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The methods of nonlinear systems form an extensive toolbox for the study of biology, and systems
biology provides a rich source of motivation for the development of new mathematical techniques
and the furthering of understanding of dynamical systems. This Focus Issue collects together a large
variety of work which highlights the complementary nature of these two fields, showing what each
has to offer the other. While a wide range of subjects is covered, the papers often have common
themes such as “rhythms and oscillations,” “networks and graph theory,” and “switches and deci-
sion making.” There is a particular emphasis on the links between experimental data and modeling
and mathematical analysis. © 2010 American Institute of Physics. �doi:10.1063/1.3530126�

Nonlinear dynamical systems can be found throughout
biology. This Focus Issue showcases examples of work
where mathematical approaches have successfully been
applied to a myriad of biological problems. From the pro-
cessing and understanding of the vast amounts of experi-
mental data which are the fruits of recent advances in
measurement techniques, to modeling exploits which mo-
tivate developments in mathematics, presented here are
some highly interesting contributions to this blossoming
field of systems biology.

The biological sciences have experienced a dramatic
change over the past decades. With the rapid advance of
high-throughput technologies, it has now become possible to
simultaneously monitor many molecular components of a
cell with an unprecedented temporal and spatial resolution—
thus rendering molecular biology a truly quantitative science.
Despite this technological advance, the interpretation and
condensation of the immense amount of available data still
pose major challenges, and overarching theories of general
validity are still sparse.

The necessity to develop new theories and to describe
biological systems with mathematical methods is reflected in
the rapidly growing scientific field of systems biology. Many
different approaches are being developed and the diversity of
investigated systems mirrors the versatility of the life sci-
ences. From a physicist’s point of view, living organisms can
be understood as highly complex dynamic systems with vari-
ous levels of organization, all of which influence each other.
However, to view life as a special instance of physics does
not fully account for the true complexity of biology. Most
importantly, the biological systems that we observe today
have been shaped �and are still being shaped� by billions of
years of evolutionary pressure. The mere fact that these sys-
tems exist today reflects their success in the everlasting

struggle for survival. Indeed, survival in this constantly
changing, harsh, and competitive environment requires spe-
cial features which one would not expect to have appeared
purely by chance.

Despite the advances in biological measurement technolo-
gies, the available data are by far less complete than for
physical systems, such as astronomical bodies or electronic
devices. This necessitates a completely different approach to
data analysis. To unravel the mysteries of biology and give
our myriad of observations a unifying theoretical superstruc-
ture, it is clearly required that life is investigated on all spa-
tial, temporal, and organizational levels and that common
patterns, or evolutionary design principles, are identified.
Considering our limited knowledge, it is evident that we are
presently still at the very beginning of a new and fascinating
era of theoretical biological research with unpredictable out-
come.

An important contribution to the development of general
biological theories is certainly the study of the dynamics of
biological systems, on scales ranging from short-term adap-
tive processes which occur in seconds or faster to evolution-
ary dynamics which extend over billions of years. The pur-
pose of this Focus Issue is to bring together work from the
many diverse areas where the techniques of dynamical sys-
tem research are applied to biology. Nonlinear dynamics of-
fers the possibility to structure the data and to make sense of
the rich experimental results. The complexity of biological
organisms and the intricate interactions between different
subsystems make it necessary to use cutting-edge mathemat-
ics to unravel the mechanisms that lie at the heart of life.

Different areas of dynamical systems theory, such as syn-
chronization and network theory, offer suitable tools for the
analysis and description of biological systems and cast new
light on experimental data and their interpretation. This sys-
tematic, quantitative, and predictive approach characterizes
the increasingly important interplay between the biological
and mathematical sciences. Crossing the border between
these formerly separated branches, systems biology fosters a
cross-fertilization of ideas and stimulates new thinking,a�Electronic mail: c.a.brackley@abdn.ac.uk.
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opening a treasure trove of novel problems which have been
unnoticed until recently.

It is becoming more and more obvious that the theory of
dynamical systems and chaos is key for the growth of bio-
logical knowledge in the coming years. This Focus Issue
shows some examples of a successful application of various
mathematical concepts to diverse biological systems. It sug-
gests how the expected revolution in our understanding of
biological systems might, like other scientific developments
before, be triggered by new mathematics and the interaction
of scientists from different disciplines.

Although the range of subjects is deliberately wide, there
are several core themes which are repeatedly addressed from
different angles.

One vital facet of all biological systems is the ability to
generate rhythmicity and oscillations: from the smallest
single celled organism to the complexity of our own bodies,
life relies on cycles and timing. The beating of the human
heart is analyzed by Thul and Coombes,1 who studied a
model of intercellular calcium dynamics in order to under-
stand cardiac alternans—a precursor to fibrillation. Also con-
cerned with fibrillation, Petrov et al.2 examined spiral wave
stability and the influence of fibroblasts. Harvey et al.3 con-
sidered calcium dynamics on an intracellular length scale.
They use recently developed canard theory for systems with
three or more slow variables to study models of calcium
dynamics. Raue et al.4 studied identifiability and observabil-
ity analysis of experimental data, considering how such tech-
niques can inform experimental and model design.

Signaling and oscillations are also at the heart of neural
systems; Chandrasekar et al.5 represented neuronal popula-
tions as populations of coupled oscillators in order to under-
stand the mechanisms of synchronization—an often patho-
logical phenomena associated with seizures. Finke6 revisited
the classic Hodgekin–Huxley model of a neuron to study the
mechanism of cold reception in mammals. On smaller length
scale oscillators can be used as cellular clocks: Morant et al.7

examined the circadian clock in green algae, analyzing time
series data which shows remarkable agreement with models.
Gérard et al.8 studied a network of kinases which control the
dynamics of the mammalian cell cycle. They showed that as
a result of multiple oscillatory network circuits, there exists
rich dynamics such as complex periodic orbits, quasiperiodic
oscillations, and chaos.

Networks and graph theory are themselves important
tools in systems biology. In particular, protein interaction
networks can be used to understand the many complex inter-
actions between different proteins in a cell, for example, in
how a cell responds to extracellular signals. Rué et al.9 stud-
ied the signal transduction network found in human fibro-
blasts; they use a simple Boolean representation of the net-
work with experimentally motivated parameters to show that
the relaxation to an attractor is robust to noise. Koseska and
Kurths10 considered network subunits �such as switches and
oscillators� in synthetic biological systems. They studied
how the addition of such circuits in a network can enhance
the presence of different dynamical regimes. Interesting net-
work structures arise in many biological applications:
Zhandov11 considered a layered network model of mRNA-
protein interactions, including noncoding RNAs. Wan et al.12

studied a network growth model, looking at how a network

evolves based on simple rules, with the aim of producing a
structure which reflects the topology of a real protein net-
work. Wang et al.13 examined the evolution of functional
subnetworks. Network theory not only allows the study of
the evolution of networks themselves but can also be used to
further the understanding of evolution in biology. Schütte et
al.14 studied evolutionary dynamics of metabolic pathways;
they show, by considering evolutionary walks on the meta-
bolic network, that new enzymes appear in clusters rather
than gradually.

Evolution is another area where mathematical methods
are crucial to furthering our understanding. Ni et al.15 de-
scribed how the traditional “rock-paper-scissors” game can
be used to understand the dynamics of species coexistence
on evolutionary time scales. They showed that from simple
competition rules, different basins of attraction �e.g., coexist-
ence or extinction� can emerge. Slipantschuk et al.16 showed
that not only can dynamical systems teach us about biology
but also the inverse is true: they gain understanding of cha-
otic systems from a study of a grouse population dynamics
model with delay differential equations. They find that the
formation of shrimp shaped periodic regimes in parameter
space is triggered by a homoclinic bifurcation.

Evolutionary decisions are not the only decisions that bi-
ology has to make. On shorter length and time scales, cells
and organisms have many choices to make based on sensory
input and previous experience. Neri17 mathematically treated
human sensory processing as a mapping between a stimulus
vector and a decision variable. Learning and adaption are
examined by Komarov et al.18 who studied a model consist-
ing of a network of nonlinear dynamical elements which
produce sequences of goal directed actions.

Another feature of some dynamical systems which leads
to decision-making-like functionality is bistability; bistable
switches are very prevalent in biology. Cellular decision
making is studied by Domingo-Sananes and Novak,19 who
focused on a biochemical regulatory network which controls
a transition in the cell cycle. They highlighted the difference
between positive and double negative feedbacks and how
differences in architecture can change the position of the
saddle node bifurcation which determines where the system
switches. Schittler et al.20 considered a model of a two
switch regulatory genetic network applied to differentiation
of stem cells. They are able to reproduce three experimen-
tally observed equilibrium states.

Dynamical systems also play a role in understanding me-
chanical processes in biology. Günther and Kruse21 studied
force generation in muscles, focusing on the dynamics of
sarcomeres—the basic force generating subunits. They ana-
lyzed Hopf bifurcations, canard explosions, and gluing bifur-
cations and considered the implications for experiments.
Blood flow is studied by Geddes et al.,22 who examined the
topology of microvascular networks. They found multiple
steady states due to the nonlinear dependence of viscosity on
blood cell concentration and presented evidence of how the
predicted phenomena can be observed experimentally. Suhr-
bier et al.23 examined the role of the cardiovascular system
in sleep. They present a method for the detection of time-
delayed coupling in time series, applied to heat rate and
blood pressure data during different stages of sleep.
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Dynamical systems also have a role to play in medical
applications. Hirata et al.24 presented a mathematical model
for the treatment of cancer. The method aims to find an op-
timal protocol for intermittent drug delivery, using math-
ematics to inform physicians on how best to treat individual
patients.

The guest editors would like to thank all of the authors
who contributed to this Focus Issue. Also, we are grateful to
Janis Bennett �Assistant Editor, Chaos� for much help in the
logistics of putting together this issue.
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