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SYNOPSIS 

This economic modelling study suggests that spectral-domain optical coherence tomography 

offers a cost-effective monitoring test for detecting the onset of neovascular age-related 

macular degeneration in the second eye of people being treated for unilateral disease.   
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ABSTRACT 

Background/Aims: To evaluate the cost-effectiveness of non-invasive monitoring tests to detect the 

onset of neovascular age-related macular degeneration (nAMD) in the unaffected second eye of 

patients receiving treatment for unilateral nAMD in a UK NHS hospital outpatient setting.  

 

Methods: A patient-level state transition model was constructed to simulate the onset, detection, and 

treatment of nAMD in the second eye.  Five index tests were compared: self-reported change in visual 

function, Amsler test, clinic measured change in visual acuity from baseline, fundus assessment by 

clinical examination or colour photography, and spectral domain optical coherence tomography (SD-

OCT). Diagnosis of nAMD was confirmed by fundus fluorescein angiography (FFA) before prompt 

initiation of anti-vascular endothelial growth factor treatment. Quality adjusted life years (QALYs) 

and costs of health and social care were modelled over a 25-year time horizon.  

 

Results: SD-OCT generated more QALYs (SD-OCT, 5.830; fundus assessment, 5.787; Amsler grid, 

5.736, patient’s subjective assessment, 5.630; and visual acuity, 5.600) and lower health and social 

care costs (SD-OCT, £19,406; fundus assessment, £19,649; Amsler grid, £19,751; patient’s subjective 

assessment, £20,198; and visual acuity, £20,444) per patient compared to other individual monitoring 

tests. Probabilistic sensitivity analysis indicated a high probability (97-99%) of SD-OCT being the 

preferred test across a range of cost-effectiveness thresholds (£13,000-£30,000) applied in the UK 

NHS.   

 

Conclusions: Early treatment of the second eye following FFA confirmation of SD-OCT positive 

findings is expected to maintain better visual acuity and health related quality of life and reduce costs 

of health and social care over the lifetime of patients.   

 

Keywords: age-related macular degeneration; cost-effectiveness; health economics 
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INTRODUCTION 

Neovascular age-related macular degeneration (nAMD) causes severe visual loss and is the 

most common cause of blindness in persons aged 50 years or over in the western world.1    

 

Visual acuity (VA) outcomes for people with nAMD have improved in recent years with the 

introduction of therapies targeting vascular endothelial growth factor (VEGF).2,3 However, 

there remains a substantial residual burden of visual morbidity.  The UK based IVAN trial, 

for example, which achieved longer-term follow-up of 99% of eligible patients following 

release from the trial protocol at two years, showed that eyes monitored and treated in routine 

practice (median follow-up of 3.3 years) lost distance visual acuity at a rate of 4.3 ETDRS 

letters per year.4 Furthermore, 20% had VA worse than 33 letters at the end of study eye 

monitoring.   

 

A high incidence of second eye involvement (8-10% per year),5 coupled with real world 

evidence showing that second eyes with good vision at treatment initiation maintain better 

VA over three years than first presenting eyes,6 provides strong rationale for closely 

monitoring the second eye of patients being treated for nAMD in one eye.   There is a clear 

need for an easily and rapidly performed cost-effective monitoring test that will detect the 

onset of nAMD in the second eye with high diagnostic accuracy.  

 

This paper reports on an economic evaluation conducted as part of the UK based EDNA 

study (Early Detection of Neovascular Age-related macular degeneration), which assessed 

the diagnostic monitoring performance of five candidate tests against a reference standard of 

fundus fluorescein angiography (FFA) over a 36-month follow-up period.7    

 

METHODS 

A patient-level state transition model was developed to simulate the long-term impact of 

candidate monitoring tests, carried out in UK NHS outpatient eye services, on visual acuity 

outcomes and health and social care costs over a 25 year time horizon. The model focused on 

the second eye of people commencing treatment for nAMD in one eye, and was structured 

around disease, diagnosis, and treatment status (Figure 1). Individuals were simulated to pass 

through the model one at time using a monthly cycle. Visual acuity (VA) was modelled as a 

continuous variable, and the second eye (EDNA study eye) was assumed to remain stable up 



 

6 
 

to the point of conversion. It was also assumed that the second eye represented the best 

seeing eye (BSE) over the modelled time horizon. 

 

[Figure 1 here] 

 

Population 

The baseline characteristics of simulated individuals were drawn at random from a table 

containing the baseline characteristics of each EDNA study participant (n=552).  The average 

age was 77.4 years, mean baseline VA in the unaffected second eye was 79 letters compared 

to 56.6 in the first eye, and 57.2% were female. 

 

Comparators 

The model compared the monitoring tests under investigation in the EDNA study: SD-OCT 

(abnormal findings, indicative of nAMD), fundus evaluation (slit lamp biomicroscopy or 

fundus photography showing clinical signs of nAMD as determined by an expert), Amlser 

grid test (distortion or regions where the grid pattern disappears when previously no 

distortion present), patient subjective change in VA (much worse than the previous visit), and 

visual acuity (reduction of 10 or more letters in best corrected visual acuity from baseline). A 

secondary analysis also assessed the cost-effectiveness of the test combination with highest 

sensitivity (SD-OCT and fundus evaluation) and a test combination of all tests excluding 

OCT. The base case assumed that positive tests would be confirmed with FFA (the reference 

standard in the EDNA study) prior to treatment initiation.  

 

Time to conversion  

During the EDNA study, the second eye of 120 participants converted to nAMD as 

confirmed by local interpretation of FFA, and an additional 25 participants had a clinical 

determination of conversion without FFA, yielding a crude conversion rate of 26% (95% CI 

22.3%, 30.6%) with a median follow-up time of 33 months (ranging from 0.8 to 38.5 

months). Parametric survival analysis of time to conversion was conducted using local 

interpretation of FFA to define events. Individuals were censored at the time of their last 

observed FFA if no FFA-confirmed conversion was observed. An exponential curve was 

identified as having the best statistical fit to the observed data and was used in the model 

(Supplementary figure 1). Weibull and the log-normal distributions were tested in sensitivity 

analysis.  
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Time to losing ten or more ETDRS letters (without treatment) 

Following conversion of the second eye, time to deterioration of VA in the absence of 

treatment was informed by post-conversion visual acuity data on the 145 patients who 

converted during EDNA. VA data at time of treatment initiation and at one-year post-

conversion were obtained with permission from the parallel FASBAT study8 or routine case 

notes. Time of conversion was taken as the midpoint between the visit at which nAMD was 

detected and the preceding visit. Time at risk was calculated as the time from conversion to 

losing ten or more letters or treatment initiation (whichever came first). If no treatment was 

initiated, time at risk was censored at the last available follow-up point where VA data were 

available.   

 

The data were used to generate a Kaplan Maier curve, to which parametric survival functions 

were fitted (Supplementary Figure 2). Given uncertainty around the exact timing of events 

and the shape of the distribution, we selected the exponential curve for the base case 

extrapolation.  

 

We then used the difference in VA between the first presenting eye and the second eye 

(EDNA study eye) at baseline as a proxy to estimate the proportion of first presenting eyes 

that had lost 10 or more letters and 30 or more letters between conversion and treatment 

initiation; 78.4% and 29.2% respectively. It was assumed that untreated, 29.2% of second 

eyes can be expected to have lost 30 or more letters by the time 78.4% have lost 10 or more 

letters (15.15 months based on extrapolation). We used the relative difference to approximate 

a curve for time to losing 30 or more letters (supplementary Figure 2).  Exact numbers of 

letters lost were drawn randomly from a uniform distribution (minimum 10, maximum 29) 

for those modelled to lose 10-29 letters, and from a gamma distribution (mean = 42, standard 

deviation = 9.27, minimum = 30) for those losing 30 letters or more prior to treatment 

initiation; again, informed by the difference between the first presenting eye and the EDNA 

study eye at baseline. 

 

Diagnostic accuracy 

Test sensitivity and specificity were derived from the EDNA analysis of index test results at 

the last study visit when everyone received an FFA. However, test specificities were adjusted 



 

8 
 

to account for lack of independence between repeated test observations within individuals 

(Table 1).  

 

Since the cost-effectiveness modelling was based on expected changes in VA following 

conversion to nAMD, and VA loss ≥ 10 letters was one of the index tests, we assumed VA 

change to have zero sensitivity for nAMD prior to any VA loss, and 100% sensitivity 

following VA loss ≥ 10 letters.  

 

Table 1 Diagnostic accuracy estimates applied in the economic model    

Index test Sensitivity (%) 

(95% CI) 

Specificity (%) 

(95% CI) 

Cumulative 

proportion 

experiencing 

a false 

postive 

during 

EDNAa  

Mean no. 

of tests in 

EDNA 

study 

Adjusted 

specificities 

per testb 

Amsler 26.5 (18.8, 36.1) 93.7 (90.1, 96.1) 0.1398 13.8 0.9891 

Fundus 49.6 (40.8, 58.4) 
99.7 (98.2, 

100.0) 
0.02 14.2 0.9986 

OCT 90.0 (83.2, 94.3) 96.4 (93.8, 98.0) 0.0965 14.5 0.9930 

Self-reported 

vision 
4.2 (1.6, 9.8) 98.5 (96.4, 99.5) 0.0177 14 0.9987 

Visual acuity 
25.8 (18.8, 

34.4)c 
88.4 (84.5, 91.4) 0.182 15.5 0.9871 

OCT or Fundus 92.4 (86.1, 96.1) 96.1 (93.4, 97.8) 0.140+ 17.6+ 0.9915+ 

All tests 

excluding OCT 
63.9 (54.0, 72.8) 85.9 (81.2, 89.6) 0.444+ 17.6+ 0.9673+ 

a Proportion of patients coded as false positive for each test at any testing visit throughout the EDNA study; b 

Adjusted specificity calculated as = (1-a)^(1/mean number of tests), so that its application over the observed 

mean number of tests in EDNA yielded the observed cumulative proportion experiencing a false positive on 

each test; +Adjusted specificities for combinations were calculated using the cumulative proportion of non-

convertors experiencing a false positive over follow-up, and the expected number of tests over 36 months of 

monitoring;  c represents overall sensitivity of the VA test for detecting observed EDNA cases, which is 

combination of 100% sensitivity for detecting cases that had lost ten or more letters from baseline, and 0% 

sensitivity for cases that had not.   
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Post-treatment visual acuity trajectories 

For eyes that had lost 10 or more letters prior to treatment initiation, an average improvement 

in VA of +6.47 (95% CI: 2.66 - 10.28) was applied over the loading phase (EDNA post-

conversion data). For those commencing treatment prior to losing 10 or more letters, the 

average change in VA over the loading phase was assumed zero (Supplementary Table 1). 

External literature shows that second eyes with good VA at treatment initiation, on average 

do not accrue any significant improvement in VA over the loading phase, but maintain better 

VA at two to three years compared to eyes with poorer VA at treatment initiation.6,9 Post-

loading phase changes in VA were informed primarily by data from the ranibizumab arm of 

the UK based IVAN trial.10,11 Following the approach described by Claxton et al.,12  we 

applied random draws from time dependent normal distributions for VA change per month 

(Supplementary Table 1).  Beyond 24 months, we specified a monthly VA change 

distribution based on the annual rate of decline in distance VA observed during the long-term 

follow-up of IVAN participants; 4.3 letters per year (95% confidence interval: 3.7 to 4.9). 

Mean VA trajectories for eyes treated before and after significant vision loss (≥10 letters) are 

provided in Supplementary Figure 3. 

 

Treatment discontinuation 

Monthly probabilities of treatment discontinuation were applied from 24 months following 

treatment initiation (Supplementary Table 2).4 We further assumed that treatment and 

monitoring would cease for futility if vision dropped below 18 letters.  For those who 

discontinued treatment with VA better than 18 letters, stability was assumed and no further 

changes in VA were modelled unless reactivation and re-initiation of treatment ocurred.  

Since data on the rate of treatment re-initiation were not available from IVAN, we informed 

this using data provided by the authors of another UK based cohort study (Personal 

communication, Sobha Sivaprasad, March 2020)13  (Supplementary Table 2). 

 

Valuation of visual acuity outcomes 

Health state utility data by VA status was identified from searches of the published 

literature.14-22,23 For consistency with the NICE appraisals of ranibizumab and aflibercept,24,25 

we applied utilities reported by Czoski-Murray et al.22 based on UK general population time 

trade-off values for visual impairment states simulated using contact lenses. In line with the 

NICE appraisals, we used the published equation based on regression analysis of this data to 

assign health state utility weights in the model (Supplementary Table 3) 
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Resource use and costs 

The model included costs of testing and monitoring for conversion to nAMD, monitoring and 

treatment post conversion, and health and personal social care associated with severe visual 

loss.  All costs were expressed in 2018/2019 UK Sterling, inflated when required using the 

NHS cost inflation index.26   

 

For each test, we assessed the time required to perform it and the time required to interpret it, 

for both eyes and for one eye. The times required and the grades of staff performing each role 

were based on a survey of centres participating in EDNA (18 of 24 responding), and these 

were combined with published unit cost multipliers for hospital staff (inclusive of 

overheads).26  Prices of test specific equipment, obtained from centres or manufacturers, were 

annuitized over their expected useful life span, and allocated on a per test basis using reported 

throughput.  Equipment costs per patient were further allocated between the first and second 

eye based on the estimated time required to test the first and second eye.    

 

Since monitoring of the second eye (EDNA study eye) coincided with monitoring of the 

treated (first presenting) eye, the marginal cost of assessing the second eye with each test was 

estimated and applied on top of the cost of a standard outpatient monitoring visit 

(Supplementary Table 4).27 The frequency of testing was based on observed average time 

interval between tests in EDNA, which increased over the 36 month follow-up. This equated 

to seven tests in year one, six in year two, and five in year three. In subsequent years we 

carried forward the frequency observed in the final 6 months of EDNA (four per patient year) 

out to five years. Beyond five years, it was assumed that monitoring for conversion of the 

second eye would continue at a reduced frequency of twice per year, and the cost of testing 

one eye was applied from this point onwards (assuming the majority of first treated eyes 

would be discharged from treatment by this time).  We also assessed a scenario which 

assumed no further monitoring for conversion from five years. 

 

Following conversion of the second eye, treatment and monitoring costs were applied 

according to time since treatment initiation (supplementary Table 5).  
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Where vision dropped below 35 letters, health and social care costs associated with legal 

blindness were applied.28 Unit costs of post-conversion monitoring and treatment are 

provided in supplementary Table 6.27,29,30  

 

Analysis methods 

Monte Carlo simulation was used to propagate the passage of 200,000 individuals through the 

model.  Future costs and QALYs were discounted a rate of 3.5% beyond year one.31    

 

Incremental cost-effectiveness ratios, expressing the additional cost per QALY gained, were 

estimated by comparing each testing strategy to the next less costly strategy (excluding those 

found to be more costly and less effective than an alternative option).  

 

Probabilistic sensitivity analysis was performed by assigning probability distributions to each 

input parameter based on reported means and measures of variance in the accompanying 

Tables. Beta distributions were assigned to sensitivity and specificity parameters, gamma 

distributions were used for costs of testing and blindness (assuming a standard error of 10% 

of the mean), and normal distributions were applied to all other parameters. The PSA used 

5000 first order simulations for each of 1,000 random draws from the assigned second order 

probability distributions. The output from this analysis provides the probability of each 

monitoring test being preferred by increasing cost-effectiveness thresholds.32 Further 

deterministic scenario analysis was undertaken to assess the impact on findings of uncertainty 

arising from key structural assumptions (Supplementary Table 7). 
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RESULTS 

The results of the base case analysis indicate that more sensitive monitoring tests generate 

increased health benefits at a lower cost, with SD-OCT being most effective and least costly 

and VA change being least effective and most costly, and (Table 2).   

 

Table2  Base case cost-effectiveness results 

Strategy Cost 

Incremental 

Costs QALYs 

Incremental 

QALYs ICER 

OCT 19,406  5.830   

Fundus clinical 

evaluation 19,649 243 5.787 -0.044 -5,562** 

Amsler  19,751 346 5.736 -0.095 -3,656** 

Self-reported vision 20,198 792 5.630 -0.200 -3,961** 

Visual acuity 20,444 1,039 5.600 -0.230 -4,510** 

**Absolutely dominated 

 

The index tests with lower sensitivity and specificity accrue higher pre-diagnosis costs than 

more sensitive / specific strategies due to more visits prior to detection and increased chances 

of a false positive result (Supplementary Table 8). More sensitive index tests accumulate 

higher post-diagnosis monitoring and treatment costs resulting from earlier detection.  The 

increased costs of earlier treatment, however, are more than offset by reduced costs 

associated with visual impairment and blindness.  

 

The modelling suggests that compared to using VA alone, SD-OCT monitoring brings 

detection forward by approximately 7.5 months, for a mean gain in VA at time of treatment 

initiation of approximately 16 letters (Table 3).  It is this earlier initiation of treatment and 

maintenance of better VA that drives the QALY gains for SD-OCT compared to the other 

strategies.  
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Table 3 Model output: time lags from conversion to detection and 1st treatment and 

visual acuity at first treatment  

Strategy 

  

  

 

Time difference (months) 

Visual Acuity at 

1st treatment 

Conversion to 

nAMD to detection 

Conversion to nAMD 

to 1st treatment 

Detection to 

1st Treatment 

mean (sd) mean (sd) mean (sd) mean (sd) 

OCT 2.5 (1.8) 3.3 (1.8) 0.8 (0.4) 71.3 (13.4) 

Fundus clinical 

evaluation 4.1 (3.7) 4.8 (3.7) 0.7 (0.5) 68 (14.6) 

Amsler  5.9 (5.4) 6.4 (5.4) 0.5 (0.5) 64.4 (15.1) 

Self-reported 

vision 9.4 (8.4) 9.5 (8.4) 0.1 (0.3) 57.2 (13.3) 

Visual acuity 10 (9.2) 10.2 (9.2) 0.2 (0.4) 55.2 (11.8) 

 

 

Results of the probabilistic sensitivity analysis show consistency with the base case 

deterministic results (Supplementary Table 9).  The cost-effectiveness acceptability curves 

(Figure 2) indicate that SD-OCT has a very high chance of being the preferred strategy across 

a range of cost-effectiveness thresholds typically applied by NHS decision making bodies. 

 

[Figure 2 here] 

 

The results of the scenario analyses detailed in supplementary Table 7 are reported in 

supplementary Table 10. They indicate that the ICER for SD-OCT remains below £20,000 

per QALY for all the scenarios tested.   

 

In a scenario in which treatment is withheld until vision drops below 70 letters, the QALY 

gain associated with SD-OCT is diminished and its ICER increases to £19,488 

(Supplementary Table 10, scenario 15). However, it can be noted that this delayed treatment 

strategy results in greater costs and lower QALYs compared to the base case which assumes 

immediate initiation of treatment.   Similarly, the base case strategy of confirming SD-OCT 

positive results with an FFA prior to treatment initiation is less costly and of equal efficacy to 

the alternative strategy of treating all OCT positive cases without a confirmatory FFA 

(supplementary Table 10, scenario 16).  
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In a secondary analysis, we assessed cost-effectiveness when including two combination 

strategies: 1) positive findings on SD-OCT or fundus examination counting as a positive 

result; and 2) positive findings on any test apart from OCT counting as a positive result 

(Table 4).  The combined SD-OCT/fundus strategy generates a very small QALY gain over 

SD-OCT alone. However, the increased testing cost results in the ICER being above accepted 

cost-effectiveness thresholds. The combination of all other tests, excluding OCT, generates 

higher costs and lower QALYs compared to OCT on its own and in combination with fundus 

evaluation (Table 4). 

 

Table 4 Cost-effectiveness results including the combination of OCT and fundus 

evaluation 

Strategy Cost 

Incremental 

Costs QALYs 

Incremental 

QALYs ICER 

OCT £19,406  5.830   

Fundus evaluation £19,649 £243 5.787 -0.044 -£5,560** 

Test combination 

(OCT+Fundus) 

£19,729 £323 5.833 0.002 £137,711 

Amsler grid £19,752 £23 5.736 -0.097 -£233** 

Patient's subjective assessment £20,199 £470 5.630 -0.202 -£2,320** 

Test combination (no OCT) £20,203 £473 5.806 -0.027 -£17,557** 

Visual acuity £20,445 £716 5.600 -0.233 -£3,076** 

**Absolutely dominated 
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DISCUSSION 

The results of this study suggest that of the individual tests that were assessed, SD-OCT can 

be expected to generate the most quality adjusted life years and lowest health and social care 

costs when used to monitor the second eye of patients with unilateral nAMD.  The increased 

costs associated with earlier detection and treatment are offset by a reduction in the costs 

which are associated with severe visual impairment. The QALY gains for SD-OCT are driven 

by the maintenance of better visual acuity in the second eye due to earlier detection, allowing 

earlier treatment initiation.  

 

By adopting an individual simulation approach, we were able to model VA as a continuous 

variable, which ensured the model outputs were sensitive to changes in VA.  Key inputs 

including time to conversion and diagnostic accuracy were informed by the prospective 

EDNA study.  In addition, resource use associated with pre-conversion monitoring was based 

on a survey of centres participating in the EDNA study, and post-detection treatment costs 

were based on pragmatic NHS based trials, supporting the generalisability of the model 

findings to the NHS.  Finally, post-treatment VA changes were also carefully informed by a 

range of sources applicable to NHS routine practice and capture expected differences in VA 

trajectories by degree of visual loss in the second eye prior to treatment initiation.  

 

Limited data were available to inform the rate of VA loss in untreated eyes immediately 

following conversion to nAMD.  Whilst the EDNA study was able to provide a reasonable 

estimate of the proportion expected to lose 10 or more letters within 3-6 months of 

conversion, the tendency to treat prior to significant vision loss resulted in uncertainty around 

the extrapolation of this input.  However, more conservative extrapolations were explored, 

and the ICER for SD-OCT remained favourable.  To ensure the impact of visual loss in the 

EDNA study eye (second eye) was not underestimated, the second eye was assumed to 

represent the better seeing eye over the model time horizon.  Whilst this will hold true for the 

majority, VA in the second eye may drop below that of the first eye in some patients.  Thus, 

the model may slightly overestimate the health benefits and cost savings of early detection 

and treatment.  In line with the EDNA study design, the analysis was conducted for a cohort 

of patients being monitored in UK NHS hospital eye services. Therefore, the cost-

effectiveness findings do not generalise directly to contexts where monitoring of the second 

eye occurs in the community. If the superior diagnostic performance of OCT observed in 

EDNA can be replicated in the community, there is scope for it to offer a cost-effective 
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option in this context. However, this would also depend on the comparative costs of the 

different diagnostic tests when carried out in the community, and a detailed assessment of 

this was outside the scope of EDNA.  Similarly, generalisability outside the UK NHS is 

uncertain.   

 

To our knowledge this is the first study to assess cost-effectiveness of alternative diagnostic 

monitoring strategies for nAMD in the second eye of patients being treated for unilateral 

nAMD.  In a previous health technology assessment, Mowatt et al. reported a high degree of 

uncertainty regarding the optimal use of SD-OCT in the nAMD monitoring and treatment 

pathway.28 This was in part due to limitations in the evidence base for diagnostic accuracy 

available at the time.  The EDNA study has provided robust evidence for the high diagnostic 

accuracy of SD-OCT as a monitoring test for the early detection of nAMD in the second eye, 

and the economic modelling reported here suggests it is likely to offer a cost-effective 

strategy in this context.  

  

We are aware of one study that has assessed the cost-effectiveness of immediate anti-VEGF 

treatment in patients with VA better than 70 letters at detection compared to waiting for VA 

to drop below 70 letters.33  Using data from the nAMD UK database on patients with VA 

above 70 letters at detection, Butt and colleagues estimated the time for VA to a drop below 

70 letters without treatment. Their modelling suggested that immediate treatment would 

maintain better VA and offer a cost-effective use of NHS resources in the short to medium 

term (2-10 years).  Our modelling produced consistent findings but using a lifetime horizon, 

and including costs associated with severe visual impairment, we found immediate treatment 

based on FFA confirmed SD-OCT positive findings to offer a potentially cost-saving 

approach.   

 

The modelling reported here suggests that SD-OCT, compared to other available diagnostic 

monitoring tests, can lead to substantial reductions in the time to diagnosis and treatment of 

nAMD in the second eye of patients being monitored and treated for nAMD in their first eye.  

The early initiation of treatment in the second eye, based on FFA confirmed SD-OCT 

positive findings, can be expected to maintain better VA and health related quality of life 

compared to less sensitive monitoring strategies, and may deliver cost-savings in the long-

run.    
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Our base case analysis reflected NICE diagnostic guidance to use FFA to confirm the 

diagnosis of nAMD.34  Clinical practice might vary towards initiating treatment based on SD-

OCT results alone.  While our modelling suggests it is more cost-effective to first confirm the 

diagnosis of nAMD using FFA rather than proceeding straight to treatment in all OCT 

positive cases, it is possible that clinical judgment may be applied in practice to efficiently 

circumvent the need for FFA in some cases without risking inappropriate overtreatment of 

false positive patients. Finally, considering the value of using fundus evaluation alongside 

OCT, our modelling suggests that the additional cost may not be justified given the marginal 

gain in sensitivity.  
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Figure 1 Simplified schematic of the model structure 

Notes: VA (visual acuity); TN (true negative); FN (false negative); TP (true positive); FFA 

(fluorescein angiography); Ref (reference standard). Whether or not FFA would be triggered 

by all positive test results in standard practice is questionable and alternative assumptions are 

explored. 

 

Figure 2 Cost-effectiveness acceptability curve 
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Supplementary Figure 1 Kaplan-Maier plot of time to conversion overlaid with fitted 
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Supplementary Figure 2 Extrapolated time to losing 10 or more and 30 or more letters 

from the point of conversion 

 

Supplementary Figure 3 Modelled post-treatment visual acuity trajectories of patients 

by time since treatment initiation (EDNA model) 

Note: with application of a VA cap in the model, there is a downward pressure on VA change 

between months 3 to 24, which slightly overestimates expected VA deterioration during this 

time-period compared to the IVAN trial. 
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Supplementary Table 8 Break down of costs for the base case analysis 

Supplementary Table 9 Probabilistic cost-effectiveness results 
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Supplementary Table 1 VA change for treated individuals from treatment initiation to 

24 months 

Variable Point estimate 

(SD) 

Source 

Monthly VA change (months 1-

3) for eyes with VA loss ≥ 10 

letters 

2.1567 (2.89) Chakravarthy et al., 

Claxton et al., 10,12 

EDNA post-conversion data 

Monthly VA change (months 3 

– 12) for eyes with VA loss ≥ 10 

letters. 

0.00 (2.25) Chakravarthy et al., 

Claxton et al., 10,12 

 

Monthly VA change 

(months 13-24) for eyes with 

VA loss ≥ 10 letters 

-0.0917 (2.17) Chakravarthy et al., 

Claxton et al., 10,12 

 

 

  



Supplementary Table 2 Probabilities of treatment discontinuation and treatment re-

initiation 

Variable Estimated 

probability (SE)a  

Source 

Monthly probability of treatment 

discontinuation by VA at 24 months 

post-treatment initiation  

 Evans et al. 20204 

≥ 68 0.0091 (0.001)  

53-67 0.0143 (0.002)  

38-52 b 0.0095 (0.003)  

≤ 37 0.0257 (0.007)  

Overall 0.0174 (0.001)  

Average of 38 to ≥ 68  0.0110 (0.002)  

Annual probability of re-initiating 

treatment following 12 months stable  

 Chandra et al. 2020;13  

Personal communication, 

Sohba Sivaprasad, March 

2020. 

Year 1 0.246 (0.038)  

Year 2 onwards 0.106 (0.038)  

a Point estimates and standard errors calculated by the authors from the reported data  

 

  



Supplementary Table 3 Health state utility inputs  

Utility parameters Mean Standard error 

Constant (baseline) 0.86 0.068 

Decrement per unit 

increase in VA 

LogMAR 

-0.368 0.046 

Decrement per one 

year increase in age 

-0.001 0.002 

Source, Czoski-Murray et al.22   



Supplementary Table 4 Testing costs applied in the model 

 Index test modality 

OCT  

(£) 

Fundus clinical evaluation Amsler (£) Self-

reported 

vision (£) 

VA  

(£) Slit lamp (£) Photography 

(£) 

EDNA 

study 

eye 

(second 

eye) 

Mean 10.68 10.64 11.79 6.13 7.08 8.15 

St. dev 5.19 6.32 7.11 3.05 6.68 6.32 

Median 9.71 9.91 10.04 4.83 5.05 6.26 

IQR 6.38 6.56 10.60 3.21 3.57 5.36 

First eye 

(nAMD 

at 

baseline) 

Mean 19.45 18.44 13.70 6.88 8.07 10.23 

St. dev 10.14 8.85 7.33 2.92 7.35 6.50 

Median 17.83 20.24 12.11 7.10 5.33 7.34 

IQR 11.76 13.23 9.72 3.40 4.80 6.21 

Total Mean 30.13 30.79 25.48 13.01 15.14 18.38 

St. dev 14.50 10.72 13.18 5.85 13.73 12.16 

Median 29.12 31.58 22.15 12.89 10.82 13.68 

IQR 16.47 11.58 16.97 6.14 8.82 5.36 

  



Supplementary Table 5 Monitoring and treatment frequency after conversion to nAMD 

 Ranibizumab Aflibercept 

 Treatment visits 

per year  

Mean (SE)a 

Monitoring visits 

per year 

Mean (SE)a 

Treatment visits 

per year 

Mean (SE)b 

Monitoring visits 

per year 

Mean (SE)b 

Year 1 10 (0.233) 12c 7 (0.35) 7 (0.35) 

Year 2 8 (0.233) 12c 6 (0.3) 6 (0.3) 

Year 3+ 4 (0.277) 9 (0.231) 4 (0.2) 6 (0.3) 

Notes: SE, standard error; a, standard errors approximated from reported medians and inter-quartile 

ranges; b, standard errors assumed as 5% of the mean; c, applied deterministically.  The base case 

analysis assumed a drug treatment distribution in line with the observed distribution in patients who 

commenced treatment in their EDNA study eye; aflibercept (68.7%), ranibizumab (22.3%), and 

bevacizumab (9%). 

  



Supplementary Table 6 Unit costs for monitoring and treatment following conversion to 

nAMD 

Resource Unit costs Source  Notes 

Ophthalmology 

outpatient visit 

£95 National Cost 

Collection 

2018-1927 

Code 130 Outpatient consultant led 

appointment in ophthalmology  

Fluorescein angiography 

(FFA) 

£145 National Cost 

Collection 

2018-1927 

BZ86B Outpatient intermediate 

vitreous retinal procedures 

Administration of anti-

VEGF injection  

£145 National Cost 

Collection 

2018-1927 

BZ86B Outpatient intermediate 

vitreous retinal procedures 

Ranibizumab (Lucentis) 

injection 

£551 BNF, 201929  1.65mg/0.165ml solution for 

injection pre-filled syringes 

(Novartis Pharmaceuticals UK Ltd) 

Aflibercept (Eylea 

injection) 

£816 BNF, 201929 2mg/50microlitres solution for 

injection vials (Bayer Plc) 

Bevacizumab (Avastin 

injection) 

£49 Dakin et al., 

201430 

1.25 mg per injection  

Cost of blindness 

(Health service 

perspective) 

£562.41 per 

month in year 1 

£541.73 per 

month from year 

2 onwards 

Mowatt, 

201428  

Cost per month for VA < 35 

ETDRS letters 

 

  



Supplementary Table 7 Details of scenario analyses carried out 

Scenario Description 

1. The Weibull distribution applied to model time to conversion to nAMD, giving an 

increasing hazard of conversion over time.  

2. The lognormal distribution applied to model time to conversion to nAMD, giving a 

decreasing hazard of conversion over time. 

3. The Lognormal distribution applied to model time from conversion to nAMD to 

significant vision loss (≥10 letters) 

4. The generalised gamma distribution applied to model time from conversion to 

nAMD to significant vision loss (≥10 letters) 

5. Pre-treatment VA loss conditional on dropping 10-29 and ≥30 letters assumed to be 

skewed towards the lower end of the VA loss ranges; mean = 12 and mean 32 letters, 

respectively   

6. A reduced longer-term rate of post-treatment VA decline applied; 3.1 letters per year 

in line with the average rate of decline estimated for younger patients (aged 70) in 

the IVAN long-term follow-up study. 

7. A reduced longer-term rate of post-treatment VA decline applied; 2 letters per year 

in line with the average rate of decline estimated for younger patients (aged 60) in 

the IVAN long-term follow-up study 

8. Distribution for long-term post-treatment rate of VA loss per year assumed to be 

right skewed and constrained by 0; gamma distribution with mean=4.3, standard 

deviation = 7.   

9. A reduced rate of treatment discontinuation for stable vision applied (0.0092), based 

on data from Chandra et al. (applied independent of VA outcome at 24 months post 

treatment) 

10. Removal of treatment discontinuation for stable vision (an extreme scenario to assess 

the impact of this uncertain parameter). 

11. An increased rate of treatment re-initiation (approximately 2.9% per month) 

following discontinuation for stable disease, in line with data reported by 

Madhusudhana et al (2016).83  

12. 100% test sensitivity applied for all tests at the subsequent monitoring visit for those 

who lose 15-29 letters due to nAMD. 

13. Removal of excess mortality associated with visual impairment. 

14. Removal of costs of blindness 

15. Wait to treat policy, which assumes VA must drop below the threshold specified for 

ranibizumab and aflibercept in NICE TA guidance (≤70  letters).  



16. Treatment instigated following OCT positive findings, without confirmation with 

FFA – this assumes that any patient receiving a false positive OCT result incurs 12 

months’ worth of anti-VEGF treatment inappropriately, before being identified as 

morphologically unchanged and treatment withdrawn.  

17. Increased test monitoring costs as per the increased overhead scenario outlined in the 

health economics appendix.  

18. Assume no further monitoring for conversion from 5 years, based on the probability 

that a majority of first eyes may be discharged from active treatment by this time 

point.   

   



Supplementary Table 8 Break down of costs for the base case analysis 

  Total 

Monitoring 

pre- 

diagnosis 

Monitoring 

post-

diagnosis Treatment Blindness 

OCT 19,406 2,573 2,576 10,966 3,291 

Fundus clinical 

evaluation 19,649 2,588 2,506 10,685 3,870 

Amsler  19,751 2,502 2,426 10,362 4,461 

Self-reported vision 20,198 2,565 2,261 9,700 5,672 

Visual acuity 20,444 2,644 2,226 9,562 6,013 

 

 

Table 9 Probabilistic cost-effectiveness results 

Monitoring Strategy 

Cost 

(£) 

Incremental 

Cost (£) QALYs 

Incremental 

QALYs ICER (£) 

OCT 19,660  
 

5.842 
  

Fundus clinical 

evaluation 19,900  240 5.796 -0.046 Dominated 

Amsler  20,069  169 5.744 -0.098 Dominated 

Self-reported vision 20,659  590 5.644 -0.198 Dominated 

Visual acuity 20,900  242 5.615 -0.227 Dominated 

 

  



Supplementary Table 10 Results of cost-effectiveness scenario analyses 

Strategy Cost (£) 

Incremental 

Costs (£) QALYs 

Incremental 

QALYs ICER (£) 

1. Weibull distribution applied to model time to conversion to nAMD, giving an increasing hazard 

of conversion over time 

OCT 19,909  5.806   

Fundus clinical evaluation 20,178 269 5.761 -0.046 -5,898** 

Amsler  20,290 381 5.709 -0.098 -3,892** 

Self-reported vision 20,754 845 5.601 -0.205 -4,123** 

Visual acuity 20,993 1,084 5.572 -0.235 -4,617** 

2. LogNormal distribution applied to model time to conversion to nAMD, giving a decreasing 

hazard of conversion over time 

OCT 17,288  5.926   

Fundus clinical evaluation 17,501 212 5.888 -0.037 -5,687** 

Amsler  17,550 261 5.843 -0.083 -3,163** 

Self-reported vision 17,969 681 5.748 -0.178 -3,826** 

Visual acuity 18,219 931 5.721 -0.205 -4,545** 

3. Lognormal distribution applied to model time from conversion to nAMD to losing 10 or more 

letters without treatment.  

OCT 19,616  5.806   

Fundus clinical evaluation 19,854 238 5.765 -0.041 -5,773** 

Amsler  19,899 283 5.723 -0.083 -3,406** 

Self-reported vision 20,049 433 5.644 -0.161 -2,679** 

Visual acuity 20,112 496 5.620 -0.186 -2,672** 

4. Generalised gamma distribution applied to model time from conversion to nAMD to losing 10 or 

more letters without treatment.  

Visual acuity 18,853  5.688   

Self-reported vision 19,311 458 5.690 0.002 293,816* 

OCT 19,760 907 5.788 0.100 9,040 

Amsler  19,833 73 5.728 -0.060 -1,229** 

Fundus clinical evaluation 19,912 153 5.756 -0.032 -4,745** 

5. Letter losses conditional on dropping 10-29 and ≥30 letters assumed to be skewed towards the 

highest end of the range; mean = 12 and mean 32 respectively   

Self-reported vision 18,728  5.780   

Amsler  18,755 27 5.836 0.057 470 

Visual acuity 18,831 76 5.763 -0.073 -1,037** 

Fundus clinical evaluation 18,867 112 5.861 0.025 4,478* 

OCT 18,878 123 5.883 0.046 2,655 

6. Reduced long-term rate of post treatment VA decline from 4.3 letters per year to 3.1 letters per 

year 

OCT 18,592  5.925   

Fundus clinical evaluation 18,839 247 5.878 -0.047 -5,237** 

Amsler  18,975 382 5.822 -0.102 -3,733** 

Self-reported vision 19,455 863 5.703 -0.221 -3,897** 

Visual acuity 19,690 1,097 5.671 -0.253 -4,331** 

7. Reduced long-term rate of post treatment VA decline from 4.3 letters per year to 2 letters per year 



OCT 17,987  6.016   

Fundus clinical evaluation 18,193 206 5.965 -0.051 -4,067** 

Amsler  18,289 302 5.906 -0.110 -2,748** 

Self-reported vision 18,712 725 5.778 -0.238 -3,045** 

Visual acuity 18,915 929 5.744 -0.272 -3,415** 

8. Distribution for long-term post-treatment rate of letter loss per year assumed to right skewed and 

constrained by 0; gamma distribution with mean=4.3, standard deviation = 7 

OCT 19,132  5.954   

Amsler  19,182 51 5.839 -0.115 -441** 

Fundus clinical evaluation 19,184 52 5.899 -0.055 -944** 

Self-reported vision 19,464 333 5.729 -0.226 -1,475** 

Visual acuity 19,614 482 5.696 -0.258 -1,870** 

9. Reduced rate of treatment discontinuation for stable vision to 0.0092 based on data from Chandra 

et al. 

OCT 19,957  5.816   

Fundus clinical evaluation 20,175 218 5.772 -0.043 -5,028** 

Amsler  20,265 307 5.722 -0.094 -3,284** 

Self-reported vision 20,699 741 5.619 -0.197 -3,765** 

Visual acuity 20,934 976 5.588 -0.227 -4,292** 

10. No treatment discontinuation for stable vision  

OCT 23,854  5.723   

Amsler  23,857 3 5.640 -0.082 -36** 

Fundus clinical evaluation 23,941 87 5.686 -0.037 -2,373** 

Self-reported vision 23,978 124 5.549 -0.173 -715** 

Visual acuity 24,124 269 5.524 -0.199 -1,356** 

11. Increased rate of re-initiation of therapy following discontinuation with stable vision.   

OCT 20,457  5.792   

Fundus clinical evaluation 20,664 207 5.751 -0.042 -4,973** 

Amsler  20,725 268 5.703 -0.090 -2,989** 

Self-reported vision 21,104 647 5.602 -0.191 -3,390** 

Visual acuity 21,329 872 5.574 -0.219 -3,990** 

12. 100% test sensitivity applied for all tests at the next monitoring visit for those who lose 15-30 

letters due to nAMD 

OCT 19,405  5.830   

Fundus clinical evaluation 19,640 236 5.786 -0.044 -5,359** 

Amsler  19,740 336 5.736 -0.095 -3,545** 

Self-reported vision 20,189 784 5.630 -0.200 -3,913** 

Visual acuity 20,442 1,037 5.600 -0.231 -4,497** 

13. No excess mortality due to VA loss 

OCT 20,234  5.931   

Fundus clinical evaluation 20,531 297 5.887 -0.044 -6,716** 

Amsler  20,692 458 5.837 -0.094 -4,876** 

Self-reported vision 21,259 1,025 5.734 -0.197 -5,195** 

Visual acuity 21,542 1,308 5.705 -0.227 -5,774** 

14. Removal of costs of blindness 



Visual acuity 14,432  5.600   

Self-reported vision 14,527 95 5.630 0.030 3,144 

Amsler  15,290 763 5.736 0.106 7,231 

Fundus clinical evaluation 15,779 489 5.787 0.051 9,621* 

OCT 16,115  825 5.830 0.095 8,729  

15. Wait for VA to drop to 70 letters or lower before initiating treatment, regardless of VA at time 

of detection  

Self-reported vision 20,423  5.580   

Amsler  20,471 48 5.591 0.012 4,159 

Visual acuity 20,484 14 5.578 -0.014 -1,001** 

Fundus clinical evaluation 20,630 159 5.597 0.005 31,014* 

OCT 20,651 181 5.601 0.009 19,488 

16. Initiating anti-VEGF treatment on the back of OCT positive findings, without confirmation with 

FFA 

Fundus clinical evaluation 19,649  5.787   

Amsler  19,751 103 5.736 -0.051 -2,018** 

Self-reported vision 20,198 549 5.630 -0.156 -3,514** 

OCT 20,403 754 5.830 0.044 17,256 

Visual acuity 20,444 42 5.600 -0.230 -180** 

17. Higher testing cost scenario 

OCT 19,634  5.830   

Fundus clinical evaluation 19,872 238 5.787 -0.044 -5,452** 

Amsler  19,987 353 5.736 -0.095 -3,732** 

Self-reported vision 20,372 738 5.630 -0.200 -3,688** 

Visual acuity 20,642 1008 5.600 -0.230 -4,376** 

18. Assume no further monitoring for conversion from 5 years  

OCT 19,158  5.770   

Fundus clinical evaluation 19,334 177 5.741 -0.030 -5,966** 

Amsler  19,455 297 5.705 -0.066 -659** 

Self-reported vision 19,844 686 5.621 -0.149 -2,871** 

Visual acuity 20,072 914 5.595 -0.175 -3,738** 
 **Dominated; * Extendedly dominated; # ICER with respect to less costly non-dominated strategy 
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