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Abstract: Background

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous group of lung
conditions that are challenging to diagnose and treat. As the presence of comorbidities
often exacerbates this scenario, the characterization of patients with COPD and
cardiovascular comorbidities may allow early intervention and improve disease
management and care.

Methods

We analysed a 4-year observational cohort of 6,883 UK patients who were ultimately
diagnosed with COPD and at least one cardiovascular comorbidity. The cohort was
extracted from the UK Royal College of General Practitioners and Surveillance Centre
database. The COPD phenotypes were identified prior to diagnosis and their
reproducibility was assessed following COPD diagnosis. We then developed four
classifiers for predicting cardiovascular comorbidities.

Results

Three subtypes of the COPD cardiovascular phenotype were identified prior to
diagnosis. Phenotype A was characterised by a higher prevalence of severe COPD,
emphysema, hypertension. Phenotype B was characterised by a larger male majority,
a lower prevalence of hypertension, the highest prevalence of the other cardiovascular
comorbidities, and diabetes. Finally, phenotype C was characterised by universal
hypertension, a higher prevalence of mild COPD and the low prevalence of COPD
exacerbations. These phenotypes were reproduced after diagnosis with 92% accuracy.
The random forest model was highly accurate for predicting hypertension while ruling
out less prevalent comorbidities.

Conclusions

This study identified three subtypes of the COPD cardiovascular phenotype that may
generalize to other populations. Among the four models tested, the random forest
classifier was the most accurate at predicting cardiovascular comorbidities in COPD
patients with the cardiovascular phenotype.
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Abstract  60 

Background: Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous group of lung 61 

conditions that are challenging to diagnose and treat. As the presence of comorbidities often 62 

exacerbates this scenario, the characterization of patients with COPD and cardiovascular 63 

comorbidities may allow early intervention and improve disease management and care.  64 

Methods: We analysed a 4-year observational cohort of 6,883 UK patients who were ultimately 65 

diagnosed with COPD and at least one cardiovascular comorbidity. The cohort was extracted 66 

from the UK Royal College of General Practitioners and Surveillance Centre database. The 67 

COPD phenotypes were identified prior to diagnosis and their reproducibility was assessed 68 

following COPD diagnosis. We then developed four classifiers for predicting cardiovascular 69 

comorbidities.  70 

Results: Three subtypes of the COPD cardiovascular phenotype were identified prior to 71 

diagnosis. Phenotype A was characterised by a higher prevalence of severe COPD, emphysema, 72 

hypertension. Phenotype B was characterised by a larger male majority, a lower prevalence of 73 

hypertension, the highest prevalence of the other cardiovascular comorbidities, and diabetes. 74 

Finally, phenotype C was characterised by universal hypertension, a higher prevalence of mild 75 

COPD and the low prevalence of COPD exacerbations. These phenotypes were reproduced after 76 

diagnosis with 92% accuracy. The random forest model was highly accurate for predicting 77 

hypertension while ruling out less prevalent comorbidities. 78 

Conclusions: This study identified three subtypes of the COPD cardiovascular phenotype that 79 

may generalize to other populations. Among the four models tested, the random forest classifier 80 

was the most accurate at predicting cardiovascular comorbidities in COPD patients with the 81 

cardiovascular phenotype. 82 

Key words: Cardiovascular subtypes, machine learning, cluster analysis, random forest 83 
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Introduction 102 

Chronic Obstructive Pulmonary Disease (COPD) comprises a group of lung diseases, including 103 
asthma, emphysema and chronic bronchitis, that cause breathing difficulties due to inflammation 104 
of the lungs and narrowing of the airways.1 According to the World Health Organisation (WHO), 105 
COPD is projected to become the third leading cause of death by 20302 because our ability to 106 

diagnose early and treat effectively has been relatively static. To better understand the 107 
heterogeneity of COPD, recent and ongoing research3 is applying a wide range of machine 108 
learning methods, which can integrate patients’ demographic and clinical characteristics to 109 
derive underlying disease traits that often occur together (i.e., COPD phenotypes). Among these, 110 
the cardiovascular phenotype remains one of the most relevant phenotypes to analyse, given that 111 

cardiovascular disease is the major contributor to morbidity and mortality in patients with 112 
COPD.4 Unfortunately, however, this phenotype is highly complex and variegated being 113 

characterized by substantial differences in age, sex, and the hospital admission rate for acute 114 
exacerbations of COPD.5-7 It thus remains both paramount and challenging to predict which 115 
COPD patients will develop cardiovascular comorbidities in the future. 116 
 117 

This study aims to address this gap by characterising subtypes of the COPD cardiovascular 118 

phenotype. We derive three subtypes from a cohort of patients diagnosed with cardiovascular 119 

comorbidities before COPD and reproduce the subtypes in a cohort of patients after COPD 120 

diagnosis. Then, we train and test four classifiers to optimise the prediction of cardiovascular 121 

comorbidities in COPD patients.  122 

 123 

Methods 124 

Study design 125 

This is a retrospective analysis of an observational cohort of patients with COPD in the UK. The 126 

data covers a 4-year period (2015–2018) and was extracted from the Royal College of General 127 

Practitioners (RCGP) Research and Surveillance Centre (RSC) database,8,9 which includes more 128 

than 5 million patients, over 2 million records, and 500 million prescriptions (as of December 129 

2017).10 This project was approved by the University of Surrey’s Institutional Review 130 

Board (353003-352994-40371074).   131 

 132 

Study population 133 

Figure 1 shows the inclusion and exclusion criteria, which yielded 6,883 patients. 134 

[Figure 1 about here] 135 

To be included, a patient needed to have a Read code11 for COPD diagnosis, a diagnosis of at 136 

least one cardiovascular comorbidity, be older than 35 years of age, be a current or former 137 

smoker (i.e., ex-smoker), not have active asthma, have a Forced Expiratory Volume in 1 second 138 

to Forced Vital Capacity Ratio (FEV1/FVC ratio) of less than or equal to 0.7 (i.e., the threshold 139 

for COPD diagnosis1) and have follow-up FEV1 values recorded for 3 consecutive years. Recent 140 
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research confirms that a period of 3 years is an ideal timespan to account for clinically relevant 141 

FEV1 variations in COPD patients.12 142 

We excluded patients who met one of the following: less than 35 years of age, never-smoker, 143 

active asthma, FEV1/FVC ratio greater than 0.7 and lacking 3 consecutive years of FEV1 tests.  144 

Statistical analysis  145 

We split our sample into two cohorts: a) the training cohort, consisting of patients who were 146 

registered with a GP before the COPD diagnosis, and b) the validation cohort, consisting of 147 

patients who were not registered until after their COPD diagnosis (Figure 2). Splitting the sample 148 

into two independent cohorts on the basis of such a clear-cut objective criterion (i.e., before and 149 

after COPD diagnosis), rather than randomly, allows the algorithms to unambiguously learn how 150 

to identify COPD phenotypes and classify patients into cardiovascular comorbidities at an early 151 

stage of the disease. In other terms, this is because the algorithms’ learning step occurs among 152 

patients not yet diagnosed with COPD. We then used the training clusters (i.e., those clusters 153 

learned prior to diagnosis) to predict new clusters in the cohort of patients after COPD diagnosis, 154 

and assessed their agreement as described below in the “Cluster validation” section. Similarly, 155 

we used the classification of patients into four cardiovascular comorbidities learned by the 156 

algorithms in the training cohort to predict new classes of cardiovascular comorbities in the 157 

validation cohort. Finally, we assessed the validity of the predicted classes by cross-examining 158 

them with the pre-existing (i.e., observed) cardiovascular comorbidities.   159 

[Figure 2 about here] 160 

 161 

To perform these analyses, we used two types of machine learning approaches well suited to: a) 162 

identify clusters (i.e., subtypes) of the cardiovascular phenotype, and b) predict cardiovascular 163 

comorbidities in a new cohort of patients with COPD. For the first objective, we used 164 

unsupervised learning where we had no prior knowledge of the classification of patients into 165 

clusters. Indeed, these clusters are just inferred from the relationships within the data, and they 166 

are the algorithms which assign labels to the derived phenotypes (see the “Clustering” section  167 

below). To predict cardiovascular comorbidities, our second goal, we instead used supervised 168 

learning. Here, the classification of patients into cardiovascular comorbidities was already 169 

known a priori from the dataset, and our aim was to predict future classes (i.e., cardiovascular 170 

comorbidities) in a new (blind) cohort (i.e., the cohort after COPD diagnosis). The classification 171 

algorithms that we used for this task are further described in the “Predictive models” section of 172 

this paper.  173 
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 174 

Data reduction 175 

We used multiple correspondence analysis (MCA)13 to reduce the dimensionality of the training 176 

cohort from 19 variables (sex, body mass index, smoking, COPD severity, COPD exacerbations, 177 

emphysema, diabetes, hypertension, coronary artery disease, acute myocardial infarction, 178 

congestive cardiac failure, anxiety, depression and six types of treatment) into three uncorrelated 179 

components. We then applied k-means cluster analysis to the three components to identify the 180 

groups of patients with similar characteristics (i.e., subtypes of the COPD cardiovascular 181 

phenotype). We imputed missing values for body mass index and COPD severity with 182 

Multivariate Imputation by Chained Equations (MICE).14  183 

 184 

Clustering 185 

We used a hierarchical cluster analysis15 to visually inspect—with a dendrogram—the optimal 186 

number of clusters (Figure 3). We then confirmed the number of clusters by performing the 187 

elbow16 and silhouette17 methods (Figure 4).   188 

     [Figure 3 about here] 189 

     [Figure 4 about here] 190 

Figure 5 compares the silhouette plots of the clusters derived from two clustering methods: 191 

hierarchical (top plot) and k-means (bottom plot). Specifically, we compared a) the magnitude of 192 

the average silhouette width, and b) the sign (positive or negative) of the silhouette width. The 193 

average silhouette width was larger under the k-means algorithm than under the hierarchical 194 

algorithm. More subjects had a negative silhouette width under the hierarchical algorithm than 195 

under k-means clustering, especially for clusters 1 and 3. We concluded that k-means clustering 196 

generates more stable clusters than the hierarchical approach. 197 

     [Figure 5 about here] 198 

Cluster validation 199 

After establishing the three phenotype subtypes with k-means clustering, we developed our 200 

predictive model. The Random Forest (RF) model uses as independent variables (or predictors) 201 

the 19 categorical variables described above in the MCA step, with the addition of age and lung 202 

function (FEV1). First, we used what we called “the RF training dataset” (i.e., 70% of the full 203 

training dataset, randomly selected; n = 4,166), to train the RF model on the clusters identified 204 

by k-means clustering.16 Then, we tested the RF model on an holdout group of the training 205 

dataset, the “RF test dataset” (i.e., the remaining 30% of the training dataset; n = 1,785) and 206 

achieved 99% accuracy. 207 

Next, we trained the same model on the full training dataset (i.e., the RF training and test 208 

datasets combined, which is ultimately the training cohort pre-COPD diagnosis) and checked the 209 
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predicted cluster assignments against the entire validation dataset, which is the cohort of patients 210 

post- COPD diagnosis (whose clusters were also derived with k-means clustering). We used the 211 

Adjusted Rand index18 and Jaccard index19 to compare the clusters predicted by the RF model 212 

with those derived by k-means clustering, and we found 92% agreement. 213 

Predictive models 214 

With three highly robust COPD cardiovascular phenotype subtypes established, we proceeded to 215 

train four different classifiers to predict cardiovascular comorbidities from other components of 216 

the phenotype (i.e., demographics, COPD severity, and COPD treatments). Specifically, we 217 

trained a decision tree, multinomial logistic regression, RF and gradient boosting machine.20 We 218 

were interested in predicting four cardiovascular comorbidities: hypertension, coronary artery 219 

disease, acute myocardial infarction and congestive cardiac failure. We trained each classifier on 220 

the RF training dataset and tested the optimised classifier on the RF test dataset. Once each 221 

model was finely tuned by using automated tuning within the R library ‘caret’,21 we trained it on 222 

the whole training dataset and assessed its performance on the validation dataset.  223 

All four models used cardiovascular comorbidities as the dependent variable and the following 224 

variables as predictors: age, sex, body mass index, smoking, COPD severity, COPD 225 

exacerbations, emphysema, lung function (FEV1), diabetes, anxiety, depression and type(s) of 226 

treatment (Inhaled Corticosteroids (ICS), ICS and Long-Acting Beta Agonist (LABA), Long-227 

Acting Anti-Muscarinic (LAMA), LABA, Short-Acting Anti-Muscarinic (SAMA), mucolytics).  228 

Moreover, in light of the class imbalance (i.e., a disparity in the distribution of patients with 229 

cardiovascular comorbidities), we re-trained the models with two sub-sampling methods: a) up-230 

sampling, in which we randomly sampled (with replacement) the minority class until it was the 231 

same size as the majority class, and b) down-sampling, in which we randomly sampled (with 232 

replacement) the majority class until it was the same size as the minority class. The models were 233 

then evaluated on the blind validation dataset. All statistical analyses were implemented with the 234 

statistical software R.22 235 

Results  236 

Patient characteristics  237 

Table 1 summarizes the descriptive baseline characteristics (Year 1) of patients who were 238 

registered with a GP before their COPD diagnosis and after diagnosis. 239 

    [Table 1 about here] 240 

 241 

Prior to COPD diagnosis  242 

Table 2 presents the baseline characteristics of the three subtypes of the COPD phenotype among 243 

patients with cardiovascular comorbidities who established care with a GP before their COPD 244 

diagnosis. 245 
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    [Table 2 about here] 246 

Phenotype A was characterized by the highest prevalence of severe COPD (as defined by the 247 

physician), substantial emphysema and nearly universal hypertension (though this was also true 248 

of phenotype C). Phenotype A was the most heavily medicated; almost all patients with this 249 

phenotype were treated with ICS and/or a combination of ICS and LABA; more than half were 250 

also treated with LAMA. Phenotype B was characterised by a large majority of male patients 251 

(whereas males comprised a small majority of the other phenotypes). Phenotype B had the 252 

lowest prevalence of hypertension but the highest prevalence of coronary artery disease, acute 253 

myocardial infarction, congestive cardiac failure, and diabetes. Just under half of the phenotype 254 

B patients were treated with LAMA; the next most common medications were ICS, followed by 255 

ICS with LABA. Phenotype C was characterised by universal hypertension (similar to phenotype 256 

A), though phenotype C had the lowest prevalence of severe COPD, the highest prevalence of 257 

mild COPD and the largest majority of patients with no exacerbations in the past year. Overall, 258 

patients with phenotype C were less medicated than the other phenotypes; the most common 259 

treatment was LAMA, though only about one-third of phenotype C patients used it. The most 260 

notable characteristics of each of the three phenotypes are summarized in Table 3. 261 

    [Table 3 about here] 262 

Predicting cardiovascular comorbidities after COPD diagnosis   263 

We tested the four trained classifiers on the validation dataset (i.e., post-COPD diagnosis), and 264 

we present the results in confusion matrices (Table 4). For each predictive model (i.e., each 265 

classifier), Table 4 compares the number of patients predicted to have each cardiovascular 266 

comorbidity with the actual number of diagnoses; it also reports the classifier’s overall accuracy, 267 

sensitivity (i.e., the percentage of positive cases that were predicted to be positive), specificity 268 

(i.e., the percentage of negative cases that were predicted to be negative), positive predictive 269 

value (PPV, i.e., the percentage of positive predictions that were actually positive cases) and 270 

negative predictive value (NPV, i.e., the percentage of negative predictions that were actually 271 

negative cases).  272 

[Table 4 about here] 273 

As shown in Table 4, the RF classifier (even without sub-sampling) outperformed the other 274 

models. All models exhibited relatively high sensitivity and low specificity for hypertension, but 275 

the RF classifier had the highest sensitivity (87%) and PPV (98%, versus 34%–40% in the other 276 

models). All models exhibited relatively low sensitivity and high specificity for the other three 277 

cardiovascular comorbidities (coronary artery disease, acute myocardial infarction and 278 

congestive cardiac failure), but RF was the most accurate at ruling out these conditions (NPV: 279 

99% for all three conditions, versus 74–85% in the other models).    280 
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Discussion 281 

This study presents the use of machine learning toward acquiring a better characterization of the 282 

cardiovascular phenotype in patients with COPD and predicting specific cardiovascular 283 

comorbidities linked to these patients. Given the substantial contribution of cardiovascular 284 

disease to morbidity and mortality in COPD and the complexity of the cardiovascular phenotype 285 

we believe that our findings can offer several beneficial avenues to respiratory researchers and 286 

clinicians alike. For one example, by identifying subtypes of the cardiovascular phenotype and 287 

predicting future cardiovascular comorbidities early (i.e. prior to COPD diagnosis), it is possible 288 

to better understand of the disease’s development, and consequently improve disease 289 

management, possibly prevent the development of  cardiovascular disease, and thus lead to the 290 

application as well as development of targeted treatments.  291 

Here, we specifically examined four cardiovascular comorbidities—hypertension, coronary 292 

artery disease, acute myocardial infarction and congestive cardiac failure—and used basic 293 

demographic information, COPD severity, and types of COPD treatments to predict a patient’s 294 

phenotype. Two of the phenotypes (A and C) had almost universal hypertension but differed in 295 

COPD severity and treatment. Meanwhile, the third phenotype (B) had a lower prevalence of 296 

hypertension but a higher prevalence of coronary artery disease, acute myocardial infarction and 297 

congestive cardiac failure, as well as diabetes. 298 

The large size of our training sample enabled the model to predict patients’ phenotypes with high 299 

accuracy (92%). This encouraging result suggests that the three identified phenotypes may 300 

generalize to other datasets and populations of patients with COPD. Our use of statistical and 301 

machine learning tools went beyond a traditional summary of the demographic and clinical 302 

characteristics of patients with COPD, which offer little in the way of predictive diagnostics. We 303 

tested several algorithms, from a conventional multinomial logistic regression model to stronger 304 

classifiers such as the RF and gradient boosting machine, which are ensembles of weaker 305 

classifiers (i.e., classifiers with low predictive power such as decision trees are combined into 306 

classifiers with stronger predictive ability).   307 

Moreover, we handled incomplete observations with multiple imputation, and we addressed class 308 

imbalance (i.e., unequal numbers of patients with each cardiovascular comorbidity) with 309 

additional sampling methods (namely, up- and down-sampling). We assessed the performance of 310 

our four candidate models by calculating the overall accuracy (86% for RF) as well as the 311 

sensitivity, specificity, PPV, and NPV for each comorbidity. The data showed that all four 312 

classifiers, and RF in particular, were highly sensitive in predicting hypertension (highly 313 

prevalent in phenotypes A and C) and highly specific in predicting the other three (less 314 

prevalent) cardiovascular comorbidities (coronary artery disease, acute myocardial infarction and 315 

congestive cardiac failure). These findings are of substantial clinical importance because these 316 

algorithms can be used as diagnostic tools for preventing cardiovascular disease. We indeed note 317 

that the information inputed in the models is readily acquirable during any medical visit, hence 318 
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offering the opportunity of rapid implementation of our framework in the clinical practice toward 319 

anticipatory diagnosis and improved medical predictions.     320 

Finally, our findings suggest that patients clustered into three cardiovascular phenotypes also had 321 

different treatment patterns. Spefically, patients with less severe COPD (phenotype C) received 322 

less treatments; those with high prevalence of  coronary artery disease, acute myocardial 323 

infarction and congestive cardiac failure and diabetes had an intermediate level of treatment 324 

(phenotype B); and, those with more severe COPD were the most-treated (phenotype A). These 325 

results are also clinically salient because they can assist clinicians to differentially treat these 326 

groups of patients, thus minimizing costs and adverse events of less-effective treatments. This 327 

categorization will also help future research toward the development of personalized therapies 328 

based on the patients’ phenotype characteristics.   329 

Limitations 330 

We acknowledge four main limitations of this work that however represent important calls for 331 

future research. First, cluster analysis is a data-driven machine learning method; for this reason, 332 

the clusters (i.e., the phenotypes) derived bring no substansive meaning. They are formed by 333 

identifying groups of patients with similar characteristics (i.e., phenotype A, B or C); however 334 

the clinician still has to meaningfully interpret and label those clusters. While this interpretation 335 

remains a subjective task within the the medical encounter, our categorization here provides a 336 

blueprint toward a more refined and standardized understanding of the heterogenous nature of 337 

the disease. Future research is thus tasked to provide clinical consensus to the meaning of the 338 

phenotypes identified in this work to enable their implementations in the everyday medical 339 

practice. Second, we considered patients with at least three consecutive years of follow-up 340 

spirometry data because this allowed us to assess more reliable lung function measures and feed 341 

more complete lung function data into the predictive models. Including patients with different 342 

follow-up times - which often happens in real clinical practice - could have given us different 343 

results. Future research may test the robustness of our results by performing a sensitivity analysis 344 

by including those patients with less follow-up period of lung function recordings. Third, the 345 

RCGP database lacked data on relevant biomarkers, such as cytokines, that are well-known to be 346 

associated with coronary artery disease and myocardial infarction.23 Should such biomarkers be 347 

available, our models would become even more accurate in predicting those less prevalent 348 

cardiovascular comorbidities and subsequently improve the sensitivity and PPV rates. Finally, 349 

the RCGP database covers a limited number of cardiovascular comorbidities, so the predictions 350 

are not exhaustive. All of these limitations could be addressed in the future by applying our 351 

models to other COPD datasets (e.g., the OPCRD database24). 352 

Conclusions 353 

To the best of our knowledge, this study is the first to implement machine learning to identify 354 

clinically meaningful phenotypes of cardiovascular comorbidities that develop after a COPD 355 

diagnosis, though we are not the first to apply machine learning to COPD in general.3  356 
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We used k-means clustering to identify three phenotypes prior to COPD diagnosis, and we 357 

trained an RF model to predict these phenotypes in a different blind dataset (i.e., after COPD 358 

diagnosis). We achieved a high level of agreement (92%) between the predicted cluster 359 

assignments and those derived by k-means clustering. Moreover, we trained and validated four 360 

different classifiers (of which RF performed the best) to predict cardiovascular comorbidities 361 

based on patients’ demographics, COPD severity, and COPD treatments. This model represents a 362 

robust preliminary framework for predicting cardiovascular comorbidities in patients with a 363 

COPD diagnosis, though the model’s predictive power likely could be improved with the 364 

inclusion of other risk factors such as biomarkers. 365 

The insights presented in this paper may inform GPs’ medical decision making for acute 366 

complaints (namely, acute myocardial infarction and congestive cardiac failure) as well as 367 

screening and prevention (for hypertension, coronary artery disease, and diabetes) in patients 368 

with a COPD diagnosis. Validation of our framework in non-UK populations may contribute to a 369 

more nuanced understanding of the COPD cardiovascular phenotypes, ultimately improving 370 

treatment for cardiovascular comorbidities in COPD patients and enabling their prevention at an 371 

earlier stage. 372 

 373 

  374 
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Table 1. Baseline (Year 1) demographic and clinical characteristics of patients with cardiovascular 450 

comorbidities who established care with a GP before and after COPD diagnosis  451 

 

 

 

Variables 

 

Prior to COPD 

diagnosis 

(n = 5,951) 

 

After COPD 

diagnosis 

(n = 932) 

 

 

Total 

(n = 6,883) 

Age, mean (SD), years 72 (9) 72 (9) 72 (9) 

Sex, Male, No. (%) 3,580 (60) 552 (59) 4,132 (60) 

Body mass index, mean (SD), kg/m2 28 (6) 27 (6) 28 (6) 

Body mass index, No. (%) with data 5,937 (99) 925 (99) 6,862 (99) 

    Underweight 134 (2) 32 (3) 166 (2) 

    Normal weight 1,719 (29) 296 (32) 2,015 (29) 

    Overweight 2,220 (37) 315 (34) 2,535 (37) 

    Obese 1,864 (31) 282 (30) 2,146 (31) 

Smoking status, No. (%)    

    Active smoker 1,884 (32) 289 (31) 2,173 (32) 

    Former smoker 4,067 (68) 643 (69) 4,710 (68) 

COPD severity, No. (%) with data 3,064 (51) 925 (52) 3,552 (52) 

    Mild 1,012 (33) 157 (32) 1,169 (33) 

    Moderate 1,532 (50) 244 (50) 1,776 (50) 

    Severe 477 (16)   82 (17)  559 (16) 

    Very severe 43 (1)     5 (1)      48 (1) 

COPD exacerbations in the past year, 

mean (SD) 

0.3 (0.9) 

 

0.5 (1.0) 

 

0.3 (1.0) 

 

COPD exacerbations in the past year, 

No. (%) 

   

    0 5065 (85) 728 (78) 5,793 (84) 

    1 509 (9) 104 (11) 613 (9) 

    2 225 (4) 40 (4) 265 (4) 

    > 2 152 (3) 60 (6) 212 (3) 

FEV1, mean (SD), L 0.7 (0.2) 0.7 (0.2) 0.7 (0.2) 

Emphysema, No. (%) 320 (5) 106 (11) 426 (6) 

Diabetes, No. (%) 1,322 (22) 208 (22) 1,530 (22) 

Hypertension, No. (%) 5,317 (89) 823 (88) 6,140 (89) 

Coronary artery disease, No. (%) 675 (11) 106 (11) 781 (11) 

Acute myocardial infarction, No. (%) 822 (14) 144 (15) 966 (14) 

Congestive cardiac failure, No. (%) 719 (12) 110 (12) 829 (12) 

Anxiety, No. (%) 460 (8)    76 (8) 536 (8) 

Depression, No. (%) 1,668 (28) 289 (31) 1,957 (28) 

Treatment, No. (%)a    

    ICS 2,675 (45) 527 (57) 3,202 (47) 

    ICS + LABA 2,341 (39) 481 (52) 2,822 (41) 

    LAMA 2,805 (47) 494 (53) 3,299 (48) 

    LABA   574 (10)  85 (9)    659 (10) 

    SAMA  335 (6)  54 (6)    389 (6) 

    Mucolytics  575 (10) 114 (12)   689 (10) 
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ICS: Inhaled Corticosteroids; LABA: Long-Acting Beta Agonist; LAMA: Long-Acting Anti-Muscarinic; SAMA: 452 
Short-Acting Anti-Muscarinic 453 

 454 

Table 2. Baseline (Year 1) phenotype characteristics prior to COPD diagnosis in patients with 455 
cardiovascular comorbidities 456 

 Phenotype 

 

Variables 

A 

(n = 2072) 

B 

(n = 943) 

C 

(n = 2936) 

Age, mean (SD), years 72 (8) 72 (9) 72 (9) 

Sex, Male, No. (%) 1,199 (58) 732 (78) 1,649 (56) 

Body mass index, mean (SD), kg/m2 28 (6) 28 (5) 28 (6) 

Body mass index, No. (%) with data 2,067 (99) 940 (100) 2,930 (99) 

   Underweight     56 (3)     16 (2)     62 (2) 

   Normal weight   595 (29)  269 (29)   855 (29) 

   Overweight   772 (37) 383 (41) 1,065 (36) 

   Obese   644 (31)  272 (29)   948 (32) 

Smoking status, No. (%)    

   Active smoker   586 (28) 297 (31) 1,001 (34) 

   Former smoker 1,486 (72) 646 (69) 1,935 (66) 

COPD severity, No. (%) with data 1,196 (58) 493 (52) 1,375 (47) 

   Mild 288 (24) 154 (31)   570 (41) 

   Moderate 583 (49) 262 (53)   687 (50) 

   Severe 295 (25)   72 (15)    110 (8) 

   Very severe    30 (3)     5 (1)        8 (1) 

COPD exacerbations in the past year, 

mean (SD) 

0.5 (1) 

 

0.2 (0.7) 

 

0.1 (0.5) 

 

COPD exacerbations in the past year, No. 

(%) 

   

   0 1,584 (76) 815 (86) 2,666 (91) 

   1   239 (12)   77 (8)   193 (7) 

   2   128 (6)   33 (3)     64 (2) 

   >2   121 (6)   18 (2)     13 (1) 

FEV1, mean (SD), L 0.7 (0.2) 0.7 (0.2) 0.8 (0.2) 

Emphysema, No. (%) 145 (7) 54 (6) 121 (4) 

Diabetes, No. (%) 444 (21) 249 (26) 629 (21) 

Hypertension, No. (%) 2,055 (99) 326 (35) 2,936 (100) 

Coronary artery disease, No. (%)     59 (3) 500 (53)   116 (4) 

Acute myocardial infarction, No. (%)     93 (4) 617 (65)   112 (4) 

Congestive cardiac failure, No. (%)   174 (8) 379 (40)   166 (6) 

Anxiety, No. (%)   165 (8)   67 (7)   228 (8) 

Depression, No. (%)   584 (28) 278 (29)  806 (27) 

Treatment, No. (%)a    

   ICS 2,054 (99) 402 (43) 219 (7) 

   ICS+LABA 1,981 (96) 353 (37)     7 (0.2) 

   LAMA 1,451 (70) 437 (46) 917 (31) 

   LABA 102 (5)   81 (9) 391 (13) 

   SAMA 114 (6)   50 (5) 171 (6) 

   Mucolytics 380 (18) 104 (11)   91 (3) 

ICS: Inhaled Corticosteroids; LABA: Long-Acting Beta Agonist; LAMA: Long-Acting Anti-Muscarinic; SAMA: 457 
Short-Acting Anti-Muscarinic 458 
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Table 3. Phenotype characteristics of patients with cardiovascular comorbidities prior to COPD diagnosis 459 
Phenotype A Phenotype B Phenotype C 

Highest prevalence of severe 

COPD  

Larger majority of males Lowest prevalence of severe 

COPD  

Emphysema (more prevalent) Highest prevalence of three 

cardiovascular comorbidities:  

Zero COPD exacerbations (large 

majority) 

Hypertension (almost all)      Coronary artery disease  Hypertension (all) 

Most-treated overall      Acute myocardial infarction Least-treated overall 

     ICS (nearly all)      Congestive cardiac failure      LAMA (one-third) 

     ICS+LABA (nearly all) Highest prevalence of diabetes  

     LAMA (large majority) Intermediate level of treatment:  

     Mucolytics       ICS (almost half)  

      ICS+LABA (one-third)  

      LAMA (almost half)  

ICS: Inhaled Corticosteroids; LABA: Long-Acting Beta Agonist; LAMA: Long-Acting Anti-Muscarinic; SAMA: 460 
Short-Acting Anti-Muscarinic 461 

Table 4. Confusion matrices of four models predicting cardiovascular comorbidities in patients with 462 
COPD 463 

Random Forest 

(no sampling) 

 Observed 

  Hypertension Coronary 

artery disease 

Acute 

myocardial 

infraction 

Congestive 

cardiac failure 

Predicted Hypertension 3382 19 12 21 

Coronary 

artery disease 

156 4 0 0 

Acute 

myocardial 

infraction 

188 0 4 1 

Congestive 

cardiac failure 

157 0 2 0 

Statistics Accuracy (%) 

(95% CI) 

86 (85, 87) 

Sensitivity (%) 87 17 22 0 

Specificity (%) 17 96 95 96 

PPV (%) 98 3 2 0 

NPV (%) 2 99 99 99 

Decision Tree 

(up-sampling) 

 Hypertension Coronary 

artery disease 

Acute 

myocardial 

infraction 

Congestive 

cardiac failure 

Predicted Hypertension 1193 752 738 751 

Coronary 

artery disease 

64 53 19 24 

Acute 

myocardial 

infraction 

53 47 40 53 
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Congestive 

cardiac failure 

42 34 34 49 

Statistics Accuracy (%) 

(95% CI) 

34 (32, 35) 

Sensitivity (%) 88 6 5 6 

Specificity (%) 14 97 95 96 

PPV (%) 35 33 21 31 

NPV (%) 69 78 79 78 

Gradient 

boosting 

machine        

(up-sampling) 

 Hypertension Coronary 

artery disease 

Acute 

myocardial 

infraction 

Congestive 

cardiac failure 

Predicted Hypertension 1367 895 549 623 

Coronary 

artery disease 

46 66 21 29 

Acute 

myocardial 

infraction 

57 49 42 45 

Congestive 

cardiac failure 

51 40 20 48 

Statistics Accuracy (%) 

(95% CI) 

39 (34, 40) 

Sensitivity (%) 89 6 7 6 

Specificity (%) 15 97 95 96 

PPV (%) 40 40 22 30 

NPV (%) 70 74 84 82 

Multinomial 

logistic 

regression     

(up-sampling) 

 Hypertension Coronary 

artery disease 

Acute 

myocardial 

infraction 

Congestive 

cardiac failure 

Predicted Hypertension 1167 874 484 909 

Coronary 

artery disease 

45 67 21 27 

Acute 

myocardial 

infraction 

46 55 29 63 

Congestive 

cardiac failure 

36 49 20 54 

Statistics Accuracy (%) 

(95% CI) 

33 (32, 35) 

Sensitivity (%) 90 6 5 5 

Specificity (%) 15 97 95 96 

PPV (%) 34 42 15 34 

NPV (%) 75 74 86 74 

CI: Confidence Interval; PPV: Positive Predictive Value; NPV: Negative Predictive Value 464 

  465 
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466 

 467 

Figure 1. Flow chart of the study cohort

Patients with a COPD diagnostic code

N = 34,501

 Age < 35 years (N = 345)

 Non-smoker (N = 1,090)

 Active asthma (N = 

4,935)

 FEV1/FVC > 0.7 (N = 

7,724)

 < 3 consecutive years of 

FEV1 values (N = 7,147)
≥ 3 consecutive years of 

follow-up after FEV1 

recordings

N = 13,260

With cardiovascular 

comorbidities 

N = 6,883

Without cardiovascular 

comorbidities

N = 6,377

Figure 2. Main steps in phenotype identification before and after COPD diagnosis
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Reviewer 1 

 

Thank you for your attempt to group COPD patients’ characteristics and relate them to CV comorbidities. 

It appears to be an interesting idea to then assess risk of issues such as CAD and CHF based on phenotypic 

properties of the COPD patients. 

 

Thank you for your positive and constructive feedback. We are pleased to read that you valued 

our effort in associating COPD phenotypes with cardiovascular comorbidities (CV) toward better 

understanding the COPD cardiovascular phenotype and related issues. 

 

You have used machine learning in a population to assess these relationships, but how these were chosen 

were not clear. Recognize that most respiratory clinicians will not have the intimate knowledge of machine 

learning that you have.  

 

Thank you for your request to further clarify our methodological selection. We appreciate that 

most respiratory clinicians might not have substantial expertise in machine learning. Thus, we 

added a ‘lay’ paragraph in the “Statistical analysis” section of the paper (page 2; lines 162-173) 

in which we describe in what ways the two main types of machine learning methods chosen 

(supervised and unsupervised) are well suited to address the specific objectives of this study.  In 

sum, we used unsupervised learning, where we have no prior knowledge of the classification of 

patients into clusters, to group patients who share common characteristics with the use of 

hierarchical and k-means clustering. We also used supervised learning, where the classification 

of patients into CV comorbidities is known, to predict future CV comorbidities in a new dataset 

with the use of four classifiers (decision tree, multinomial logistic regression, random forest and 

gradient boosting machine). 

 

I think you may have been better to do the sampling and then first test it on a holdout group of the initial 

groups of patients before testing it on an outside cohort. 

 

Thanks for raising this issue. We indeed first divided the sample in two cohorts, tested our models 

first on an ‘holdout’ subset of the training dataset (i.e., the RF test dataset) and then on the outside 

cohort (i.e., the entire validation dataset post-COPD diagnosis). We understand that the 

procedure, which is the norm in the machine learning literature, may appear a bit convoluted to 

the clinical readers, and that our initial framing was somewhat cumbersome, therefore we have 

now edited this passage to avoid any possible misunderstanding moving forward (Figure 2 and 

pages 3-4, lines 203-211 and 221-223). 

  

I am unclear, despite your discussion, on how this would be clinically useful. I think this needs to be 

expanded and much more clear 

 

Thank you for raising our attention on the importance of highlighting further clinical 

implications. In the introduction and in the discussion sections, we have now expanded on the 

clinical relevance of our contribution (page 1, lines 111-116; page 6, lines 282-291). Moreover, 

we explained the usefulness of predicting the cardiovascular comorbidities with high degree of 

sensitivity (or specificity) toward preventing cardiovascular disease (page 6; lines 312-320), as 

Revision Notes



well as the clinical importance of identifying different treatment patterns in patients with different 

phenotypes (page 7; lines 321-329). Finally, we highlight that the clinical interpretation of the 

derived phenotypes can be more generally beneficial in furthering knowledge on the 

heterogeneous nature of COPD (page 7; lines 332-340). 

 

I believe that there is great potential for machine learning to discover relationships in patients and this 

premise is an excellent one. It just needs to be clarified better to the reader. 

 

We share your enthusiasm on the use of machine learning to identify relationships in patient data; 

we are confident that our work can contribute to this emerging research trend moving forward. 

We appreciate that in some parts of our initial submission we were too technical, and this resulted 

at times in a somewhat convoluted narrative to the clinical reader. We therefore thank you for the 

valuable input that has allowed us to streamline our work and, we believe, to greatly improve its 

presentation.  

 

 

Reviewer 2 

 

In this manuscript Nikolaou and colleagues have evaluated the prediction of cardiovascular comorbidities 

in COPD patients with at least one cardiovascular comorbidity in a 4-year observational cohort of 6,883 

UK patients. The study is overall interesting, yet some issues need to be clarified by the authors.  

 

Thank you for your positive feedback and useful suggestions. We tackled your comments in our 

responses below. 

 

Why did the authors decide to include patients with a diagnosis of COPD and at least one cardiovascular 

comorbidity?  

 

The main aim of this work is to characterize COPD patients with cardiovascular (CV) 

comorbidities. The cardiovascular phenotype is one of the most clinically relevant phenotypes to 

analyse, given that cardiovascular disease is the major contributor to morbidity and mortality in 

patients with COPD1. As such, we included patients who satisfied two clear-cut inclusion criteria: 

a) having a COPD diagnosis, and b) at least one of the four cardiovascular comorbidities that 

were available in the dataset used. We selected at least one CV because within the burgeoning 

literature on COPD phenotypes some authors2 have suggested that even one ischemic heart 

disease comorbidity alone could represent a self-standing COPD phenotype. 

 

Was this a new diagnosis of a comorbidity or an existing one?  

 

The CV diagnosis was pre-existing and provided in the dataset used. We clarify this aspect when 

describing our inclusion criteria at page 1, lines 136-137. 

 

Were the additional CV comorbidities incident or pre-existing or both? 

 



Pre-existing CV comorbidities are the observed ones, while additional CV comorbidities are those 

predicted by our models. We make this clearer in the statistical analysis section where we describe 

the cross validation used (page 2 lines 156-159). 

 

 A prediction model would be useful for newly diagnosed comorbidities. 

 

Thanks for your remark. We fully agree with you and indeed we developed four prediction 

models—i.e., the ‘classifiers’— (page 4, lines 215-234) able to forecast new CV comorbidities; 

these were cross validated against pre-existing comorbidities. Our research design also allowed 

us to assess the performance of each model (Table 4). We further explained this aspect of our 

contribution in the section “Predicting cardiovascular comorbidities after COPD diagnosis”. 

 

Why did the authors require FEV1 values for 3 consecutive years?  

 

Thanks for raising this question. This is a longitudinal study of patients with COPD where the 

lung function is an important factor of patients’ health. Thus, we reasoned that it would be both 

methodologically and clinically appropriate to include patients with complete (i.e., not missing) 

FEV1 values throughout the study period. This approach is also consisted with recently published 

works suggesting that a period of 3 years is an ideal timespan to account for clinically relevant 

FEV1 variations3 in COPD patients. 

 

Is this inclusion criterion for this study or part of another study? This is not likely to be relevant with the 

outcomes of interest in this study. 

 

This is an inclusion criterion for this study. We agree that three consecutive years of lung function 

measures shall not be seen as an outcome variable here; indeed, assessing lung function is not 

the goal of this study. We however believe that lung function is an important contributing factor 

to improve the analytical performance of our models. Generally speaking, the more data available 

concerning a certain construct (i.e., longitudinal FEV1 data for COPD), the better the predictive 

ability of the models. In other words, the more COPD related data there are, the more accurate 

the models’ output on the phenotypes is. We have added an explanation on this issue in the 

discussion section (page 7, lines 340-342). 

     

What was the reason for the split in the training and validation cohorts based on the timing of registration 

with a GP prior or after a COPD diagnosis?  

 

Thanks for your question. We divided the sample into two cohorts: patients registered with a GP 

prior to their COPD diagnosis and those registered after diagnosis. This was done as a 

straightforward, unbiased methodological device to allow the algorithms to learn patterns in the 

data (i.e., how to group patients into COPD phenotypes and classifying them into four 

cardiovascular comorbidities) at an early stage of the clinical development of the disease (i.e., 

prior to COPD diagnosis). In this way, we could ensure that the computations were able to truly 

predict such classifications in a new (blind) dataset after COPD diagnosis, without any possible 

researcher bias affecting the group selection a priori. We have added a relevant paragraph in the 



“Statistical analysis” section (page 2; lines 148-159) to make our overall research strategy 

clearer. 

 

Was the latter timing synchronous with the diagnosis of COPD? 

 

Not necessarily. We used the COPD diagnosis as a reference threshold: as explained above, 

in line with the principles of machine learning, we consider those patients who were registered 

with a GP before and after diagnosis in order to generate two independent cohorts of patients 

(see “Statistical analysis” section). One cohort was used to train our models, and another one 

to test them. We also would like to specify that the potential lack of synchronicity does not affect 

– at least methodologically – the rationale for and the performance of the models used. 

 

What is the potential explanation for the marked difference in the size of the two cohorts? 

 

The majority of patients in our sample were registered with a GP prior to COPD diagnosis 

(n=5951) and the remaining ones (n=932) were registered after their COPD diagnosis. The 

different sample size between these two groups is just a feature of the available dataset used. This 

also guarantees once again avoidance of selection biases from the researchers. 

 

In phenotype A, most patients were treated with ICS and/or ICS/LABA. How can the authors be confident 

of a COPD diagnosis in patients receiving mono-ICS treatment, without a LABA or LAMA?  

 

Thanks for your comment. As explained above, the nature of the data is given by the database 

used. In other terms, the COPD patients, were patients already fully diagnosed with COPD, and 

we did not infer their COPD diagnosis by looking at the treatments. Methodologically, cluster 

analysis is a data-driven method: it is possible to group together patients who share different 

features, such as treatments with ICS and/or ICS/LABA. That is, we can have patients diagnosed 

with COPD receiving mono-ICS treatment only. It just happened that in the sample, there were 

patients receiving either LABA or LAMA along with mono-ICS treatment. In any case, there are 

studies4,5 available in the literature that suggest that COPD patients can receive only mono-ICS 

treatment as well.  

 

In closing we would like to thank you for your thought-provoking and constructive feedback that 

has helped us greatly to improve our contribution.  
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