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Abstract—Semantic segmentation is a significant technique 

that can provide valuable insights into the context of driving 

scenes. This work discusses several mechanisms: data 

augmentation, transfer learning, transposed convolutions and 

focal loss function for improving the performance of neural 

networks for image segmentation. Experiments on two 

traditional model architectures – U-net and MobileUNetV2 – 

are conducted and the results are evaluated in terms of – 

Intersection-over-Union (IoU) and F-score. The KITTI Road 

dataset is utilised for training and testing the algorithms on 

road segmentation. More specifically, data augmentation and 

the task-specific focal loss provide the highest improvement 

of 6.68% and 5.23%, respectively. To further enhance 

segmentation performance, an ensemble scheme is adopted 

where several models are executed simultaneously and their 

outputs are fused together to derive the final prediction. Such 

a design can reduce incorrect predictions of individual 

models and produce more precise segmentation masks. 

Keywords-semantic segmentation; focal loss; transfer 

learning; ensemble scheme; data augmentation 

 INTRODUCTION 

In recent years, autonomous vehicles (AV) have 
attracted intensive attention both from academia and 
industry. For AV, it is an essential task to understand the 
surrounding environment. Semantic segmentation (SS) 
plays an important role in road detection. It generates a 
segmentation map for a given image where each pixel is 
assigned a label corresponding to a class. The created 
segmentation masks contain information about the region 
occupied by each object in the image. The pixel-wise 
classification problem involves correctly recognising an 
object in an image and precisely identifying its boundaries 
in the corresponding segmentation mask. Therefore, it is 
essential that for each pixel in the image the model can 
retain both the categorical information that defines it and its 
exact spatial coordinates. In real-world scenarios, the image 
data is affected by different conditions like variable 
weather, accidental camera rotation, etc. This requires the 
classifier of the model to be robust to image 
transformations and generate correct spatial predictions 
even in the presence of distorting factors and noise [1].  

Due to the great success of deep neural networks (DNN) 
for feature extraction, many models have achieved state-of-
the-art performance as mentioned in [2]–[4]. In this work, 
the U-net model is used due to its compelling performance 
on semantic segmentation tasks. U-net is based on an 
encoder-decoder architecture, which consists of two paths: 
a) contracting path and b) expansive path. The former 

gradually reduces the size of the input image while 
extracting different levels of contextual feature 
representations and hence the data at the deepest layer of 
the encoder has a very low resolution and contains the 
richest features. The latter is responsible for expanding the 
small image back to its original size by upsampling which 
positions the extracted features on the generated output 
mask. This “resizing” method, however, can result in 
inaccurate predictions due to the loss of fine-grained spatial 
information during the downsampling stage. To tackle this 
problem, U-net utilises skip connections that merge 
intermediate products of contracting layers with outputs of 
corresponding expansive layers. Such a design allows high-
resolution local features to be matched with low-resolution 
global ones.  

This paper explores the superiority of focal loss, 
transfer learning, transposed convolution and ensemble 
scheme and then combines their advantages to improve the 
performance of semantic segmentation for road detection in 
terms of per-pixel accuracy and prediction quality. An 
ablation study is also conducted to identify the effect of the 
various modifications. The key contributions of this work 
are summarised as follows. First, Focal loss is adopted to 
optimise the network rather the using only the conventional 
cross-entropy. In addition, data augmentation is employed 
to avoid the problem of overfitting. Second, the 
generalisation ability of the segmentation model is 
amplified by using transfer learning and finetuning. Third, 
the original interpolation operation is replaced with a 
transposed convolution along with experimental 
evaluation. Fourth, an ensemble scheme is introduced to 
combine diverse models. The final predictions are 
determined by all ensemble models. 

 RELATED WORK 

A. Fully Convolutional Network (FCN) 

The rising interest in semantic segmentation and the 
significant breakthroughs in deep learning have led to the 
development of various solutions in the field. One of the 
most successful inventions is the fully convolutional 
network (FCN). It has been proposed in [2] and since then 
has been utilised in adapting many state-of-the-art 
classification models (e.g., AlexNet, ResNet, VGG) to the 
task of image segmentation. This conversion is performed 
in two steps: (1) all fully connected dense layers of the 
origin networks are discarded and new convolutional ones 
are added in their place, (2) the final layer (the classifier) is 
replaced by a 1 ✕ 1 convolution with channel dimension 
equal to the number of possible classes for each pixel. In 
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this way, the receptive field of the model is expanded and 
rather than outputting a class prediction for the whole 
image, the network returns a pixel-wise classification map.  

U-net [3] builds upon the findings of the FCN. It is 
characterised by its U-like shape where the contracting 
(downsampling) path is symmetrical to the expansive 
(upsampling) path. Moreover, it improves the FCN model 
by extending the capabilities of the decoder (the resizing 
component) and by refining the quality of the products of 
skip connections. Also, the researchers, driven by the 
detrimental effects of the “small dataset problem” on 
learning outcomes, apply data augmentation and observe 
significant gains in terms of both accuracy and 
generalisation ability. Other studies [5], [6] also discover a 
strong correlation between the number of training samples 
and the performance of the resulting neural networks.  

B. Transfer Learning 

Transfer learning is a tool that addresses the imbalance 

in data availability between different domains in machine 

learning and encourages the principle of reusability.  

Since there exist many state-of-the-art networks for 

image segmentation, this creates the opportunity to 

“transfer” top-level knowledge representations from 

already trained models to new problem solvers in a 

different but closely related domain. As a result, this 

approach decreases the training time of the (knowledge) 

receiver networks substantially and reduces the required 

number of labelled samples from the new domain [7]. 

Furthermore, this facilitates the efficient and quick capture 

of complex relationships present in the examples from the 

unseen problem space by the new models [8]. This is 

possible since the bottom layers in every model contain 

low- and mid-level feature representations (in image 

processing these include edges, simple shapes, line 

junctions, object components) which are generally 

applicable to all entities in the problem space. 

In the architectures of deep neural networks, each layer 

constructs its representation based on that of its preceding 

layer. Therefore, in transfer learning, the low-level feature 

extractors of the (knowledge) sharer network can be 

“frozen”. That is, their weights are not updated during 

future training and only the top (deepest) ones are 

randomly reinitialized and retrained. In [8], the authors 

demonstrate that even for the most distant problems, 

initialising a network with transferred features is still 

superior to employing random weight values. 

C. Transposed Convolutions 

A transposed convolution is an operation that takes the 

output of some convolutional layer and increases its spatial 

dimensions by a specified stride factor. It performs 

upsampling on feature maps by utilising trainable 

parameters. The forward pass of a standard convolutional 

layer is the backward pass of a transposed convolutional 

layer and vice versa. 

     This technique has been utilised for the task of semantic 

segmentation in many studies [2], [9]. Despite the success 

of transposed convolutions, other studies argue that they 

have poor performance due to the presence of 

checkerboard artefacts in their outputs. In [10], the authors 

confirm these limitations and propose a simple and yet 

effective alternative that mitigates this issue, where an 

interpolation operation (bilinear or nearest-neighbour) is 

followed by a convolution. However, they also both 

recognise that their propositions might introduce other 

limitations. The contradictory reports on the performance 

of this tool imply this question remains open for discussion 

and further research is required to fully address it. 

D. Ensemble Scheme 

Ensemble learning is to combine the predictions of 

multiple models for improving accuracy and robustness 

[11]. Each ensemble is a distinct entity - either a different 

model architecture or a network trained with different data. 

Since the captured feature representations vary between 

deep learning models due to many factors (e.g., random 

initialisation of kernel weights), a combination of 

predictions ensures to filter most individual random errors 

(misclassifications) [12]. Consequently, the adaptive 

performance of models and the accuracy of the produced 

predictions improves. As clarified in [13], an ensemble of 

networks has a statistical, computational and 

representational dominance over any single model.  

Although this mechanism promotes great performance, 

it is not widely utilised in image segmentation applications 

because of its computational complexity. A few studies in 

medical research employ this method for the segmentation 

of brain images and detection of lesions [11], [12]. All 

studies report increased robustness of the networks (e.g., 

to noisy or low-quality data) and a better (in most cases) 

performance than state-of-the-art solutions. 

 PROPOSED METHOD 

A. Network Architecture 

In recent years, most of the state-of-the-art 

performance for semantic segmentation tasks is achieved 

by deep neural networks (DNN). Therefore, this paper also 

focuses on enhancing semantic segmentation performance 

by utilising DNN. In this paper, U-net and MobileUNetV2 

are used to detect the road segments in images as baseline 

models. The encoder of the U-net is a standard feature 

extractor – each level consists of convolutions activated by 

the rectified linear unit (ReLU) function followed by a 

max-pooling operation. For the decoder component, each 

block is constructed using the resize-convolution method 

(nearest-neighbour interpolation followed by a 

convolution) like in [3] and as proposed in [14]. The 

modified U-net relies on a pretrained MobileNetV2 [4] for 

its encoder while its upsampling part comprises transposed 

convolutions. Skip connections between symmetric 

encoder-decoder blocks are also implemented in both 

models. The total number of parameters of each network 

are 31 million (U-net) and 6.5 million (MobileNetV2).  

B. Implementation Details 

The main objective of this work is to train several 

models on a given dataset and test their prediction 

performance on a different one from a close domain. This 

means that the road scene features present in the two sets 

must be different. For example, in the KITTI road 



benchmark (discussed in Section IV.A), the three 

categories exactly match the above description – same 

image-capturing setup, different road scene classes. For all 

experiments (unless explicitly stated), category II - marked 

urban road images (um: � = 95) is defined as the training 

set while category III - multi-lane suburban and urban 

images (umm: � = 96) is used for evaluation. This tests 

the ability of the models to generalise from single-lane 

roadways to multi-lane motorways.  

To achieve a comprehensive comparison, the baseline 

model is implemented and trained which provides the 

benchmark of semantic segmentation performance. This 

allows for a clear measurement of the improvement 

achieved by creating new modified versions of each 

segmentation network. To positively impact the prediction 

accuracy and generalization ability of these models, 

several different sets of modifications are defined. From 

this section, the word configuration specifies the set of 

hyperparameters, modifications and training procedures 

applied to a base network. All algorithms are implemented 

under the TensorFlow framework. The training process of 

all models is optimized using Adam with a learning rate of 

0.0001 for U-net and 0.001 for MobileUNetV2.  

1) Data Augmentation  

The operations of data enhancement include horizontal 

flip, random rotation and random zoom (crop).  The 

techniques are selected specifically based on the findings 

presented in [15].The occurrence probability of all is set to 

1 which ensures that for each original sample in the 

training data, a new augmented version is generated, thus 

doubling the dataset size. It is essential to preserve the 

consistency between the training samples and their 

corresponding targets. Therefore, the exact same 

transformations are applied simultaneously to the input 

image and its annotated segmentation mask. The 

predictions, from the models of “U-NET AUG” and 

“MobileNetV2 AUG”, are generated and evaluated. Table 

II provides brief definitions of all derived variants.  

2) Network Optimisation 

After analysing the performance of all models from the 

previous task, “U-NET AUG” is the one with the highest-

quality predictions. It is trained with two loss functions – 

a standard Binary Cross-Entropy loss and a Binary Focal 

loss. The loss function is responsible for computing the 

error of the model according to the training data and hence 

guiding its whole learning process.  

The focal loss is proposed in [16] as a solution to an 

object detection problem associated with dense neural 

networks. The focal loss is a variation of the cross-entropy 

loss function that introduces a focusing parameter γ which 

reduces the contribution to the loss from easy examples. 

Consequently, the misclassified hard examples are 

penalized more severely and the model's focus is diverted 

to them, while the reward for guessing the easy ones 

correctly is reduced. The value of the focusing parameter 

determines the strength of its effect with 0 being equivalent 

to standard cross-entropy. In this paper, models are trained 

with three values of γ - 0.5, 1 and 2. 

3) Domain adaptation with Transfer Learning 

In this experiment, the knowledge captured by the base 

network from the um road class is transferred to a new 

model. Subsequently, the weights of some layers (different 

set sizes are investigated) are frozen (prevented from 

updating) and only the remaining are trained on 10% of 

the umm data. To achieve a more comprehensive 

comparison, configurations are defined as follows. 

TABLE I.  TRAINING CONFIGURATIONS (A LIST OF 

CONFIGURATIONS FOR APPLYING TRANSFER LEARNING TO AN 

AUGMENTED MODEL FROM EXPERIMENT 2 (SECTION III.B.2).  

Configuration 

List 

Frozen 

layers 

Epochs Validation 

split % 

Focal 

Loss γ 

Version 1 (v1) 1 to 9 30 20 0.5 

Version 2 (v2) 1 to 7 30 20 0.5 

Version 3 (v3) 1 to 5 30 20 0.5 

The training samples, drawn from the new domain 

(umm), are different for each model due to the 

randomisation applied to the partial sampling algorithm. 

Since the training and evaluation data are from the same 

distribution, it is essential to ensure that the model is 

evaluated only on never-before-seen images. 

All models (from Table I) are trained for 30 epochs (or 

less if early stopping is engaged) with a focusing parameter 

of 0.5 and a training-validation split of 30%, however, the 

frozen layers vary. The reasons behind these decisions are 

presented in the description list below. 

Validation Split: The most popular train-validation 

split ratios are 80:20 and 70:30. However, this depends a 

lot on the size of the whole dataset. [17] investigates the 

effect of the split size on the correct classification rate of 

models and observes that it is very sensitive to the size of 

the partitions. Therefore, considering the samples in the 

KITTI dataset, it is reasonable to define a larger validation 

set size (30% of the total volume). 

Frozen Set Size: The number of frozen layers is a factor 

that is found to influence the results of transfer learning in 

[18]. The scientists also investigate how different frozen 

set sizes affect the generalisation capabilities of the new 

model and observe a favourable increase in performance 

parameters when the weights of the bottom 3 transferred 

layers are not randomly reinitialised. However, expanding 

the frozen set further introduces a significant decrease in 

accuracy. It is acknowledged that the optimal number of 

frozen layers depends on the similarity between problems 

and the quantity of training data from the new domain. 

Three models are created during this set of experiments 

(one for each configuration) – “U-NET TF [v1-v3]”. 

4) Learnable Upsampling 

The upsampling blocks of “U-NET AUG” are replaced 

with transposed convolutions. The current interpolation 

operation is predefined (there are no learnable weights in 

the upsampling layers) and therefore the substitution is 

expected to result in better spatial positioning of predicted 

features which in turn will improve the quality of the 

segmentation masks. Additionally, the effect of two 

different values for γ (0.5, 1) on the pixel-wise accuracy of 

transposed decoders is also investigated. 



 Furthermore, transfer learning and finetuning are also 

applied to the above two networks. The benefits of 

unfreezing all layers of a receiver model and initiating a 

second training cycle with a decreased learning rate (by a 

factor of 10) on the predictive precision are investigated. 

Finetuning is expected to perform tiny adjustments to the 

weights of the already trained model which ensures that 

most redundant features, existing due to noise, for 

example, are pruned. 

5) Ensemble Scheme 

An ensemble is formed by grouping several diverse 

models together. “U-NET TF v2” and “v3” and “U-NET 

Transposed FINETUNED”, which are defined in Table II, 

are selected due to their outperformance on pixel-level 

classification. The finetuned U-net has a higher TP- and 

lower FN-rate (more road pixels predicted correctly and 

less misclassified background pixels) than the other two. 

On the other hand, both v2 and v3 are found to distinguish 

non-road pixels more precisely (higher mean TN) and to 

over-estimate the road class less severely (fewer FP 

predictions) with around 6000 pixels less on average 

(39.62%). Therefore, an ensemble of these models is 

expected to combine their strengths and produce more 

accurate segmentation maps. 

 For this experiment, a majority voting ensemble scheme 

is employed. The final prediction of the three models is 

derived from their individual segmentation masks. Each 

pixel in the predicted masks is encoded by a single value 

(0 for background or 1 for road class) which allows hard 

voting to be utilised. In hard voting, the final prediction for 

a pixel is determined by the class identifier that receives 

more than half of the votes. For instance, if pixel p with 

coordinates (x, y) is classified as follows [0], [1], [0] by the 

three models, the class assigned to the pixel at (x, y) in the 

final output would be 0 (2 > 1 votes). This is implemented 

by taking the sum of all class predictions for p(x,y) and 

dividing it by the number of total networks in the 

ensemble. The above result is calculated as follows: 

���,�) =
∑ ����,��)

�
���

�
= 0.33, 

where N is the total number of models and i is the index of 

a certain model. For binary problems, usually, if the 

quotient is less than 0.5, p is encoded with a 0 (background 

class), while if p(x,y) � the threshold (0.5), it receives a 1.  

TABLE II.  TABLE OF ALL TRAINED MODELS’ NAMES AND THEIR 

DEFINITIONS. COMMAS IN THE MODEL NAMES SEPARATE INSTANCES OF 

THE SAME MODEL WITH VARIATIONS IN CONFIGURATION PARAMETERS. 

Model Name Description 

Base models 

 U-NET simple 

 MobileNetV2 simple 

Base models with no modifications 

applied are marked with ‘simple’. 

They are trained with BCE loss on the 

original version of the KITTI dataset. 

Augmented versions 

 U-NET AUG 

 MobileNetV2 AUG 

‘AUG’ specifies that the models are 

trained on the augmented version of 

the KITTI road dataset. 

Focal Loss 

 U-NET BCE 

 U-NET AUG 

‘BCE’ stands for Binary Cross-

Entropy loss while the other model is 

the augmented U-NET trained with 

Binary Focal loss. 

Transfer Learning 

 U-NET TF v1, v2, v3 

‘TF’ indicates Transfer Learning, 

while ‘v’ specifies the used training 

configuration  

Transposed Convolutions 

 U-NET Transposed G-0.5, G-1 

 U-NET Transposed TF, 

FINETUNED 

Models where transposed convolution 

is used in the decoder have, 

‘Transposed’ in their names. ‘G’ 

shows the value of the focusing 

parameter (gamma) used for the loss 

function. 

 EXPERIMENTAL EVALUATION  

A. Dataset 

All the models presented in this document are trained 

and tested on images from the KITTI dataset [19]. It is 

developed as a vision benchmarking suite for various 

autonomous tasks associated with AV. The images used in 

this research are from the road detection data class. This 

benchmark contains 289 training samples divided into 

three categories - urban scenes with no lane markings (uu), 

marked urban road images (um) and multi-lane suburban 

and urban images (umm). A segmentation mask has been 

provided for each of these samples. Three distinct classes 

can be assigned to a pixel in the original labels - the current 

roadway, the opposing roadway and the non-road 

background. However, for the purposes of this study, a 

distinction only between the current roadway and the 

background is sought. Therefore, all opposing road pixels 

in the segmentation masks are marked as non-road. This 

reduces the problem to a binary segmentation task. 

B. Performance Metrics 

      The following metrics are adopted for measuring the 

performance of the models – Precision, Recall, Pixel 

Accuracy and F1-measure (harmonic mean of recall and 

precision). They are widely employed for the evaluation of 

pixel-based tasks. The developers of the KITTI road 

benchmark also incorporate these criteria into their model 

comparison framework [19]. Another metric, namely 

intersection over union (IoU) or Jaccard index, is also a 

very accurate performance measure for segmentation tasks 

which represents the overlap between predictions and 

ground truths in percentages. It is adopted in [2] as a 

standard for evaluating the predictive ability of FCNs. 

     Both the IoU and the F1 measures can be calculated 

based on the Recall and Precision metrics, which can be 

expressed using the numbers of true positives (TP), true 

negatives (TN), false positives (FP) and false negatives 

(FN). These values are retrieved by overlaying each 

prediction on the top of their corresponding ground truths 

and counting the matched (TP, TN) and misclassified (FP, 

FN) pixels. The precision metric indicates how pure a 

prediction is while recall describes how well the model 

distinguishes between the different classes in the image. 

The values of all metrics are calculated by averaging the 

total score for all images in the testing set. 

C. Comparative Studies      

Table III illustrates the performance achieved by all 

modified networks. Furthermore, Fig. 1 graphically 

presents the results by ranking them based on IoU scores 

and the F1 measures. The most distinguishable difference 

is observed in terms of IoU scores.  



TABLE III.  COMPARISON OF THE DIFFERENT MODELS 

 

From the results, it can be deduced that transfer 

learning provides one of the easiest and most effective 

ways of improving models’ performance as it does not 

require high volumes of data or sufficient training time. An 

increase in performance of 4.71% is observed when the 

tool is applied on “U-NET AUG”. Additionally, the 

transposed versions of U-net also follow that trend with 

1.37% improvement when transfer learning is utilised. 

Furthermore, it is noticeable that the Precision metric is 

positively influenced in all models trained using this 

approach, while, on the other hand, a decrease in Recall 

values is present in these networks. This means that the 

FN-rate reduces and FP-rate increases where the models 

are overpredicting the road class and under-segmenting the 

background (non-road) class. The “U-NET TF v3” model 

performs the best with regards to F1 score, IoU and pixel 

accuracy. 

     Next, it appears that binary focal loss dominates the 

traditional binary cross-entropy. The performance gained 

from replacing the standard loss function with a task-

specific one is 5.28%. In both “U-NET AUG” and “U-

NET Transposed”, γ = 1 provides the most promising 

results.  

     Another successful experiment shows the tremendous 

advantage of applying data augmentation when data 

availability is an existing limitation. Training both U-net 

and MobileUNetV2 on an artificially extended dataset 

(with less than 100 added images) increases the percentage 

of overlap between predictions and targets by 6.69% on 

average - 10.5% (MobileUNetV2) and 2.88% (U-net). 

 
Figure 1.  A scatter plot of all neural networks and their mean scores (F1 

measure on the horizontal axis and IoU on the vertical axis). The best 
performing models are positioned at the top-right corner of the image. 

     When transposed convolutions are utilised in the 

expansive path of U-net instead of nearest-neighbour 

interpolation, very little or no improvement is observed. 

The reason for this might be the growth in trainable 

parameters (more than 4 million added weights) caused by 

the addition of more convolutions (learnable kernels) to 

the network. In that case, more iterations over the data 

(epochs of training) can allow the models sufficient time 

to learn and potentially mitigate this issue.  

      By employing the ensemble scheme an additional 

1.5% increase in F1-measure and IoU is achieved. 

Moreover, the results in Table IV show a significant 

decrease (12.40%) in false negatives and an optimistic step 

towards reducing false positives (a 3.06% improvement). 

The other two metrics TP and TN are not affected by the 

ensemble approach. Additional tests can be performed 

with soft voting, where the confidence scores of pixels are 

summed instead of their class labels. 

TABLE IV.  THE IMPROVEMENT OF USING ENSEMBLE SCHEME 

 

      Finally, the inference time of all neural networks is 

compared. The milliseconds (ms) taken by each model to 

generate a prediction are recorded on 2000 prediction 

attempts and then averaged. MobileNetV2 achieves the 

highest score with a mean inference time of around 60ms 

(16.6 frames per second). All variations of U-net have a 

very similar performance of around 70ms (14.3 frames per 

second). Fig. 2 illustrates the mean inference times of all 

modifications sorted from fastest to slowest. Compared to 

the top three vision-based state-of-the-art solutions 

submitted to the KITTI Road benchmark for the umm 

class – SNE-RoadSeg+ (40ms), FDS-DeepLabV3+ 

(60ms) and ZongNet (100ms), both U-net and 

MobileUNetV2 perform very well. The ensemble of 

models can process 4.3 frames per second. Reducing this 

requires an optimisation of the vote-counting algorithm. 

Model fusion is also another solution. 

 
Figure 2.  The figure of the mean inference time in milliseconds (ms) for 

all models for a single image (each score is averaged from 2000 attempts). 

The vertical bars at each point represent the standard deviation in 
runtimes between the different samples or prediction instances. 

 CONCLUSION AND FUTURE WORK 

         This paper improves the semantic segmentation 

performance of convolutional neural networks for road 

detection by introducing an ensemble scheme along with 

transfer learning and transposed convolutions. Two 

models, U-net and MobileNetV2-based U-net, are 

modified and evaluated over a range of performance 

metrics. The dataset utilised in training and testing is 

Model Names F1 Precision Recall PA IoU

MobileNet AUG 0.588 0.822 0.923 0.981 0.768

MobileNet simple 0.565 0.728 0.938 0.975 0.695

U-NET BCE 0.591 0.835 0.929 0.982 0.783

U-NET Transposed G-0.5 0.600 0.879 0.920 0.984 0.816

U-NET Transposed G-1 0.601 0.906 0.908 0.985 0.832

U-NET AUG 0.603 0.892 0.918 0.985 0.824

U-NET Transposed FINETUNED 0.595 0.982 0.857 0.985 0.844

U-NET TF v1 0.592 0.965 0.858 0.984 0.832

U-NET TF v2 0.592 0.924 0.894 0.985 0.834

U-NET TF v3 0.609 0.957 0.900 0.988 0.865

U-NET Transposed TF 0.596 0.967 0.865 0.985 0.841

U-NET simple 0.570 0.865 0.859 0.978 0.761

Model Names TP TN FP FN

U-NET Ensemble 2 104183 344942 11289 4493

U-NET TF v3 103646 344511 11645 5129

Percentage of change 0.52% 0.13% -3.06% -12.40%



provided by the KITTI benchmarking suite. All conducted 

experiments, especially those that involve transfer learning 

and data augmentation, indicate great improvements in 

terms of IoU scores. More precisely, the data augmentation 

introduces a 6.69% increase in Intersection-over-Union 

while domain adaptation (transfer learning) achieves 

4.71% improvement for the same metric. This 

demonstrates that synthetically generating training 

samples by augmenting existing ones can alleviate the 

problem of overfitting. Transfer learning also tackles the 

issue with low data availability and at the same time 

reduces the training time sufficiently by reusing low- and 

mid-level features of existing models. Moreover, the 

focusing parameter of the focal loss improves 

segmentation accuracy, especially when class imbalance is 

present in the data. The proposed method has similar 

inference times to state-of-the-art methods. The main 

contribution of this work is the proposed ensemble 

scheme, where the segmentation maps of several versions 

of a certain model derived utilising different combinations 

of modifications are fused to reduce pixel-level errors. The 

ensemble method achieves a decrease of 12.40% in false 

negatives and 3.06% in false positives. Therefore, it can be 

deduced that combining multiple segmentation models 

utilises their individual strengths and reduces the impact of 

their limitations on the accuracy of the predicted masks. In 

the future, a more advanced network for road segmentation 

will be adopted. Moreover, a more comprehensive study 

of hyperparameters will also be conducted. To emphasise 

the advantages of the proposed integration-ensemble 

scheme in real scenarios, experiments on larger datasets 

will be required. 
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