
Journal of Physics: Complexity

PAPER • OPEN ACCESS

Emergence of transient chaos and intermittency in machine learning
To cite this article: Ling-Wei Kong et al 2021 J. Phys. Complex. 2 035014

View the article online for updates and enhancements.

This content was downloaded from IP address 92.21.230.28 on 05/07/2021 at 13:02

https://doi.org/10.1088/2632-072X/ac0b00

J.Phys.Complex. 2 (2021) 035014 (16pp) https://doi.org/10.1088/2632-072X/ac0b00

OPEN ACCESS

RECEIVED

4 February 2021

REVISED

8 June 2021

ACCEPTED FOR PUBLICATION

14 June 2021

PUBLISHED

2 July 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Emergence of transient chaos and intermittency in machine
learning

Ling-Wei Kong1 , Huawei Fan2 , Celso Grebogi3 and Ying-Cheng Lai1,4,∗

1 School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, United States of America
2 School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, People’s Republic of China
3 Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE, United

Kingdom
4 Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: Ying-Cheng.Lai@asu.edu

Keywords: transient chaos, machine learning, reservoir computing, intermittency, scaling law

Abstract
An emerging paradigm for predicting the state evolution of chaotic systems is machine learning
with reservoir computing, the core of which is a dynamical network of artificial neurons. Through
training with measured time series, a reservoir machine can be harnessed to replicate the evolution
of the target chaotic system for some amount of time, typically about half dozen Lyapunov times.
Recently, we developed a reservoir computing framework with an additional parameter channel for
predicting system collapse and chaotic transients associated with crisis. It was found that the crisis
point after which transient chaos emerges can be accurately predicted. The idea of adding a
parameter channel to reservoir computing has also been used by others to predict bifurcation
points and distinct asymptotic behaviors. In this paper, we address three issues associated with
machine-generated transient chaos. First, we report the results from a detailed study of the
statistical behaviors of transient chaos generated by our parameter-aware reservoir computing
machine. When multiple time series from a small number of distinct values of the bifurcation
parameter, all in the regime of attracting chaos, are deployed to train the reservoir machine, it can
generate the correct dynamical behavior in the regime of transient chaos of the target system in the
sense that the basic statistical features of the machine generated transient chaos agree with those of
the real system. Second, we demonstrate that our machine learning framework can reproduce
intermittency of the target system. Third, we consider a system for which the known methods of
sparse optimization fail to predict crisis and demonstrate that our reservoir computing scheme can
solve this problem. These findings have potential applications in anticipating system collapse as
induced by, e.g., a parameter drift that places the system in a transient regime.

1. Introduction

Recent years have witnessed a growing interest in exploiting machine learning for model-free prediction of the
state evolution of chaotic dynamical systems [1–18], with a focus on reservoir computing (a type of recurrent
neural networks (RNNs)) [19–22]. The core of a reservoir computing machine is a nonlinear dynamical net-
work of artificial neurons, typically of complex topology. With proper training based on time series data from
the target chaotic system of interest, the network becomes a self-evolving dynamical system that supposedly
represents a replica of the target system to some reasonable accuracy. From the same initial condition, temporal
synchronization can be achieved between the reservoir machine and the target system [16], enabling predic-
tion for a finite duration of time. In most existing studies, the attention has been to the parameter regime of
the target system, where there is a chaotic attractor, so training is done using time series data from the attractor
with the goal to predict the state evolution as determined by this underlying attractor. Because of these fea-

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-072X/ac0b00
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8921-1642
https://orcid.org/0000-0001-7703-0185
https://orcid.org/0000-0002-9811-4617
https://orcid.org/0000-0002-0723-733X
mailto:Ying-Cheng.Lai@asu.edu

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

tures, the corresponding reservoir computing machine itself is trained into a dynamical system that generates
a chaotic attractor.

In this paper, we build on our recent work [23] to address the issue of machine-generated transient chaos.
In principle, if the machine is trained with an ensemble of transient chaotic time series, it should be able to
generate transient chaos insofar as the amount of training data is sufficient. However, in nonlinear dynam-
ical systems, the occurrence of transient chaos implies the inevitable collapse of the system to an undesired
state. We thus assume that transient chaotic time series are not available and the available training data are
collected while the system is in a parameter regime of chaotic attractors. Our recent work [23] has demon-
strated that it is possible to train the neural machine with attracting chaotic time series to predict the critical
transition from sustained to transient chaos. There is also initial evidence that a properly trained reservoir
computing machine is able to generate transient chaos. The present paper has three main points that go beyond
our recent work [23]. First, we carry out a more systematic analysis of the statistical behaviors of the machine-
generated transient chaos, using different model chaotic systems than those in reference [23], thereby widening
the scope of the finding that a reservoir computing machine can be trained to faithfully generate transient chaos
that agrees statistically with the ground truth. Second, we demonstrate that a properly trained machine can
generate intermittency. (To the best of our knowledge, there were no previous works on predicting intermit-
tency with reservoir computing.) Third, we focus on a paradigmatic chaotic system for which the existing
sparse optimization methods fail to predict crisis and transient chaos, and demonstrate that our parameter-
cognizant machine learning approach can solve this problem. This result was not reported in reference [23]. It
should be emphasized that, for the neural machine to generate statistically meaningful transient chaos, train-
ing should be done with attracting chaotic time series because normal functioning of the system is often
associated with a chaotic attractor, while transient chaos leads to system collapse. In such a situation, it is
feasible to collect the time series only when the system still functions normally, for if the system is in a tran-
sient chaotic regime, it will collapse after a finite duration of time, rendering infeasible to obtain sufficient
amount of training data.

The main idea behind predicting crisis [23] and training a reservoir computing machine to generate the
correct transient chaotic dynamics is the following. Let p be the bifurcation parameter of the target chaotic
system, with pc being the critical point, where the system exhibits a chaotic attractor for p < pc and transient
chaos for p > pc. We train the reservoir machine with time series collected from a small number of parameter
values in the attractor regime. For each parameter value, we stipulate that the machine is well trained in the
sense that it is capable of predicting correctly and accurately the chaotic evolution at the same parameter value
for a reasonable amount of time. As training is done at multiple parameter values, it is imperative that the
machine is made to be cognizant of the parameter value, which can be accomplished by designating a special
input channel for the values of the bifurcation parameter [23]. It has been demonstrated [23] that, insofar as
the machine is well trained for a small number of parameter values in the attractor regime, it can predict the
crisis transition point. Here, we shall demonstrate that a parameter change that pushes the value of p beyond
pc will make the machine to generate the ‘correct’ transient chaos in the sense that, statistically, the transient
chaotic behaviors generated by the neural machine agree with those of the target system.

These results have practical applications in providing early warnings for a possible system collapse. For
example, if the target chaotic system is in the attractor regime close to the critical point and is regarded as
functioning normally, a direct examination of the time series would give absolutely no indication that the
system could collapse upon a small parameter drift. A well trained reservoir computing machine—a faithful
replica of the original system, can predict possible drift of the system into the transient chaos regime and the
subsequent collapse [23].

It is important to place the main idea behind our recent work [23] and the present work in a proper perspec-
tive with respect to previous works. The idea of a parameter-aware RNN was proposed in an early work [24],
where the authors trained an RNN using time series from different systems for different parameter values, and
demonstrated that with a “fixed weight neural network,” changing input alone can make the RNN produce
various dynamical behaviors of the target systems with one-time-step predictions. More recently, reservoir
computing with a parameter channel has been studied independently in references [25–27]. In reference [25],
the approach was used to predict the occurrence of periodic windows and other regime transitions in non-
stationary chaotic systems with or without dynamical noise. In reference [26], the approach was applied to
the Lorenz system to predict Hopf, saddle-node, and pitchfork bifurcations, where training was carried out
based on the normal forms of the bifurcations. In reference [27], a relevant yet different approach of dynam-
ical learning with reservoir computing was articulated, where an error feedback loop and a context feedback
loop were added to the standard reservoir structure. It was shown that, after training, the modified reservoir
system has the ability to learn dynamics that were different from those of the training set with a small amount
of data. The process was named as ‘dynamical learning’, which may be understood as an automatic adaptation
of the fixed weight neural network with the error and context feedback loops. In the supplemental material

2

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 1. Reservoir computing machine for generating transient chaos. The neural network consists of three layers: the input
layer, the hidden layer and the output layer. The three vectors u(t), r(t), and v(t) denote the input signals, the dynamical states of
the hidden layer, and the output signals, respectively. The value of the bifurcation parameter of the target system is fed into the
hidden layer neural network through the parameter channel. During the training, the reservoir system is open as it takes in
external time series at a small number of parameter values in the regime in which the target system has a chaotic attractor. After
training, the output variables v(t) is connected to the input, closing the system and making it a self-evolving dynamical system
that can generate transient chaos for input parameter values beyond the attractor regime.

of reference [27], it was demonstrated that the framework is capable of predicting the Hopf bifurcation in the
Lorenz system. Regarding transient chaos, in reference [26], it was demonstrated that the reservoir’s predicted
trajectory of the Lorenz attractor behaves chaotically for a while, and then begins to fall into a fixed point.
Recent works [23, 26, 27] have thus demonstrated the ability of reservoir computing machines to learn and
predict transient chaos. Our present work focuses on the following three aspects: (1) statistical properties of
machine-generated transient chaos, (2) intermittency, and (3) transient chaos in nonlinear dynamical systems
for which the previous sparse-optimization based prediction methods failed.

2. Parameter cognizant reservoir computing machine for generating transient chaos

Here we briefly describe our recent parameter-cognizant reservoir computing framework for predicting crisis
and transient chaos [23]. The codes of this work are available from GitHub [28].

A reservoir computing machine is a RNN, where the elements of the input-layer matrix and of the con-
nection matrix of the dynamical network in the hidden layer are randomly chosen and held fixed. The only
entity to be determined through training is the elements of the output-layer matrix. Figure 1 shows that, the
input time-series data constitute a Din-dimensional input vector u(t), and the input matrix Win of dimension
Dr × Din projects u(t) into a high-dimensional state vector in the the hidden layer. The bifurcation parame-
ter p of the target system is fed into the hidden layer through the parameter channel defined by matrix Wp

of dimension Dr × Dp. Matrix Wr of dimension Dr × Dr is the connection matrix of the hidden layer, which
typically has a random topology. The dynamical evolution of the nodal state in the hidden layer is governed
by a nonlinear activation function, such as the hyperbolic tangent function. The nodal states of the network
in the hidden layer at time step t is represented by the Dr-dimensional vector r(t). The output layer matrix
Wout of dimension Dout × Dr is a readout matrix from the hidden state vector r(t) to the output vector v(t) of
dimension Dout = Din.

Prior to training, the weights (matrix elements) in Win, Wp and Wr are generated randomly. The matrices
are then fixed afterward. Specifically, the weights of Win are generated from a uniform distribution in the inter-
val [−kin, kin] and the weights of Wp are drawn from another uniform distribution in the interval [−kp, kp].
Both Win and Wp are dense matrices so that each node in the input layer is connected to all the nodes in the
hidden layer. The matrix Wr defines a random network of size Dr and average degree d, which is undirected
and weighted with the weights drawn from a standard normal distribution and rescaled such that the spectral
radius of the network is λ (a hyperparameter). Here, the average degree d of a network is the average number
of links that a node has. The spectral radius λ of a network is the largest absolute value of the eigenvalues of
its adjacency (connection) matrix.

3

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

During training, the time series and the associated value of the bifurcation parameter are fed into the
machine in a step-by-step manner. The dynamical evolution of the reservoir hidden state r(t) is governed by
the following rule:

r(t +Δt) = (1 − α)r(t) + α tanh[Wr · r(t) +Win · u(t) +Wp(p + p0)], (1)

where Δt is the time step, tanh(q) ≡ [tanh(q1), tanh(q2), . . .]T for q = [q1, q2, . . .]T, α is the leakage factor,
p0 is the bias of p. A reservoir computing machine is thus a discrete-time dynamical system. To ensure that it
can accurately represent a target dynamical system, we use time steps that are two orders of magnitude smaller
than the typical time scale of the target system. The initial condition for the hidden state can be convenient set
to be r(t = 0) = 0. The process is repeated for each value of the training bifurcation parameter. (The effect of
the relative locations of training points will be discussed in section 4.1.) The state vectors r(t) at all the time
steps are recorded, which allows the output matrix Wout to be calculated through a standard regression process
between the true data vector u(t) and the hidden state vector r(t). Because of the need of training at a number
of distinct values of the bifurcation parameter, there are multiple pairs of u(t) and r(t). We stack these pairs
together in the temporal dimension to form a pair of vectors rall(t) and uall(t) that extend a longer temporal
domain. To remove the undesired transient behaviors of the reservoir dynamical network, the first 10 time
steps for each pairs of u(t) and r(t) are disregarded before they are stacked. The regression method in reference
[4] is used to deal with the issue of symmetries in the reservoir system, where rall(t) is replaced by r′all(t) with
r′all(t)i = rall(t)2

i for even rows (corresponding to nodes in the hidden layer with even indices) and the other
elements in odd rows being the same as in rall(t). A standard linear regression between uall(t) and r′all(t) can
then be carried out through minimizing the loss function

L =
∑

t

‖uall(t) −Wout · r′all(t)‖2 + β‖Wout‖2, (2)

where β > 0 is the l2-regularization coefficient. The regularized regression can be achieved through

Wout = U · R′T · (R′ · R′T + βI)−1, (3)

where I is an identity matrix of dimension Dr, U and R′ are the matrix forms of uall(t) and r′all(t), respec-
tively, with different columns representing different time steps and different rows corresponding to different
dimensions.

Validation is achieved by letting the trained reservoir machine make short-time predictions of the target
system for each training value of the bifurcation parameter. In particular, the prediction is obtained through

v(t) = Wout · r′(t). (4)

Comparing between the predicted and real time series leads to the validation error. Since the real time series
are not available during prediction, the input vector u(t) in equation (1) is replaced by the output vector v(t)
from the last time step. In the validation and prediction phases, equation (1) becomes

r(t +Δt) = (1 − α)r(t) + α tanh[Wr · r(t) +Win · Wout · r′(t) +Wp(p + p0)], (5)

which effectively defines the reservoir-computing machine as a self-evolving dynamical system under external
parameter input p. As the time series are validated immediately after the training phase, the initial condition of
the reservoir hidden state can be set as the state from the last time step of training. The typical validation length
is about 4–6 Lyapunov times of the target system. (For a chaotic system, the Lyapunov time is a characteristic
time scale, which is defined as the inverse of the largest Lyapunov exponent.) The prediction error is the average
root mean square error.

Taken together, the so-trained and validated reservoir machine is now a stand-alone, self-evolving dynam-
ical system. When the input parameter channel takes on any value in the vicinity of the training parameter
values, the system generates sustained chaotic behaviors. The system can generate transient chaos if the input
parameter value is in the regime of transient chaos of the original target system. We emphasize that the reser-
voir machine has never been trained in this regime of transient chaos, i.e., the parameter values in this regime
are completely ‘new’ to the reservoir machine. As the reservoir machine has a high-dimensional hidden states,
it is necessary to set not only the initial input vector but also the initial hidden states appropriate for prediction.
We use a short period of the real time series from the target system (e.g., several oscillation cycles), taking from
the training parameter regime to ‘warm up’ the neural network.

While the trained reservoir system can generate transient chaos, do the characteristics of the chaotic tran-
sients agree with those of the target system in the same parameter regime? To ensure a reasonable agreement,
it is necessary to optimize the reservoir system in its ability to acquire the ‘dynamical climate’ of the target

4

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 2. Bifurcation diagram of the classic logistic map. The vertical black dashed line denotes the crisis at a = ac = 4. The
vertical blue dashed lines denote the training points of the reservoir machine: a = 3.8, 3.85, 3.9 and 3.95, all in the attractor
regime, where a chaotic or a periodic attractor lives in the unit interval.

system. We take the following steps. For choosing the values of the seven hyperparameters (kin, kp, p0, d, λ,
α and β), we repeat the training 800 times with different values of the hyperparameters for optimization. We
use the function ‘surrogateopt’ in Matlab for choosing the values of the hyperparameters from 800 iterations.
However, even when the values of the hyperparameters have been optimized, the randomness in the matrices
Win, Wp and Wr will cause fluctuations and errors in the prediction results, as the optimized hyperparameter
values determine only a few statistical properties of them and there is still a great degree of freedom in choosing
the matrix elements. Inevitably, some realizations of these matrices can make the reservoirs unable in learn-
ing the dynamics of the target system. A more detailed discussion and simulation results about the effects of
different realizations of the random system matrices can be found in reference [23]. In the present work, we
use a simple method to reduce these errors: we conduct the training using five different realizations of these
matrices and pick the one with the smallest validation error. The result is that, in the validation phase, with
the optimized hyperparameter values and one out of five random realizations chosen, the reservoir computing
machine can replicate the true dynamical evolution with small errors (relative errors less than 5%) for at least
four or five Lyapunov times.

3. Results

3.1. Machine generated transient chaos in the logistic map
We first use the classic logistic map, xn+1 = axn(1 − xn), to demonstrate the emergence of transient chaos in
machine learning, where a is the bifurcation parameter. A bifurcation diagram is shown in figure 2, where a
critical transition occurs at ac = 4.0 as denoted by the vertical black dashed line. For 3.0 < a < ac, the unit
interval (0, 1) is invariant, which contains an attractor together with coexisting non-attracting invariant sets.
At a = ac = 4, a boundary crisis [29] occurs, which converts a chaotic attractor into a non-attracting chaotic
invariant set. For a > ac, there is transient chaos within the interval (0, 1) that eventually leads to escape to
the infinity. Figures 3(a1) and (a2) show the typical dynamical behaviors of the logistic map for a < ac and
a > ac, respectively.

We train the reservoir machine at four values of the bifurcation parameter: a = 3.8, 3.85, 3.9 and 3.95, all in
the attractor regime where there is a chaotic or a periodic attractor, as indicated in figure 2 by the vertical blue
dashed lines. During the validation for each a value trained, the reservoir machine is able to accurately generate
the state evolution of the target system for more than 4–5 Lyapunov times. More importantly, the machine
generated trajectories for an arbitrarily long stretch of time land on the chaotic attractor. The training length
is 1000 iterations for each value of a, and the validation length is 15 iterations. The ‘warming up’ length is 30
iterations. The values of the hyperparameters are optimized to be Dr = 400, d = 210, λ = 1.47, kin = 2.13,
kp = 1.15, p0 = −0.30, α = 0.86, and β = 1 × 10−6.

5

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 3. Machine generated transient chaos in the logistic map. (a1) and (a2) Typical time series of xn of the logistic map in the
normal and transient regimes, respectively, for a = 3.8 < ac and a = 4.2 > ac. (b1) and (b2) Time series of xn generated by a
reservoir machine for the same values of a as in (a1) and (a2), respectively. The machine gives correctly that there is transient
chaos for a > ac. (c1) and (c2) Real logistic map (black dots) and reservoir-computing generated return maps (red dots). The
green dashed square defines an interval: a chaotic attractor for a = 3.8 < ac (c1) or a nonattracting chaotic set for a = 4.2 > ac

due to the escaping region at the top of the panel leading to transient chaos (c2).

After training, we impose systematic changes in a and test if the reservoir machine generates transient
chaos. An exemplary pair of the machine generated time series for a = 3.8 < ac and a = 4.2 > ac are shown
in figures 3(b1) and (b2), respectively, where the reservoir machine correctly generates transient chaos in the
latter case. To assess whether the machine generated transient behavior is ‘correct’ in the sense that it matches
with the ground truth, we calculate the return map from the machine trajectories and compare it with the
true map. The results are shown in figures 3(c1) and (c2) for a = 3.8 < ac and a = 4.2 > ac, respectively,
where the red and black dots represent the machine generated and the true maps. The agreement is remark-
able. In particular, for a = 3.99 < ac, there is a green dashed square defining an interval in which a chaotic
attractor lies. For a = 4.01 > ac, the invariant set in the unit interval becomes nonattracting and is a frac-
tal, where there is an escaping region outside the green square, leading to transient chaos occurring on the
unit interval.

A well trained reservoir machine is capable of generating transient chaos with statistical characteristics
matching those of the real system. We examine a fundamental characteristic of transient chaos: the lifetime
distribution. In the transient chaotic regime, the true distribution is exponential. As shown in figure 4(a) for
a = ac + 0.01, the distribution of the length of the machine generated transiently chaotic trajectories is indeed
exponential, where 1500 stochastic realizations of the reservoir system and 1500 random initial conditions for
each realization are used. The average transient lifetime from the fitted slope of the data points in figure 4(a)
is 〈τ 〉 ≈ 28, while that of the real system is about 33. The scaling law of the average transient lifetime 〈τ 〉 with
(a − ac) produced by the machine is shown in figure 4(b), which is algebraic: 〈τ〉 ∼ (a − ac)−γ for a > ac,
where γ ≈ 0.62. This agrees with the real scaling law with γ ≈ 0.58. The distribution and expected value of
the lifetime of the machine generated chaotic transients, as well as the scaling relation of the average transient
lifetime with parameter variation beyond the critical transition point, all agree sufficiently well with the corre-
sponding behaviors of the real system, attesting to the trained capability of the reservoir machine to generate
authentic transient chaos, expected from the real system.

6

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 4. Characteristics of machine generated transient chaos for the logistic map in comparison with the ground truth. (a)
Transient lifetime distributions for a = ac + 0.01 from the real system (black) and from the machine (red). (b) Scaling law of the
average transient lifetime with the parameter difference (a − ac) by the reservoir (red) in comparison with the true scaling
(black). The statistical characteristics of the machine generated chaotic transients in (a) and (b) are obtained from 1500 random
reservoir machine realizations, each realization with 1500 different random ‘warming up’ sequences of initial conditions.

3.2. Machine generated transient chaos in the classic Lorenz system
We next demonstrate that our parameter-cognizant reservoir computing machine can faithfully generate
transient chaos from the classic Lorenz system [30]:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z) − y,

dz

dt
= xy − ηz,

(6)

where σ = 10, η = 8/3, and ρ is the bifurcation parameter. Figure 5 shows a representative bifurcation dia-
gram, which indicates that a crisis occurs at ρc = 24.06 (denoted by the vertical black dashed line). An exem-
plary pair of time series x(t) for ρ > ρc and ρ < ρc are shown in figures 6(a1) and (a2), respectively, where there
is sustained chaos for ρ > ρc and transient chaos for ρ < ρc. We use a fourth order Runge–Kutta method with
time step Δt = 0.003 for numerical integration of the Lorenz system.

Time series from four values of the bifurcation parameter: ρ = 24.56, 26.06, 27.56 and 29.06, all in the
attractor regime, are used to train the reservoir machine, as indicated by the four vertical blue dashed lines
in figure 5. The time step of the reservoir system is chosen to be Δt = 0.015 (quite arbitrarily insofar as it is
small as compared with the average length of the oscillation cycles). The length of the training time series is
t = 400 for each ρ value, and the length of the time interval for validation is t = 8. The ‘warming up’ length for
the machine is t = 0.1. The optimal values of the hyperparameters are determined to be Dr = 800, d = 490,
λ = 1.78, kin = 0.029, kp = 0.052, p0 = 2.99, α = 0.40, and β = 6 × 10−4.

Figure 6 presents typical results of transient chaos generated by the reservoir machine in comparison
with those from the actual Lorenz system. In particular, figures 6(a1) and (a2) show two representative time
series x(t) of the actual Lorenz system in the attractor and transient regimes, respectively, for ρ = 25.0 > ρc

and ρ = 23.0 < ρc. The corresponding machine generated time series are shown in figures 6(b1) and (b2).

7

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 5. Bifurcation diagram of the Lorenz system. The vertical black dashed line denotes the crisis at ρ = ρc = 24.06. The
vertical blue dashed lines indicate the training points of the reservoir computing machine: ρ = 24.56, 26.06, 27.56 and 29.06.

Figure 6. Emergence of transient chaos of the classic Lorenz system in machine learning. (a1) and (a2) Representative time series
of the x component of the actual Lorenz system in the attractor and transient regimes, respectively, for ρ = 25.0 > ρc and
ρ = 23.0 < ρc. (b1) and (b2) Time series x(t) generated by a reservoir machine for the same values of ρ as in (a1) and (a2),
respectively. The machine generates the ‘correct’ transient chaos for ρ < ρc in the sense that it is statistically indistinguishable
from the true transient behavior. (c1) and (c2) Return maps constructed from the local minima of z from the true time series,
where the green dashed square defines an interval that contains a chaotic attractor at ρ = 25.0 > ρc (c1) or a nonattracting
chaotic set for ρ = 23.0 < ρc due to the escaping region (marked by the red arrow) leading to transient chaos (c2). (d1) and (d2)
Machine generated return maps for the same values of ρ as in (c1) and (c2), respectively, which agree with the actual return maps.

It can be seen that, not only is the machine able to correctly generate the characteristically distinct behav-
iors in the pre-critical and post-critical regimes, but the statistical characteristics of the time series are also
indistinguishable from the real ones. Figures 6(c1), (c2), (d1) and (d2) show the real return maps and those
extracted from the machine generated time series, respectively, in the pre-critical and post-critical regimes,

8

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 7. Comparison of a key statistical characteristic between the real and machine generated transient chaos. Shown is the
transient lifetime distributions for ρ = 23 of the real transient (black) and reservoir computing generated transient chaos (red)
obtained from 100 random reservoir machine realizations (200 different ‘warming up’ sequences for each realization).

Figure 8. Bifurcation diagram of the classic Lorenz system in an intermittency regime. The vertical blue dashed lines indicate the
training points: ρ = 167.5, 170, 172.5 and 175.

with reasonable agreement. Especially, in the pre-critical regime, the return map is fully contained in an
invariant region in the phase space, whereas in the post-critical regime, a small escaping cusp emerges
in the return map. The remarkable result is that the reservoir machine is able to generate these features
faithfully.

The reservoir computing machine is also able to generate the correct exponential distribution of the tran-
sient lifetime, as shown in figure 7. The average transient lifetime is determined to be 〈τ 〉 ≈ 3.0 × 102. Com-
paring with the true average lifetime 〈τ 〉 ≈ 3.2 × 102, we see that the agreement is rather remarkable. The
small error is the result of the small size of the escaping region in the return map, which is sensitive to random
factors such as the accuracy of reservoir training.

3.3. Machine generated intermittency in the classic Lorenz system
Intermittency [31] can be regarded as a special type of transient behavior, where the system switches between
two distinct states, spending a finite amount of time in each. We now demonstrate that our parameter-
cognizant reservoir machine can generate intermittency in the chaotic Lorenz system in a parameter region
different from the one studied in section 3.2. For σ = 10 and η = 8/3, an intermittency regime arises for
larger values of ρ: about ρ = 166. As shown in figures 8 and 9, as ρ increases through a critical point
(about 166), there is a transition from a periodic attractor to a chaotic attractor, where intermittency arises
after the transition. Here we use a fourth order Runge–Kutta method with time step δ t = 0.002 for numerical
integration of the Lorenz system.

We use time series from four values of the bifurcation parameter: ρ = 167.5, 170, 172.5 and 175, all in a
chaotic attractor regime that is relatively far from the intermittency regime, to train the reservoir machine,
as indicated by the four vertical blue dashed lines in figure 8. The time step of the reservoir system is Δt =
0.01. For each ρ value, the length of the training time series is t = 400 and the length of the time interval
for validation is t = 2. (Note that the validation length is shorter than that used in section 3.2 because the
maximum Lyapunov exponent of the target system is larger in the present parameter region.) The ‘warming up’

9

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 9. Intermittency in the classic Lorenz system. As the value of the bifurcation parameter ρ increases through a critical point
ρc ≈ 166.05, there is a transition from a periodic attractor to chaos, after which intermittency arises. (a)–(d) Representative
intermittent time series for ρ = 166.35, ρ = 166.25, ρ = 166.15, and ρ = 166.05, respectively.

length for the machine is t = 0.1. The optimal values of the hyperparameters are Dr = 800, d = 501, λ = 1.93,
kin = 0.0131, kp = 0.0136, p0 = −0.86, α = 0.96, and β = 3.6 × 10−4. Figure 10 shows that the reservoir
computing machine is able to generate the intermittent behavior.

3.4. Machine generated transient chaos in the Ikeda map model
To demonstrate that our machine learning approach represents an advance over the traditional sparse opti-
mization methods in certain scenarios, we present an example of the Ikeda map model for which the sparse
optimization methods fail. In particular, the basic requirement of any sparse optimization technique for find-
ing the system equations is sparsity: when the system equations are expanded into a power series or a Fourier
series, it must be that only a few terms are present so that the coefficient vectors to be determined from data
are sparse [32, 33].

The Ikeda map describes the dynamics of a laser pulse propagating in a nonlinear cavity, which is given by
[34–36]:

zn+1 = μ+ γzn exp

(
iκ− iν

1 + |zn|2

)
, (7)

where z is a complex dynamical variable, the bifurcation parameter μ is the dimensionless laser input ampli-
tude, γ is the coefficient of the reflectivity of the partially reflecting mirrors of the cavity, κ is the laser empty
cavity detuning, and ν measures the detuning due to the presence of a nonlinear medium in the cavity. It is very
difficult, if not infeasible, to find a sparse representation of equation (7) with purely observational time series
of the system. Thus the sparse optimization methods cannot deal with this system. As we will demonstrate
below, our parameter-cognizant reservoir computing scheme can solve this problem.

We choose the values of the parameters in equation (7) to be γ = 0.9, κ = 0.4, and ν = 6.0. The parameter
μ is the bifurcation parameter. The system exhibits a boundary crisis [37] at μ = 1.0027, as shown by the black
vertical dashed line in figure 11. The dynamical behaviors for μ < μc and μ > μc are shown in figures 12(a1)
and (a2), respectively. There is a chaotic attractor for μ < μc, and transient chaos leading to an escape of the
system out of the previous operation region for μ > μc.

10

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 10. Machine generated intermittency in the classic Lorenz system. (a)–(d) Representative intermittent time series
generated by the reservoir machine for ρ = 166.30, ρ = 166.20, ρ = 166.10, and ρ = 166.00, respectively. The machine gives the
value of the transition point to be about ρc = 166.00, which agrees with the true point.

Figure 11. Bifurcation diagram of the Ikeda map system. The vertical black dashed line indicates the critical point μc = 1.0027.
The three vertical blue dashed lines specify the three values of the bifurcation parameter μ used for training the reservoir
machine: μ = 0.91, 0.94, 0.97.

The optimized hyperparameter values are Dr = 400, d = 283, λ = 0.17, kin = 2.6, kp = 0.35, p0 = 0.47,
α = 1.0 and β = 1 × 10−6. For each selected value of μ, the training and validation lengths are ttrain = 800
steps and tvalidating = 15 steps, respectively. During validation, the reservoir system is able to predict the system
evolution for more than 5 Lyapunov times with small relative error.

We train the reservoir machine at μ = 0.91, 0.94, 0.97. Their values are shown in figure 11 by the three
vertical blue dashed lines, and they are all in the chaotic attractor regime. After training, we apply parameter
change Δμ and test if the reservoir computing machine generates transient chaos. As shown by an exemplary
pair of machine generated time series, in figures 12(b1) and (b2), our reservoir approach can successfully

11

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 12. Predicting transient chaos and collapse of dynamics in a nonlinear optical cavity as described by the Ikeda map. (a1)
and (a2) Typical behaviors of the system in the sustained and transient chaos regimes, respectively, for μ = 0.99 < μc and
μ = 1.01 > μc. (b1) and (b2) Predicted behaviors by the reservoir machine for the same values of μ as in (a1) and (a2),
respectively. The machine predicts correctly the system collapse for μ > μc. (c) Actual (black) and predicted (red) exponential
transient lifetime distributions for μ = μc + 0.02.

generate transient chaos in the transient regime, even though it was trained only with data from a chaotic
attractor.

To demonstrate the statistical characteristics of the generated transient dynamics, we compare the tran-
sient lifetime distribution of both the reservoir generated time series and the time series calculated from
equation (7). We set the control parameter as μ = μ∗

c + 0.02 for the reservoirs, where μ∗
c is the critical point

calculated from each realization of reservoir machine. In total, 50 stochastic realizations of the reservoir system
and 400 random initial conditions for each realization are used, and we record the transient lifetimes of these
20 000 trials. The result is shown in figure 12(c), where the distribution of the reservoir computing (marked in
red) is very close to the distribution of the real system with μ = μc + 0.02 (marked in black), demonstrating
the power of our reservoir approach for generating transient chaos.

4. Limited performance analysis of reservoir computing with dynamic climate control

A comprehensive performance analysis of our reservoir computing scheme in terms of its ability to generate
transient chaos is infeasible, as there are a large number of ‘free’ parameters in the system. Here we carry out a
limited analysis based of the logistic map, focusing on two issues: the selection of the training parameter points
and the effect of noise.

4.1. Dependency on training points
We study the dependency of reservoir machine’s performance on the values of the training bifurcation param-
eters. For convenience, we use the parameter difference L between the training parameter value and the critical
point to measure how ‘far’ the former is from the latter. For the logistic map, we use max{atrain} to denote the
largest value of the bifurcation parameter a used for training (so L = ac − max{atrain}) and fix the relative posi-
tions of the training points. This way, when there is a small change in the value of L the training values of the
bifurcation parameter are shifted by the same amount. During this process, all values of the hyperparameters
of the reservoir machine are kept fixed.

12

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 13. Effect of the distances between the training parameter values and the critical point. (a)–(f) Machine generated (red)
scaling law of the average transient lifetime with (a − ac) on a log-log scale for L = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, respectively.
The corresponding actual scaling laws are shown in black. The discrepancy increases with L as expected, but the average transient
lifetime generated by the machine agrees with the true value within the same order of magnitude. (g) Positions of the training
points in (a) with L = 0.05 (the blue dashed lines) and training points in (f) with L = 0.3 (the orange dashed lines). All other
training points fall in-between these two sets of values. The black dashed line denotes the position of the critical point ac = 4.0.

The results are shown in figure 13, where panels (a)–(f) show the machine generated scaling law of the aver-
age transient lifetime 〈τ 〉 with (a − ac) for L = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. The positions of the training
points with largest and smallest L values are shown in figure 13(g). It can be seen that, the error in the machine
generated scaling law grows with L, with the estimated average transient lifetime slightly longer than the actual
value. As the training set moves further leftward from the critical point, the error in the machine estimated
critical point ac increases, leading to an apparent deviation of the scaling law from being algebraic. However,
the reservoirs are still able to generate transient chaos even when the training points are away from the tran-
sient region. And there is no order of magnitude difference in the machine generated and the actual average
transient lifetime.

13

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

Figure 14. Impact of observational noise on reservoir machine’s ability to generate accurate transient chaos. Shown are the
machine generated (red) and real (black) scaling law of the average transient lifetime 〈τ 〉 with (a − ac). The training data for the
reservoir machines in each panel are contaminated by different levels of noise: (a) σ = 0, (b) σ = 10−3.5, (c) σ = 10−2.5, and (d)
σ = 10−1.5. All the distributions are obtained from 1000 independent random reservoir machine realizations, each with 1000
different random ‘warming up’ sequences.

4.2. Effect of noise
We investigate the impact of observational noise on reservoir machine’s ability to replicate transient chaos.
The noises are of the Gaussian type of amplitude σ and they are added directly to the training data set.
Figures 14(a)–(d) show the scaling of the average lifetime 〈τ 〉 with (a − ac) for four different values of σ: 0,
10−3.5, 10−2.5, and 10−1.5, respectively. As the noise become stronger, the machine generated scaling law begins
to deviate from the actual one, as expected. The remarkable feature is that the scaling exponent (the slope
of the linear fitting on the log–log plot) stays close to the real one, even for relatively large noise amplitude,
providing support for the robustness of the performance of the reservoir machine in generating the ‘correct’
transient chaotic behaviors.

5. Discussion

Transient chaos is ubiquitous in nonlinear dynamical systems [38]. Here we demonstrate the emergence of
transient chaos in machine learning. In particular, by focusing on reservoir computing, a class of RNNs with
simple structure, we find that it can generate transient chaos with statistical behaviors that match those of
the target system. The training (supervised learning) process makes use of time series data taken from a small
number of distinct values of the bifurcation parameter of the target system, during which the machine is an
open dynamical system. These training parameter values are ‘recorded’ by the machine through a particular
input channel to the reservoir network. Training is deemed successful when the reservoir machine is able to
generate trajectories that stay close to the true trajectories for some reasonable amount of time for each of the
training parameter values. After the training, the open loop in the reservoir system is closed and it becomes
a self-evolving nonlinear dynamical system. Our main point is that this system can generate transient chaos
whose statistical behaviors mimic those of the target system for the same value of the bifurcation parameter.
It is worth emphasizing that training is done completely in the attractor regime, and the reservoir system has
never been exposed to any transient chaotic behavior. Yet the training has instilled the dynamical ‘climate’
of the target system into the machine and it gains the ability to generate different dynamical behaviors for
different values of the bifurcation parameter, even in the regime of transient chaos, where the dynamics are
characteristically distinct from those in the attractor regime.

A basic statistical characteristic of transient chaos is the distribution of the transient lifetime, which is
exponential in dissipative dynamical systems. We have demonstrated that an adequately trained machine can
faithfully generate this exponential distribution, with the average transient lifetime (the inverse of the expo-
nential rate) agreeing with the actual value but only to within the same order of magnitude. To reduce this
error remains a challenge, as it often depends sensitively on the details of the dynamical structure responsible

14

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

for transient chaos such as the returned map. Especially, in the regime of attracting chaos, there is a region in
the return map that is invariant. However, in the regime of transient chaos, an escaping gap emerges in the
region, which leads to chaotic transients. The statistical characteristics of the resulting transient chaos depend
sensitively on the details of the escaping region, such as its size. While the reservoir machine is able to generate
the return map that agrees qualitatively with the true map, there can often be small discrepancies in the detail,
especially those around the escaping gap, which can lead to a sizable difference in the average lifetime of the
machine generated transient chaos from the actual lifetime.

Another characteristic of transient is the scaling relation between the average lifetime and the parameter
difference from the critical point. We have demonstrated that our properly trained reservoir machine can
faithfully generate this scaling law even in the presence of observational noise, which is defined entirely in the
regime of transient chaos to which the machine has never been exposed.

Taken together, for a nonlinear dynamical system of interest, to develop a machine learning system that is
capable of generating transient chaos beyond the attractor regime, where training takes place, has implications
to predicting the future dynamical state of the target system [23].

Acknowledgments

This work was supported by ONR under Grant No. N00014-21-1-2323.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Ling-Wei Kong https://orcid.org/0000-0002-8921-1642
Huawei Fan https://orcid.org/0000-0001-7703-0185
Celso Grebogi https://orcid.org/0000-0002-9811-4617
Ying-Cheng Lai https://orcid.org/0000-0002-0723-733X

References

[1] Haynes N D, Soriano M C, Rosin D P, Fischer I and Gauthier D J 2015 Phys. Rev. E 91 020801
[2] Larger L, Baylón-Fuentes A, Martinenghi R, Udaltsov V S, Chembo Y K and Jacquot M 2017 Phys. Rev. X 7 011015
[3] Pathak J, Lu Z, Hunt B R, Girvan M and Ott E 2017 Chaos 27 121102
[4] Lu Z, Pathak J, Hunt B, Girvan M, Brockett R and Ott E 2017 Chaos 27 041102
[5] Duriez T, Brunton S L and Noack B R 2017 Machine Learning Control–Taming Nonlinear Dynamics and Turbulence (Berlin:

Springer)
[6] Lu Z, Hunt B R and Ott E 2018 Chaos 28 061104
[7] Pathak J, Wikner A, Fussell R, Chandra S, Hunt B R, Girvan M and Ott E 2018 Chaos 28 041101
[8] Pathak J, Hunt B, Girvan M, Lu Z and Ott E 2018 Phys. Rev. Lett. 120 024102
[9] Carroll T L 2018 Phys. Rev. E 98 052209

[10] Nakai K and Saiki Y 2018 Phys. Rev. E 98 023111
[11] Roland Z S and Parlitz U 2018 Chaos 28 043118
[12] Weng T, Yang H, Gu C, Zhang J and Small M 2019 Phys. Rev. E 99 042203
[13] Griffith A, Pomerance A and Gauthier D J 2019 Chaos 29 123108
[14] Jiang J and Lai Y C 2019 Phys. Rev. Res. 1 033056
[15] Vlachas P R, Pathak J, Hunt B R, Sapsis T P, Girvan M, Ott E and Koumoutsakos P 2019 arXiv:1910.05266
[16] Fan H, Jiang J, Zhang C, Wang X and Lai Y C 2020 Phys. Rev. Res. 2 012080
[17] Zhang C, Jiang J, Qu S-X and Lai Y-C 2020 Chaos 30 083114
[18] Kuptsov P V, Kuptsova A V and Stankevich N V 2021 Artificial neural network as a universal model of nonlinear dynamical

systems Russ. J. Nonlinear Dyn. 17 5–21
[19] Jaeger H 2001 Technical Report vol 148 German National Research Center for Information Technology GMD p 13
[20] Mass W, Nachtschlaeger T and Markram H 2002 Neural Comput. 14 2531–60
[21] Jaeger H and Haas H 2004 Science 304 78–80
[22] Manjunath G and Jaeger H 2013 Neural Comput. 25 671–96
[23] Kong L W, Fan H W, Grebogi C and Lai Y C 2021 Phys. Rev. Res. 3 013090
[24] Feldkamp L A, Puskorius G V and Moore P C 1997 Inf. Sci. 98 217–35
[25] Patel D, Canaday D, Girvan M, Pomerance A and Ott E 2021 Chaos 31 033149
[26] Kim J Z, Lu Z, Nozari E, Pappas G J and Bassett D S 2021 Nat. Mach. Intell. 3 316–23
[27] Klos C, Kossio Y F K, Goedeke S, Gilra A and Memmesheimer R M 2020 Phys. Rev. Lett. 125 088103
[28] The codes of this work are shared at github.com/lw-kong/Reservoir_with_a_Parameter_Channel_JPC2021
[29] Grebogi C, Ott E and Yorke J A 1982 Phys. Rev. Lett. 48 1507

15

https://orcid.org/0000-0002-8921-1642
https://orcid.org/0000-0002-8921-1642
https://orcid.org/0000-0001-7703-0185
https://orcid.org/0000-0001-7703-0185
https://orcid.org/0000-0002-9811-4617
https://orcid.org/0000-0002-9811-4617
https://orcid.org/0000-0002-0723-733X
https://orcid.org/0000-0002-0723-733X
https://doi.org/10.1103/physreve.91.020801
https://doi.org/10.1103/physreve.91.020801
https://doi.org/10.1103/physrevx.7.011015
https://doi.org/10.1103/physrevx.7.011015
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.5010300
https://doi.org/10.1063/1.4979665
https://doi.org/10.1063/1.4979665
https://doi.org/10.1063/1.5039508
https://doi.org/10.1063/1.5039508
https://doi.org/10.1063/1.5028373
https://doi.org/10.1063/1.5028373
https://doi.org/10.1103/physrevlett.120.024102
https://doi.org/10.1103/physrevlett.120.024102
https://doi.org/10.1103/physreve.98.052209
https://doi.org/10.1103/physreve.98.052209
https://doi.org/10.1103/physreve.98.023111
https://doi.org/10.1103/physreve.98.023111
https://doi.org/10.1063/1.5022276
https://doi.org/10.1063/1.5022276
https://doi.org/10.1103/physreve.99.042203
https://doi.org/10.1103/physreve.99.042203
https://doi.org/10.1063/1.5120710
https://doi.org/10.1063/1.5120710
https://doi.org/10.1103/physrevresearch.1.033056
https://doi.org/10.1103/physrevresearch.1.033056
https://arxiv.org/abs/1910.05266
https://doi.org/10.1103/physrevresearch.2.012080
https://doi.org/10.1103/physrevresearch.2.012080
https://doi.org/10.1063/5.0006304
https://doi.org/10.1063/5.0006304
https://doi.org/10.20537/nd210102
https://doi.org/10.20537/nd210102
https://doi.org/10.20537/nd210102
https://doi.org/10.20537/nd210102
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1162/neco_a_00411
https://doi.org/10.1162/neco_a_00411
https://doi.org/10.1162/neco_a_00411
https://doi.org/10.1162/neco_a_00411
https://doi.org/10.1103/physrevresearch.3.013090
https://doi.org/10.1103/physrevresearch.3.013090
https://doi.org/10.1016/s0020-0255(96)00216-2
https://doi.org/10.1016/s0020-0255(96)00216-2
https://doi.org/10.1016/s0020-0255(96)00216-2
https://doi.org/10.1016/s0020-0255(96)00216-2
https://doi.org/10.1063/5.0042598
https://doi.org/10.1063/5.0042598
https://doi.org/10.1038/s42256-021-00321-2
https://doi.org/10.1038/s42256-021-00321-2
https://doi.org/10.1038/s42256-021-00321-2
https://doi.org/10.1038/s42256-021-00321-2
https://doi.org/10.1103/physrevlett.125.088103
https://doi.org/10.1103/physrevlett.125.088103
https://www.github.com/lw-kong/Reservoir_with_a_Parameter_Channel_JPC2021
https://doi.org/10.1103/physrevlett.48.1507
https://doi.org/10.1103/physrevlett.48.1507

J.Phys.Complex. 2 (2021) 035014 (16pp) L-W Kong et al

[30] Lorenz E N 1963 J. Atmos. Sci. 20 130–41
[31] Pomeau Y and Manneville P 1980 Commun. Math. Phys. 74 189–97
[32] Wang W-X, Yang R, Lai Y-C, Kovanis V and Grebogi C 2011 Phys. Rev. Lett. 106 154101
[33] Wang W-X, Lai Y-C and Grebogi C 2016 Phys. Rep. 644 1–76
[34] Ikeda K 1979 Opt. Commun. 30 257–61
[35] Ikeda K, Daido H and Akimoto O 1980 Phys. Rev. Lett. 45 709–12
[36] Hammel S M, Moloney J V and Jones C K R T 1985 J. Opt. Soc. Am. B 2 552–64
[37] In V, Spano M L and Ding M 1998 Phys. Rev. Lett. 80 700
[38] Lai Y C and Tél T 2011 Transient Chaos: Complex Dynamics on Finite Time Scales (New York: Springer)

16

https://doi.org/10.1175/1520-0469(1963)020&tnqx3c;0130:dnf&tnqx3e;2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020&tnqx3c;0130:dnf&tnqx3e;2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020&tnqx3c;0130:dnf&tnqx3e;2.0.co;2
https://doi.org/10.1175/1520-0469(1963)020&tnqx3c;0130:dnf&tnqx3e;2.0.co;2
https://doi.org/10.1007/bf01197757
https://doi.org/10.1007/bf01197757
https://doi.org/10.1007/bf01197757
https://doi.org/10.1007/bf01197757
https://doi.org/10.1103/physrevlett.106.154101
https://doi.org/10.1103/physrevlett.106.154101
https://doi.org/10.1016/j.physrep.2016.06.004
https://doi.org/10.1016/j.physrep.2016.06.004
https://doi.org/10.1016/j.physrep.2016.06.004
https://doi.org/10.1016/j.physrep.2016.06.004
https://doi.org/10.1016/0030-4018(79)90090-7
https://doi.org/10.1016/0030-4018(79)90090-7
https://doi.org/10.1016/0030-4018(79)90090-7
https://doi.org/10.1016/0030-4018(79)90090-7
https://doi.org/10.1103/physrevlett.45.709
https://doi.org/10.1103/physrevlett.45.709
https://doi.org/10.1103/physrevlett.45.709
https://doi.org/10.1103/physrevlett.45.709
https://doi.org/10.1364/josab.2.000552
https://doi.org/10.1364/josab.2.000552
https://doi.org/10.1364/josab.2.000552
https://doi.org/10.1364/josab.2.000552
https://doi.org/10.1103/physrevlett.80.700
https://doi.org/10.1103/physrevlett.80.700

	Emergence of transient chaos and intermittency in machine learning
	1. Introduction
	2. Parameter cognizant reservoir computing machine for generating transient chaos
	3. Results
	3.1. Machine generated transient chaos in the logistic map
	3.2. Machine generated transient chaos in the classic Lorenz system
	3.3. Machine generated intermittency in the classic Lorenz system
	3.4. Machine generated transient chaos in the Ikeda map model

	4. Limited performance analysis of reservoir computing with dynamic climate control
	4.1. Dependency on training points
	4.2. Effect of noise

	5. Discussion
	Acknowledgments
	Data availability statement
	ORCID iDs
	References

