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Abstract

Fractal dimension is a important feature of a chaotic attractors. Generally, the rigorous
value of Hausdorff dimension of a chaotic attractor is not easy to compute. In this work,
we consider a class of nonsmooth systems. Initially, we determine a set of parameter values
in which the systems have a chaotic attractor with an Sinai-Ruelle-Bowen measure. Then
we give a lower bound and an upper bound of the Hausdorff dimension of the attractor.
Our rigorous analysis shows that the two bounds are equal, and thus the exact formula of
the Hausdorff dimension of the attractor is obtained. Moreover, the relationship between
the Hausdorff dimension and the parameter values is discussed in terms of the derived
formula.
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1. Introduction

Edward Lorenz used the phrase “deterministic nonperiodic flow” to describe the first
example of what is now known as a strange or chaotic attractor [1]. A chaotic attractor is
often a fractal object, whose geometric structure is invariant under the time evolution of
the dynamics [2, 3]. Chaotic attractors exist widely in nature and in man-made systems.
The study of the properties of chaotic attractors is an important topic in the theory of
dynamical systems, though there are other types of invariant sets in dynamical systems
that are not attracting, such as strange saddles [4]. Chaotic attractors and invariant
sets embedded in the closure of unstable manifolds, while fractal basin boundaries [5] are
open invariant sets embedded in stable manifolds. Grebogi, Ott and Yorke [6] studied
the interaction of both sets in a phenomenon called crisis. It was shown in [7] that an
infinite number of unstable periodic orbits embedded in the support of invariant measures
provides the key for the understanding of the multifractal structure of chaotic attractors.
Benedicks and Carleson [8] proved that there is a set of positive Lebesgue measure in the
control parameters for which the Hénon map has a chaotic attractor. For the parameter
values considered in [8], Benedicks and Young [9] proved that the Hénon map has an
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Sinai-Ruelle-Bowen (SRB) measure. Wang and Young further extended the results in [9]
to a class of chaotic attractors with one direction of instability [10, 11]. Anishchenko et
al [12] studied the effect of noise on the relaxation to an invariant probability measure of
nonhyperbolic chaotic attractors.

Non-smoothness is an important feature for the complexity of dynamical systems, see
e.g. [13-17]. In the non-smooth case, even those dissipative piecewise linear systems can
have chaotic attractors. The Lozi map [18] and the geometric Lorenz map are classical
models of nonsmooth maps. Misiurewicz [19] proved that there exist chaotic attractors
with topological mixing for the Lozi map in some parameter regions, and that the attractor
is the closure of the unstable manifold of hyperbolic fixed point in the first quadrant.
Cao and Liu [20] and Baptista et al. [21] studied the structure of chaotic attractor
and its basin of attraction for the Lozi map. Rychlik [22], Collet and Levy [23], and
Young [24] proved that Lozi maps and Lozi-like maps have SRB measures. Pesin [25]
constructed a broader class of maps allowing for high dimensionality and unbounded
derivatives (including the geometric Lorenz map), and studied the topological and ergodic
properties of the chaotic attractors. The corresponding class of chaotic attractors (called
generalized hyperbolic attractors) contains the well known generalized Lozi attractors,
geometric Lorenz attractors, and Belykh attractors.

Chaotic attractors have often a complicated fractal structure [7]. One way to character-
ize this property is to determine their dimension. Box-counting dimension and Hausdorff
dimension are most often used in dynamical systems theory. The box-counting dimension
is easier to compute numerically, but the Hausdorff dimension is much harder though more
satisfying from a theoretical point of view, see e.g. [26-28]. Young [29] has established
a formula which relates the Hausdorff dimension to the measure entropy and Lyapunov
exponents for surface diffeomorphisms. Ishii [30] estimated the Hausdorff dimension of
the Lozi attractors.

The purpose of this work is to study the Hausdorff fractal dimension in the following
class of nonsmooth systems:
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The map f is different from the geometric Lorenz map, since the contracting fibers are
not parallel to its y-axis singularity sets; there is no global contracting foliation here. The
symbolic dynamics of the map f is studied in [31].

The remaining of this paper is organized as follows. In Section 2, we construct a
chaotic attractor of the map f. Then we determine a parameter region in which f admits
an SRB measure whose support set is contained in the closure of the unstable manifolds
of the hyperbolic fixed points. In Section 3, an upper bound of the Hausdorff dimension
of the chaotic attractor is estimated in terms of its box-counting dimension. Moreover, by
the SRB measure we determine a lower bound of its Hausdorff dimension. We find that
the lower bound and the upper bound are equal, and thus we obtain the exact formula of
the Hausdorff dimension of the attractor.



2. Chaotic attractors

In this Section, we shall show that our map has a chaotic attractor for a positive
Lebesgue measure set of parameters values.

2.1. Assumptions and notations

Since the map f is discontinuous in the y-axis, some definitions used here are slightly
different from the ones used for smooth systems. Let ) be a point whose orbits does not
intersect the y-axis, then we still call the sets W = { P|lim,, ;o dis(f"(Q), f"(P)) = 0}
and W§ = {P|lim, 1o dis(f7(Q), f"(P)) = 0} the stable and unstable manifold of
@, respectively, though they are broken lines.

We shall use various assumptions on the parameters a and b. For convenience we list
them below. See Figure 1.

Hl: a >0,0<b< 1;
H2: a > b+ 1;

H3: a? + 4b < 4;
H4: V2a+1b > 2.

0.8F

0.6

0.4

02F

2.5

Figure 1: Parameter region.

2.2. Existence of a attractor
When a, b satisfy H1 and H2, f has a hyperbolic fixed point X = (1+Lb, H}kb) in

the first quadrant and a hyperbolic fixed point Y = (ﬁf_b, : J:al_b) in the third quadrant.
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The eigenvalues of the Jacobian matrix of f are A\, =
half of the local unstable manifold of X intersects with z-axis for the first time at point
A, one half of the local unstable manifold of Y intersects with z-axis for the first time at
point B. We shall construct a “trapping region” by using these local unstable manifolds.
Let G denote the region Af(A)Bf(B), as shown in Figure 2, the y-axis divides G into
two sub-regions G := {(z,y) € G|z > 0} and G := {(x,y) € Glz < 0}.
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Figure 2: A trapping region of f.

Remark 2.1. There are various definitions of an attractor, see for instance [32]. A main
difference involved s that we require all points in the neighborhood to approach it. One
of those definitions is required to have a trapping region, i.e., a region which is mapped
with its closure into its interior. However, for a discontinuous map such a definition
of trapping region is too strict. We use the definition given by Milnor [33] which only
requires it to attract points in a set of positive Lebesque measure.

Lemma 2.1. If a,b satisfy HI-H3 then f(G) C G.

Proof. We consider the region G';. The image of the point C'is the point A. Since point C'
lies above point D, point f(D) lies to the left-hand side of point A. Since point f(B) is in
the right half-plane, point f2(B) shall lie in the upper half-plane. If a, b satisfy a®+4b < 4
(see appendix A) then point f%(B) lies to the right of the line Bf(A). Besides, we know
that f is a homeomorphism on both the left and right half-plane and that the segment
f2(B)f(D) does not intersect segment Af(A), therefore f?(B) lies below the segment
Af(A). Thus f%(B) belongs to the region G. As a consequence, G is mapped into G. By
the symmetry of the map f, G5 is also mapped into G. Therefore, we have f(G) C G. O

Let a,b be as in Lemma 2.1. Let
A=d( ) f(G)),
n=0

where cl(-) denotes the closure of a set. Since A contains the unstable manifolds of the
hyperbolic fixed points of f, these unstable manifolds being broken line segments, A is a
chaotic attractor. The basin of attraction of the map f is shown in Figure 3 in yellow
color.

2.3. SRB measure

Ergodic theory studies the evolution of long time behavior of typical orbits of dy-
namical systems based on invariant measures. Roughly speaking, an invariant measure
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Figure 3: The attractor of f for a = 1.5, b = 0.3, where the yellow region is the basin of attraction.

describes the relative frequency of certain parts of phase space being visited by typical
orbits. We are interested particularly in those invariant measures which are relevant to
physical observations. A class of physical measures, called SRB measures, plays an im-
portant role in the study of particular dissipative systems that exhibit chaotic behavior.
The SRB measures offer a mechanism for explaining how local instability on attractors
can produce coherent stochastic-like behavior for orbits starting from sets with positive
Lebesgue measures in the basin. (c.f.[35]).
We begin by recalling the definition of an SRB measure.

Definition 2.1. An f-invariant Borel probability measure p is called an SRB measure if

(1) f has no zero Lyapunov exponents p-a.e.;

(2) the conditional measures of j on local unstable manifolds are absolutely continuous
with respect to the Lebesque measures on these manifolds.

When a, b satisfy conditions H1 and H2, it is clear that f has a hyperbolic split at any
point p whose orbit does not intersect the y-axis since D f is a constant matrix. There is
an invariant splitting:

T,R*=E) & E;

of the tangent space such that for all n > 0
D" (p)vl| = [Aul"[lv]] Vv € E,

and
IDf™ (p)vll = (A" v]l - Vv € E;.

Thus, the unstable manifolds are broken line segments having the same slope.

Since the map f is a Lozi type map, the proof of the existence of an SRB measure is
standard, see e.g. [34]. We only need to determine a parameter region in which f has
such a measure. Except for the assumptions H1-H3, the following expanding condition
on the unstable manifold is required.



H1’: There exist positive integers N and K with |\,|¥ > K such that if v is a sufficiently
short segment of the unstable manifold, then fV(y) has < K smooth components.

The condition H4’ is imposed to ensure there are abundant local unstable manifolds.
If |A| = ‘”“7”2‘“417 > /2 (simplified to H4: v/2a + b > 2), then f satisfies the condition
H4 for K =2 and N = 2.

Let 79 be a smooth piece of the unstable manifold of the fixed point X, and let mq be
the arc-length measure of 7. Under the assumptions H1-H4, consider

1 n—1

Up = n]zzzofi(mo)a

where f7(mg)(U) = mo(f7(U)) for any measurable set U. Let v be a limit of v, in the
weak-star topology. It is clear that v is f-invariant. To construct an SRB measure of f, we
use the approach given in [34] to catch a positive fraction of v with absolutely continuous
conditional measures on local unstable manifolds. Thus, we obtain the following

Theorem 2.1. When a,b satisfy H1-H4, f has an SRB measure p whose supported set
15 contained in the chaotic attractor A.

Remark 2.2. An attractor having an SRB measure is usually called a generalized hyper-
bolic attractor (c.f. [25]).

3. Hausdorff dimension of the chaotic attractor

We recall first some definitions and results used in what follows. Let A be a set and
B, (z) be the ball of radius r centered at x € A. For d > 0 and € > 0, let

Hy(e, A) = inf r?.
AQUjBTj(xj),supjrj<£ ;

The Hausdorff dimension of the set A is defined as:
HD(A) = inf {d] lim Hy(z, A) = 0}

The box counting dimension of a set A is defined as follows. For a positive number r, let
Na(r) be the smallest number of boxes of width r needed to cover the set A. We call

the box-counting dimension of set A, see e.g. [2, 28]. For any bounded set A, we have
HD(A) <dc(A).

Now, we compute the box-counting dimension of the chaotic attractor A, which gives
an upper bound of the Hausdorff dimension of A. The following method has been used
by Tél [37] to estimate the box-counting dimension of the chaotic attractor of a similar
discontinuous piecewise linear map. Let ) and w be the area and width of the region G,
respectively. After n iterations of f, the area of the region f"(G) is Qb" , the width of each

b

band of f"(G) is wq", where ¢ = - Taking small squares of side ¢, ~ ¢", the region



f™(G) can be covered by such squares. Thus, we obtain the box-counting dimension of
the attractor:

do(A) = tim 2N In(a + v/a® + 4b) — In 2 N
C T pSoo In (1/5n) B ln(a + \/M) _ ln(2b) .

Before estimating the Hausdorff dimension of the chaotic attractor, we compute the
Lyapunov exponents of the map f.

Lemma 3.1. Denote by ) the support of the SRB measure p. For p-almost every point
p € Q, the Lyapunov exponents of the map f are

a-+Va?+4b
n#>0,

—a++vVa?+4b
n 5 > 0.

ATo=1

AT =1

Proof. For i -a.e. p € Q, there is an invariant splitting
2 _ pu s
T,R"=FE, & FE,

of the tangent space such that for all n > 0

n a+ a2 +4b\" "
D7l = () ol we s
and "
" a’?+4b—a s
D7l = (Y ol woe
Besides, we have
1Dl
AT(p) = lim —In——— 0#£veE"
oo o]
e L IDf ]
_ . "(p)v
A (p)=lim —In——— 0#veE,.
oo n, o]
This completes the proof of the lemma. O

Pesin [25] proved that a generalized hyperbolic attractor can be decomposed into a
number of countable ergodic components plus a component with zero measure in terms of
the SRB measure, and the restriction of the map f to each ergodic component is invariant.
Our estimate for the lower bound of the Hausdorff dimension of A is based on Pesin’s
entropy formula (c.f. [36]) and Young’s formula for the Hausdorff dimension given in [29].

Theorem 3.1. Suppose that a,b satisfy H1-H4. The Hausdorff dimension of the chaotic

attractor A s
1 va? +4b) —In2
DH(A) = 14+ otV £db) =2 2)
In(a + Va? + 4b) — In(2b)

Proof. By the properties of SRB measures, there exist measurable sets A, A, ... such that
(1) for each k, f(Ax) = Ay and p(Ag) > 0;




(2) p(Uphy) =1

(3) for each k, (f, pux) is ergodic, where pp = p|Ag.

Take any ergodic component Ay and normalize 1, to a probability measure pi;,. By Young’s
formula (see [24]), we have

DH () = (1) (57— 52 )

where h;, (f) is the measure entropy of f on Aj. By Pesin’s entropy formula, see e.g. [36],
hys (f) = AT

Thus, we obtain
A

Since Ay, is a subset of A, we have DH(A;) < DH(A). Using the conclusion in Lemma

3.1, we obtain

In(a + va*+ 4b) — In2 3)
In(a + a2 + 4b) — In(2b)
Combining (1) and (3) yields (2). O

DH(A) > 1+

By formula (2), we see that DH(A) is a strictly monotonically increasing function of
a for fixed b, and that DH(A) is a strictly monotonically increasing function of b for fixed
a. Moreover, DH(A) — 1 as b — 0. See Figure 4.
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Figure 4: Hausdorff dimension of the chaotic attractors of the map f: (a) as the parameter a varies, and
(b) as the parameter b varies.

4. Conclusions

Generally, the Hausdorff dimension of chaotic attractors is not easy to compute. In
this work we study the Hausdorff dimension of a chaotic attractor in a class of nonsmooth
systems. By deriving the box-counting dimension and SRB measure, the exact formula of
the Hausdorff dimension of the chaotic attractor is obtained. Using the derived formula,
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we discuss the relationship between the Hausdorff dimension of the chaotic attractor
and the parameter values of the system and find that the Hausdorff dimension of the
chaotic attractor depends on both the expansion rate of the unstable manifold and the
dissipation rate of the map. The results of this work may provide a paradigmatic example
for verifying the accuracy of the algorithm for calculating the fractal dimension of the
chaotic attractors.
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Appendix

The hyperbolic fixed point of the map f in the first quadrant is

1 1
X = .
<1+a—b’1+a—b)

The eigenvalue of the Jacobian matrix of the map f with largest modulus is

N = —a—+va?+4b

Thus, the equation of the line Af(A) is

_1( 1 )+ 1
Y=\ T 1 =y T1ixra—b

By the above equation and the symmetry of the map f, a direct computation yields

1— A,
A:<1+a—b’0>’
14+ar, —b 1—X,
l+a—10 ’1+a—b>’
1+al,—b 1— X,
l1+a-10 ’_1—i—a—b>’
—1—2a+2b+ab—a*\, — b\, 1+a)\, =D

l1+a-—1> ’ 1+a—b>'

) = (

(8 = (-

P = (
The equation of the line Af(B) is
11— 1=
= - . 4
Y 2—b+(a—1))\u<x 1+a—b> )

Let § = (f*(A)), = H22=30, where (f?(A)), is the ordinate of the point f?(A), we
then obtain

T =

1+a)\u—b<2—b+(a—1)>‘U> el (5)

14+a—-05 1— M\, l4a—-0b



The condition that the point f2(A) lies to the left of line Af(B) is & — (f*(4)), > 0, i.e,

1+a)\u—b<2—b+(a—1))\u> 1— A, —1—2a+2b+ab—a2)\u—b)\u>0’(6)

l+a—0b 1— )\, l+a—b l+a—0b

where (f2(A)),, denotes the abscissa of the point f?(A). Since 14+a—b > 0, the inequality
(6) can be simplified as

(a—14+b)N + (—a®>+ (=1 +b)a+4—4b) N\, + (—2+b)a — 4+ 5b — b?
—14+ A

>0.  (7)

Since —1 + A\, < 0, the inequality (7) is simplified as
(a—1+4b)A2+ (—a®+ (—1+ba+4—4b) Ay + (—2+b)a—4+5b—b*<0. (8)

Due to A, = —(afva+id) “2“2+46), we have

(a® =24 2b) Va® + 4b + a® + (=4 + 4b)a — 4+ 4b < 0. (9)
Set va? + 4b = u. Then we obtain
1
5(—2—|—u)(a+u+2)2 <0, (10)

which is equivalent to —2 4+ u < 0, i.e., =2 + v/a? + 4b < 0. Therefore, we have

a® +4b < 4.
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