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Abstract

Background: Systematic reviews of complex interventions commonly find heterogeneity of effect sizes among similar
interventions which cannot be explained. Commentators have suggested that complex interventions should be viewed as
interventions in complex systems. We hypothesised that if this is the case, the distribution of effect sizes from complex
interventions should be heavy tailed, as in other complex systems. Thus, apparent heterogeneity may be a feature of the
complex systems in which such interventions operate.

Methodology/Principal Findings: We specified three levels of complexity and identified systematic reviews which reported
effect sizes of healthcare interventions at two of these levels (interventions to change professional practice and personal
interventions to help smoking cessation). These were compared with each other and with simulated data representing the
lowest level of complexity. Effect size data were rescaled across reviews at each level using log-normal parameters and
pooled. Distributions were plotted and fitted against the inverse power law (Pareto) and stretched exponential (Weibull)
distributions, heavy tailed distributions which are commonly reported in the literature, using maximum likelihood fitting.
The dataset included 155 studies of interventions to change practice and 98 studies of helping smoking cessation. Both
distributions showed a heavy tailed distribution which fitted best to the inverse power law for practice interventions
(exponent = 3.9, loglikelihood = 235.3) and to the stretched exponential for smoking cessation (loglikelihood = 275.2).
Bootstrap sensitivity analysis to adjust for possible publication bias against weak results did not diminish the goodness of
fit.

Conclusions/Significance: The distribution of effect sizes from complex interventions includes heavy tails as typically seen
in both theoretical and empirical complex systems. This is in keeping with the idea of complex interventions as
interventions in complex systems.
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Introduction

Many interventions in health and social care are complex, in

that they involve multiple interacting components [1] and are

delivered in differing ways and circumstances [2]. These ‘‘complex

interventions’’ contrast with more simple interventions such as a

drug given to treat a single condition where most sources of

variability can be identified and controlled for, either directly or by

randomisation. Reviews of the effects of complex interventions,

such as actions to change clinical practice, have shown over many

years that effects are commonly small [3] and this has been

attributed to various phenomena, most recently the complexity of

healthcare systems [4].

The possible link between complex interventions and the

science of complex systems [5] has been elaborated by a number of

authors [6–9]. They argue that complex interventions typically

possess ‘‘sensitive’’ causality in which outcomes depend on

multiple steps and interactions [6], although few published studies

of complex interventions explicitly describe and model the

complexity of the system they are studying [10,11]. Figure 1

outlines three scenarios which display increasing complexity.

In the first, the intervention applies to individuals (each with

their own personal characteristics) in isolation; in the second the

effect of the intervention depends both on the intervention

and the environment with which individuals interact. In the

third level, the intervention is applied to a healthcare team which

then interacts with individuals who are in turn embedded in their

own social networks. In the first level, with low complexity,

variation within a population can be assumed to be due to

statistical chance as each individual is independent. The second

level, with moderate complexity can be understood using social

cognitive theories such as the Theory of Planned Behaviour [12]

which includes both personal elements such as intention and

social effects such as norms. The third, high complexity level,

extends the previous models by including a range of complex

interactions affecting the healthcare system (whether individual,

clinical team or whole system) which precede the delivery of

care to patients. This extends the personal components of the

Theory of Planned Behaviour with group ethos, aims and threats

[13–15].
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While to date the argument about whether complex interventions

should be understood as interventions within complex systems has

been largely philosophical, there are testable properties of complex

systems [5,16] which should be detectable in the results of complex

interventions. One such property is the presence of characteristic

heavy-tailed statistical distributions such as the inverse power law

[17] and stretched exponential [18]. Such distributions, which

appear to be ubiquitous in nature[17,19] and have been found in

healthcare systems [20], are very different from the normal

distribution which characterises the distribution of simple effects.

In particular, such distributions contain many more small values

than a normal distribution, but also a few more extreme values.

We hypothesised that if complex interventions are ‘‘interven-

tions in complex systems’’ [7] the effect sizes of these interventions

should show a heavy-tailed distribution typical of those seen in

other complex systems.

Figure 1. Schematic representation of three levels of complexity in relation to healthcare interventions. (a) shows a simple intervention
given to individual and independent patients (for instance administration of a drug). (b) shows a moderately complex intervention – for example
advice or support to help smoking cessation – where the treatment is delivered to individual patients but their networks of interaction – some of
which may be shared – influence the outcome of the intervention. (c) shows a highly complex intervention – for example interventions to change
clinical practice – where the intervention attempts to change the practice in order to deliver individual patient treatment. The effect of the
intervention depends on interaction networks at the practice/clinician and at the patient level.
doi:10.1371/journal.pone.0034222.g001
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Methods

Objective
We examined the distribution of effect sizes reported within a

series of systematic reviews of complex interventions to change

practice. We then compared this with two control distributions: (i)

effect sizes from systematic reviews of patient level interventions to

stop smoking, which we took to represent moderate complexity as

shown in figure 1, and (ii) simulated data representing random

variation around a mean effect size.

Selection of studies
In order to test the distribution of effects in complex healthcare

systems we sought systematic reviews of interventions which (a)

represented changes in systems (for instance the behavior of health

care professionals) rather than to a single pathway (for instance a

public health measure to add nutritional supplements to food) (b)

had a range of possible responses (ranging from ignore, through

minor change, to radical revision of a process of care), (c) had

causal models with multiple stages in which changes were also

likely to lead to trade-offs. The essence of these criteria was that we

viewed practitioners as agents within systems with complex causal

models and trade-offs between different actions. We chose to study

interventions to change practitioner behaviour (either individually

or in groups) from reviews published by the Cochrane EPOC

collaboration. We selected this source because the process of

conducting these reviews identifies and, where possible, quantifies

a wide range of biases such that only methodologically robust

studies are included.

We reviewed the list of all reviews published by October 2010 to

identify those which (a) aimed to change physician behaviour (b)

acted remotely from the clinical consultation, (c) included

comparisons of at least 10 included studies, and (d) permitted

extraction of individual study effect sizes. Criteria (a) and (b) were

chosen to reflect the requirements for complexity; criteria (c) and

(d) were chosen to permit consistent data reporting and analysis.

We identified three reviews: audit and feedback as methods to

change physician behaviour [21], educational outreach visiting

[22] and continuing education meetings and workshops [23].

Selection of control data
Smoking cessation data were collected from 4 systematic reviews

in the Cochrane Database of Systematic Reviews Tobacco Control

section. These examined the effect sizes from randomized con-

trolled trials of the following smoking cessation strategies: Nicotine

Replacement Therapy [24], physician advice [25], individual

behavioural counseling [26] and motivational interviewing [27].

These were chosen to represent moderate complexity because while

the treatment was delivered consistently, individual response would

be likely to be at least partly socially determined.

Simulation data for independent samples comprised 10,000 points

designed to represent a population of risk ratios. As the logarithm of

the relative risk ratio is approximately normally distributed, we

generated a random lognormal distribution with log-mean and log-

standard deviation taken from the log transformed effect sizes for

EPOC data.

Extraction of data
For each review we selected all comparisons with more than 10

studies. We then extracted a measure of effect size from each study

as follows: for comparisons with dichotomous outcomes, we used

the relative risk adjusted for baseline differences. For comparisons

reporting continuous outcomes we converted the value reported in

the reviews – the proportional change in the intervention group

relative to control mean and adjusted for baseline difference - and

converted this to a relative risk ratio (relative risk ratio = 1+
adjusted proportional change). Where the aim of an intervention

was a reduction in behaviour (e.g. reducing error) the effect was

reversed such that in all cases a relative risk ratio greater than one

indicated the desired outcome. Within each comparison, these

measures were rescaled by transforming the values into natural

logarithms, calculating a z score for each study using the log-mean

and log-standard deviation for each comparison, then converting

the z score back to risk ratios using the overall log-mean and log-

standard deviation of the whole population. These data were then

pooled so that the analysis was carried out on three datasets:

pooled reviews to change practice; pooled reviews of smoking

cessation therapy; and simulated data representing a comparable

lognormal relative risk ratio population.

Fitting of distributions
We chose to fit the data to two specific distributions, the inverse

power law and the stretched exponential. The inverse power law

(or Pareto) distribution has historically been associated with the

behaviour of complex systems [19] although it has been argued

that it may represent a special case, restricted to only a limited

range of data, and that the use of an alternative – such as the

stretched exponential (or Weibull) distribution, is more appropri-

ate [18]. We considered fitting additional heavy tailed distribu-

tions, however given the relatively small numbers of studies in the

review we wished to avoid the risks of over-specification and

confined the analysis to the two listed above.

The distribution of pooled relative risks was first plotted as a

histogram on conventional axes and then as a cumulative

distribution on logarithmic axes. Plotting an inverse power law

distribution this way would produce a straight line with negative

slope equivalent to the power law exponent.

The pooled rescaled effect size distribution was then fitted to both

the inverse power law (or Pareto) and stretched exponential (Weibull)

distribution using maximum likelihood estimation (with maximiza-

tion of the tail conditional loglikelihood for the Weibull fitting) as

described by Clauset [18]. All distributions were fitted with a lower

threshold of 1. Goodness of fit was reported as the log-likelihood and

compared between distributions using the non-nested Vuong test. All

analyses were carried out using published [18] scripts in R 2.14.

While the estimation of the usefulness of a healthcare intervention

requires both size and direction (conventionally expressed as

positive effects leading to better outcomes and negative effects to

worse), the influence of system complexity on the distribution of

effect sizes should be independent of direction. In view of this we

used two approaches to deal with negative effects (ie relative risk less

,1) prior to fitting distributions: (1) setting a threshold of 1, thereby

effectively excluding negative studies; (2) calculating an ‘‘absolute’’

value by inverting all relative risks ,1. Analysis was repeated for

each of these conditions.

Sensitivity analysis
One possible explanation for a skewed distribution of effect

sizes in a systematic review is publication bias [28], whereby

unexpectedly strong results are selectively published and, equally

importantly, unremarkable weak results are not. Because our model

of heavy tailed distributions from complex systems depends on most

responses being small, if publication bias existed, small effect studies

would tend to be under-reported. We did not attempt to assess

whether publication bias was present, rather we considered what

effect publication bias – if present – would have on the data. To do

this we simulated the effect of publication bias using a bootstrapping

procedure. This increased the number of small effect size studies by

Effect Sizes of Complex Interventions
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selectively resampling with replacement from studies in the pooled

distribution whose rescaled effect size was below the median value.

These resampled studies were added to the original data to increase

the size of the dataset by up to 80 points in order to simulate up to

one third of all studies being unpublished because of small absolute

effects. This bootstrapping procedure was repeated 200 times. The

results of this process were plotted to show the effect of adding

bootstrapped studies to the original data on the parameters and log-

likelihoods of the model fit for the stretched exponential and inverse

power law (using the same thresholds as previously).

Ethics
This study comprised a secondary analysis of published data, no

ethical permissions were required.

Results

Data from comparisons
There were 55 current systematic reviews in the Cochrane

EPOC collection available for inspection at the start of the

analysis. 16 of these related to changing practitioner behaviour of

which 9 contained more than 10 studies. Four of these related to a

range of approaches of addressing specific problems (for instance

antibiotic prescribing) while five related to approaches (such as

audit and feedback) across problems. Of these, two (audit and

feedback [21] and educational outreach visiting [22]) had publicly

available detailed data available [29]. Similar tables for a third

review [23] were obtained from the authors. These three reviews

contained 6 eligible comparisons with more than 10 studies and

reported 166 outcomes. For 11 of these there was no measure of

change adjusted for baseline and these were discarded leaving 155

outcomes which represented the dataset for this analysis. 72

outcomes were drawn from the review of audit and feedback, 51

from educational outreach visiting and 32 from continuing

education meetings. Outcomes were continuous for 31 and

dichotomous for 124. Twelve study outcomes appeared in two

comparisons, two with continuous and dichotomous measures for

the same study and ten appearing in two reviews (for example a

study which included audit and feedback with educational

outreach visiting could feature in both reviews). There were 54

systematic reviews in the Cochrane Tobacco Addiction Group

database from which we identified the four individual reviews with

more that 10 studies more comparison [24–27]. The number of

outcomes in each comparisons, and a summary of the rescaled

effect sizes drawn from the reviews are shown in table 1.

For the changing practice reviews, median relative risk ratio

after pooling was 1.17 (before pooling 1.15) with range 0.64 to

8.17. For the smoking reviews, median risk ratio after standard-

ization was 1.42, range 0.47 to 5.62; the simulation data had a

median of 1.23 and range 0.23 to 4.65. Twenty seven (17.4%,

95% confidence interval 11.4 to 23.4) risk ratios for the changing

practice reviews were less than one, as were 16 (16.3%) for the

smoking cessation reviews and 30% of the simulation data points.

Histograms of each distribution are shown in figure 2. Figure 3

demonstrates the cumulative density function of the rescaled

relative rate ratios for each of the three rescaled distribution on

conventional (a) and logarithmic axes (b). These show that both

sets of intervention studies possess heavier tails than the log-normal

distribution of effect sizes which would be expected by chance.

The data for the changing practice interventions appears to fit the

inverse power law distribution: of the three sets of data it has the

smallest median value and the ‘‘heaviest’’ tail.

Distribution fitting
The results of maximum likelihood fitting of the EPOC and

smoking cessation data to both stretched exponential (Weibull) and

Table 1. Characteristics of each comparison included in the analysis. Values represent rescaled effect sizes within each
comparison.

Review Comparison
Continuous or
dichotomous N Median

Interquartile
range Minimum Maximum

A. Interventions to change practice

Audit & Feedback [21] Audit & Feedback alone C 13 1.22 1.12 to 1.68 1.05 1.99

Audit & Feedback alone D 25 1.07 0.98 to 1.18 0.71 2.16

Multifaceted including audit
& feedback

D 34 1.10 1.03 to 1.36 0.78 18.3

Educational outreach visits [22] Any intervention including
educational outreach visits

C 18 1.22 1.12 to 1.41 1.00 7.17

Any intervention including
educational outreach visits

D 33 1.11 1.07 to 1.35 0.78 4.25

Continuing education meetings
& workshops [23]

CME –professional outcomes C 32 1.32 1.07 to 1.90 1.00 4.57

Combined rescaled data 155 1.16 1.05 to 1.49 0.64 8.17

B. Interventions for smoking cessation

Nicotine replacement therapy [24] Any NRT vs placebo/no NRT D 50 1.34 1.19 to 1.98 0.50 4.33

Counselling [26] Counselling vs control D 17 1.56 1.32 to 2.01 0.58 5.5

Physician advice [25] Minimal intervention D 17 1.58 1.03 to 2.28 0.95 4.56

Motivational interviewing [27] Motivational interviewing D 14 1.62 1.16 to 1.99 0.92 5.28

Combined rescaled data 98 1.47 1.14 to 2.08 0.47 5.62

C. Simulated data D 10000 1.31 1.02 to 1.69 0.33 4.78

doi:10.1371/journal.pone.0034222.t001
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inverse power law (Pareto) distributions of the data are shown in

table 2. This shows good fit for both the values of relative risk

above a threshold of 1 and for absolute values, with the EPOC

data fitting the inverse power law distribution better and the

smoking cessation fitting the stretched exponential.

Sensitivity analysis
The sensitivity analysis showed that resampling with up to 70

additional data points with small effect sizes to simulate publication

bias leading to under-reporting of studies with small results

increased rather than diminished goodness of fit, as judged by the

log-likelihood, with little change in model parameters (data not

shown).

Discussion

We examined the distribution of effect sizes of a range of

complex interventions and found heavy tailed distributions typical

of those seen in interventions on complex systems. While such

distributions are ubiquitous in natural and open systems they have

only occasionally been looked for in healthcare [20]; our findings

of heavy tails in the effect size distributions of complex

interventions support the notion of complex interventions as

interventions in complex systems [7].

Strengths and limitations
A key strength of this study is that it uses data collected and

processed by the methodologically rigorous Cochrane review

group. This markedly reduces the chance that the distribution is

due to the inclusion of methodologically weak studies with high

risk of bias. Furthermore, we simulated the effect of publication

bias against weak results by adding up to 70 resampled studies with

small effect sizes and this did not significantly change our findings.

However, the number of suitable reviews was modest. While our

criteria were relatively restrictive, we chose to limit ourselves to

studies which fitted the models of differing levels of complexity.

The study brought together reviews from different aspects of

practice, introducing the possibility of differences between com-

parisons accounting for our findings. We addressed this by

rescaling the effect sizes within each comparison before pooling

the data, and inspection of summary measures of the comparisons

(table1) suggests that the distributions are broadly similar. While

the use of pooled effect sizes in meta-analysis make it possible to

compare relatively dissimilar items, they introduce additional

potential error. We attempted to reduce this by limiting the

analysis to comparisons with 10 or more studies. While the use of

relative change values introduced potential bias – studies with

smaller baseline values could yield greater relative change for the

same absolute change - this was the method used in the Cochrane

reviews and so was kept for this analysis.

Twelve studies appeared in two comparisons of changing

practice behaviour and six appeared in two comparisons of

interventions for stopping smoking. As these resulted in different

standardized effect sizes in each comparison we included both

instances in the analysis rather than arbitrarily removing one and

reducing the sample size. Heavy tailed distributions, such as the

inverse power law, typically start at a baseline value of one or zero.

Studies with negative effect sizes or fractions of less than one thus

present a problem. We took the view that negative effects could

arise either through random chance or through interventions

leading to change in the unintended direction (so-called unex-

pected consequences). As the distribution of effects in complex

systems relates to the size rather than direction, we deemed it

appropriate to take absolute values, however to test for the effects

of this we also reported analysis which excluded negative values.

Both methods resulted in broadly similar results.

The two distributions tested are not the only heavy tailed

distributions and comparable results may have been observed

fitting other distributions but we did not test this. As Clauset and

Newman [18] argue, the point is less that one specific distribution

is correct, rather that a heavy tailed distribution represents a good

fit. Our finding that data from the most complex intervention fits

best to the inverse power law with the smallest median value and

Figure 2. Histograms of pooled effect sizes from three sets of
comparisons. (a) shows data from the pooled interventions to change
clinical practice (N = 155). (b) shows data from the pooled interventions
to help individuals stop smoking (N = 98). (c) shows simulated data from
a log-normal distribution with the same log-mean and log-standard
deviation as the data in (a).
doi:10.1371/journal.pone.0034222.g002
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the longest tail, with the moderate complexity intervention fitting a

stretched exponential which sits between this and the lognormal

distribution of effects which would be expected by chance is in

keeping with our model of complexity but requires further testing.

Comparison with other studies
This is the first study to examine the distribution of effect sizes

from complex interventions from the perspective of complex

systems. Previous theoretical work has argued that this might be

expected [6,7,9]. Several authors have argued that the response of

theoretical and simulated complex systems to change is inherently

unpredictable. These complex systems possess both resilience

against change and a capacity to transform in unanticipated ways

as local reactions interact with each other and lead to an emergent

response. [9] Although heavy-tailed distributions are known to

arise in complex systems, the reason for this is not yet clear [30].

Recent work suggests that heavy-tailed distributions may offer an

efficient distribution (in information theoretic terms) in respect

of members of a group of items, in contrast to a population of

individual items [31]. Systems whose group membership follows

a heavy tailed distribution may represent an optimal trade-off

between robustness and adaptability [32].

Figure 3. Cumulative distribution of pooled effect sizes. Solid and dashed lines in (b) represent the best fitting inverse power law (changing
practice) and stretched exponential (smoking cessation) models identified by maximum likelihood. (a) and (b) show the Log-likelihood of the model
fit for inverse power law (a) and stretched exponential (b) distributions. (c) and (d) show the distribution parameters: (c) the exponent of the inverse
power law and (d) the shape (solid) and scale (open) of the stretched exponential distribution.
doi:10.1371/journal.pone.0034222.g003

Table 2. Results of fitting of data to stretched exponential and inverse power law distributions.

Dataset Distribution
Approach to
negative values N Exponent Shape Scale

Log
likelihood Tests of difference

EPOC Inverse Power Law Exclude values,1 128 3.91 235.3 Inverse power law better fit than stretched
exponential p,0.001

Absolute values 155 4.31 216.1

Stretched exponential Exclude values,1 128 0.8 0.46 242.0

Absolute values 155 0.77 0.39 224.5

Smoking
Cessation

Inverse Power Law Exclude values,1 82 2.79 280.2 Stretched exponential better fit than inverse
power law (excluding values ,1) p,0.001;
no difference with absolute values (p = 0.77)

Absolute values 98 3.03 276.9

Stretched exponential Exclude values,1 82 0.90 0.76 275.2

Absolute values 0.55 0.14 274.9

doi:10.1371/journal.pone.0034222.t002

Effect Sizes of Complex Interventions
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Implications for practice, policy and research
Our findings have implications for the interpretation of

intervention studies which go beyond the theoretical importance

of considering the complexity involved in so-called complex

interventions. These implications relate to the characteristics of the

heavy tailed distributions and the inferences which can be made

from them.

Each of the reviews included in this analysis reported

heterogeneity, in terms of the normal distribution, and none

could explain it through meta-regression. Under a heavy-tailed

distribution the appearance of a few very large effect sizes is to be

expected and the observed values fitted comfortably with this. In

practical terms this means that difficult to explain variation may

no longer need an explanation, other than that it represents the

natural variation of effects seen within a complex system.

There are two additional implication of the heavy tailed

distribution for the results of complex interventions. The first arises

where policy makers and evaluators seek a grass-roots approach to

innovation in multiple sites, with selection of the ‘‘best’’ performer

for wider roll-out. This approach runs the real risk of mistaking the

random and context-specific effects in a complex system for the

inherent merit of the best performing intervention. The second

occurs as interventions are reproduced in a range of contexts. As,

in a heavy tailed distribution, the vast majority of effects are small,

there is the possibility that rolling out apparently successful

interventions, may lead to disappointment as smaller effect sizes

than originally seen appear more frequently.

Conclusions
The demonstration of heavy tailed distributions of effect sizes

from two types of complex interventions is the first empirical

evidence to support the argument that complex interventions

represent interventions in complex systems.
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