] − 𝒘𝝈 + 𝝈𝒘 

(A-11) 

A.2 Update of the slip system rotation 
In order to simplify the update of slip system rotation, a case where the shear and bulk moduli are 

infinite is assumed so that the elastic strain is zero. In that case  

 𝑭𝑝 = 𝑭 (A-12) 
and 

 𝑭̇ = 𝒍𝑭 = (𝒅 + 𝒘)𝑭 = (𝑫𝑠
𝑝
+𝑫𝑣

𝑝
+𝒘)𝑭 (A-13) 

allowing integration of 𝑭 with respect to time.  

This can also be addressed for the case when there is elastic strain with finite shear and bulk moduli.  

The total deformation gradient can be multiplicatively decomposed into elastic and plastic parts:  

 𝑭 = 𝑭𝑒𝑭𝑃 (A-14) 
The elastic part can be written as:  

 𝑭𝑒 = 𝟏 + 𝝐𝑒 −𝝎𝑒 (A-15) 
where 𝝐𝑒 is symmetric and 𝝎𝑒 is skew, and contain terms that are all small in magnitude compared to 

unity.   

Therefore to 1st order:  

 𝑭 = 𝑭𝑝 (A-16) 
a result already given in (A-12). The result from integrating (A-13) will differ from an exact result only 

by 2nd order terms.   

Thus (A-13) can be written as: 

 𝑭̇𝑝 = (𝑫𝑠
𝑝
+𝑫𝑣

𝑝
+𝒘)𝑭𝑝 (A-17) 

which we can use to integrate 𝑭̇𝑝 with respect to time.   

The final step, once 𝑭𝑝 is calculated, is to use polar decomposition to obtain the plastic rotation.   

B. Numerical Implementation 

B.1 Anisotropic elasticity 
The Kirchhoff stress given in (29) was split into deviatoric, dev𝝉 and volumetric parts, 𝑝𝜏, which in 

return relate to the deviatoric and volumetric parts of elastic strains, dev𝝐𝑒 and 𝜖𝑘𝑘
𝑒 , respectively, 

using the following relations: 

 dev𝝉 = ℂ̃𝑑
𝑒 : dev𝝐𝑒 + 𝑯̃𝑒𝜖𝑘𝑘

𝑒  

𝑝𝜏 = 𝑯̃
𝑒𝑇: dev𝝐𝑒 + 𝑀̃𝑒𝜖𝑘𝑘

𝑒  (B-1) 
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Here ℂ̃𝑑
𝑒 , 𝑯̃𝑒 and 𝑀̃𝑒 are the deviatoric fourth-order elastic tensor, deviatoric-isochoric elastic-

coupling second-order tensor and elastic volumetric coefficient respectively, and are evaluated using: 

 
ℂ̃𝑑
𝑒 = ℙ̃𝑑: ℂ̃

𝑒: ℙ̃𝑑 , 𝑯̃𝑒 =
1

3
ℙ̃𝑑: ℂ̃

𝑒: 𝟏, 𝑀̃𝑒 =
1

9
𝟏: ℂ̃𝑒: 𝟏 

(B-2) 

Here ℙ̃𝑑 = 𝕀̃ −
1

3
𝟏⊗ 𝟏 and 𝟏 is second-order identity tensor. Components of 𝑯̃𝑒 for crystals with 

cubic symmetry are zero but have finite values for other crystal symmetries. 

B.2 Constitutive integration scheme 
Relations given in (28), (29) and (30) are a set of coupled first order ordinary differential equations in 

the variables (𝝉, 𝜉, 𝑹𝑒 , 𝜅𝑠
𝜒

) which are to be solved. First, the evolution equations of the deformation 

are discretised in time and then numerically integrated to get the results for each time step. The 

current time is represented as 𝑡𝑛 and the integration is carried out to get the results at time 𝑡𝑛+1, and 

are related as 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡. The values of quantities at time 𝑡𝑛 and 𝑡𝑛+1 are represented with 

subscripts 𝑛 and 𝑛 + 1, respectively. The following are needed for the integration to proceed: 

i. Updated value of the deformation at 𝑡𝑛+1 in the form of 𝒍𝑛+1 or 𝒅𝑛+1 and 𝒘𝑛+1 

ii. The values of  𝝉𝑛 , 𝑹𝑛
𝑒 , 𝜅𝑠,𝑛

𝜒
 and 𝜉𝑛 

iii. Time-independent values of slip system unit vectors  (𝒔0
𝜒
,𝒎0

𝜒
) in the sample coordinate 

system, the initial orientation of the crystal in terms of its Euler angles from which the 

rotation matrix, 𝑪0 can be calculated, the elasticity tensor in the sample coordinate 

system ℂ0
𝑒 and the plasticity parameters required to solve the flow rule, hardening 

evolution, and void growth and coalescence. 

Updated of values of (𝝉𝑛+1, 𝜉𝑛+1, 𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝜒
) can then be calculated using the integration of the 

relevant set of equations. 

The numerical integration scheme used in this work is as follows. The kinematic equation given in (28) 

can be written as:  

 
𝝐𝑒
∇

= 𝑹𝑒 [
𝜕

𝜕𝑡
(𝑹𝑒

𝑇
𝝐𝑒𝑹𝑒)]𝑹𝑒

𝑇
= 𝒅− 𝑫̃𝑝 

(B-3) 

This can be integrated using the backward Euler scheme as: 

 𝑹𝑛+1
𝑒𝑇 𝝐𝑛+1

𝑒 𝑹𝑛+1
𝑒 = 𝑹𝑛

𝑒 𝑇𝝐𝑛
𝑒𝑹𝑛

𝑒 + ∆𝑡𝑹𝑛+1
𝑒𝑇 (𝒅𝑛+1 − 𝑫̃𝑛+1

𝑝
)𝑹𝑛+1

𝑒  (B-4) 

or 

 𝝐𝑛+1
𝑒 = 𝑹𝑛+1

𝑒 𝑹𝑛
𝑒𝑇⏟      

∆𝑹𝑒

𝝐𝑛
𝑒 𝑹𝑛

𝑒𝑹𝑛+1
𝑒𝑇

⏟    

∆𝑹𝑒𝑇

+ ∆𝑡(𝒅𝑛+1 − 𝑫̃𝑛+1
𝑝

) 
(B-5) 

where ∆𝑹𝑒 is the incremental elastic rotation tensor. The plastic strain rate, given in (30), can then be 

updated using: 

 

𝑫̃𝑛+1
𝑝

= 𝑹𝑛+1
𝑒 𝑫̅𝑛+1

𝑝
𝑹𝑛+1
𝑒𝑇 = 𝑹𝑛+1

𝑒 sym(∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

 𝒔̅𝜒⊗ 𝒎̅𝜒)𝑹𝑛+1
𝑒𝑇 +

1

3
𝐴𝑛𝜉̇𝑛+1𝟏 

= ∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

sym(𝑹𝑛+1
𝑒 𝑪0⏟    
𝑪𝑛+1

 𝒔0
𝜒
⊗𝑹𝑛+1

𝑒 𝑪0⏟    
𝑪𝑛+1

𝒎0
𝜒
) +

1

3
𝐴𝑛𝜉̇𝑛+1𝟏 

= ∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

sym(𝒔̃𝑛+1
𝜒

⊗ 𝒎̃𝑛+1
𝜒
) +

1

3
𝐴𝑛𝜉̇𝑛+1𝟏 

(B-6) 
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The updated value of 𝑹𝑛+1
𝑒  is calculated using the exponential map [64], utilizing (28) and (30), and 

can be written as: 

 
𝑹𝑛+1
𝑒 = exp(∆𝑡𝛀̃𝑛+1

𝑒 )𝑹𝑛
𝑒 , 𝛀̃𝑛+1

𝑒 = 𝒘𝑛+1 −∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

skew(𝒔̃𝑛+1
𝜒

⊗𝒎̃𝑛+1
𝜒
) 

(B-7) 

In (B-6) and (B-7), the value of 𝛾̇𝑛+1
𝜒

 is calculated using the flow rule given in (35). Updated slip system 

vectors (𝒔̃𝑛+1
𝜒
, 𝒎̃𝑛+1

𝜒
) are evaluated using 𝒔̃𝑛+1

𝜒
= 𝑪𝑛+1𝒔0

𝜒
 and 𝒎̃𝑛+1

𝜒
= 𝑪𝑛+1𝒎0

𝜒
, where 𝑪𝑛+1 =

𝑹𝑛+1
𝑒 𝑪0 is the updated rotation tensor. The value of 𝜉̇𝑛+1 is calculated using (31) - (34), depending on 

the value of 𝜉𝑛. The value of pbi𝑛+1 in (32) is also updated using 𝑹𝑛+1
𝑒 . The symmetric and skew parts 

of the Schmid tensor in the current configuration and at time 𝑡𝑛+1 are represented as: 

 𝑷̃𝑛+1
𝜒

= sym(𝒔̃𝑛+1
𝜒

⊗𝒎̃𝑛+1
𝜒
), 𝑸̃𝑛+1

𝜒
= skew(𝒔̃𝑛+1

𝜒
⊗ 𝒎̃𝑛+1

𝜒
) (B-8) 

The elasticity tensors can be rotated to the current configuration using: 

 ℂ̃𝑛+1
𝑒 = (𝑪𝑛+1⊗𝑪𝑛+1): ℂ̃0

𝑒: (𝑪𝑛+1⊗𝑪𝑛+1)
𝑇 , 𝐻̃𝑛+1

𝑒 = 𝑪𝑛+1𝐻̃0
𝑒𝑪𝑛+1

𝑇  (B-9) 

The elastic strains at time 𝑡𝑛+1 can then be written using (B-6), as: 

 
𝝐𝑛+1
𝑒 = 𝝐̂𝑛+1

𝑒 + ∆𝑡𝒅𝑛+1⏟          
𝝐𝑛+1
𝑒∗

− ∆𝑡∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

𝑷̃𝑛+1
𝜒

− ∆𝑡
1

3
𝐴𝑛𝜉̇𝑛+1𝟏, 𝝐̂𝑛+1

𝑒 = ∆𝑹𝑒𝝐𝑛
𝑒∆𝑹𝑒𝑇 

(B-10) 

 and can thereafter be expressed in deviatoric and volumetric parts as: 

 
dev𝝐𝑛+1

𝑒 = dev𝝐𝑛+1
𝑒∗ − ∆𝑡∑ 𝛾̇𝑛+1

𝜒

𝑁

𝜒=1

𝑷̃𝑛+1
𝜒
, 𝜖𝑘𝑘,𝑛+1

𝑒 = 𝜖𝑘𝑘,𝑛+1
𝑒∗ − ∆𝑡𝐴𝑛𝜉̇𝑛+1 

(B-11) 

where dev𝝐𝑛+1
𝑒∗  and 𝜖𝑘𝑘,𝑛+1

𝑒∗  are elastic predictor deviatoric and volumetric strains respectively, given 

by: 

 dev𝝐𝑛+1
𝑒∗ = ∆𝑹𝑒dev𝝐𝑛

𝑒∆𝑹𝑒𝑇 + ∆𝑡dev𝒅𝑛+1, 𝜖𝑘𝑘,𝑛+1
𝑒∗ = 𝜖𝑘𝑘,𝑛

𝑒 + ∆𝑡𝑑𝑘𝑘,𝑛+1 (B-12) 

Here 𝑑𝑘𝑘,𝑛+1 = tr(𝒅𝑛+1) is the volumetric part of the rate of deformation tensor. The relations given 

in (B-11) and (B-12) can then be used in (B-1) and rearranged to get the values at time 𝑡𝑛+1: 

 ℂ̃𝑑,𝑛+1
𝑒−1 : dev𝝉𝑛+1  = dev𝝐𝑛+1

𝑒 + ℂ̃𝑑,𝑛+1
𝑒−1 : 𝑯̃𝑛+1

𝑒 𝜖𝑘𝑘,𝑛+1
𝑒  

𝑀̃𝑛+1
𝑒−1𝑝𝜏,𝑛+1 = 𝑀̃𝑛+1

𝑒−1(𝑯̃𝑛+1
𝑒𝑇 : dev𝝐𝑛+1

𝑒 ) + 𝜖𝑘𝑘,𝑛+1
𝑒  (B-13) 

to obtain: 

 
ℂ̃𝑑,𝑛+1
𝑒−1 : dev𝝉𝑛+1  = dev𝝐𝑛+1

𝑒∗ − ∆𝑡∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

𝑷̃𝑛+1
𝜒

+ ℂ̃𝑑,𝑛+1
𝑒−1 : 𝑯̃𝑛+1

𝑒 𝜖𝑘𝑘,𝑛+1
𝑒  

𝑀̃𝑛+1
𝑒−1𝑝𝜏,𝑛+1 = 𝑀̃𝑛+1

𝑒−1(𝑯̃𝑛+1
𝑒𝑇 : dev𝝐𝑛+1

𝑒 ) + 𝜖𝑘𝑘,𝑛+1
𝑒∗ − 𝐴𝑛𝜉𝑛+1 (B-14) 

The backward Euler scheme is used to calculate 𝜅𝑠,𝑛+1
𝜒

 at time 𝑡𝑛+1 using (37) and is written as: 

 
𝜅𝑠,𝑛+1
𝜒

= 𝜅𝑠,𝑛
𝜒
+ ∆𝑡ℎ0 (

𝜅𝑠,𝑆,𝑛+1 − 𝜅𝑠,𝑛+1
𝜒

𝜅𝑠,𝑆,𝑛+1 − 𝜅𝑠,0
)∑|𝛾̇𝑛+1

𝜒|

𝑁

𝜒=1

 
(B-15) 

The relations in (B-7), (B-14) (a-b) and (B-15) make a set of coupled algebraic equations to be solved 

to obtain the values of (dev𝝉𝑛+1, 𝑝𝜏,𝑛+1, 𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝜒
). The residuals can then be written using these 

equations, as: 
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 ℛ1 = ℛ̂1(dev𝝉𝑛+1, 𝑝𝜏,𝑛+1, 𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝜒
)

= ℂ̃𝑑,𝑛+1
𝑒−1 : dev𝝉𝑛+1 − dev𝝐𝑛+1

𝑒∗ + ∆𝑡∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

𝑷̃𝑛+1
𝜒

− ℂ̃𝑑,𝑛+1
𝑒−1 : 𝑯̃𝑛+1

𝑒 𝜖𝑘𝑘,𝑛+1
𝑒 = 0 (B-16) 

 ℛ2 = ℛ̂2(dev𝝉𝑛+1, 𝑝𝜏,𝑛+1, 𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝜒
)

= 𝑝𝜏,𝑛+1𝑀̃𝑛+1
𝑒−1 − 𝜖𝑘𝑘,𝑛+1

𝑒∗ + 𝐴𝑛𝜉𝑛+1 − 𝑀̃𝑛+1
𝑒−1(𝑯̃𝑛+1

𝑒𝑇 : dev𝝐𝑛+1
𝑒 ) = 0 (B-17) 

 ℛ3 = ℛ̂3(dev𝝉𝑛+1, 𝑝𝜏,𝑛+1, 𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝜒
)

= 𝑹𝑛+1
𝑒 − exp [∆𝑡(𝒘𝑛+1 −∑ 𝛾̇𝑛+1

𝜒

𝑁

𝜒=1

𝑸̃𝑛+1
𝜒
)]𝑹𝑛

𝑒 = 0 

(B-18) 

 ℛ4 = ℛ̂4(dev𝝉𝑛+1, 𝑝𝜏,𝑛+1, 𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝜒
)

= 𝜅𝑠,𝑛+1
𝜒

− 𝜅𝑠,𝑛
𝜒
− ∆𝑡ℎ0 (

𝜅𝑠,𝑆,𝑛+1 − 𝜅𝑠,𝑛+1
𝜒

𝜅𝑠,𝑆,𝑛+1 − 𝜅𝑠,0
)∑|𝛾̇𝑛+1

𝜒|

𝑁

𝜒=1

= 0 
(B-19) 

A two-level staggered iterative scheme used in the formulation of Marin [55], who based his on the 

work of others [65], [66], is used in this work. In this scheme, the N-R method is used to solve the set 

of equations given in (B-16) and (B-17) for the residuals, in order to get the values of dev𝝉𝑛+1 and 

𝑝𝜏,𝑛+1 starting from the best estimates of (𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝛼 ). A linearisation of the residual given in (B-16) 

with respect to dev𝝉, gives rise to a set of algebraic equations which can be solved iteratively to get  

∆(dev𝝉𝑛+1) at a given time step using: 

 

(ℂ̃𝑑,𝑛+1
𝑒−1 + ∆𝑡∑

𝜕𝛾̇𝑛+1
𝜒

𝜕𝜏𝑛+1
𝜒

𝑁

𝜒=1

𝑷̃𝑛+1
𝜒

⊗ 𝑷̃𝑛+1
𝜒
) :∆(dev𝝉𝑛+1)

= −dev𝝐𝑛+1
𝑒 + dev𝝐𝑛+1

𝑒∗ − ∆𝑡∑ 𝛾̇𝑛+1
𝜒

𝑁

𝜒=1

𝑷̃𝑛+1
𝜒

 
(B-20) 

Here the relation given in (B-13) (a) is used to obtain dev𝝐𝑛+1
𝑒 = ℂ̃𝑑,𝑛+1

𝑒−1 : (dev𝝉𝑛+1 − 𝑯̃𝑛+1
𝑒 𝜖𝑘𝑘,𝑛+1

𝑒 ). 

Based on the value of dev𝝐𝑛+1
𝑒  just obtained, the N-R method is used to solve for the residual given in 

(B-17) iteratively for each time step to get ∆𝑝𝜏,𝑛+1, using: 

 
(𝑀̃𝑛+1

𝑒−1 +
𝜕𝜉𝑛+1
𝜕𝑝𝜏,𝑛+1

)∆𝑝𝜏,𝑛+1 = −𝜖𝑘𝑘,𝑛+1
𝑒 + 𝜖𝑘𝑘,𝑛+1

𝑒∗ − 𝐴𝑛𝜉𝑛+1 
(B-21) 

where the relation given in (B-13) (b) is used to obtain 𝜖𝑘𝑘,𝑛+1
𝑒 = 𝑀̃𝑛+1

𝑒−1(𝑝𝜏,𝑛+1 − 𝑯̃𝑛+1
𝑒𝑇 : dev𝝐𝑛+1

𝑒 ). 

After getting the values of dev𝝉𝑛+1 and 𝑝𝜏,𝑛+1, a second-level of the N-R scheme is used to calculate: 

i. the value of 𝜅𝑠,𝑛+1
𝜒

 using (B-19) while keeping the values of (dev𝝉𝑛+1, 𝑹𝑛+1
𝑒 ) constant 

ii. and 𝑹𝑛+1
𝑒  using (B-18). 

Details about the second-level of the iterative scheme can be found in the literature [65]. 

The value of Cauchy stress can then be calculated using: 

 𝝈𝑛+1 = det(1 + 𝝐𝑛+1
𝑒 ) 𝝉𝑛+1, 𝝉𝑛+1 = dev𝝉𝑛+1 + 𝑝𝜏,𝑛+1𝟏 (B-22) 

by combining the deviatoric and volumetric parts of Kirchhoff stress. Also, the value of the total 

elastic strain is calculated for the time 𝑡𝑛+1 using: 

 
𝝐𝑛+1
𝑒 = dev𝝐𝑛+1

𝑒 +
1

3
𝜖𝑘𝑘,𝑛+1
𝑒 𝟏 

(B-23) 
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B.3 Consistent elastoplastic tangent moduli 
The finite element method we used takes advantage of the material tangent moduli for convergence 

while solving for equilibrium using an implicit scheme. An effort is made to find approximate tangent 

moduli using the constitutive equations. Since the derivation does not consider linearisation of the 

rotation tensor, 𝑹𝑛+1
𝑒 , elastic Jacobian, 𝐽𝑛+1

𝑒 = det(𝟏 + 𝝐𝑛+1
𝑒 ) and the hardness, 𝜅𝑠,𝑛+1

𝜒
, it is termed 

an approximate modulus instead of an exact one. 

The elastoplastic tangent moduli can then be defined as: 

 
𝒄𝑛+1
𝑒𝑝

=
1

∆𝑡

d𝝈𝑛+1
d𝒅𝑛+1

=
1

𝐽𝑛+1
𝑒 ∆𝑡

d𝝉𝑛+1
d𝒅𝑛+1

→  d𝝉𝑛+1 = 𝐽𝑛+1
𝑒 𝒄𝑛+1

𝑒𝑝
⏟      
𝒄𝜏,𝑛+1
𝑒𝑝

: d𝒅𝑛+1∆𝑡 

(B-24) 

Here 𝒄𝑛+1
𝑒𝑝

 are elastoplastic tangent moduli in terms of Cauchy stress, 𝝈𝑛+1 which can be transformed 

into Kirchhoff stress, 𝝉𝑛+1 using 𝝉𝑛+1 = 𝐽𝑛+1
𝑒 𝝈𝑛+1 and 𝒄𝜏,𝑛+1

𝑒𝑝
 are the elastoplastic tangent moduli in 

terms of Kirchhoff stress. 

The decomposition of 𝝉𝑛+1 into deviatoric and volumetric parts is given by: 

 𝝉𝑛+1 = dev𝝉𝑛+1 + 𝑝𝜏,𝑛+1𝟏 (B-25) 

Then using (B-1), constitutive equations can be written in time 𝑡𝑛+1: 

 dev𝝉𝑛+1 = ℂ̃𝑑,𝑛+1
𝑒 : dev𝝐𝑛+1

𝑒 + 𝑯̃𝑛+1
𝑒 𝜖𝑘𝑘,𝑛+1

𝑒  

𝑝𝜏,𝑛+1 = 𝑯̃𝑛+1
𝑒𝑇 : dev𝝐𝑛+1

𝑒 + 𝑀̃𝑛+1
𝑒−1𝜖𝑘𝑘,𝑛+1

𝑒  (B-26) 

Here the elastic strain is used in the form of deviatoric and volumetric parts, which are given by: 

 
dev𝝐𝑛+1

𝑒 = dev𝝐̂𝑛+1
𝑒 + ∆𝑡dev𝒅𝑛+1 − ∆𝑡∑ 𝛾̇𝑛+1

𝜒

𝑁

𝜒=1

𝑷̃𝑛+1
𝜒

 

𝜖𝑘𝑘,𝑛+1
𝑒 = 𝜖𝑘̂𝑘,𝑛+1

𝑒 + ∆𝑡𝑑𝑘𝑘,𝑛+1 − 𝐴𝑛𝜉𝑛+1 (B-27) 

where 𝜖𝑘̂𝑘,𝑛+1
𝑒 = 𝜖𝑘𝑘,𝑛

𝑒 , since it is a scalar quantity and is not affected by rotation. A linearisation of 

𝝉𝑛+1 in (B-25) leads to: 

 d𝝉𝑛+1 = d dev𝝉𝑛+1 + d𝑝𝜏,𝑛+1𝟏 (B-28) 

Since our approximation is that 𝑹𝑛+1
𝑒  is constant, values of ℂ̃𝑑,𝑛+1

𝑒−1 , 𝑯̃𝑛+1
𝑒 , 𝑀̃𝑛+1

𝑒−1 and 𝑷̃𝑛+1
𝜒

 will be 

treated as constants as well. Now dev𝝉𝑛+1 and 𝑝𝜏,𝑛+1 in (B-26), can be linearised using: 

 ℂ̃𝑑,𝑛+1
𝑒−1 : d dev𝝉𝑛+1  = d dev𝝐𝑛+1

𝑒 + ℂ̃𝑑,𝑛+1
𝑒−1 : 𝑯̃𝑛+1

𝑒 d𝜖𝑘𝑘,𝑛+1
𝑒  (B-29) 

where d dev𝝐𝑛+1
𝑒  can be written, using (B-27) (a) as: 

 
d dev𝝐𝑛+1

𝑒 = ∆𝑡ℙ̃𝑑: d𝒅𝑛+1 −∑∆𝑡
𝜕𝛾̇𝑛+1

𝜒

𝜕𝜏𝑛+1
𝜒

𝑁

𝜒=1

(𝑷̃𝑛+1
𝜒

⊗ 𝑷̃𝑛+1
𝜒
)

⏟                  
𝕊̃𝑛+1

: d dev𝝉𝑛+1 

(B-30) 

 Similarly, the volumetric part can be written as: 

 𝑀̃𝑛+1
𝑒−1d𝑝𝜏,𝑛+1 = 𝑀̃𝑛+1

𝑒−1(𝑯̃𝑛+1
𝑒𝑇 : d dev𝝐𝑛+1

𝑒 ) + d𝜖𝑘𝑘,𝑛+1
𝑒  (B-31) 

Using (B-27) (b): 

 
d𝜖𝑘𝑘,𝑛+1

𝑒 = ∆𝑡𝟏: d𝒅𝑛+1 − 𝐴𝑛
𝜕𝜉𝑛+1
𝜕𝑝𝜏,𝑛+1

d𝑝𝜏,𝑛+1 
(B-32) 

The values of d dev𝝐𝑛+1
𝑒  and d𝜖𝑘𝑘,𝑛+1

𝑒  can then be substituted in (B-29) from (B-30) and (B-32), to get: 
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 ℂ̃𝑑,𝑛+1
𝑒−1 : d dev𝝉𝑛+1  

= ∆𝑡ℙ̃𝑑: d𝒅𝑛+1 − 𝕊̃𝑛+1: d dev𝝉𝑛+1

+ ℂ̃𝑑,𝑛+1
𝑒−1 : 𝑯̃𝑛+1

𝑒 (∆𝑡𝟏: d𝒅𝑛+1 − 𝐴𝑛
𝜕𝜉𝑛+1
𝜕𝑝𝜏,𝑛+1

d𝑝𝜏,𝑛+1) 
(B-33) 

and in (B-31), getting: 

 𝑀̃𝑛+1
𝑒−1d𝑝𝜏,𝑛+1 = 𝑀̃𝑛+1

𝑒−1{𝑯̃𝑛+1
𝑒𝑇 : (∆𝑡ℙ̃𝑑: d𝒅𝑛+1 − 𝕊̃𝑛+1: d dev𝝉𝑛+1)} + ∆𝑡𝟏: d𝒅𝑛+1

− 𝐴𝑛
𝜕𝜉𝑛+1
𝜕𝑝𝜏,𝑛+1

d𝑝𝜏,𝑛+1 
(B-34) 

The relations given in (B-33) and (B-34) can then be rearranged and written as a system of equations 

which can be solved for d dev𝝉𝑛+1 and d𝑝𝜏,𝑛+1 in terms of d𝒅𝑛+1∆𝑡. Their coefficients (not strictly 

scalar, can be tensors) 𝔾1, 𝑮2, 𝔾3, 𝑮4, 𝐺5 and 𝑮6 are described here as: 

 
(ℂ̃𝑑,𝑛+1
𝑒−1 + 𝕊̃𝑛+1)⏟          

𝔾1

: d dev𝝉𝑛+1 + ℂ̃𝑑,𝑛+1
𝑒−1 : 𝑯̃𝑛+1

𝑒 (𝐴𝑛
𝜕𝜉𝑛+1
𝜕𝑝𝜏,𝑛+1

)
⏟                

𝑮2

d𝑝𝜏,𝑛+1

= (ℙ̃𝑑 + ℂ̃𝑑,𝑛+1
𝑒−1 : 𝑯̃𝑛+1

𝑒 ⊗𝟏)⏟                
𝔾3

: d𝒅𝑛+1∆𝑡 

𝑀̃𝑛+1
𝑒−1𝑯̃𝑛+1

𝑒𝑇 : 𝕊̃𝑛+1⏟          
𝑮4

: d dev𝝉𝑛+1 + (𝑀̃𝑛+1
𝑒−1 + 𝐴𝑛

𝜕𝜉𝑛+1
𝜕𝑝𝜏,𝑛+1

)
⏟              

𝐺5

d𝑝𝜏,𝑛+1

= (𝑀̃𝑛+1
𝑒−1𝑯̃𝑛+1

𝑒𝑇 : ℙ̃𝑑 + 𝟏)⏟              
𝑮6

: d𝒅𝑛+1∆𝑡 
(B-35) 

or, 

 𝔾1: d dev𝝉𝑛+1 + 𝑮2 d𝑝𝜏,𝑛+1 = 𝔾3: d𝒅𝑛+1∆𝑡 
𝑮4: d dev𝝉𝑛+1 + 𝐺5 d𝑝𝜏,𝑛+1 = 𝑮6: d𝒅𝑛+1∆𝑡 (B-36) 

Here 𝔾1 and 𝔾3 are fourth-order tensors, 𝑮2, 𝑮4 and 𝑮6 are second-order tensors, and 𝐺5 is a scalar. 

The relation in (B-36) can then be solved for the values of d dev𝝉𝑛+1 and d𝑝𝜏,𝑛+1 obtaining: 
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d dev𝝉𝑛+1 =

{
 
 

 
 (𝔾1 −

𝑮2⊗𝑮4
𝐺5

 )
−1

(𝔾3 −
𝑮2⊗𝑮6
𝐺5

) +

𝟏⊗
𝑮6 − (𝔾1 −

𝑮2⊗𝑮4
𝐺5

 )
−1

: (𝔾3 −
𝑮2⊗𝑮6
𝐺5

)

𝐺5 }
 
 

 
 

⏟                                  
ℂ̃𝑑,𝑛+1
𝑒𝑝

: d𝒅𝑛+1∆𝑡 

d𝑝𝜏,𝑛+1 =
𝑮6 − (𝔾1 −

𝑮2⊗𝑮4
𝐺5

 )
−1

: (𝔾3 −
𝑮2⊗𝑮6
𝐺5

)

𝐺5⏟                            
𝑯̃𝑣,𝑛+1
𝑒𝑝

: d𝒅𝑛+1∆𝑡 

(B-37) 

Here special consideration must be observed while solving (B-36), since it involves fourth-order 

tensors, second-order tensors and scalar values, and appropriate multiplication operations are used 

to get the results to consistent order. The full-form of the result is not given here for brevity, but can 

simply be found by substituting the values of 𝔾1, 𝑮2, 𝔾3, 𝑮4, 𝐺5 and 𝑮6 from (B-35) in (B-37). 

The values of d dev𝝉𝑛+1 and d𝑝𝜏,𝑛+1 in (B-37) can then be substituted in (B-28) in terms of ℂ̃𝑑,𝑛+1
𝑒𝑝

 and 

𝑯̃𝑣,𝑛+1
𝑒𝑝

 which are the fourth-order deviatoric and second-order deviatoric-isochoric coupling 

elastoplastic consistent material moduli, respectively. 

 𝑑𝝉𝑛+1 = (ℂ̃𝑑,𝑛+1
𝑒𝑝

+ 𝟏⊗ 𝑯̃𝑣,𝑛+1
𝑒𝑝

)⏟              
ℂ̃𝜏,𝑛+1
𝑒𝑝

: d𝒅𝑛+1∆𝑡 

(B-38) 

Here ℂ̃𝜏,𝑛+1
𝑒𝑝

 is the required elastoplastic consistent tangent modulus in terms of Kirchhoff stress which 

can then be transformed back in terms of Cauchy stress using: 

 ℂ̃𝑛+1
𝑒𝑝

= 𝐽𝑛+1
𝑒−1ℂ̃𝜏,𝑛+1

𝑒𝑝
= 𝐽𝑛+1

𝑒−1(ℂ̃𝑑,𝑛+1
𝑒𝑝

+ 𝟏⊗ 𝑯̃𝑣,𝑛+1
𝑒𝑝

) (B-39) 

For the case where the deviatoric and volumetric parts of deformation are not coupled, i.e. cubic 

crystal symmetry, consistent elastoplastic tangent moduli are simply given by: 

 
ℂ̃𝑛+1
𝑒𝑝

= 𝐽𝑛+1
𝑒−1(ℂ̃𝑑,𝑛+1

𝑒−1 + 𝕊̃𝑛+1)
−1
: ℙ̃𝑑 + 𝐽𝑛+1

𝑒−1 (𝑀̃𝑛+1
𝑒−1 + 𝐴𝑛

𝜕𝜉𝑛+1
𝜕𝑝𝜏,𝑛+1

)

−1

𝟏⊗ 𝟏 
(B-40) 

B.4 Homogenisation scheme 
The homogenised response of multiple single crystals (grains) at a given material point may sometimes 

be required to simulate the behaviour of polycrystalline material. This can be achieved using a mean 

field hypothesis of the partitioning rule. It is required to relate the microscopic quantities discussed in 

the formulation, (𝒅,𝒘, 𝝈), with their macroscopic counterparts (𝑫𝑀 ,𝑾𝑀 , 𝚺𝑀). An extended Taylor 

hypothesis by Asaro and Needleman [67] is used in this work, which is: 

 𝑫𝑀 = 𝒅, 𝑾𝑀 = 𝒘, 𝚺𝑀 = 〈𝝈〉 (B-41) 

Here 〈∎〉 represents volume averaging of a quantity over all the individual single crystals in an 

aggregate. 

Two levels of homogenisation may be required in this model:  

i. the homogenised response of individual crystals having different crystal structure in 

a bicrystal; for example, alternating lamellae of 𝛼 (HCP) and 𝛽 (BCC) phases in a grain 

of 𝛼-𝛽 titanium alloy 

ii. and/or the homogenised response of an aggregate of multiple grains to simulate the 

response of a polycrystalline material. 
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Any one, both or none of the above homogenisations may be required for a certain problem. For the 

case of simulating void growth in a bicrystal composed of single crystals having different crystal 

structures, volume fractions of each of the crystal type present in bicrystal, 𝑣1 and 𝑣2, will be required. 

This is in addition to all the data already mentioned in the formulation, which will now be required for 

both the crystal types. After getting the values of 𝝈𝑛+1 and ℂ̃𝑛+1
𝑒𝑝

 for each of the crystals, marked as 

(∎)1 and (∎)2, using (B-22) and (B-39), the homogenised response, marked as (∎)𝑇 was calculated 

using: 

 (𝝈𝑛+1)𝑇 = 𝑣1(𝝈𝑛+1)1 + 𝑣2(𝝈𝑛+1)2, (ℂ̃𝑛+1
𝑒𝑝

)
𝑇
= 𝑣1(ℂ̃𝑛+1

𝑒𝑝
)
1
+ 𝑣2(ℂ̃𝑛+1

𝑒𝑝
)
2

 (B-42) 

The macroscopic value of 𝜉, the non-dimensional strain like parameter representative of normalised 

void volume fraction is represented as 𝜉𝑀, of a bicrystal is calculated using: 

 𝜉𝑀 = 𝑣1𝜉1 + 𝑣2𝜉2 (B-43) 

where 𝜉1 and 𝜉2 are the values of 𝜉 for each of the two phases of the bicrystal. The condition for 

switching from simple void growth to void coalescence given in (34) will then be based on the value 

of 𝜉𝑀. It implies that if the normalised void volume fraction of a bicrystal reaches a threshold value, 

coalescence will start in both phases. The second type of homogenisation can be carried out in the 

same way. 

B.5 Flow chart 
The formulation presented above is implemented in ABAQUS as a user material subroutine, UMAT 

[68]. Also, the stress state of the integration point for constant stress triaxiality is controlled using 

multi-point constraint user subroutine (MPC), with details given in [7]. A summary of the implemented 

model is given in Table B-1.  

Table B-1: Flow chart of model implementation  

1. Following quantities are given at the start of the time increment: 

𝒅𝑛+1, 𝒘𝑛+1, (dev𝝐𝑛
𝑒 , 𝜖𝑘𝑘,𝑛

𝑒 , 𝑹𝑛
𝑒 , 𝜅𝑠,𝑛

𝜒
), (ℂ𝑑0

𝑒 , 𝑯0
𝑒 ,𝑀0

𝑒), 𝑪0, 𝒁0
𝜒
= 𝒔0

𝜒
⊗𝒎0

𝜒
 

2. Following are estimated at the start of iteration: 
viscoplastic solution → dev𝝉𝑛+1, only for the first-time increment 
for later time increments → dev𝝉𝑛+1 =  dev𝝈𝑛 
for first time increment → 𝑝𝜏,𝑛+1 = M0

e∆𝑡𝑑𝑘𝑘,𝑛+1 
for later time increment→ 𝑝𝜏,𝑛+1 = 𝑝𝜏,𝑛 

forward Euler approx. → 𝜅𝑠,𝑛+1
𝜒

 

exponential map with Ω̃𝑛
𝑒 → 𝑹𝑛+1

𝑒  

3. Iterations are carried out in a two-level scheme for computations of (dev𝝉𝑛+1, 𝑝𝜏,𝑛+1,

𝑹𝑛+1
𝑒 , 𝜅𝑠,𝑛+1

𝜒
): 

a.  Computation of 𝑪𝑛+1, ∆𝑹𝑛+1
𝑒 : 

𝑪𝑛+1 = 𝑹𝑛+1
𝑒 𝑪0, ∆𝑹𝑛+1

𝑒 = 𝑹𝑛+1
𝑒 𝑹𝑛

𝑒  

b. Rotation of (ℂ𝑑0
𝑒 , 𝑯0

𝑒 , 𝒁0
𝜒
) to (ℂ̃𝑑,𝑛+1

𝑒 , 𝑯̃𝑛+1
𝑒 , 𝒁̃𝑛+1

𝜒
): 

ℂ̃𝑑,𝑛+1
𝑒 = (𝑪𝑛+1⊗𝑪𝑛+1): ℂ𝑑0

𝑒 : (𝑪𝑛+1⊗𝑪𝑛+1)
𝑇 

𝑯̃𝑛+1
𝑒 = 𝑪𝑛+1𝑯0

𝑒𝑪𝑛+1
𝑇 , 𝒁̃𝑛+1

𝜒
= 𝑪𝑛+1𝒁0

𝜒
𝑪𝑛+1
𝑇  

c. Computation of deviatoric elastic strains dev𝝐𝑛+1
𝑒∗ , dev𝝐𝑛+1

𝑒 : 

dev𝝐𝑛+1
𝑒∗ = ∆𝑹𝑛+1

𝑒 dev𝝐𝑛
𝑒∆𝑹𝑛+1

𝑒𝑇 + ∆𝑡dev𝒅𝑛+1 

dev𝝐𝑛+1
𝑒 = ℂ̃𝑑,𝑛+1

𝑒−1 : (dev𝝉𝑛+1 − 𝑯̃𝑛+1
𝑒 𝜖𝑘𝑘,𝑛+1

𝑒 ) 

d. Computation of volumetric elastic strains 𝜖𝑘𝑘,𝑛+1
𝑒∗ , 𝜖𝑘𝑘,𝑛+1

𝑒 : 

𝜖𝑘𝑘,𝑛+1
𝑒∗ = 𝜖𝑘𝑘,𝑛

𝑒 + ∆𝑡 tr(𝒅𝑛+1) 

𝜖𝑘𝑘,𝑛+1
𝑒 = 𝑀0

𝑒−1(𝑝𝜏,𝑛+1 − 𝑯̃𝑛+1
𝑒 : dev𝝐𝑛+1

𝑒 ) 

e. 1st level – Computation for a new estimate of dev𝝉𝑛+1: 
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N-R method to solve equation → dev𝝉𝑛+1 
N-R method to solve the equation → 𝑝𝜏,𝑛+1 

f. 2nd level – Computation for a new estimate of 𝜅𝑠,𝑛+1
𝜒

 and 𝑹𝑛+1
𝑒 : 

N-R method to solve the equation → 𝜅𝑠,𝑛+1
𝜒

 

Exponential map, equation → 𝑹𝑛+1
𝑒  

g. Checking for convergence of the iterative scheme: 

Whether the difference in values of dev𝝉𝑛+1, 𝑝𝜏,𝑛+1 and 𝜅𝑠,𝑛+1
𝜒

 are within 

tolerance? 
NO, go back to step a. 
YES, continue 

4. Calculation of Cauchy stress 𝝈𝑛+1 using (B-22). 
EXIT 
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