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PRICING AND HEDGING CONTINGENT CLAIMS IN A MULTI-ASSET

BINOMIAL MARKET

JAREK KĘDRA, ASSAF LIBMAN, AND VICTORIA STEBLOVSKAYA

Abstract. We consider an incomplete multi-asset binomial market model. We prove that
for a wide class of contingent claims the extremal multi-step martingale measure is a power
of the corresponding single-step extremal martingale measure. This allows for closed form
formulas for the bounds of a no-arbitrage contingent claim price interval. We construct a
feasible algorithm for computing those boundaries as well as for the corresponding hedging
strategies. Our results apply, for example, to European basket call and put options and
Asian arithmetic average options.

1. Introduction

We consider a discrete time n-step market model with m assets each of which is following
a binomial model. We consider both path-dependent and path-independent multi-asset
contingent claims. Since the model is incomplete for m ≥ 2, there is no unique no-arbitrage
price of a contingent claim, but rather an interval of no-arbitrage prices. We compute the
bounds of that interval and provide an algorithm for such computations. We also construct
corresponding extremal hedging strategies.

The computations amount to extremizing the expected pay-off of a contingent claim over
the set of appropriate martingale measures. In general, such a set is not easy to understand,
although it is the convex hull of finitely many points in a vector space. Our main results
state that for certain contingent claims the extrema of no-arbitrage prices are attained at
martingale measures of the form P

⊗n = P⊗P⊗· · ·⊗P, where P is a 1-step martingale mea-
sure. This remarkable fact allows writing down explicit formulas and constructing effective
algorithms.

Let us state the main results precisely. Let Si(j), where i = 1, . . . , m and j = 0, . . . , n,
denote the price of the i-th asset at time j. Let (Si(j)) denote a random element of Rmn

and let X = f(Si(j)) be a contingent claim, where f : Rmn → R is a function. We prove
(Proposition 4.1) that there exist measures Pmax and Pmin such that the upper and lower
bounds of the no-arbitrage price interval of X at each time are given by the (discounted)
conditional expectation of X with respect to Pmax and Pmin, respectively. In general, finding
these extremal measures requires running a linear program a number of times with grows
like 2mn. This is because they are built from extremal single-step martingale measures and
at each time such a measure has to be found by solving a linear programming problem. In
what follows we present the results that require running the linear program once. This is
because the extremal measure is a product of the same single-step martingale measure so it
is enough to solve a linear programming problem just once. The following result is a special
case of a slightly more general Theorem 5.4 proven in Section 5B.
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Theorem 1.1. Let X be a contingent claim which as a random variable is fibrewise super-
modular (see Definition A.10). Then there exists a 1-step martingale measure P such that
Pmax = P

⊗n. If, moreover, the stock price ratios satisfy
∑

i

R−Di

Ui −Di
< 1

then also the minimal martingale measure is a product on n copies of a 1-step martingale
measure.

Contingent claims satisfying the hypothesis of the above theorem include European basket
call and put options (Example 7.3 and 7.4), Asian (path-dependent) basket options based on
arithmetic average (Example 7.5). For European basket call options we present explicit for-
mulae for the bounds of no-arbitrage values in Example 7.3. Although the theorem does not
apply to Asian contingent claims based on geometric average, we can still provide estimates
of no-arbitrage prices (Example 7.7).

Since Theorem 1.1 yields relatively fast computation of the extremal no-arbitrage values of
contingent claims, it also allows constructing effective algorithms for computing extremal
hedging strategies. We discuss them in Sections 3F, 4D and 6C.

Remark 1.2. The proof of Theorem 1.1 is an elaboration of a well known result of combina-
torial optimization which shows that supermodular set functions when restricted to convex
polytopes are maximized on a special vertex [1, 5, 6, 7]. We present detailed arguments in
the Appendix, which is somewhat more technical than the rest of the paper.

Remark 1.3. The case of two assets has been solved in the paper by Nagaev and Ste-
blovskaya [3], where they also consider the case of continuous distribution of prices. A
geometric approach to the problem was taken by Motoczyński and Stettner [2].

Structure of the paper. Section 2 is devoted to introducing all necessary definitions. We
put an emphasis on working with concrete sample spaces for several reasons. Namely, one of
our aims is to create a workable algorithm and a suitable computer program. Moreover, our
proofs then deal with concrete polytopes and concrete optimization problems. In Section 3
we discuss 1-step model that constitutes building blocks for the multi-step model discussed
in Section 4, where we also discuss hedging strategies. Algorithms and the main theorem are
discussed in Section 5. In Section 6, we provide explicit pricing formulas and an algorithm
for an extremal hedging strategy. Finally, in Section 7, we discuss concrete examples of
contingent claims. All technical results needed for the proofs are presented in the Appendix.

Acknowledgements. We thank both The Bentley University and The University of Ab-
erdeen for supporting our collaboration. The paper was conceived and some of its parts
written during VS visits to Aberdeen and JK visits to Bentley.

2. Preliminaries

2A. The market model and main definitions. We consider a financial market which
consists of m risky assets (stocks) and a riskless asset (bond) that can be traded at discrete
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time moments t = 0, 1, . . . , n. In this market we consider a European contingent claim
(option).

Let us define the main ingredients of the model in more detail.

Time. The time is modeled by a finite set T = {0, 1, 2, . . . , n}.
The bond process. It is a deterministic process defined by B(t) = Rt, where R = 1 + r and
r is a constant periodic interest rate.

The stock price process. For each i = 1, . . . , m, the stock price process Si = (Si(t))t=0,1,...,n

is described by the n-step binomial dynamics. The stock price ratios ψi(t) = Si(t)/Si(t− 1)
at each time moment t = 1, . . . , n can take two possible values: ψi(t) ∈ {Di, Ui}. We will
assume that for each binomial model the no-arbitrage condition 0 < Di < R < Ui holds.

In order to simplify terminology we say that the price of the i-th stock went up at time t if
ψi(t) = Ui and it went down if ψi(t) = Di. We will denote by S(t) a stock price vector at
time t:

S(t) = (S1(t), S2(t), . . . , Sm(t)) ,

where t = 0, 1, . . . , n.

The contingent claim. In the above market, we consider a European contingent claim X
with the real-valued pay-off function f , which may depend only on the terminal value S(n)
of the stock price vector or on the entire stock price path S(t), t = 1, . . . , n.

If m ≥ 2 then the above market model is incomplete [4, Section 1.5].

Sample space for the n-step model and basic random variables. The sample space Ωn for the
n-step model is modeled by the set of (m × n)-matrices ω with entries ωij ∈ {0, 1}. Each
element ω represents the state of the world at time n. The value ωij = 0 signifies that the
price of the i-th stock went down at time j. The value ωij = 1 signifies that the price of the
i-th stock went up at time j.

With this notation, the stock price ratio ψi(t) = Si(t)/Si(t− 1) for each t = 1, . . . , n can be
defined as a random variable on Ωn described as follows:

ψi(t)(ω) =

{
Di if ωit = 0,

Ui if ωit = 1,

where i = 1, . . . , m. Consequently, the i-th stock price at time t ∈ T can be presented as

Si(t) = Si(0)ψi(1) · · ·ψi(t),

where i = 1, . . . , m and Si(0) is the known initial stock price.

A direct computation shows that

Si(t)(ω) = Si(0)U
∑t

j=1 ωij

i D
t−

∑t
j=1 ωij

i .

So for each ω ∈ Ωn the i-th row of ω describes the n-step dynamics of the i-th stock price,
while the j-th column describes the single-step dynamics of the stock price vector from time
j − 1 to time j.
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Ordering elements in a sample space. Whenever convenient we shall consider an elementary
event ω ∈ Ωn either as a matrix

ω =




ω11 ω12 . . . ω1n

ω21 ω22 . . . ω2n
...

... . . .
...

ωm1 ωm2 . . . ωmn




or as an n-tuple of its column vectors

ω = (ω1 ω2 . . . ωn),

where

ωj =




ω1j

ω2j
...

ωmj


 .

It is straightforward to see that Ωn consists of N = 2mn elements.

It will be convenient to order the elements of Ωn with respect to the reverse lexicographic
order. In the case of n = 1, the set Ωn = Ω1 contains N = 2m elements. Each element
ω ∈ Ω1 is a (m×1)-matrix (or, equivalently, a column vector of length m), and the elements
of Ω1 are ordered as follows:

(2.1) ω1 =




1
1
...
1
1



, ω2 =




1
1
...
1
0



, . . . , ωN−1 =




0
0
...
0
1



, ωN =




0
0
...
0
0



.

Each ωi, when read from top to bottom, is a binary representation of the number 2m − i.

For the case n = 2, the set Ωn = Ω2 contains N = 2m×2 elements. Each element ω ∈ Ω2 is a
(m× 2)-matrix, or, equivalently, a pair of column vectors of length m:

ω = (ω1 ω2).

The elements of Ω2 are ordered as follows. In the first 2m elements of Ω2, the first column
ω1 is fixed at ω1, where ω1 is defined in (2.1), and the second column ω2 runs through the
set Ω1 according to the order in (2.1). In the next 2m elements of Ω2, the first column ω1

is fixed at ω2 and the second column ω2 runs through the set Ω1 according to the order in
(2.1). Continuing this way, one orders all elements in the set Ω2.

Elements of Ωn for any n can be ordered in a similar manner.

The information structure. The state of the world at time k ∈ T is described by the subset
of matrices from Ωn with the first k columns fixed. Each subset, denoted P(ω1, . . . , ωk), has
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the following form:

P(ω1, . . . , ωk) =
{
ω ∈ Ωn | ω =

(
ω1 . . . ωk ∗ . . . ∗

)}

=




ω ∈ Ωn | ω =




ω11 . . . ω1k ∗ . . . ∗
ω21 . . . ω2k ∗ . . . ∗
...

...
...

...
ωm1 . . . ωmk ∗ . . . ∗








(2.2)

In what follows, we will say that the (m×k)-matrix (ω1 . . . ωk) which represents the common
part of all matrices ω ∈ Ωn included in set P(ω1, . . . , ωk) is associated with the set

P(ω1, . . . , ωk) .

There are 2mk disjoint subsets of the form (2.2) with different associated matrices. These
subsets form a partition Pk of Ωn. The initial partition is trivial P0 = {Ωn}, the last one
Pn = {{ω1}, {ω2}, . . . , {ωN}}, where N = 2mn. Clearly, the partition Pk is finer than the
partition Pk−1 and hence they form a sequence of finer and finer partitions.

Each partition Pk can be put into one-to-one correspondence with a subalgebra Fk of the
algebra 2Ωn of all subsets of Ωn. The subalgebras Fk form a filtration F , an increasing
sequence of subalgebras {Fk}, k = 0, . . . , n − 1, where Fk ⊆ Fk+1. Here F0 = {∅,Ωn},
Fn = 2Ωn consists of all subsets of Ωn.

In what follows, we assume that the filtration F is generated by the stock price vector process
(S(t))t=0,1,...,n.

The supporting tree. The above information structure can be described also with the help
of a finite directed rooted n-step binary tree which we will denote by T. We will call T the
supporting tree for the n−step market model under consideration. The supporting tree T

consists of vertices and directed edges that connect the vertices.

In what follows, we will use the following terminology and notation. We will denote by
v0 ∈ T the root of the tree T. In other words, v0 is the vertex that corresponds to time
t = 0.

For each vertex v ∈ T there is a unique path from the root v0 to v. If such a path consists
of k edges we say that the vertex v corresponds to the time step k. The set of vertices that
correspond to time k is denoted by Tk. In particular, Tn are the terminal vertices. We will
call terminal vertices leaves and non-terminal vertices nodes. In other words, v ∈ Tk is
called a leaf if k = n. If k < n, v is called a node. The root v0 of the tree is a special node
that corresponds to k = 0.

We say that a vertex v ∈ Tℓ, ℓ ≤ n, is a successor of a node w ∈ Tk, k < ℓ, if there is a
path from w to v.

The leaves of the tree T are in one-to-one correspondence with the elements of the sample
space Ωn, or, in other words, with the sets of the partition Pn = {{ω1}, {ω2}, . . . , {ωN}}.
The set of leaves corresponds to the time step n and represents all possible states of the
world at time n. Additionally, each leaf describes the stock price vector dynamics from time
0 to time n.

5



The nodes of T that correspond to time k < n are in one-to-one correspondence with the
sets P(ω1, . . . , ωk) of the partition Pk that are defined in (2.2).

In the rest of the paper we will frequently use this correspondence. So whenever we are talking
about a node v ∈ Tk we implicitly mean that it is the corresponding set P(ω1, . . . , ωk) of
the partition Pk. The (m× k)-matrix (ω1 . . . ωk) associated with the set P(ω1, . . . , ωk) will
be called also the matrix associated with the node v ∈ Tk.

Similarly to the case of leaves, each node v ∈ Tk, k < n, describes the stock price vector
dynamics from time 0 to time k.

There is an edge from a node v to a vertex w (where w could be a node or a leaf) if and only
if a matrix associated with w has been obtained from the matrix associated v by appending
a column. Thus the root is associated with an empty matrix and the tree is regular in the
sense that for each vertex except the leaves and the root there is exactly one incoming edge
and 2m outgoing edges.

Probability measures in an n-step model. A probability measure P on (Ωn, 2
Ωn,F) (or, equiv-

alently, a probability measure in an n-step market model) is defined by its probability func-
tion p : Ωn → [0, 1]:

p(ωi) = P({ωi}) = pi,

where ωi ∈ Ωn is an elementary event, i = 1, . . . , N = 2mn, and
∑N

i=1 pi = 1. For simplicity,
in what follows we will use the notation P(ωi) instead of P({ωi}) and identify a probability
measure P with a vector (p1, p2, . . . , pN) ∈ R

N with non-negative coordinates which sum up
to 1. Thus the set of all probability measures in the n-step market model with m assets is
equivalent to the unit simplex:

(2.3) ∆(Ωn) =

{
(p1, . . . , pN) ∈ R

N |
N∑

i=1

pi = 1, pi ≥ 0, N = 2mn

}
.

In what follows we will use the notation ∆(Ωn) for the set of probability measures on
(Ωn, 2

Ωn,F).

Martingale and risk-neutral measures. A probability measure P ∈ ∆(Ωn) is called a mar-

tingale measure in an n-step market model if it satisfies the following conditions:

(2.4) EP(Si(k + ℓ)|Fk) = RℓSi(k),

or equivalently,

(2.5) EP(ψi(k + 1) . . . ψi(k + ℓ)) = Rℓ.

where i = 1, 2, . . . , m and 0 ≤ k + ℓ ≤ n with k, ℓ ≥ 0. In other words, P is a martingale
measure if and only if the discounted price process for each stock is a martingale with respect
to P. The set of martingale measures in an n-step market model will be denoted by Mn.

A martingale measure P = (p1, p2, . . . , pN) is called risk-neutral if pi > 0 for each i =
1, . . . , N . The set of risk-neutral measures in an n-step market model will be denoted by Nn.
So we have: Nn ⊂ Mn ⊂ ∆(Ωn), where Mn is the closure of Nn in R

N .

2B. Supporting known results. In this section we present a number of known results
which we need later.
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Multi-step vs single-step measures. Let P ∈ ∆(Ωn) be a probability measure. Let us assume
in addition P is non-degenerate in the following sense: P(ωi) = pi > 0 for each i = 1, . . . , N .
For each node v ∈ Tk, k < n, the n-step non-degenerate probability measure P defines a
non-degenerate probability measure Pv ∈ ∆(Ω1) in the corresponding underlying single-step
model, as the following conditional probability given the node v:

(2.6) Pv

(
ωk+1

)
= P

(
P(ω1 · · ·ωkωk+1) | P(ω1 · · ·ωk)

)
,

for k = 0, . . . , n− 1. Here P(ω1 . . . ωk) is the set of the partition Pk corresponding to the
node v ∈ Tk, and ωk+1 is an element of the sample space Ω1 in the corresponding underlying
single-step model with the root at node v. Since P is non-degenerate, the event P(ω1 . . . ωk)
has positive measure and the above conditional probability is well defined.

Conversely, assigning a single-step, possibly degenerate, probability Pv ∈ ∆(Ω1) at each
node v ∈ Tk, k < n, defines an n-step probability measure P ∈ ∆(Ωn) as follows: for each
ω = (ω1 . . . ωn) ∈ Ωn,

(2.7) P(ω) = Pv0(ω
1)Pv1(ω

2) · · ·Pvn−1(ω
n),

where the node vk corresponds to the set P(ω1 · · ·ωk).

Multi-step and single-step martingale and risk-neutral measures. The above construction
preserves the martingale and risk-neutral properties of measures as stated in the following
proposition the proof of which can be found in [4, Section 3.4].

Proposition 2.1. Let P ∈ ∆(Ωn) and let T be the supporting tree. Then P is a martingale
measure (resp. risk-neutral measure) in an n-step market model if and only if each Pvk ∈
∆(Ω1) in (2.7) is a martingale measure (resp. risk-neutral measure) in the corresponding
underlying single-step model. In other words:

P ∈ Mn ⇔ ∀k Pvk ∈ M1

P ∈ Nn ⇔ ∀k Pvk ∈ N1.

�

No-arbitrage pricing of contingent claims. Let X be a European type contingent claim in
an n-step market model. Since our market model is incomplete for m ≥ 2, the no-arbitrage
price of X at time k = 0, 1, . . . , n − 1 is not unique. Each no-arbitrage price of X at time
k is obtained as a discounted conditional expectation with respect to an n-step risk-neutral
measure P ∈ Nn as follows:

(2.8) CP(X, k) = R−(n−k)
EP(X | Fk).

Notice that for k > 0, CP(X, k) is a random variable measurable with respect to the algebra
Fk and hence it is determined by its values on the sets of the partition Pk, that is, on the
nodes v ∈ Tk of the supporting tree at time k. By varying the risk-neutral measures we
obtain that for each v ∈ Tk the set of no-arbitrage prices of X is an open interval:

(2.9) (Cmin(v),Cmax(v)) = {CP(X, k)(v) ∈ R | P ∈ Nn} .

3. The single-step case

In this section we consider a single-step model, that is, we assume n = 1 throughout.
7



3A. Specification of the model. Recall from Section 2 that the sample space Ω1 for the
single-step model consists of (m×1)-matrices with binary coefficients. Thus Ω1 has N = 2m

elements and they are ordered with respect to the reverse lexicographical order. For example,
if m = 3 then we obtain the following sequence of elements of Ω1:


1
1
1





1
1
0





1
0
1





1
0
0





0
1
1





0
1
0





0
0
1





0
0
0




There are only two instances of time T = {0, 1} and the initial prices Si(0) of the risky
assets are known; here i = 1, 2, . . . , m. The terminal prices are random variables given by
Si(1) = Si(0)ψi(1), where ψi(1) ∈ {Di, Ui} are price ratios.

3B. Martingale measures. The system of equations (2.5) which defines the set Mn of
martingale measures on Ωn takes the following form for n = 1:

EP(ψi(1)) = R,

where i = 1, . . . , m. It follows that a measure P = (p1, p2, . . . , pN) on Ω1 is a martingale
measure (P ∈ M1) if it satisfies the following system of equations and inequalities:

ψ1(ω1)p1 + ψ1(ω2)p2 + · · ·+ ψ1(ωN)pN = R(3.1)

· · · · · ·
ψm(ω1)p1 + ψm(ω2)p2 + · · ·+ ψm(ωN)pN = R

p1 + p2 + · · ·+ pN = 1

pj ≥ 0 .

Here we used the simplified notation ψi(ωj) to denote ψi(1)(ωj).

Let Ψ be an (m×N)-matrix that corresponds to the first m equations in the above system.
That is,

(3.2) Ψij = ψi(ωj)

for i = 1, . . . , m and j = 1, . . . , N = 2m. Taking into account the ordering of Ω1 we obtain,
as an example for m = 3, the following expression for Ψ:

Ψ =



U1 U1 U1 U1 D1 D1 D1 D1

U2 U2 D2 D2 U2 U2 D2 D2

U3 D3 U3 D3 U3 D3 U3 D3


 .

It follows from the above discussion that M1 (the set of martingale measures on Ω1) is a
subset of ∆(Ω1) (the set of all probability measures on Ω1) such that each P ∈ M1 satisfies
the system of linear equations

(3.3) Ψ P = R,

where Ψ is given by (3.2) and R is a column vector of size m as follows:

(3.4) R =




R
R
...
R


 .
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Let A ⊂ R
N be an affine subspace of solutions of (3.3):

A =
{
P ∈ R

N | Ψ P = R
}
.

We can now summarize the description of the set M1 of martingale measures on Ω1. Geo-
metrically M1 forms a subset of RN which is an intersection of the simplex ∆(Ω1) ⊂ R

N of
all probability measures on Ω1 with an affine subspace A:

M1 = ∆(Ω1) ∩A.

Thus M1 is a bounded convex polytope or, in other words, the convex hull of finitely many
points called vertices. Recall that the risk-neutral measures are those martingale measures
P = (p1, . . . , pN) for which pj > 0 for all j = 1, . . . , N . Thus the polytope M1 of martingale
measures on Ω1 is the closure of N1, the set of risk-neutral measures on Ω1.

3C. Interval of no-arbitrage continent claim prices. Consider a European contingent
claim X = f(S(1)) in the single-step model. Here S(1) = (S1(1), S2(1), . . . , Sm(1)) is the
stock price vector at maturity and f : Rm → R is the pay-off function of X.

In this single-step model, there is only one node on the supporting tree T. It is a root of T
that corresponds to time t = 0. Therefore, there is only one open interval of the no-arbitrage
prices of X (see (2.9)). We will use a simplified notation (Cmin(0),Cmax(0)) for that open
interval.

Recall (see Section 2B) that each no-arbitrage price of X at time zero CP(X, 0) (or, equiv-
alently, each point in the above open interval) is obtained by computing the expectation of
X with respect to a risk-neutral measure on Ω1 discounted to time zero:

(3.5) CP(X, 0) = R−1
EP(X),

where P ∈ N1. Since the set M1 of martingale measures on Ω1 is the closure of the set N1 of
risk-neutral measures on Ω1 we obtain that

[Cmin(0),Cmax(0)] = {CP(X, 0) ∈ R | P ∈ M1} .
It follows that the upper and lower bounds of the above interval are:

Cmax(0) = max{CP(X, 0) | P ∈ M1}(3.6)

Cmin(0) = min{CP(X, 0) | P ∈ M1}.(3.7)

Finding the quantities Cmax(0) and Cmin(0) is an important problem of contingent claim
pricing.

3D. Computing bounds of the no-arbitrage contingent claim price interval via

simplex algorithm. With the given contingent claim X we will associate a vector X =
(X1, X2, . . . , XN) ∈ R

N , where

(3.8) Xj = f(S1(1)(ωj), . . . , Sm(1)(ωj)),

where j = 1, . . . , N . Then the expected value of X with respect to a probability measure
P ∈ ∆(Ω1) can be presented as follows:

(3.9) EP(X) =
N∑

i=1

Xipi = 〈X,P〉,

where 〈·, ·〉 denotes the Euclidean scalar product in R
N .

9



For a fixed X, a map C·(X, 0) is a linear functional on R
N :

(3.10) CP(X, 0) = R−1〈X,P〉.
So the closed interval [Cmin(0),Cmax(0)] is the image of the set M1 of martingale measures
on Ω1 with respect to this linear functional.

As a result, the problem of finding bounds (3.6)-(3.7) for the no-arbitrage price interval of
a contingent claim X can be formulated in terms of the problem of finding extrema for a
linear functional C·(X, 0) on a convex polytope M1 in R

N .

As is well known, these extrema are attained at the vertices of M1. Moreover finding both
the extremal values of C·(X, 0) and the vertices of M1 at which they are attained is the
standard problem of Linear Programming (LP). For example, the simplex algorithm has
been specifically designed to solve this type of problems.

The following describes the algorithm to compute the upper bound Cmax(0) of the interval
of no-arbitrage prices for a given contingent claim X.

Given data:

• Initial stock prices: S1(0), . . . , Sm(0).

• Risk-free growth factor: R > 0.

• Parameters of the binomial models: {Di, Ui}, where i = 1, . . . , m.

• Pay-off function f.

Step one: compute input data

• Compute entries Ψij of the matrix Ψ for i = 1, . . . , m and j = 1, . . . , N = 2m (see (3.2) ).

• Compute terminal stock prices: Si(1)(ωj) = Si(0)Ψij, where i = 1, . . . , m and j =
1, . . . , N .

• Compute the pay-off values at maturity: Xj = f(S1(1)(ωj), . . . , Sm(1)(ωj)), j = 1, . . . , N .

Step two: apply simplex algorithm

Solve the following LP problem.

Maximize function:

(3.11) P 7→ CP(X, 0) = R−1〈X,P〉 = R−1 (X1p1 + · · ·+XNpN) ,

subject to constraints:

Ψ11p1 + · · ·+Ψ1NpN = R

...

Ψm1p1 + · · ·+ΨmNpN = R

p1 + · · ·+ pN = 1

pi ≥ 0

Output:

• The upper bound Cmax(0) of the no-arbitrage price interval for X at t = 0.
10



• The maximal martingale measure Pmax, or, in other words, the vertex Pmax = (p∗1, . . . , p
∗
N) ∈

M1 at which the maximum Cmax(0) is attained.

Notice that the maximum of a functional can be attained at several vertices and the algorithm
will choose one of them in such a case.

The lower bound Cmin(0) of the no-arbitrage price interval for X at t = 0 can be found along
similar lines with appropriate modifications in the algorithm.

Remark 3.1. In [3, Section 3], the LP problem (3.11) is solved analytically for a special case
of two assets. Explicit formulas for the bounds of the no-arbitrage option price interval as
well as for the corresponding extremal martingale measures are obtained.

3E. Hedging strategies and hedging portfolios. We take a position of a seller of a
European contingent claim X who sold X at time t = 0 for the price CP(X, 0), where P

is some risk-neutral measure on Ω1, and is willing to hedge a short position in X with a
portfolio consisting of stock and bond.

A hedging strategy, or (equivalently) a hedging portfolio in our single-step model is a
vector

(α1, . . . , αm, β) ∈ R
m+1,

where β is the number of bonds held at time 0 and αi is a position in the i-th stock at time
0. The hedging portfolio value process V = (V (t))t=0,1 is defined by:

(3.12) V (t) = βB(t) +

m∑

i=1

αiSi(t),

where t = 0, 1. The initial value of the hedging portfolio

(3.13) V (0) = β +
m∑

i=1

αiSi(0)

is called a set-up cost of the hedging portfolio. If an investor is willing to invest the whole
amount CP(X, 0) into a hedging strategy, then we set: V (0) = CP(X, 0).

3F. Extremal hedging strategies. Let (α1, . . . , αm, β) ∈ R
m+1 be a hedging strategy for

a contingent claim X. We will call it a minimum cost super-hedge for X if:

(3.14) V (1)(ωj) ≥ f(S1(1)(ωj), . . . , Sm(1)(ωj)) = Xj

for all ωj ∈ Ω1, and the strategy has minimal set-up cost V (0). In order to identify a minimum
cost super-hedge, one needs to solve the following LP problem.

Minimize the functional

(3.15) (α1, . . . , αm, β) 7→ β +
m∑

i=1

αiSi(0)

11



subject to constraints:

βR + α1S1(0)Ψ11 + α2S2(0)Ψ21 · · ·+ αmSm(0)Ψm1 ≥ X1

βR + α1S1(0)Ψ12 + α2S2(0)Ψ22 · · ·+ αmSm(0)Ψm2 ≥ X2

...

βR + α1S1(0)Ψ1N + α2S2(0)Ψ2N · · ·+ αmSm(0)ΨmN ≥ XN .

It is straightforward to verify that the LP problem (3.15) is dual to the LP problem (3.11)
studied in Section 3D. The next Proposition follows from the duality theorem of linear
programming (see e.g. [4, Appendix]).

Proposition 3.2. Let X = f(S(1)) be a European contingent claim in the single-step bi-
nomial model with m risky assets. There exists a minimum cost super hedging strategy
(α1, . . . , αm, β) ∈ R

m+1 for X. This strategy satisfies (3.14) and has a set-up cost which is
equal to the upper bound of the no-arbitrage contingent claim price interval:

V (0) = Cmax(0).

�

By analogy with a minimum cost super-hedge, we will introduce a maximum cost sub-

hedge for X. It is a hedging strategy (α1, . . . , αm, β) ∈ R
m+1 such that

(3.16) V (1)(ωj) ≤ f(S1(1)(ωj), . . . , Sm(1)(ωj)) = Xj

for all ωj ∈ Ω1, and the strategy has maximal set-up cost V (0).

Reasoning along the similar lines as above, one identifies a maximum cost sub-hedge as a
solution of the appropriate LP problem. Applying the duality theorem of linear programming
to this case, we obtain an analog of Proposition 3.2. The maximum cost sub-hedge exists
and its set-up cost equals the lower bound of the no-arbitrage contingent claim price interval:
V (0) = Cmin(0).

In what follows, for simplicity we will call a minimum cost super-hedge an upper hedging

strategy, or simply an upper hedge, we will call a maximum cost sub-hedge a lower

hedging strategy, or simply a lower hedge for X. Notice that in general these strategies
are arbitrage opportunities, as will be explained in Section 3G below.

Remark 3.3. In [3, Section 3], the LP problems for upper and lower hedges are solved
analytically for a special case of two assets. Explicit formulas for the extreme hedging
strategies are obtained.

3G. The upper and lower hedges are arbitrage strategies. Recall that if the number
of stocks m ≥ 2 then the market model is incomplete. This means that there are unattainable
contingent claims traded on the market. For an unattainable contingent claim X, Cmin(0) <
Cmax(0), so that an interval of no-arbitrage prices is not empty. Moreover, for such contingent
claim, there is no hedging strategy that perfectly replicates X, meaning that there is no
strategy (α1, . . . , αm, β) ∈ R

m+1 for which V (1)(ωj) = f(S1(1)(ωj), . . . , Sm(1)(ωj)) = Xj for
all ωj ∈ Ω1.
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Let (α1, . . . , αm, β) ∈ R
m+1 be an upper hedging strategy for an unattainable contingent

claim X = f(S(1)). Recall that it means that V (1)(ωj) ≥ f(S1(1)(ωj), . . . , Sm(1)(ωj)) = Xj

for all ωj ∈ Ω1, and the strategy has a set-up cost V (0) = Cmax(0). It follows that there
exists at least one ω0 ∈ Ω1 for which there is a strict inequality: V (1)(ω0) > X0.

The following is an arbitrage strategy for a contingent claim seller:

(1) Sell a contingent claim at time t = 0 for Cmax(0).

(2) Buy an upper hedging portfolio portfolio (α1, . . . , αm, β) at time t = 0 for Cmax(0).

(3) The balance at maturity is V (1)(ωj)−Xj ≥ 0 which is strictly positive for the scenario
ω0.

The argument for the lower hedging strategy is analogous. This proves the following obser-
vation.

Proposition 3.4. Let X = f(S(1)) be an unattainable contingent claim in our single-step
market. Then both the upper hedge and the lower hedge of X are arbitrage strategies. The
upper hedging strategy gives advantage to the contingent claim seller, while the lower hedging
strategy gives advantage to the contingent claim buyer. �

4. The multi-step case

In this section we consider the n-step market model with m risky assets and a contingent
claim X with the pay-off function f .

We are going to extend the results of the previous section to this multi-step case. Let us
first recall a few important facts from Section 2 and introduce some convenient notation.

4A. Quick review and necessary notation. A sample space of the n-step model is Ωn

and there is an associated supporting tree T in which the set of vertices at time k ∈ T is
denoted by Tk. We say that the set Tn consists of leaves, and each set Tk, k < n consists
of nodes. Each set Tk , k = 0, 1, . . . , n is in a bijective correspondence with the partition Pk

of the sample space Ωn.

Any probability measure P ∈ ∆(Ωn) in the n-step model defines a set of single-step proba-
bility measures Pv ∈ ∆(Ω1) for each node v of T.

Let ω = (ω1, . . . , ωn) ∈ Ωn be an element of the sample space. It defines a unique path on
the tree T from the root to the leaf it represents. Such a path is a sequence of nodes which
we denote by

v0(ω), v1(ω), . . . , vn(ω),

where v0(ω) is the root. Then for any measure P ∈ ∆(Ωn) the value P(ω) can be presented
as follows:

(4.1) P(ω) = Pv0(ω)

(
ω1
)
Pv1(ω)

(
ω2
)
· · ·Pvn−1(ω) (ω

n) .

We will use the above notation to write down a conditional expectation of a random variable
X on Ωn with respect to a measure P ∈ ∆(Ωn). Let Fk be a subalgebra of the algebra 2Ωn of
all subsets of Ωn. The conditional expectation EP(X|Fk) is a random variable measurable
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with respect to the algebra Fk. Therefore it is determined by its values EP(X|Fk)(v) on the
nodes v ∈ Tk.

Let us fix a node v ∈ Tk and let P(v) denote the set of the partition Pk which corresponds
to the node v. It follows straightforwardly from the properties of the conditional expectation
that the value EP(X|Fk)(v) can be computed recursively starting from the leaves of the
supporting tree T and, speaking informally, folding back the tree, by computing expectations
with respect to suitable single-step measures:

EP(X|Fk)(v) =
∑

ω∈P(v)

X(ω)
P(ω)

P(P(v))

=
∑

ω∈P(v)

X(ω)
n∏

j=k+1

Pvj−1(ω)(ω
j).(4.2)

Here Pvj(ω) are the single-step measures that occur in (4.1).

Recall that if P is a risk-neutral (resp. martingale) measure on Ωn, then Pv is a risk-neutral
(resp. martingale) measure on Ω1 for each node v of T, and vise versa.

4B. Extremal martingale measures. Let X be a contingent claim. Given an n−step
risk-neutral measure P ∈ Nn, a no-arbitrage price of X at time k with respect to P can be
computed as the conditional expectation of X with respect to an algebra Fk discounted to
time k:

(4.3) CP(X, k) = R−(n−k)
EP(X|Fk).

The time k no-arbitrage price of X is a random variable measurable with respect to the
algebra Fk. We will use the notation CP(X, k)(v) for the price of X which corresponds to a
node v ∈ Tk. Using the representation (4.2) we have:

(4.4) CP(X, k)(v) = R−(n−k)
∑

ω∈P(v)

X(ω)

n∏

j=k+1

Pvj−1(ω)(ω
j).

Varying the risk-neutral measures P ∈ Nn, we obtain at each node v ∈ Tk an open interval
of no-arbitrage prices for a given contingent claim X (see (2.9)):

(Cmin(v),Cmax(v)) = {CP(X, k)(v) ∈ R | P ∈ Nn} .
The upper and lower bounds of this interval are:

Cmin(v) = inf{CP(X, k)(v) | P ∈ Mn}(4.5)

Cmax(v) = sup{CP(X, k)(v) | P ∈ Mn}.(4.6)

Recall that Mn stands for the set of n−step martingale measures on Ωn and Mn is a closure
of Nn.

Our goal is to identify the bounds Cmin(v) and Cmax(v) for each node v on the supporting
tree T. We will start with the discussion of extremal martingale measures that produce
these bounds.
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Let 0 ∈ T be the root and let Pmin ∈ Mn and Pmax ∈ Mn be the extremal martingale
measures for which the bounds Cmin(0) and Cmax(0) (respectively) are attained. In other
words,

Cmin(0) = R−n
EPmin

(X)(4.7)

Cmax(0) = R−n
EPmax(X).(4.8)

The following proposition shows that the extremal measures Pmin and Pmax produce the
bounds of no-arbitrage price intervals for X also at all other nodes of the tree.

Proposition 4.1. Let Pmin ∈ Mn and Pmax ∈ Mn be the extremal martingale measures
defined in (4.7) and (4.8) respectively for a given contingent claim X.

Then for any k ∈ {0, 1, . . . , n− 1} and any node v ∈ Tk the following equalities are true:

Cmin(v) = R−(n−k)
EPmin

(X|Fk)(v)(4.9)

Cmax(v) = R−(n−k)
EPmax(X|Fk)(v),(4.10)

where the bounds Cmin(v) and Cmax(v) are defined in (4.5) and (4.6), respectively.

Proof. We will present the proof for Pmax leaving an analogous proof for Pmin to the reader.

Denote the measure Pmax by P for simplicity. Suppose that there exists a different martingale
measure P

′ ∈ Mn (P′ 6= P) and a node v ∈ Tk such that the upper bound Cmax(v) of the
no-arbitrage price interval for X at v is attained for P

′, rather than for P. In other words,
suppose that the following holds:

EP(X|Fk)(v) < EP′(X|Fk)(v).

According to formula (4.2), this is equivalent to

∑

ω∈P(v)

X(ω)

n∏

j=k+1

Pvj−1(ω)(ω
j) <

∑

ω∈P(v)

X(ω)

n∏

j=k+1

P
′
vj−1(ω)

(ωj).(4.11)
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Let us now compute the expected value EP(X). According to our assumption (4.11), we
have that

EP(X) =
∑

ω∈Ωn

X(ω)P(ω)

=
∑

ω∈P(v)

X(ω)P(ω) +
∑

ω/∈P(v)

X(ω)P(ω)

=
∑

ω∈P(v)

X(ω)

n∏

j=1

Pvj−1(ω)(ω
j) +

∑

ω/∈P(v)

X(ω)P(ω)

=

k∏

j=1

Pvj−1(ω)(ω
j)
∑

ω∈P(v)

X(ω)

n∏

j=k+1

Pvj−1(ω)(ω
j) +

∑

ω/∈P(v)

X(ω)P(ω)

<
k∏

j=1

Pvj−1(ω)(ω
j)
∑

ω∈P(v)

X(ω)
n∏

j=k+1

P
′
vj−1(ω)

(ωj) +
∑

ω/∈P(v)

X(ω)P(ω)

= EP′′(X),

where P
′′ ∈ Mn is a martingale measure obtained by replacing each single-step measure

Pv (which corresponds to the n−step measure P) by the single-step measure P
′
v (which

corresponds to the n−step measure P
′) at the node v and further at all the successors of v

on the tree. It follows from the above estimate that there exists a martingale measure P
′′

for which

R−n
EP′′(X) > Cmax(0),

which contradicts the assumption that Cmax(0) is the upper bound of the no-arbitrage price
interval for X at zero. The argument for Pmin is analogous. �

4C. Computing bounds of the no-arbitrage contingent claim price interval. It is
a consequence of the above proposition that the bounds Cmin(0) and Cmax(0) of the no-
arbitrage price interval for a given contingent claim X can be computed recursively starting
from the leaves of the supporting tree T and going backwards in time.

More specifically. For each penultimate node v ∈ Tn−1 we solve a single-step LP problem
described in Section 3D, where v plays the role of a root of the corresponding single-step
tree. The option payoff values are computed at the leaves adjacent to v and are used as input
data for the simplex algorithm described in Section 3D. Solving the single-step LP problem,
we find a measure Pmax,v, a maximal martingale measure for this single-step problem and
determine the upper bound Cmax(v) at the node v.

Once the upper bound of the no-arbitrage option price interval at each node of Tn−1 is
computed, the same procedure is applied at each node of Tn−2. Consider a node w ∈ Tn−2.
This node will play the role of a root of the corresponding single-step tree. Each node
v ∈ Tn−1 adjacent to w will play the role of the leaf of a single-step tree rooted at w. Each
upper bound Cmax(v) at node v will replace the corresponding option pay-off value at that
node.
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Continuing this way, we arrive at the root of the n−step tree and determine Cmax(0). The
argument for the lower bound Cmin(0) is analogous.

This algorithm works for a general European type contingent claim. It is, however, infeasible
from a computational point of view for the multi-step models, because the number of nodes
grows exponentially with the number of time steps in the model. We discuss the improvement
of the algorithm in Section 5, where we show that for contingent claims with pay-off functions
from a special class one can significantly reduce the computational complexity.

4D. Hedging strategies and hedging portfolios. Similar to the single-step case consid-
ered in Section 3E, we take a position of a seller of a European contingent claim X who sold
X at time t = 0 for the price CP(X, 0), where P ∈ Mn , and is willing to hedge a short
position in X with a portfolio consisting of stock and bond.

A hedging strategy or, equivalently, a hedging portfolio in our n-step model is a vector
stochastic process

φ = (α1(t), . . . , αm(t), β(t))t=0,1,...,n−1

where β(t) is the number of bonds held in the portfolio over the time interval [t, t+1) and αi(t)
is a position in the i-th stock held over the time interval [t, t+ 1). We will assume that β(t)
as well as the vector α(t) = (α1(t), . . . , αm(t)) are Ft−measurable for all t = 0, 1, . . . , n− 1.

The hedging portfolio value process V = (V (t))t=0,1,...,n is defined by:

(4.12) V (t) = β(t)B(t) +

m∑

i=1

αi(t)Si(t),

where B(t) is a bond price at time t and Si(t) is the i-th stock price at time t. The initial
value of the hedging portfolio

(4.13) V (0) = β(0) +

m∑

i=1

αi(0)Si(0)

is a set-up cost of the hedging portfolio. If an investor is willing to invest the whole amount
CP(X, 0) into a hedging strategy, then we have: V (0) = CP(X, 0).

Let us consider the flow of capital from the time moment t to the time moment t+1. At time t,
the hedging portfolio (α(t), β(t)) is set up. Its value is given by formula (4.12). The portfolio
is held until time t+1 when the new stock price vector S(t+1) = (S1(t+ 1), . . . , Sm(t+ 1))
becomes known, and a bond price changes from B(t) to B(t + 1) = B(t)R. Just prior to
time t + 1, the value of the hedging portfolio is:

β(t)B(t+ 1) +

m∑

i=1

αi(t)Si(t+ 1).

At time t + 1, after the new stock and bond prices are announced, the hedging portfolio
is rebalanced. The number of bonds changes to β(t + 1) and the number of shares of the
i−th stock changes to αi(t+ 1). So after rebalancing at time t+ 1, the value of the hedging
portfolio becomes:

β(t+ 1)B(t+ 1) +
m∑

i=1

αi(t+ 1)Si(t+ 1).
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It is convenient to associate a hedging portfolio with a node of the supporting tree. Let
v ∈ Tk be a node of the supporting tree at time k. A hedging portfolio associated with

the node v is a vector

φ(v) = (α1(v), . . . , αm(v), β(v)) ∈ R
m+1,

where β(v) is the number of bonds held at node v after the rebalancing at time k and αi(v)
is a position in the i-th stock at node v after the rebalancing at time k. The value of the
hedging portfolio associated with the node v after rebalancing at time k is

(4.14) Vφ(v)(v) = β(v)B(k) +

m∑

i=1

αi(v)Si(v).

Here Si(v) is the i-th stock price at node v (corresponding to time k).

Let us denote by vω ∈ Tk+1 a node adjacent to v. We will use the notation Vφ(v)(vω) for the
value of the hedging portfolio associated with node v just before the rebalancing at node vω
(at time k + 1). We have:

(4.15) Vφ(v)(vω) = β(v)B(k + 1) +

m∑

i=1

αi(v)Si(vω).

Here Si(vω) is the i-th stock price at node vω (corresponding to time k + 1).

4E. Extremal hedging strategies. Assume that the maximal value Cmax(v) of the con-
tingent claim X is computed for each node v ∈ T. If follows from Proposition 3.2 that for
each node v ∈ T and for each node vω adjacent to v, there exists a portfolio φmax(v) =
(αmax(v), βmax(v)) such that

Vφmax(v)(v) = Cmax(v)

Vφmax(v)(vω) ≥ Cmax(vω).
(4.16)

The set-up cost of the hedging strategy φmax equals Cmax(0). This strategy produces a
surplus at each time step with non-zero probability. By analogy with the single-step case,
this strategy is called a minimum-cost super hedge. The following proposition summarizes
the above discussion.

Proposition 4.2. Let X be a European type contingent claim. There exists a minimum cost
super-hedging strategy φmax with the set-up cost Cmax(0) and satisfying conditions (4.16) for
each node v ∈ T. �

A similar argument yields a maximum-cost sub-hedge. That is, a strategy φmin with
initial cost equal to Cmin(0) and satisfying

Vφmin(v)(v) = Cmin(v)

Vφmin(v)(vω) ≤ Cmin(vω).
(4.17)

for each node v ∈ T.
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5. Improvements of the algorithm

5A. The recombinant graph. The recursive algorithm for computing the bounds of the
no-arbitrage contingent claim interval described in the previous section can be improved by
descending to the recombinant graph, which we define as follows.

Let T be the supporting tree for our n-step market model. Introduce the following equiva-
lence relation on the vertices of T.

Definition 5.1. Let u, v ∈ Tk, 0 < k ≤ n. Let ωu and ωv be (m × k)-matrices associated
with u and v respectively. Vertices u and v are called equivalent if and only if the sum of
row entries of the matrix ωu is equal to the sum of row entries of the matrix ωv for each row.
For a given vertex v, we will denote by [v] an equivalence class consisting of vertices that are
equivalent to v.

Definition 5.2. Let Tr be a directed rooted graph with the vertex set consisting of the
above equivalence classes and such that there is an edge from [v] to [u] if and only if there
is an edge from v to u in the tree T. The graph Tr is called the recombinant graph.

Similar to the case of the supporting tree T, we will call terminal vertices of the recombinant
graph Tr leaves, and non-terminal vertices of Tr nodes. Observe that each node of the
recombinant graph has 2m outgoing edges, however, the number of incoming edges can vary.
Thus each node and its descendants form the tree which corresponds to the appropriate
single-step model.

The recursive algorithm for computing the bounds of the no-arbitrage contingent claim
intervals is essentially the same as described before and it works for a general contingent
claim of a European type. For each penultimate node we solve the single-step optimization
problem and proceed recursively to the root. Since the recombinant graph in the n-step
model with m assets has (k + 1)m nodes at level k ≤ n, running the algorithm for small m
and not too big n becomes feasible.

Example 5.3. We have tested the above improvement by running a computer program that
computes the vertices of the polytope of martingale measure, finds the maximal martingale
measure and the values of Cmax(v) for each node of the recombinant graph. For example,
the program terminates within a few seconds for m = 5 assets and n ≤ 8. Also it takes a
second to compute the above data for m = 12 assets and n = 1 step. This is relevant in
view of the next improvement. ♦

5B. Bounds of the no-arbitrage price interval for special contingent claims. For
contingent claims that belong to a certain class (fibrewise supermodular contingent claims),
further improvements of the algorithm described in Section 4C are available. For such con-
tingent claims, both the maximal martingale measure and the minimal martingale measure
are product measures. As a result, the bounds of the no-arbitrage contingent claim price
interval can be computed by means of solving the LP problem described in Section 3D only
once.
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Theorem 5.4. Suppose a contingent claim X : Ωn → R is fibrewise supermodular (see Def-
inition A.10).

(i) There exists a single-step martingale measure P ∈ M1 such that Pmax = P⊗· · ·⊗P = P
n.

That is, the maximal martingale measure is a product measure.

(ii) If m = 2 or
∑m

i=1
R−Di

Ui−Di
≤ 1 then the minimal martingale measure is also product:

Pmin = (P′)n, for some single-step martingale measure P
′.

�

Proof. (i). This part follows immediately from Theorem A.12, (i) (see Appendix), with
bi =

R−Di

Ui−Di
, i = 1, . . . , m (see (A.4)).

(ii). If m > 2, the statement follows immediately from Theorem A.12, (ii) (see Appendix).

In the case of m = 2 assets, the single step martingale measure form an interval and the
extremal measures are its endpoints. If the maximal martingale measure in an n-step model
is a product Pmax = P then it means that P is an endpoint of the above interval. Thus the
minima are attained on the other endpoint P

′. It follows that Pmin = (P′)n. �

Corollary 5.5. Under the conditions of Theorem 5.4, for a fibrewise supermodular contin-
gent claim X, one has the following:

Cmax(v) = EPn(X|Fk)(v)

=
∑

ω∈P(ω1···ωk)

n∏

j=k+1

P(ωj)X(ω),(5.1)

for v ∈ Tk corresponding to the set P(ω1 · · ·ωk) ∈ Pk. The summation goes over the elements
ω = (ω1 · · ·ωn) ∈ Ωn with fixed first k columns. Moreover,

Cmin(v) = E(P′)n(X|Fk)(v)

=
∑

ω∈P ′(ω1···ωk)

n∏

j=k+1

P
′(ωj)X(ω),(5.2)

In what follows we describe the maximal and the minimal martingale measure explicitly and
evaluate the above formulas.

6. Pricing and hedging fibrewise supermodular contingent claims

6A. Explicit formula for the upper bound of a no-arbitrage price interval. The
one-step maximal martingale measure P from Theorem 5.4 can be described explicitly as
follows (see Equation (A.6)). Let µk = (1, 1, . . . , 1, 0, . . . , 0)T be the column vector with the
first k entries equal to 1 and the rest zero. Then

(6.1) P(ω) =

{
bi − bi+1 if ω = µi

0 otherwise,

where bi =
R−Di

Ui−Di
and b0 = 1. Notice that this measure is highly degenerate because among

its 2m entries only m of them are nonzero.
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Example 6.1. If m = 2 then

P ( 1
1 ) = b2, P ( 10 ) = 0, P ( 0

1 ) = b1 − b2, P ( 0
0 ) = 1− b1

which agrees with the formula for Qλ+ in [3, Remark 1]. ♦

Thus in the formula (5.1) the summation takes place over matrices with fixed k columns and
the remaining columns are one of the µi’s only:

(6.2) Cmax(v) =
∑

i∈In−k

P(µi1) · · ·P(µin−k
)X(ω1 · · ·ωkµi1 · · ·µin−k

),

where i = (i1, . . . , in−k), ij ∈ I = {0, 1, . . . , m} and the first k columns ω1 · · ·ωk correspond
to the vertex v ∈ Tk. Notice that even in this case the number of summands for Cmax(0) is
exponential in n. However, if the payoff is path-independent then many of these summands
are equal and we get:

(6.3) Cmax(v) =
∑

k0+...+km=n

n!

k0! · · ·km!
P(µ0) · · ·P(µm)X


ω1 · · ·ωk µ0 · · ·µ0︸ ︷︷ ︸

k0 times

· · ·µm · · ·µm︸ ︷︷ ︸
km times




6B. Explicit formula for the lower bound of a no-arbitrage price interval. Let
νi ∈ R

m, for i = 1, . . . , m be the standard basis vector. That is, the i-th coordinate of νi is
equal to 1 and the others are zero. Suppose that

∑m
i=1 bi ≤ 1, where bi =

R−Di

Ui−Di
, i = 1, . . . , m

that is, the assumption of Theorem 5.4, (ii) is satisfied. It follows from definition given in
Equation (A.7) in the Appendix that the minimal one-step martingale measure P

′ is then
given by

P
′(ω) =





1−∑m
i=1 bi if ω = (0, . . . , 0)T

bi if ω = νi
0 otherwise.

Example 6.2. If m = 2 we have

P
′ ( 1

1 ) = 0, P′ ( 1
0 ) = b1, P

′ ( 0
1 ) = b2, P

′ ( 0
0 ) = 1− b1 − b2,

which agrees with the formula for Qλ−
in [3, Remark 1]. ♦

The formulas for Cmin(v) are analogous to the formulas (6.2) and (6.3) for Cmax(v) in which
the factors P(µi) are replaced by P

′(νi).

6C. Extremal hedging strategies. The purpose of this section is to present an effective
algorithm to compute the minimum-cost superhedge and the maximum-cost subhedge for a
firbewise supermodular contingent claim X. Let us start with the minimum-cost superhedge.
It follows from Theorem 5.4 that the values of Cmax(v) can be computed effectively for each
vertex of the supporting tree; see formulas (6.2) and (6.3).

(1) Given Cmax(0) and Cmax(v) for each v ∈ T1, it follows from Proposition 3.2 that there
exists a hedging portfolio (α1(1), . . . , αm(1), β(1)) such that its value satisfies

V(α(1),β(1))(v) ≥ Cmax(v)

for each v ∈ T1.
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(2) At time t = 1 one of the scenarios for the first step has been realized and the maximal
value of the contingent claim is Cmax(v1), where v1 ∈ T1 is the vertex corresponding to
the realized scenario. If V(α(1),β(1))(v1) > Cmax(v1) then the surplus (a local residual) can
be withdrawn and Cmax(v1) is the value of the new hedging portfolio.

(3) Since the values Cmax(w) for every w ∈ T2 adjacent to v1 are known, we repeat the 1-
step argument again as in (1). That is, there exists a portfolio (α1(2), . . . , αm(2), β(2))
with initial value Cmax(v1) and such that

V(α(2),β(2))(v) ≥ Cmax(w)

for each w ∈ T1 adjacent to v1.

(4) We repeat this argument at each time until the final portfolio is chosen at time t = n−1.

Observe that in the above approach the dual linear program as in Proposition 3.2 is run n
times.

For m = 2 it is not difficult to give explicit formulas for the hedging portfolios, see [3,
Theorem 4]. For a general m the task at each step is to minimize a linear functional in R

m+1

on a set defined by 2m inequalities.

The algorithm of computing a maximum-cost subhedge is similar to the above described
algorithm for computing a minimum-cost superhedge and is left to the reader.

7. Applications of Theorem 5.4 and concrete examples

7A. Fibrewise supermodular contingent claims. In the present setting a random vari-
able X : Ωn → R is fibrewise supermodular (cf. Definition A.10) if for each k = 1, 2, . . . , n
its restriction to the subset consisting of all entries, except those in the k-th column, fixed
is supermodular (see definition on page 29).

In what follows we present a fairly general construction which we will subsequently specify
to concrete examples of contingent claims.

Definition 7.1. A function p : Rk → R is called R-polynomial in k variables if p(x1, . . . , xk)
is a linear combination of the Cobb-Douglas functions: xp11 · · ·xpkk , where 0 ≤ pi ∈ R; see [5,
Proposition 2.2.4]. In an ordinary polynomial the exponents pi are non-negative integers.

Lemma 7.2. Let h : R → R be a convex function and let p(x11, . . . , xmn) be an R-polynomial
in mn variables with non-negative coefficients. Let Si(j), i = 1, . . . , m, j = 1, . . . , n be stock
price values in the n-step market model with m assets. Then the random variable X : Ωn → R

X = h (p(S1(1), . . . , Sm(1), . . . , S1(n), . . . , Sm(n)))

is fibrewise supermodular.

Proof. Since Si(k) = Si(0)ψi(1) · · ·ψi(k), the polynomial in the stock prices Si(j) is also a
polynomial in the stock price ratios ψi(j). By restricting it to the element of the sample space
Ωn consisting of matrices with fixed all columns but the k-th one we obtain an R-polynomial
(with non-negative coefficients) in ψi(k). The statement then follows from Proposition 2.2.4
(b) and Proposition 2.2.5 (a) in [5]. �
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Example 7.3 (European basket call option). Let K ≥ 0 and let h(x) = (x − K)+ :=
max{x−K, 0} and consider a random variable

X = h

(
∑

i

aiSi(n)

)
=

(
∑

i

aiSi(n)−K

)+

,

where ai ≥ 0,
∑

i ai = 1. The argument inside the function h is clearly a polynomial in Si(n)
with non-negative coefficients and hence Lemma 7.2 applies. Consequently, X is fibrewise
supermodular. Observe that the same conclusion follows from [5, Proposition 2.2.6]

Evaluating formula (6.3) for the upper bound of the no-arbitrage contingent claim price
interval and the corresponding formula for the lower bound we obtain
(7.1)

Cmax(v) =
∑

k0+...+km=n−k

n!

k0! · · · km!
P(µ0)

k0 · · ·P(µm)
km

(
m∑

i=1

aiD
dv+k0+...+ki−1

i Uuv+ki+...+km
i −K

)+

(7.2)

Cmin(v) =
∑

k0+...+km=n−k

n!

k0! · · ·km!
P

′(ν0)
k0 · · ·P′(νm)

km

(
m∑

i=1

aiD
dv+k0+...+ki−1

i Uuv+ki+...+km
i −K

)+

,

where dv, uv are chosen so that Ddv
i U

uv

i corresponds to the vertex v ∈ Tk. The formula for
the minimum is correct under the assumption that

∑
i bi ≤ 1.

By replacing h with any other convex function we obtain an analogous formula for a more
general contingent claim. ♦

Example 7.4 (European basket put option). Let h : R → R be a convex function. Consider
a random variable

X = h

(
K −

∑

i

aiSi(n)

)
,

where K, ai ≥ 0 and
∑
ai = 1. If h(x) = x+ then we obtain the standard European basket

put option. Notice that if h is convex then so is x 7→ h(K − x). Thus by restricting the
function −∑i aiSi(n) to the elements of the sample space with all but the k-th column fixed
we obtain a polynomial in ψi(k) with non-positive coefficients. It follows from the version
of Proposition 2.2.6 (a) in [5] with coefficients ai ≤ 0 (the proof is analogous) that X is
fibrewise supermodular and hence Theorem 5.4 applies. The formulas are similar to the ones
in the previous example. ♦

Example 7.5 (Arithmetic average Asian basket call or put option). Let

X =

(
1

n

(
∑

i

a1iSi(1) + · · ·+
∑

i

aniSi(n)

)
−K

)+

,

where aki ≥ 0 and
∑

i aki = 1 for each k. It is thus an Asian basket call option. It
follows directly form Lemma 7.2 that X is fibrewise supermodular and the upper bounds
of the no-arbitrage values of the contingent claim X can be computed with the formula
(6.2) and the analogous one for the lower bounds under the required assumption. Similarly
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a put contingent claim, obtained by negating the function inside ( )+, is also fibrewise
supermodular. ♦

7B. Fibrewise submodular contingent claims. In this section we present for complete-
ness a result for fibrewise submodular contingent claims. Since submodular contingent claims
are rare we omit the proof which is a straightforward adaptation of the proof for the fibrewise
supermodular case starting with Theorem A.12. Recall that a function f is submodular if
−f is supermodular.

Theorem 7.6. Let P and P
′ be the 1-step martingale probability measures from Theorem 5.4

(described precisely in Section 6A and 6B). Let X : Ωn → R be a fibrewise submodular
contingent claim. Then the lower bound of a no-arbitrage price interval for X at a vertex
v ∈ Tk is given by

Cmin(v) = EPn(X | Fk)(v).

If
∑

i bi ≤ 1 then the upper bound of the no-arbitrage price interval for X at a vertex v ∈ Tk

is equal to
Cmax(v) = E(P′)n(X | Fk)(v).

Example 7.7 (Geometric average Asian call). Let S(k) =
∑

i akiSi(k). Consider an Asian
call option based on geometric mean. Its pay-off is given by

X =
(

n
√
S(1) · · ·S(n)−K

)+
.

This pay-off is neither super- nor submodular. However, the Arithmetic Mean – Geometric
Mean Inequality (and Example 7.5) yields an upper bound of the no-arbitrage price values.

For scenarios such that n
√
S(1) · · ·S(n) ≥ K we have that X = n

√
S(1) · · ·S(n) − K and

hence, up to an additive constant, X is a composition of a polynomial S(1) · · ·S(n) with a
concave function n

√
. Thus Theorem 7.6 applies and the bounds of the no-arbitrage price

interval can be computed effectively for some vertices v ∈ T. ♦

7C. Examples where the extremal martingale measures are not product. Consider
a 1-step model with assets S1, S2 : Ω → R each following a binomial model with respective
price ratios 0 < D1, D2 < R < U1, U2, where R is the risk-free rate. Let pi =

R−Di

Ui−Di
be the

risk neutral measure for each of the asset in its own binomial model. The equations (3.1)
have the form

U1q1 + U1q2 +D1q3 +D1q4 = R

U2q1 +D2q2 + U2q3 +D2q4 = R

q1 + q2 + q3 + q4 = 1

qj ≥ 0.

It is a straightforward computation that the solution set is the interval of points of the form

Q(t) = (t, p1 − t, p2 − t, 1− p1 − p2 + t) ∈ R
4,

where max{p1 + p2 − 1, 0} = tmin ≤ t ≤ tmax = min{p1, p2}. In particular, for any of the
choices made the interval is parallel to the vector (1,−1,−1, 1).
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Let X = (X1, X2, X3, X4) be the contingent claim. It follows that Cmin(0) = 〈X,Q(tmin)〉
and Cmax(0) = 〈X,Q(tmax)〉 provided that 〈X, (1,−1,−1, 1)〉 = X1 − X2 − X3 + X4 > 0.
The opposite inequality implies that that maximal and the minimal values are attained at
Q(tmin) and Q(tmax), respectively. This observation is the used in the following example.

Example 7.8. Let m = 2 and n = 2. Consider two assets S1 and S2 with the following
initial data:

S1(0) = 100, U1 = 1.2, D1 = 0.8, K1 = 100

S2(0) = 90, U1 = 1.15, D1 = 0.9, K2 = 110.

Consider a spread

X =

(
S1(2) + S2(2)

2
−K1

)+

−
(
S1(2) + S2(2)

2
−K2

)+

If the prices of both assets go up in the first step then at time t = 2 the values of X are
given by

X ( 1 ∗
1 ∗ ) = (10, 10, 7.5125, 0)

and when at time t = 1 the first asset goes up and the second down we have

X ( 1 ∗
0 ∗ ) = (10, 8.45, 0, 0).

The above are straightforward calculations. The inner product with (1,−1,−1, 0) of the first
one is negative while of the second one is positive. This shows that the single-step maximal
martingale measures corresponding to these two conditional situations are distinct and hence
the maximal martingale measure cannot be product of the same single-step measure. ♦

Appendix A.

Notions and notation. Let Ω be a finite sample space and let ∆(Ω) be the set of all
probability measures on

(
Ω, 2Ω

)
. Each probability measure in ∆(Ω) can be identified with

its probability function (as was done throughout this paper), so the set ∆(Ω) is defined as
follows:

∆(Ω) =

{
x : Ω → R :

∑

ω∈Ω

x(ω) = 1 , x(ω) ≥ 0

}
.

This is the standard simplex in the space RN , where N is the number of elements in Ω. Given
a probability measure x ∈ ∆(Ω), any function f : Ω → R is viewed as a random variable on(
Ω, 2Ω, x

)
.

We will denote by Ex(f) the expected value of f with respect to the probability measure
x ∈ ∆(Ω).

For any ω ∈ Ω we denote by eω : Ω → {0, 1} the following indicator function:

eω(ω
′) =

{
1 if ω′ = ω
0 if ω′ 6= ω

,

for any ω′ ∈ Ω. We will write 1 for the constant function on Ω: 1(ω) = 1 for any ω ∈ Ω.
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Let A1, . . . , An be finite sets and let fi : Ai → R be functions. Define the function
f1 ⊗ · · · ⊗ fn : A1 × · · · × An → R by

(f1 ⊗ · · · ⊗ fn)(a1, . . . , an) = f1(a1) · · ·fn(an),
where ak ∈ Ak.

Single-step Bernoulli trials. Let us fix m ≥ 1 and denote L = 2{1,...,m}, the power-set of
{1, . . . , m}. The set L is the natural sample space for m single-step Bernoulli trials. Each
set S ∈ L consists of numbers that correspond to trials in which a “success” occurred. For
example, the set S = {2, 5, 6} corresponds to the scenario where “success” occurred in trials
2,5, and 6, and “failure” occurred in the rest of the trials; the empty set S = {∅} corresponds
to the scenario where “failure” occurred in all trials, etc.

Remark A.1. The set L can be put into one-to-one correspondence with the sample space
Ω1 of a single-step market model with m assets (see Section 3). Recall that Ω1 consists of
(m× 1)-matrices with binary coefficients and the number of elements in Ω1 is N = 2m.

Let us introduce a set of random variables ℓi : L → {0, 1}, i = 1, . . . , m as follows:

ℓi(S) =

{
1 if i ∈ S
0 if i /∈ S

,

where S ∈ L. The random variable ℓi identifies scenarios S ∈ L in which “success” occurred
in the i-th trial. In other words, ℓi(S) represents the result of the i-th trial in scenario
S, where ℓi(S) = 1 corresponds to “success” and ℓi(S) = 0 corresponds to “failure”. For
simplicity, we will call random variables ℓ1, . . . , ℓm the Bernoulli trials.

Remark A.2. The Bernoulli trials ℓi : L → {0, 1}, i = 1, . . . , m can be put into one-to-one
correspondence with the stock price ratios ψi(1) : Ω1 → {Di, Ui}, i = 1, . . . , m (see Section
3). Recall that

ψi(1)(ω) =

{
Di if ωi1 = 0

Ui if ωi1 = 1.

It follows that

(A.1) ψi(ω) = (Ui −Di)ℓi(S) +Di.

(here we used the simplified notation ψi(ω) to denote ψi(1)(ω)). In (A.1), the set S ∈ L
corresponds to the sample space element ω ∈ Ω1. For example, for m = 3, S = {1, 2}
corresponds to ω = (1, 1, 0)T .

It would be convenient to write

ℓ0 = 1 and µi = {1, . . . , i} ∈ L,
for every i = 0, . . . , m. Notice that µ0 = ∅. Also observe that for all 0 ≤ j ≤ m

ℓi(µj) =

{
1 if i ≤ j
0 if i > j.

This identity holds for i = 0 as well as for all i = 1, . . . , m. We will also denote

ν0 = ∅ and νi = {i}.
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Clearly if 1 ≤ i ≤ m then ℓi(νj) = δi,j.

Single-step martingale measures. Fix 0 ≤ b1, . . . , bm ≤ 1 and denote b = (b1, . . . , bm).
Define a subset M1(b) ⊂ ∆(L) as follows:

(A.2) M1(b) = {x ∈ ∆(L) : Ex(ℓi) = bi for all i = 1, . . . , m}.
Notice that M1(b) is a polyhedral set in R

N , where N = 2m.

Remark A.3. If bi = R−Di

Ui−Di
, i = 1, . . . , m, the set M1(b) coincides with the set M1 of

martingale measures on Ω1 (see Section 3). Indeed, consider system (3.1) which defines a
martingale measure P = (p1, p2, . . . , pN) on Ω1 and replace each pi with xi. Further, use
(A.1) to express each ψi(ωj) in terms of ℓi(Sj), where Sj corresponds to ωj. After some
straightforward algebraic transformations, (3.1) becomes:

N∑

j=1

xjℓi(Sj) =
R−Di

Ui −Di
(A.3)

N∑

j=1

xj = 1

xi ≥ 0,

for i = 1, . . . , m. This system of equations and inequalities is equivalent to the definition
(A.2) of the set M1(b) for the case

(A.4) bi =
R−Di

Ui −Di
,

for i = 1, . . . , m.

Optimization problems 1 and 2. Given a random variable f : L → R we will consider
the following optimization problems:

Problem 1. Find q∗ ∈ M1(b) such that

Eq∗(f) = max{Ep(f) : p ∈ M1(b)}.

Problem 2. Find q∗ ∈ M1(b) such that

Eq∗(f) = min{Ep(f) : p ∈ M1(b)}.

Remark A.4. Let (A.4) hold. Then the above optimization Problem 1 is equivalent to the
LP problem (3.11) of finding the upper limit of the no-arbitrage contingent claim price
interval and the maximal martingale measure in a single-step market model with m assets
(see Section 3D). Similarly, Problem 2 is equivalent to the LP problem of finding the lower
limit of the no-arbitrage contingent claim price interval and the minimal martingale measure.

In what follows, we will always impose the following

Assumption. The vector b is decreasing, namely

(A.5) b1 ≥ · · · ≥ bm.
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Recall that for a fixed i, bi = Ex(ℓi), where x is any probability measure from the set
M1(b) and thus the condition (A.5) is easily fulfilled by permuting the Bernoulli trials ℓi,
i = 1, . . . , m.

It will be convenient to denote
b0 = 1.

Before we proceed with the solutions of the above optimization problems, we need to intro-
duce some necessary definitions.

Supermodular vertex measures. Given the setup above define for i = 0, . . . , m

q(i) = bi − bi+1, and q(m) = bm.

Notice that q(0) = 1− b1. Define a function q∗ : L → R by

(A.6) q∗ =
m∑

i=0

q(i) · eµi
.

Notice that q(i) ≥ 0 since b is decreasing (see (A.5)) and 0 ≤ bi ≤ 1. Therefore, q∗ ≥ 0. Also

∑

S∈L

q∗(S) =

m∑

i=0

q(i) = (1− b1) +

(
m−1∑

i=1

bi − bi+1

)
+ bm = 1.

So q∗ is a probability measure on L. Also,

Eq∗(ℓi) =
∑

S∈L

q∗(S)ℓi(S) =

m∑

j=0

q(j)ℓi(µj) =

m∑

j=i

q(j) =

m−1∑

j=i

(bi − bi+1) + bm = bi

for all i = 0, . . . , m. We deduce that

q∗ ∈ M1(b).

We call q∗ the upper supermodular vertex measure of M1(b). Indeed, it is a vertex of
this polyhedral set, although we will not use this fact directly.

Define for all i = 0, . . . , m

q(0) = 1−
m∑

i=1

bi, and q(i) = bi.

Define a function q∗ : L → R by

(A.7) q∗ =
m∑

i=0

q(i) · eνi.

Since bi ≥ 0 it is clear that if
∑m

i=1 bi ≤ 1 then q∗ ≥ 0. It is also clear that

∑

S∈L

q∗(S) =
m∑

j=0

q(j) = 1.

Hence, q∗ is a probability measure on L. Moreover, for any i = 1, . . . , m

Eq∗(ℓi) =
∑

S∈L

ℓi(S) · q∗(S) =
m∑

j=0

ℓi(νj) · q(j) = bi
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since ℓi(νj) = δi,j. We deduce that

q∗ ∈ M1(b) provided
m∑

i=1

bi ≤ 1.

We call q∗ the lower supermodular vertex measure of M1(b). Indeed, it is a vertex of
M1(b), but we will not use this fact directly.

Supermodular functions. Recall (see e.g. [5, Section 2]) that a function f : L → R is
called supermodular if for any S, T ∈ L

f(S ∪ T ) + f(S ∩ T ) ≥ f(S) + f(T ).

We observe that the functions ℓ1, . . . , ℓm give rise to an injective function

(ℓ1, . . . , ℓm) : L → R
m

whose image is the set {0, 1}m of the vertices of the cube [0, 1]m. This gives a convenient
way to define several important supermodular functions. See [5, Section 2] and [6, 7] for
examples and properties of supermodular functions.

Solving optimization Problems 1 and 2.

Theorem A.5. Suppose that b is decreasing (see (A.5)).

(i) For any supermodular function f : L → R

max{Ex(f) : x ∈ M1(b)} = Eq∗(f).

(ii) Suppose that
∑m

i=1 bi ≤ 1. Then for any supermodular function f : L → R

min{Ex(f) : x ∈ M1(b)} = Eq∗(f).

That is, the maximum expectation over M1(b) of any supermodular function is always at-
tained at the upper supermodular vertex measure and the minimum is attained at the lower
supermodular vertex measure, if the latter is defined.

Proof. (i) Define for i = 0, . . . , m

α0 = f(µ0), and αi = f(µi)− f(µi−1).

Define a function g : L → R by

g =

m∑

i=0

αi · ℓi.

Observe that for any i = 0, . . . , m

g(µi) =
m∑

j=0

αj · ℓj(µi) =
i∑

j=0

αj = f(µi).

Set h = g − f . We claim that h ≥ 0, namely h(S) ≥ 0 for all S ∈ L. Suppose this is false.
Among all S ⊆ {1, . . . , m} for which h(S) < 0, choose one with the largest possible k such
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that µk = {1, . . . , k} ⊆ S. Clearly k < m since we know that h(µm) = 0. Also, k + 1 /∈ S.
Set T = S ∪ {k + 1}. Then µk+1 ⊆ T and S \ µk = T \ µk+1. Therefore

h(S) = g(S)− f(S) = α0 +

k∑

i=1

αi +

m∑

i=k+2

αiℓi(S)− f(S)

h(T ) = g(T )− f(T ) = α0 +
k+1∑

i=1

αi +
m∑

i=k+2

αiℓi(S)− f(T ).

Observe that T = S ∪ µk+1 and that S ∩ µk+1 = µk. Since f is supermodular,

h(S)− h(T ) = f(T )− f(S)− αk+1 = f(S ∪ µk+1)− f(S)− f(µk+1) + f(µk) ≥ 0.

In particular h(T ) ≤ h(S) < 0 which is a contradiction to the maximality of k.

We will complete the proof by showing that Eq∗(f) ≥ Ex(f) for any x ∈ M1(b). First, by
definition of M1(b) and the linearity of the expectation for any x ∈ M1(b) we have

Ex(g) = α0 +

m∑

i=1

αibi.

Next, we compute

Eq∗(f) =
∑

S⊆{1,...,m}

f(S) · q∗(S) =
m∑

i=0

f(µi)q
(i) =

m∑

i=0

f(µi) · (bi − bi+1) + f(µm) · bm =

b0f(µ0) +

m∑

i=1

(f(µi)− f(µi−1) · bi = α0 +

m∑

i=1

αibi = Eq∗(g).

Now, since h ≥ 0, for any x ∈ M1(b)

Ex(f) = Ex(g − h) ≤ Ex(g) = α0Ex(1) +
m∑

i=1

αiEx(ℓi) = α0 +
m∑

i=1

αibi = Eq∗(g),

and the proof is complete.

(ii) Define for every i = 0, . . . , m

α0 = f(ν0) and αi = f(νi)− f(ν0).

Define g : L → R by

g = α0ℓ0 +

m∑

i=1

αiℓi.

Set h = f−g. We claim that h ≥ 0. Assume that this is false. Choose S ⊆ {1, . . . , m} of the
smallest possible cardinality such that h(S) < 0. Clearly S 6= ∅ since g(ν0) = α0 = f(ν0), so
h(ν0) = 0 (and ν0 = ∅). Choose some k ∈ S and set T = S \ {k}. Then

h(S) = f(S)− g(S) = f(S)− α0 −
∑

i∈S

αi = f(S)− α0 − αk −
∑

i∈T

αi

h(T ) = f(T )− g(T ) = f(T )− α0 −
∑

i∈T

αi.
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Since f is supermodular

h(S)− h(T ) = f(S)− f(T )− αk = f(T ∪ {k})− f(T )− f({k})− f(∅) ≥ 0.

It follows that h(T ) ≤ h(S) < 0, contradiction to the minimality of |S|.
It remains to show that Ex(f) ≥ Eq∗(f) for any x ∈ M1(b). By definition, for any x ∈ M1(b)
we have Ex(g) = α0 +

∑m
i=1 αibi. Under the hypothesis

∑m
i=1 bi ≤ 1 we have q∗ ∈ M1(b), so

Eq∗(f) =
∑

S⊆{1,...,m}

f(S) · q∗(S) =
m∑

i=0

f(νi) · q(i) = (1−
m∑

i=1

bi)f(ν0) +
m∑

i=1

f(νi)bi =

f(ν0) +

m∑

i=1

(f(νi)− f(ν0))bi = α0 +

m∑

i=1

αibi = Eq∗(g).

Next, consider any x ∈ M1(b). Since h ≥ 0, we clearly have Ex(f) = Ex(g + h) ≥ Ex(g) =
Eq∗(g). This completes the proof. �

Remark A.6. Part (i) of Theorem A.5 is tightly related to Lovász extensions [1]. Indeed,
Eq∗(f) = (−f)L(b) where on the right hand side is the Lovász extension of −f .

We identify m with the set {1, . . . , m} and L = {0, 1}m with its power set. Consier a function
f : {0, 1}m → R. The convex closure of f is the function f− : [0, 1] → R defined by

f−(x) = min

{
∑

S⊆m

αSf(S) :
∑

S⊆m

αS · 1S = x,
∑

S⊆m

αS = 1, αS ≥ 0

}
.

Thus, by definition, given b ∈ [0, 1]m the value of f−(b) is the minimum of Eα(f) over all
probability measure s α on L for which Eα(ℓi) = xi where ℓi : L → {0, 1} are projections to
the i-th factor, namely α ∈ P (b).

The Lovász extension of f is the function fL : [0, 1]m → R defined as follows. Given
x ∈ [0, 1]m write m = {k1, . . . , km} where xk1 ≥ xk2 ≥ · · · ≥ xkm . For any 0 ≤ i ≤ m set
Si = {k1, . . . , ki} ⊆ m. Then there are unique λ0, . . . , λm ≥ 0 such that

∑
i λi = 1 and

x =
∑m

i=0 λi · 1Si
. We define

fL(x) =

m∑

i=0

λif(Si).

In the notation of this paper, if x = b then 1Si
= µi and λi = q(i). Thus, fL(b) = Eq∗(f).

It is well known that f− = fL if and only if f is submodular [8], and notice that f is
submodular iff −f is supermodular. Thus, Eq∗(f) is the maximum expectation of f with
respect to probability measures α ∈ P (b).

Multi-step Bernoulli trials. Fix some n ≥ 1 and consider Ln. This is the natural sample
space for n iterations of m single-step Bernoulli trials, or, equivalently, for m n-step Bernoulli
trials.

Remark A.7. The set Ln can be put into one-to-one correspondence with the sample space
Ωn of the n-step market model with m assets (see Section 2). Recall that Ωn consists of
(m× n)-matrices with binary coefficients and the number of elements in Ωn is N = 2mn.
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For every 1 ≤ k ≤ n, define the set of random variables ℓki : Ln → {0, 1}, i = 1, . . . , m as
follows:

ℓki
def
= 1⊗ · · · ⊗ 1︸ ︷︷ ︸

k − 1 times

⊗ ℓi ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
n− k − 1 times

Notice that ℓki (S1, . . . , Sn) represents the result of the i-th trial in the k-th iteration according
to scenario (S1, . . . , Sn): ℓ

k
i (S1, . . . , Sn) = ℓi(Sk).

Further, for every 1 ≤ k ≤ n, define a vector random variable Lk = (ℓk1, . . . , ℓ
k
m) : Ln →

{0, 1}m. Notice that Lk (S1, . . . , Sn) represents the result of the k-th iteration of m Bernoulli
trials according to scenario (S1, . . . , Sn).

Multi-step martingale measures. We fix some b = (b1, . . . , bm) as above.

Define a subset Mn(b) ⊂ ∆(Ln) as follows:

(A.8) Mn(b) = {p ∈ ∆(Ln) : Ep

(
Lk | Fk−1

)
= b, for all k = 1, . . . , n},

where Fk−1 is a σ-algebra generated by the random vectors L1, L2, . . . , Lk−1. It may be
convenient to denote the above conditional expectation by Ep

(
Lk | L1, . . . , Lk−1

)
.

Notice that Mn(b) is a polyhedral set in R
N given by the following equations:

(A.9)
∑

τk ,...,τn∈L

ℓi(τk) · x(λ1, . . . , λk−1, τk, . . . , τn) = bi ·
∑

τk ,...,τn∈L

x(λ1, . . . , λk−1, τk, . . . , τn)

where x ∈ ∆(Ln) and 1 ≤ k ≤ n, λ1, . . . , λk−1 ∈ L, i = 1, . . . , m). To see this divide both
sides of (A.9) by the sum in the right hand side and observe that the resulting left hand side
is exactly the required conditional expectation. Notice that the product probability measure
q ⊗ · · · ⊗ q belongs to Mn(b) for q ∈ M1(b).

Remark A.8. If (A.4) holds for i = 1, . . . , m, the set Mn(b) coincides with the set Mn of
martingale measures on Ωn (see (2.4) and (2.5) ).

Optimization problems 3 and 4. Given a random variable f : Ln → R, we will consider
the following optimization problems:

Problem 3. Find p∗ ∈ Mn(b) such that

Ep∗(f) = max{Ep(f) : p ∈ Mn(b)}.

Problem 4. Find p∗ ∈ Mn(b) such that

Ep∗(f) = min{Ep(f) : p ∈ Mn(b)}.

Remark A.9. Let (A.4) hold. Then the above optimization Problem 3 is equivalent to the
problem of finding the upper limit of the no-arbitrage contingent claim price interval at time
zero and the maximal martingale measure in the n-step market model with m assets (see
Section 4C). Similarly, Problem 4 is equivalent to the problem of finding the lower limit of
the no-arbitrage contingent claim price interval at time zero and the minimal martingale
measure.
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Fibrewise supermodular functions.

Definition A.10. We say that f : Ln → R is fibrewise supermodular if its restriction
to the subset (λ1, . . . , λk−1)× L× (λk+1, . . . , λn) is a supermodular function on L for every

λ1, . . . , λ̂k, . . . , λn ∈ L.

Example A.11. Suppose that ui,j : L → R are affine functions, 1 ≤ i ≤ n and 1 ≤ j ≤ r.
Suppose that each ui,j has the form

∑
k αkxk + γ where αk ≥ 0. Suppose that h : R → R is

convex. Let g : Ln → R be the function
∑r

j=1 u1,j ⊗ · · · ⊗ un,j + c1. Then f = h ◦ g|Ln is
fibrewise supermodular.

Indeed, the restriction of g to any subset (λ1, . . . , λk−1) × L × (λk+1, . . . , λn) is a linear
combination of the affine maps uk,1, . . . , uk,r with non-negative coefficients and a multiple
of 1. Now appeal to [5, Proposition 2.2.6 (a)].

Solving optimization Problems 3 and 4.

Theorem A.12. Suppose that b is decreasing (see (A.5)).

(i) For any fibrewise supermodular function f : Ln → R

max{Ep(f) : p ∈ Mn(b)} = Ep∗(f) = Eq∗⊗n(f),

where q∗ is the upper supermodular vertex measure defined in (A.6).

(ii) Suppose
∑m

i=1 bi ≤ 1. Then for any fibrewise supermodular function f : Ln → R

min{Ep(f) : p ∈ Mn(b)} = Ep∗(f) = Eq∗⊗n(f),

where q∗ is the lower supermodular vertex measure defined in (A.7).

Thus, Ep(f) is maximized at the product measure p∗ = q∗⊗n ∈ Mn(b), where q∗ is the upper
supermodular vertex measure (see (A.6)).

Further, Ep(f) is minimized at the product measure p∗ = q∗
⊗n ∈ Mn(b), where q∗ is the

lower supermodular vertex measure (see (A.7)), provided the latter is defined.

Proof. We will show that if x ∈ Mn(b) then Ex(f) ≤ Eq∗⊗n(f) and Ex(f) ≥ Eq∗⊗n(f), thus
proving the result since q⊗n ∈ Mn(b) for any q ∈ M1(b).

For every 0 ≤ k ≤ n and every λ1, . . . , λk ∈ L set

yk(λ1 . . . λk) =
∑

θk+1,...,θn∈L

x(λ1, . . . , λk, θk+1, . . . , θn).

Thus, yk(λ1 . . . λk) is the probabilty (with respect to x) of the event {L1 = λ1, . . . , L
k = λk}.

Define x(k) : Ln → R and x(k) : Ln → R by

x(k)(λ1, . . . , λn) = yk(λ1 . . . λk) · q∗(λk+1) · · · q∗(λn)
x(k)(λ1, . . . , λn) = yk(λ1 . . . λk) · q∗(λk+1) · · · q∗(λn).
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Clearly, x(k) ≥ 0 and x(k) ≥ 0. Also, since q∗ is a probability measure on L

∑

λ1,...,λn∈L

x(k)(λ1, . . . , λn) =
∑

λ1,...,λk

yk(λ1, . . . , λk)
∑

λk+1,...,λn

n∏

i=k+1

q∗(λi)

=
∑

λ1,...,λk∈L

yk(λ1, . . . , λk) =
∑

λ1,...,λn∈L

x(λ1, . . . , λn) = 1.

So x(k) ∈ ∆(Ln). An identical argument using q∗ ∈ ∆(L) gives x(k) ∈ ∆(L).

Clearly x(n) = x = x(n) and x(0) = q∗⊗n and x(0) = q∗
⊗n. To complete the proof it remains to

prove that Ex(k)(f) ≥ Ex(k+1)(f) for all 0 ≤ k < n, and similarly that Ex(k)
(f) ≤ Ex(k+1)

(f).

If yk(λ1, . . . , λk) > 0 then the map p : L → R

p(λ) =
yk+1(λ1, . . . , λk, λ)

yk(λ1, . . . , λk)

is clearly a probability measure on L. Direct computation shows that for any λ1, . . . , λk ∈ L
∑

τk+1,...,τn∈L

ℓ(τk+1)x
(k+1)(λ, τ ) =

∑

τ

yk+1(λτ)ℓi(τ) and

∑

τk+1,...,τn∈L

x(k+1)(λ, τ ) =
∑

τ

yk(λ).

The defining equations (A.9) of Mn(b) imply that

∑

τ

yk+1(λ1, . . . , λk, τ)ℓi(τ) = bi · yk(λ1, . . . , λk).

Therefore, if yk(λ1, . . . , λk) > 0 then p ∈ M1(b). Hence, if g : L → R is supermodular (resp.
submodular) then Eq∗(g) ≥ Ep(g) (resp. Eq∗(g) ≤ Ep(g)) which can be written explicitly

∑

τ∈L

g(τ) · yk+1(λ1, . . . , λk, τ) ≤ yk(λ1, . . . , λk) ·
∑

τ∈L

g(τ) · q∗(τ)(A.10)

∑

τ∈L

g(τ) · yk+1(λ1, . . . , λk, τ) ≥ yk(λ1, . . . , λk) ·
∑

τ∈L

g(τ) · q∗(τ).

For θ1, . . . , θj ∈ L denote q∗(θ) = q∗(θ1) · · · q∗(θj) and similarly for q∗(θ). Now,

Ex(k)(f) =
∑

λ1,...,λk

∑

θk+1,...,θn

f(λθ) · yk(λ) · q∗(θ) and

Ex(k+1)(f) =
∑

λ1,...,λk+1

∑

θk+2,...,θn

f(λθ) · yk+1(λ) · q∗(θ)

Similar formulas hold for Ex(k)
(f) and Ex(k+1)

(f) by replacing q∗ with q∗ on the right hand

sides. Since f is fibrewise supermodular and q∗(θ) ≥ 0 we can use the inequalities in (A.10)
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to continue the second equality:

=
∑

λ1,...,λk

∑

θk+2,...,θn

∑

τ∈L

f(λτθ) · yk+1(λτ) · q∗(θ)

≤
∑

λ1,...,λk

∑

θk+2,...,θn

∑

τ∈L

f(λτθ) · yk(λ) · q∗(τ) · q(θ)

=
∑

λ1,...,λk

∑

θk+1,...,θn

f(λθ) · yk(λ) · q∗(θ) = Ex(k)(f).

A similar calculation shows that Ex(k+1)
(f) ≥ Ex(k)

(f). This completes the proof. �
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