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ABSTRACT
Two methods for computing the entropy of hard-sphere systems using a spherical tether model are explored, which allow the efficient use
of event-driven molecular-dynamics simulations. An intuitive derivation is given, which relates the rate of particle collisions, either between
two particles or between a particle and its respective tether, to an associated hypersurface area, which bounds the system’s accessible con-
figurational phase space. Integrating the particle–particle collision rates with respect to the sphere diameter (or, equivalently, density) or the
particle–tether collision rates with respect to the tether length then directly determines the volume of accessible phase space and, therefore,
the system entropy. The approach is general and can be used for any system composed of particles interacting with discrete potentials in fluid,
solid, or glassy states. The entropies calculated for the liquid and crystalline hard-sphere states using these methods are found to agree closely
with the current best estimates in the literature, demonstrating the accuracy of the approach.
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I. INTRODUCTION

The equilibrium thermodynamic properties of a material,
including its phase behavior, are dictated by the dependence of its
free energy on the state variables. For fluids, the free energy relative
to the ideal-gas state can be accurately determined by a straight-
forward thermodynamic integration with density. Crystalline states,
however, are typically separated from fluid states (and, consequently,
the ideal gas) by a first-order transition. Interfacial effects will dom-
inate in any direct crystal-solid co-existence simulation; thus, other
indirect methods need to be employed to reliably calculate the free
energy.

There have been a number of attempts to modify model flu-
ids to construct a continuous thermodynamic path between an ideal
state and the crystalline state. Hoover and Ree originally introduced
the single occupancy (SO) cell model1 to demonstrate the existence
of a first-order melting transition for hard-sphere systems and quan-
titatively determined the fluid and solid coexistence densities. In the
SO model, space is partitioned into cells based on Voronoi polyhe-
dra created from the sites of the crystal lattice under investigation,

for example, the face-centered cubic (FCC) lattice. The center of
each particle is then constrained to remain in its respective cell. This
model lowers the entropy of the fluid state by preventing free move-
ment, and this softens, but does not eliminate, the first order freezing
transition. Regardless, thermodynamic integration can be carried
out over this small transition to connect the crystalline and ideal gas
states, and this was successfully used to settle a long debate over the
most stable structure for mono-sized spheres.2,3 In crystalline states,
the SO cell model and unmodified hard-sphere system are assumed
to be equal, as the particles themselves confine each other to the cen-
ters of the Voronoi polyhedra, thus preventing interactions with the
SO cell boundaries. This method was used to quantitatively demon-
strate that the FCC lattice is more stable than the HCP lattice for
hard-sphere systems.

A variation of the SO model was later proposed by Speedy,4
where the particles are instead restricted to remain within a set dis-
tance from their respective lattice sites rather than within Voronoi
polyhedra (i.e., they are tethered to a lattice). This tethered par-
ticle model (TPM) used spherical square-well potential as the
tether potential, which allows more efficient simulation of cell
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collisions and somewhat simplifies the theoretical analysis. This
is the foundation of the approach adopted and extended in this
work.

This spherical tether approach has been generalized to arbitrar-
ily shaped particles and implemented using an event-driven molec-
ular dynamics (MD) algorithm,5 although the derivation is limited
to near-jammed conditions (e.g., solid states that are dynamically
arrested). This was successfully used to accurately calculate the free
energy of different crystal phases, as well as glassy states, of hard-
sphere systems. Many other approaches use a tethering potential
to tie particles to specific positions (e.g., a lattice) to determine the
free energy of the untethered crystal/jammed system. In the Ein-
stein crystal approach for obtaining the free energy of crystalline
systems,6,7 molecules are tethered to the sites of a perfect lattice using
a harmonic potential. The stiffness of the potential can be continu-
ously adjusted, and this can be used to relate the system back to a
perfect Einstein crystal, where the molecules do not interact signifi-
cantly with each other and which has an exactly known free energy.
This continuous transformation between the system and the per-
fect Einstein crystal can be used to compute the free energy of the
system.

Other more elaborate methods that involve the use of tethers
have been developed in order to more efficiently calculate the free
energy, such as the self-referential methods reported by Sweatman
and co-workers,8–10 the Schilling–Schmid algorithm,11 and the inter-
face pinning method.12 These are nicely compared and reviewed
by Sweatman.13 More generally, tether models can be considered
as confining the motion of the system to a particular region in
phase space. Typically, only the positional degrees of freedom are
tethered; however, restricted velocity dynamics have also proven
useful14,15 and may be considered a form of tethering in phase
space. The consideration of the effect of the tether in configura-
tional phase space is a crucial concept to the derivations presented
here.

For simplicity, this work focuses on hard-sphere systems
although it readily generalizes to any particle system that interacts
through discrete potentials. Hard-sphere systems play an impor-
tant role in the understanding of the behavior of fluids and solids.
They capture the excluded volume interactions between molecules,
which often dominate the structure of fluids.16 Consequently, hard
spheres have often been used as a starting point for the develop-
ment of perturbation theories for more complex models. The tether
model of Speedy4 is revisited here, and a novel approach for calcu-
lating free energy in any state, including fluids, glasses, or crystals, is

derived. As a demonstration of the efficiency of the approach, new
high accuracy free energy calculations for the hard-sphere crystal are
performed.

The remainder of this paper is organized as follows: In Sec. II,
the tether model of Speedy is revisited. The collision statistics and
thermodynamics of this model are described, including the ideal
tether model, where the spheres do not interact with each other,
and its relationship with the standard ideal gas model is established.
It is demonstrated that the tether model can provide a continuous
path between the fluid and solid phases, which avoids crossing a
first order phase transition for certain ranges of the tether length.
In Sec. III, the collision rates of tethered systems, with both other
spheres and the tethering potential that keeps the spheres within
their cells, are related to the geometry of phase space. In particu-
lar, these collision rates are directly related to the areas of surfaces
that bound the region of phase space that is accessible by the sys-
tem. These relations are used to develop a method to compute the
free energy of hard-sphere systems via an integration with the tether
length. In Sec. IV, these methods are used to determine the free
energy of hard-sphere systems at various densities within the fluid
and solid phases. These calculations are all found to agree well with
those previously given in the literature. Finally, the key results of this
paper are summarized in Sec. V along with a discussion of directions
for future work.

II. THE TETHERED PARTICLE MODEL
This work considers a system of hard-sphere particles tethered

to a lattice using a square-well potential that is equal to zero within
a spherical region around the tether point and infinitely large out-
side this region. This forces the center of each particle to remain
within a tether “cell” and is precisely the model first introduced by
Speedy.4 A schematic representation of the system is presented in
Fig. 1. The tether forces particles to be within a distance rT of their
respective tether point, and so, each particle center can explore at
most a volume VT. This allows the definition of a tether packing frac-
tion ϕT = ρVT (where ρ is the particle number density), which may
take values greater than one if tether volumes overlap, as depicted in
Fig. 1.

For particles tethered to points in a regular lattice, there is
a density ρT,0 below which the tether cells become separated by
more than a particle diameter σ, and the particles can no longer
interact with each other. This density can be easily calculated from
the maximum packing fraction of the lattice. For example, for

FIG. 1. Schematic diagram of a two-dimensional tethered particle system in three different states: the “ideal” TPM (left) has particles tethered such that no particle–particle
interactions can occur. The TPM fluid (middle) allows interactions, and the conventional fluid (right) is simply the limit of infinite tether length. Black circles represent particles
with diameter σ, and black crosses represent the position of the particle centers. Dashed shaded circles represent the confining tether cells with radius rT whose centers are
indicated with black diamonds.
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particles tethered to a face-centered cubic (FCC) lattice, the density
is given by

ρFCC
T,0 σ3

= max
⎛

⎝
0, [21/6

− (
6ϕT

π
)

1/3
]

3
⎞

⎠
. (1)

The max function prevents negative densities when tether cells over-
lap, i.e., beyond the close-packed density ϕT ≥

√
2π/6. From this

expression, a minimum tether radius rT,0 at which interactions can
occur can also be defined. For an FCC lattice, it is given by

rFCC
T,0 /σ = max(0, [25/2ρσ3

]
−1/3
− 1/2). (2)

For ρ < ρT,0 (or, equivalently, rT < rT,0), there are only tether colli-
sions and no particle–particle collisions. The system is in an “ideal”
state, where the particles are independent of each other and the pres-
sure p is given by the ideal gas law [i.e., βp = ρ, where β = 1/(kBT)
and kB is the Boltzmann constant]. It should be noted that the sys-
tem is not ergodic in this limit as collisional paths within a spher-
ical domain preserve the angle of incidence between the boundary
and the particle. Previous work4 has avoided this issue by ensur-
ing rT > rT,0; however, in this work, it is preferred to thermalize the
system with a stochastic Andersen thermostat to provide rapid equi-
libration near the ideal state. The thermostat event mean free time
is controlled to be ∼5% of the total event count, which was cho-
sen as it is a small additional computational cost of processing the
thermostat events while providing rapid thermal equilibration. Each
thermostat event randomly selects a single particle and reassigns its
velocity from a Gaussian distribution. This allows the collection of
precise points for all tether lengths, which, however, increases the
drift in the center-of-mass of the system, which is discussed later.

The “ideal” TPM differs from the standard ideal gas for N par-
ticles in a volume V , as each particle can only explore a restricted
volume VT , and consequently, the particles are distinguishable. The
difference between the specific entropy of the “ideal” tethered par-
ticle model s(ideal)

T and a conventional ideal gas s(ig) at the same
temperature and density is then given as follows:

s(ideal)
T (ρ) − s(ig)(ρ) =

kB

N
ln

Ω(ideal)
T

Ω(ig)
= kB ln(

ϕT(N!)1/N

N
), (3)

where Ω(ideal)
T and Ω(ig) are the microcanonical configurational par-

tition functions (i.e., volume of configurational phase space accessi-
ble by the system) for the “ideal” TPM and the conventional ideal
gas, respectively, and given by

Ω(ig)(N, V) =
VN

N!
Ω(ideal)

T (N, V) = VN
T . (4)

The factor of N! is absent for the TPM system because the particles
are assigned to specific cells, making them distinguishable.

It is important to note that, for hard-sphere systems, there is
only kinetic energy and there is no interaction energy; consequently,
in the absence of an external field, the internal energy of hard-sphere
systems has no configurational contribution and behaves identically
to that of an ideal gas. In this case, the residual Helmholtz free energy
Fres (i.e., deviation from an ideal gas with the same temperature,
volume, and number of particles) is directly related to the resid-
ual entropy as Fres

= −TSres. The residual entropy is the focus of

this work, but it is interchangeable with the residual Helmholtz free
energy.

The presence of the tether potential restricts the volume of
phase space available to a system, and so, the entropy of the teth-
ered system is always equal to or lower than that of the untethered
system. The influence of the tether on the properties of the system
is related to the frequency of the tether collisions. When rT < rT,0,
the portion of phase space that can be explored by the system is fully
dictated by the tether, and the system properties will be identical to
those of the ideal tether particle model. As the tether length increases
so that rT > rT,0 (or, equivalently, the density increases such that
ρ > ρT,0), particle–particle interactions can take place. For moder-
ate values of the density, tether collisions still occur, and the tether
still acts to confine the system to a subset of its phase space; how-
ever, particle–particle overlaps now further restrict the system to a
smaller region. This is referred to here as the tether “fluid” state. The
tether potential decreases the entropy and, therefore, the stability of
the fluid state. This reduction in stability can be controlled precisely
by adjusting the tether length. Through proper choice of the tether
length, the fluid state can be made less stable than the crystalline
state, which is weakly affected by the presence of the tether, provided
that the crystal prevents the diffusion of the particles. This might
present an interesting opportunity to construct a continuous ther-
modynamic path between the ideal tether state and the crystalline
state. The effect of tethering on the fluid–solid transition is explored
in Sec. II A.

A. Fluid–solid transition in the tethered particle
model

To illustrate the influence of the tether potential, calculations
are performed for the systems of N hard spheres at constant abso-
lute temperature T with diameter σ and mass m using DynamO,
an open-source event-driven molecular dynamics (MD) simulation
package.17 The key dimensionless parameters of the system are the
reduced density ρσ3 and the reduced tether length rT/σ.

The variation of the compressibility factor Z = βp/ρ [where p
is the pressure, β = 1/(kBT), and kB is the Boltzmann constant] of
the TPM with density is shown in Fig. 2 for different values of ϕT
in comparison to the conventional hard-sphere system (i.e., with no
tethering) and that of an ideal gas (where Z = 1). Simulations are
not run below the minimum interaction density ρT,0 corresponding
to each value of ϕT, as the compressibility factor is exactly equal to
the ideal value (i.e., Z = 1) below this density. At moderate densities
where ρ > ρT,0, the smaller tether volumes restrict the motion of the
particles and thus reduce the particle–particle collision rate that is
directly proportional to the system pressure. At densities above the
crystal transition, all systems converge to the standard hard sphere
crystal system, highlighting their equivalence in this limit.

For the untethered hard-sphere system, there is a first order
transition from a fluid phase to a solid phase; the coexistence region
is bracketed by the vertical dashed lines in Fig. 2. As expected, the
simulations display a metastable fluid branch due to their finite
size and duration; however, as ϕT decreases, the system appears to
approach an extension of the crystalline branch with no indication of
a first-order transition appearing for ϕT ≈ 0.5 and lower. This is con-
firmed by examining the numerical derivative of the pressure with
density, which remains positive for ϕT ≤ 0.5 (see the inset of Fig. 2).
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FIG. 2. The compressibility factor Z and its numerical derivative (inset) as a func-
tion of reduced density ρσ3 for hard-sphere TPM systems with ϕT = 0.1 (red),
ϕT = 0.2 (green), ϕT = 0.5 (orange), and ϕT = 1 (blue). Data are shown for simu-
lations containing N = 2916 spheres and are only run above ρ > ρT,0. Black circles
represent conventional (untethered) hard-sphere simulations. The horizontal solid
black line indicates ideal compressibility. Vertical dashed black lines highlight the
untethered hard-sphere fluid–solid transition zone (freezing density, ρσ3 ≈ 0.937;
melting density, ρσ3 ≈ 1.035). The standard deviation in pressure measurements
is smaller than the symbol size.

Thus, for sufficiently small values of ϕT, there seems to be a con-
tinuous thermodynamic path between the high-density hard-sphere
solid and the low density “ideal” tether model limit. This thermody-
namic path can be easily understood in terms of a phase diagram for
the tether model system and is depicted by the vertical dashed line
labeled path 1 in Fig. 3. Thermodynamic integration along this path
can be used to establish the entropy (and thus the free energy) of the
crystalline state with respect to the ideal tether model, as given in
Eq. (3).

FIG. 3. An illustration of the reduced density ρσ3 and tether packing fractions ϕT
at which the tethered hard-sphere system enters various “phases.” The crosses
(red) indicate the upper density where an N = 2916 system run for 2 × 109 events
had more than 100 tether events. The dashed line (red) is added as a guide to
the eye to indicate that the systems above this density have crystallized on the
tether lattice and particles cannot interact with their tether anymore. The point
at ϕT = 0 is exact and equal to the FCC close packing density ρσ3 =

√
2. The

lower solid curve (blue) indicates that when the tether length prevents inter-particle
interactions, it denotes the “ideal” tether state. The gray area is a guide to the eye
and indicates where first-order transitions are observed numerically.

The red dashed line in Fig. 3 denotes a rough boundary above
which tether events are so rare (in this case less than a fraction 10−7

of total events) that the system closely resembles the untethered hard
sphere crystal; thus, the free energies of the tethered and unteth-
ered hard sphere crystals are assumed equal in this limit. The exact
boundary of the ideal tether state is shown as a solid blue curve in
Fig. 3, and it is immediately apparent that the ideal and crystalline
states can be continuously connected using thermodynamic inte-
gration along a second path using the tether length as the variable
(see path 2 in Fig. 3); however, it is not immediately apparent what
the relevant thermodynamic force and work terms are in this case.
Section III discusses this further, but first, the practicalities of imple-
menting the standard thermodynamic integration approach along
path 1 are outlined.

B. Thermodynamic integration
The entropy of a fluid hard-sphere system at any density can be

obtained via thermodynamic integration with reference to the ideal
gas state,

sres
(ρ) ≡ s(ρ) − s(ig)(ρ) = −kB∫

ρ

0

dρ′

ρ′
[Z(ρ′) − 1], (5)

where sres is the residual entropy. This integration is also applicable
to path 1 of Fig. 3 in the tether model for all densities as it is con-
tinuous and avoids the first-order transition. The tether model can
then be related back to the untethered ideal gas by accounting for the
difference in the entropy of the ideal states [see Eq. (3)],

sres
T (ρ) ≡ sT(ρ) − s(ig)(ρ)

= −kB∫

ρ

ρT,0

dρ′

ρ′
[ZT(ρ′) − 1] + kB ln((N!)1/N ϕT

N
). (6)

The thermodynamic integration is chosen to begin at the density ρT,0
where particles begin to interact [i.e., Eq. (1)], as below this density,
the integrand is zero. The only approximation required to determine
the crystal state free energy of the untethered system is to assume the
equivalence to the tethered system at sufficiently high densities: that
is, for hard spheres that are limited to the FCC crystal,

s(ρ) = lim
ρσ3→

√
2
sT(ρ). (7)

This assumption is true in the FCC crystal, which prevents dif-
fusion if care is taken to also prevent the center-of-mass drifting
during simulation. Tether collisions do not preserve momentum,
and so, Speedy4 modified his tether dynamics to rebalance the sys-
tem momentum on tether impacts. This approach is not done here
due to its computational cost; instead, this effect is explored while
examining the system size dependence of the results.

III. PHASE SPACE GEOMETRY
In this section, the collision rates in a tethered hard-sphere

system are related to the geometry of its phase space. The con-
figurational phase space of a hard-sphere system is schematically
depicted in Fig. 4(a). The space is constructed by collecting all
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FIG. 4. A schematic depiction of configurational phase space for (a) a hard-sphere system, (b) a tightly tethered hard-sphere system, and (c) and (d) loosely tethered

hard-sphere systems. The point illustrates a state of a system at a particular time (Γ⃗), and the arrow indicates its trajectory through phase space ˙⃗Γ. The dark areas are
regions of phase space that are disallowed due to sphere–sphere overlaps, while the white areas correspond to the phase space volume accessible to the system. Regions
are faded where the tether also prevents the system from entering them. The surfaces that bound the accessible region due to the tether potential are highlighted in blue,
while the surfaces corresponding to particle–particle contact are highlighted in red. The tethered and untethered systems are exactly equivalent if the accessible regions
are the same [i.e., (a) ≡ (d)]. This requires the system to be confined to a particular region of phase space by the interactions (i.e., a crystal without diffusion) and that the
tether is sufficiently long for it to fall outside the accessible phase space [i.e., (d)].

the positions of the N hard spheres into a single vector
Γ ≡ (r1, r2, . . . , rN), where ri is the position of sphere i in the system.
This vector then traces out a trajectory over time within the con-
figurational phase space with a velocity, Γ̇ ≡ (v1, v2, . . . , vN), where
vi is the velocity of sphere i in the system. Excluded volume inter-
actions between the spheres will prohibit the system from entering
regions in phase space where spheres overlap (depicted by the dark
area in Fig. 4), thus confining the trajectory of the system to within
an “accessible” region [white area in Fig. 4(a)]. The hypervolume
Ω of this accessible phase space is directly related to the entropy
of the system by the Boltzmann–Planck equation S = kB ln Ω. The
boundary between the allowed and disallowed regions of phase space
(depicted by the red line in Fig. 4) corresponds to two spheres being
in contact with each other aside from some measure-zero higher-
order contacts, and this boundary has an associated hypersurface
area Σ.

A hard-sphere system evolving through time traces a straight
line through phase space as there are no forces between collisions.
Collisions between spheres correspond to the trajectory reflecting
from a point on the phase space boundary corresponding to where
the colliding pair of spheres is in contact; the trajectory will then
reflect from the boundary and continue to travel in a straight line
until it encounters another boundary in phase space. The process is
then repeated.

When a square-well tether potential is applied, the accessi-
ble region of phase space becomes an intersection of the N tether
volumes and the accessible volume of the untethered system. An
illustration of two systems with different tether lengths is given in
Figs. 4(b) and 4(c). The tether restricts the motion of the system,
and the system trajectory can now reflect off the tether boundary
[see the blue line in Figs. 4(b) and 4(c)]. For short enough tether
lengths, the system can only interact with the tether [see Fig. 4(b)];
however, at longer tether lengths, portions of the sphere–sphere col-
lision boundary will intrude into the accessible region [see Fig. 4(c)].
If the exposed hypersurface area of the tether potential [see the blue
line in Fig. 4(c)] can be measured, it can be numerically “extruded”
by varying the tether length, and thus, the accessible volume can be
measured. Sections III A–III C detail the specifics of this approach
and how hypersurface areas in phase space might be linked to
collision rates.

A. Collision rates and hypersurface areas
in phase space

If the system is ergodic, the hypersurface area of the various
boundaries that confine the system to a particular region of phase
space is directly related to the rate at which the system collides
with the respective boundary. In this picture, standard kinetic the-
ory arguments give an expression for the average collision rate Ṅ
that the system makes with a section of the phase space boundary of
the area Σ as follows:

Ṅ = ρΩ Σ ⟨Γ̇ ⋅ n̂Σ⟩, (8)

where n̂Σ is a unit vector that is normal to the surface pointing out-
ward from the accessible phase space volume and ρΩ is the number
density of systems in the phase space. As only one system is consid-
ered to be inside phase space here, ρΩ = 1/Ω. This leads to the first
main result of this section as follows:

Σ
Ω
=

Ṅ
⟨Γ̇ ⋅ n̂Σ⟩

. (9)

The ratio of the hypersurface area to the accessible phase space vol-
ume is directly related to the collision rate of the system with this
hypersurface, divided by the mean velocity of its approach to the
hypersurface. Therefore, the various collision rates give an indica-
tion of the relative exposed hypersurface areas corresponding to each
type of event (i.e., collision between spheres or collision between
a sphere and its tether potential). In Secs. III B and III C, these
different collisions are considered in more detail.

B. Particle–particle collisions
For hard-sphere systems, points in phase space where two par-

ticles overlap are not accessible (the black region in Fig. 4). The
region of phase space the system is allowed to explore is bounded
by surfaces that correspond to configurations where various pairs
of particles are in contact (the red line in Fig. 4). If the diameter σ
of the hard spheres increases by dσ, the excluded region of phase
space will become larger, and the allowed region of phase space will
become smaller (i.e., dΩ < 0). This corresponds to the bounding sur-
faces being displaced normally by a distance dσ inward toward the

J. Chem. Phys. 155, 064504 (2021); doi: 10.1063/5.0058892 155, 064504-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

accessible volume of phase space. The corresponding decrease in the
accessible volume is quantitatively given by

dΩ = −Σ dσ. (10)

The negative sign appears because an increase in the particle diam-
eter decreases the accessible phase space volume. Using Eq. (9), we
can relate this to the particle–particle collision rate Ṅ,

d ln Ω = −
Ṅ

⟨Γ̇ ⋅ n̂Σ⟩
dσ. (11)

The projection of the velocity Γ̇ of the system normal to the
surface is simply the relative velocity of the colliding pair of spheres,
which is distributed according to the following equation:

f rel(v) = (2πβμ)e−βμv2
/2, (12)

where μ = m/2 is the reduced mass of the colliding pair of spheres.
As a result, the mean speed at which the system approaches a
phase space boundary corresponding to a sphere–sphere collision is
given by

⟨Γ̇ ⋅ n̂Σ⟩ = ⟨vjk ⋅ r̂jk⟩ = (πβm)−1/2, (13)

where j and k are the indices of two colliding particles, rjk = rj − rk is
their relative position, and vjk = vj − vk is their relative velocity.

For a fixed number of particles, a change in the particle diam-
eter can be considered as a change in the density/volume of the
system,

dσ = −
σ

DV
dV , (14)

where D is the dimensionality (in this case, D = 3). Substituting this
relation and Eq. (13) into Eq. (11) yields the following result:

dln Ω =
dΩ
Ω
=

Σ
Ω

σ
DV

dV ,

∂ ln Ω
∂V

= βp =
Σ
Ω

σ
DV

,
(15)

where it should be noted that the derivative of the entropy is directly
related to the pressure p of the system.

The above expression for the pressure accounts only for por-
tions of phase space excluded by sphere overlaps. If the spheres in
the system are confined to a particular volume in space, then there
will be an additional term corresponding to the ideal gas contribu-
tion. If the portion of collisions of the system with some boundary is
included, then the following equation is obtained:

βp
ρ
= 1 +

σ
D

Σ
NΩ

. (16)

It is interesting to note the similarity of this expression to that of
Speedy,18

βp
ρ
= 1 +

σ
2D

S0

V0
, (17)

where V0 is the average volume available for the insertion of an addi-
tional sphere and S0 is the average surface area of that volume, and
the expression given by Hoover et al.19 is as follows:

βp
ρ
= 1 +

σ
2D
⟨

S f

V f
⟩, (18)

where V f is the volume available for the center of a given sphere to
move when all other spheres are frozen in their positions and S f is
the surface area of that volume.

If the expression for the phase space area over volume in terms
of the collision rate, given in Eq. (9), is substituted into Eq. (16), the
pressure can be written as follows:

βp
ρ
= 1 +

σ
DN
(πβm)1/2Ṅ. (19)

This is simply the standard collision rate expression for the system
pressure for hard-sphere systems.20,21 While this result is not new,
it validates the approach to be used for tether collisions, which can
provide a direct measurement of free-energy changes.

C. Tether collisions
For a tethered system, the accessible phase space will be

restricted not only by particle–particle overlaps but also by the
tether. Increasing the length of the tether will potentially increase
the volume of phase space accessible to the system. To determine
the accessible volume ΩT of phase space for the tethered model, the
hypersurface area ΣT associated with the tether interactions that are
accessible by the system can be extruded by moving it slightly out-
ward in a direction normal to the hypersurface (i.e., parallel to n̂ΣT ).
For the spherical tether potential used in this study, this extrusion
is easily achieved by increasing the tether length by an infinitesimal
distance drT,

dΩT = ΣT drT. (20)

This relation holds true as the tether potential hypersurface can only
be reached by the system if it appears in the accessible phase space
volume of the untethered model (see Fig. 4), which then becomes
the accessible region of the tethered model upon extrusion. If phase
space is not simply connected, then this extrusion may only mea-
sure the volume of phase space accessible to the initial ensemble,
which allows interesting studies of dynamically arrested states, such
as glasses.4

A change of variables directly relates the change in the accessi-
ble volume to the change in the entropy of the system,

k−1
B dsT = N−1 d ln ΩT =

ΣT

N ΩT
drT =

ṄT

N⟨Γ̇ ⋅ n̂ΣT⟩
drT. (21)

A straightforward integration yields the entropy change of a tethered
system with a change in the tether length,

sT(ρ, rT,2) − sT(ρ, rT,1) = kB ⟨Γ̇ ⋅ n̂ΣT⟩
−1
∫

rT,2

rT,1

drT
ṄT

N
. (22)

The system is assumed to be at constant temperature so that the
“velocity” Γ̇ of the system through phase space is given by the
Maxwell–Boltzmann distribution. This implies that the velocities of
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each of the spheres are independent of each other and also given by
the Maxwell–Boltzmann distribution,

f (v) = (2 π β m)−3/2 e−β m v2
/2. (23)

As each tether acts separately on a single particle, the surface of phase
space associated with it is parallel to the degrees of freedom (dimen-
sions) that correspond to the other particles. Therefore, during an
intersection with a tether hypersurface, other particles do not con-
tribute to Γ̇ ⋅ n̂ΣT and only the velocity of the confined particle is
relevant. Additionally, only the component that is normal to the sur-
face contributes, and thus, the average phase trajectory velocity into
the tether boundary is given as follows:

⟨Γ̇ ⋅ n̂ΣT⟩ = ⟨v ⋅ n̂⟩ = (2 π β m)−1/2. (24)

Combining this with Eq. (22) leads to the remarkably simple result
that entropy changes with the tether length can be determined
by simply monitoring the tether collision rate during a series of
simulations at different tether lengths.

To relate the tethered system to the untethered system for the
purpose of computing its entropy, two types of states are considered.
The first are states like those in a crystalline phase, where the unteth-
ered system is confined to a phase space volume, which is relatively
localized around the configuration of the tether points due to close
packing of its constituent particles. In this case, a tethered system
with a long tether should not undergo tether collisions as these will
be precluded by particle–particle collisions. In fact, verifying that
the tether events have reached zero is a test of this condition. At
these conditions, the tethered system has exactly the same “absolute”
entropy as the untethered system, exploring the same phase space
volume [see Fig. 4(d)]. The entropy for systems in these types of
states can be calculated by combining Eqs. (22) and (24) to yield

sres
(ρ) = s(ρ) − s(ig)(ρ)

= lim
rT→∞

sT(ρ, rT) − s(ig)(ρ)

= kB(2πβm)1/2
∫

∞

rT,0

drT
ṄT

N
+ kB ln(

(N!)1/N ϕT,0

N
). (25)

The integration has been shifted to start at the onset of particle inter-
actions for computational efficiency. Donev et al.5 used a closely
related approach to compute the entropy, where the integral is per-
formed in a single simulation where the tether length grows with
time; however, their derivation is restricted to close to the jammed
state and uses dynamic integration, whereas Eq. (25) is evaluated
at equilibrium. The practical usefulness of Eq. (25) depends on the
tether event rate approaching zero (i.e., ṄT → 0) at some finite value
of rT so that the integral can be truncated; however, this is not the
case for fluid systems that will always interact with the tether.

For systems in the fluid state, tether collisions will occur no
matter how long the tether length because, given enough time, par-
ticles will eventually diffuse to the edge of their tether “cell.” The
entropy of tether systems in the fluid state can be related to unteth-
ered systems by noting that the fraction of phase space excluded by
particle overlaps is the same for the tethered and untethered models

in the limit of infinite tether length,

Ω(N, V)
Ω(ig)(N, V)

= lim
rT→∞

ΩT(N, V , rrmT)

Ω(ideal)
T (N, V , rT)

, (26)

s(ρ) − s(ig)(ρ) = lim
rT→∞

(sT(ρ, rT) − s(ideal)
T (ρ, rT)). (27)

Applying Eq. (22) twice for the tethered and ideal tethered systems
gives the following identity:

s(ρ) − s(ig)(ρ) = kB N−1
(2πβm)1/2

∫

∞

rT,0

drT (ṄT − Ṅ (ideal)
T ), (28)

where the lower bound of the integral can be rT,0 as below this, the
integrand is zero. The ideal rate of tether events Ṅ (ideal)

T can be
obtained via straightforward kinetic arguments or by a derivative of
the ideal tether entropy in Eq. (3) with the tether length,

(2πβm)1/2Ṅ (ideal)
T =

D N
rT

. (29)

Thus, Eq. (25) provides a convenient thermodynamic integration
path for crystalline state points, while Eq. (28) provides a path for
fluid state points.

Whether Eq. (25) or (28) is practically useful depends on how
quickly the integrals converge. To explore this, simulation results for
the tether collision rate are presented in Fig. 5 for a fluid system and a
crystal system. Both integrals converge remarkably quickly, which is
surprising for the fluid state but reflects the lack of long-range order
in the system. The minimum tether rate for the liquid system indi-
cates the onset of melting of the tether lattice, unlike in the solid
system.

To verify the convergence behavior, the kernels of Eqs. (25)
and (28) are plotted in the semi-log axis in Fig. 6. For the liquid

FIG. 5. The variation of the tether event rate ṄT as a function of the reduced
tether length rT/σ for an NVT ensemble hard-sphere system tethered to an FCC
lattice with N = 8788 at a reduced density of (a) ρσ3 = 0.5 and (b) ρσ3 = 1.2. The
(blue) dashed line represents the reduced ideal tether event rate of Eq. (29). In the
left figure, the gray shaded area between the ideal event rate and the measured
tether event rate shows the integral of Eq. (28) used to calculate the entropy of
fluid systems. The shaded area below the measured cell event rate in the right
figure shows the integral of Eq. (25) used when calculating the solid entropy. The
vertical red dashed line shows the minimum cell radius rT at which it is possible for
particles to interact with each other as given by Eq. (2).
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FIG. 6. The kernel of the integral of Eq. (28) at ρσ3 = 0.5 (left) and Eq. (25) at
ρσ3 = 1.18 as a function of the tether length for an NVT hard-sphere system. A
long decay is apparent in the fluid integral (left) and also appears in the solid
system (right); however, it decreases with system size and even disappears for
large enough systems, despite relatively high event counts for equilibration (104N)
and production (105N) due to the slow center-of-mass diffusion dynamics.

state, a tail persists to long tether lengths. Rather than attempting
to close this contribution by fitting an exponential tail, it is simply
truncated at long tether lengths for simplicity as its contribution is
small. The solid-state results demonstrate an interesting N−1 depen-
dence in the magnitude of the tail. This effect can be explained by
the drift of the simulation center-of-mass, causing interactions with
the tether to appear at large tether lengths. At larger system sizes, the
center-of-mass drift is lower due to the higher averaging of the ther-
mal fluctuations, reducing the center-of-mass velocity. Ultimately,
the larger system sizes are not run for long enough for the center-
of-mass to drift within the interaction range of the tether, leading to
the early truncation of the tail compared to smaller system sizes. As
this effect is system size dependent, it will be removed later during
the extrapolation to N →∞.

D. Summary
In this section, particle–particle and particle–tether event rates

in hard-sphere systems are linked to the geometry of their accessible
phase space. Particle–particle collision rates are shown to be directly
related to the pressure, in agreement with previous work. Tether col-
lision rates are found to provide a method to calculate the volume of
accessible phase space (and thus also the system entropy). In Sec. IV,
two techniques for calculating the system entropy are applied to the
hard-sphere system to compute the phase diagram.

IV. CALCULATION OF THE ENTROPY
In this section, estimates for the entropy of hard-sphere systems

are obtained using the two methods described in Secs. II and III. The
first approach uses MD simulation runs at a single value of ϕT while
different densities are sampled (i.e., path 1 from Fig. 3). The second
approach uses simulation runs at a single density while a range of
tether lengths are sampled (i.e., path 2 from Fig. 3). All simulations
are initialized in an FCC lattice, and the tether cell for each particle is
centered on the FCC lattice site for that particle. Simulations are run
over a range of system sizes, N ∈ {500, 864, 1372, 2048, 2916, 8788},
to allow an analysis of the size dependence. Simulations are equi-
librated for 104N events and run for at least 105N total events,

TABLE I. Calculated residual entropy sres/kB for different system sizes N and number
densities ρσ3 using the constant tether cell volume fraction integration (path 1 of
Fig. 3). The uncertainty in the last reported digit is given in parenthesis.

N ρσ3
= 1.06 ρσ3

= 1.13 ρσ3
= 1.18 ρσ3

= 1.21

500 −6.088 7(2) −6.865 0(2) −7.519 9(2) −7.972 6(2)
864 −6.096 6(1) −6.872 5(1) −7.527 0(1) −7.979 8(1)
1372 −6.100 6(1) −6.876 54(9) −7.531 0(1) −7.985(5)
2048 −6.103 11(9) −6.878 89(8) −7.533 17(8) −7.986 05(5)
2916 −6.104 66(9) −6.880 34(7) −7.534 66(7) −7.987 53(4)
∞ −6.107 8(4) −6.883 5(3) −7.537 7(4) −7.990 6(4)

sometimes as long as 106N events, to collect statistics. This is per-
formed over ten or more production runs and three complete
restarts (new particle velocities on the FCC lattice), which allows
the estimation of the unbiased standard error in the mean values
reported. These error estimates are propagated through the calcu-
lations to yield uncertainty estimates on all results, including the
integration and fitting operations.

A. Path 1: Density integration
For path 1, the integration of Eq. (6) is performed at 4 sepa-

rate cell volume fractions ϕT = 0.1, 0.2, 0.5, and 1.0. Simulations are
performed at 200 separate densities spaced evenly from ρT,0 to final
densities ρσ3

= 1.21, 1.18, 1.13, and 1.06, respectively. These den-
sities are sufficiently high for cell events to drop to zero in these
simulations (see Fig. 3 for an illustration of this boundary). The
trapezoidal rule is used to evaluate the integral of Eq. (6), and the
individual entropy values obtained using this method are shown in
Table I.

A linear fit in N−1 is used to extrapolate to N →∞, and an
example extrapolation is given in Fig. 7. The extrapolations are all
strongly linear, leading to a high confidence in the final results,
which will be validated against the results from path 2 and the
literature.

FIG. 7. Excess entropy as a function of particle number N calculated using sim-
ulations (points) with a tether cell volume fraction of ϕT = 0.5 and a density of
ρσ3 = 1.06. Error bars indicate the estimate of standard error in the integral
values but are smaller than the symbols. The system sizes (right to left) are
N ∈ {500, 864, 1372, 2048, 2916}, and the extrapolation (line) to give N →∞
yields an intercept of −6.1078(4).
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TABLE II. Calculated residual entropy sres/kB for different system sizes N and number densities ρσ3 using the varying tether radius integration (path 2). The uncertainty in the
last reported digit is given in parenthesis.

N ρσ3
= 0.5 ρσ3

= 0.9 ρσ3
= 0.937 43 ρσ3

= 1.03517 ρσ3
= 1.06 ρσ3

= 1.13 ρσ3
= 1.18 ρσ3

= 1.21

500 −1.55(1) −4.353(4) −5.13(2) −5.83(3) −6.081(9) −6.85(2) −7.51(2) −7.95(3)
2916 −1.546(5) −4.349(1) −4.893(9) −5.86(3) −6.104(9) −6.88(2) −7.53(2) −7.98(3)
8788 −1.550(4) −4.349(1) −4.850(5) −5.86(3) −6.108(9) −6.88(2) −7.54(2) −7.98(3)
∞ −1.548(4) −4.3484(9) −4.835(8) −5.8613(9) −6.1097(4) −6.8844(5) −7.5388(7) −7.984(1)

B. Path 2: Tether length integration
Considering path 2 in Fig. 3, simulations at constant density

with varying tether lengths are performed at the same densities but
are extended to include one liquid density of ρσ3

= 0.5. In the liquid
state, simulations are run from rT/σ ∈ [rT,0/σ, 13] with a spacing of
0.02 for rT/σ ≤ 4 and 0.25 above rT/σ > 4. In the solid phase, simu-
lations are run from rT/σ ∈ [rT,0/σ, 10] with a spacing of 0.01σ for
rT/σ ≤ 0.5 and 0.1 above rT/σ > 0.5. The individual entropy values
are reported in Table II, including the linear extrapolation in N−1 to
the thermodynamic limit. Extrapolations are again extremely linear,
raising no concerns on the approach.

C. Comparison of approaches
The extrapolated results for both approaches are presented

in Table III. To generate reference literature values, thermody-
namic integration is performed on the current best available equa-
tions of state.22 The reference absolute crystal entropy of sres

(ρσ3

= 1.040 86)/kB = −5.9189(2) is also taken from Ref. 22. Overall,
the agreement between both the methods and against the litera-
ture is excellent, verifying the methods and the extrapolation to the
thermodynamic limit. The calculated liquid entropy value is also
in excellent agreement with other reported values [i.e., −1.541(2)
from Ref. 11]. Averaging over all results for path 2 using thermo-
dynamic integration, our estimate for the reference crystal entropy
is sres

(ρσ3
= 1.040 86)/kB = −5.9168(4). This estimate for the crys-

tal free energy can be used with the latest equations of state22 to
estimate the fluid–solid coexistence point at a reduced liquid num-
ber density of 0.938 90(7), a reduced solid density of 1.037 15(9),

TABLE III. Residual entropy for the hard-sphere system for various number densi-
ties calculated using both approaches. The reference values are calculated using the
equations of state and crystal entropy reported by Pierpzyk et al.22 The uncertainty in
the last reported digit is given in parenthesis.

sres
/kB

ρσ3 Path 1 Path 2 Reference 22

0.5 ⋅ ⋅ ⋅ −1.548(4) −1.546 70
0.9 ⋅ ⋅ ⋅ −4.348 4(9) −4.370 09
0.937 43 ⋅ ⋅ ⋅ −4.835(8) −4.796 95
1.035 17 ⋅ ⋅ ⋅ −5.861 3(9) −5.863 3
1.06 −6.107 8(4) −6.109 7(4) −6.110 6
1.13 −6.883 5(3) −6.884 4(5) −6.884 6
1.18 −7.537 7(4) −7.538 8(7) −7.538 8
1.21 −7.990 6(4) −7.984(1) −7.991 9

a reduced chemical potential of 16.053(4), and a reduced pressure
of 11.550(4). The uncertainties on these values result from a prop-
agation of uncertainty from the reference crystal energy above and
not any uncertainty in the equations of state. Overall, these values
are all in close agreement with the highly precise literature values,
concluding that both approaches are reliable methods for extracting
measurements of the entropy.

Both approaches outlined here are high-precision routes to the
free energy with comparable computational costs; however, path 2 is
more convenient as it can be applied to liquid and crystalline states.
Path 1 also requires a careful selection of the tether length to avoid
transitions; however, path 2 avoids this difficulty. The variation of
tether and particle collisions with the tether length calculated with
Path 2 may also provide further insight into the structure of phase
space, which is completely inaccessible in normal simulation. This is
briefly discussed in the conclusions, but further research is necessary
to understand the full insight available.

V. CONCLUSIONS
In this work, the behavior of the tether particle model, first

introduced by Speedy,4 is examined in detail. The variation of the
compressibility factor with density is shown for tethered particle
systems with different tether lengths. For the standard hard-sphere
system and for the tethered system with sufficiently large tethers,
there is a signature “kink” in the curve, signaling a first order tran-
sition between the liquid and solid phases. This “kink” is shown
to weaken and vanish with the decreasing tether length. Therefore,
for sufficiently short tether lengths, there is a continuous thermody-
namic path between the fluid and solid states. At very low densities
where spheres are spaced too far apart to interact, the tether sys-
tem will reach an ideal state, which is analytically solvable; the free
energy of this state is known exactly with respect to the “standard”
ideal gas state. At sufficiently high densities, which occur in the
solid phase, sphere–sphere collisions prevent the tether interactions,
and the tether system becomes indistinguishable from the standard
hard-sphere system. Therefore, thermodynamic integration can be
directly used on MD simulations of the TPM for sufficiently short
tether lengths to compute the free energy of solid hard-sphere sys-
tems. This method is shown to give highly precise estimates of the
free energy in the solid state.

By considering the tethered hard-sphere system from the per-
spective of its motion through phase space, the rates of “collision” of
the system with the bounding surfaces that encapsulate the phase
space the system is allowed to explore are directly related to the
area of the bounding surface. For boundaries that correspond to
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sphere–sphere contacts, this relation can be used to derive the col-
lision rate expression for the pressure. These surfaces can be shifted
by increasing parameters, such as the sphere diameter or the tether
length. Integrating the collision rates of the particles with the tether
potentials, we can directly determine the entropy of the system with
respect to the ideal TPM. This is found to be an efficient method for
calculating the entropy of hard-sphere systems in any state.

The decay of the tether collision rate with the tether length
was found to exhibit two types of behaviors depending on whether
the system is fluid or solid. If the system is fluid, the cell collision
rate approaches the cell collision rate of an ideal TPM as the tether
becomes increasingly large [see Fig. 5(a)]. In the solid phase, the cell
collision rate decays exponentially to zero as the tether is length-
ened (see Fig. 5) and eventually vanishes. As the tether is length-
ened, portions of the boundary in phase space corresponding to
the tether interactions pass “behind” the boundary corresponding
to sphere–sphere contacts, and it becomes increasingly more hidden
from the system. As a result, the tether collision rate decreases. Even-
tually, tether collisions no longer occur, indicating that the tether
boundary is completely hidden behind the sphere–sphere contact
boundary and is no longer accessible by the system. In this situation,
the sphere–sphere interactions confine the system to a relatively
small region of phase space.

Interestingly, at lower densities that are near solid coexistence
density, the decay of the tether collision rate no longer monoton-
ically decreases with the tether length, dramatically increasing in
value in some regions and even switching its qualitative decay to
zero. As an example, in Fig. 8, the event rates for a system of
particles tethered to an FCC lattice at ρσ3

= 0.937 43 are shown.
This is very near the fluid freezing density, and as the tether is
lengthened, the cell collision rate decays rapidly toward zero, sim-
ilar to that found for high density systems in the solid phase. The
sphere–sphere collision rate appears to approach a limiting value,
which corresponds to a solid-like pressure; for comparison, the colli-
sion rate in a solid at ρσ3

= 0.937 43 is depicted as the dashed–dotted

FIG. 8. Variation of the tether (unfilled circles) and inter-particle (filled circles) event
rate as a function of the radius of the tether for an N = 8788 hard-sphere system
tethered to an FCC lattice at ρσ3 = 0.937 43. The dotted horizontal line is the
particle–particle collision rate in the fluid phase, and the dashed–dotted horizontal
line is the particle–particle collision rate in the FCC solid phase, as correlated by
Pieprzyk et al.22 The dashed line is the tether event rate in the ideal fluid.

line in Fig. 8. At rT/σ ≈ 0.69, the tether collision rate “suddenly”
begins to increase, and the sphere–sphere collision rate “jumps” to a
much greater value, which corresponds to a liquid-like pressure; the
sphere–sphere collision rate for a solid at ρσ3

= 0.937 43 is depicted
in Fig. 8. Truncating at ρσ3

= 0.937 43 and integrating using Eq. (25)
for solids give a residual entropy of sres

= −4.96(2), which is remark-
ably close to the FCC value of sres

= −4.9636(4) from extrapolating
the equation of state (EOS). While both approaches are being used
outside of their range of applicability, their agreement suggests that
the tether model can be used to sample free energies of unstable
configurations, provided that there is a clear opportunity where the
tether rates approach either zero or the ideal limit. At longer tether
lengths in Fig. 8, the tether event rate begins to approach the ideal
TPM value after two “re-entries,” which is expected if the fluid is the
stable phase. This behavior is reproducible and not due to the lack of
equilibration of the simulations and is largely independent of system
size for sufficiently large systems. It suggests that the FCC phase can
still be distinguished from the fluid phase using this tether approach.
The ability to separate unstable and stable configurations at the same
density from each other with the tether length may help to provide
further insight into phase transitions in other systems, such as two-
dimensional hard disks, where this distinction is not clear and is a
focus of our future work.

The relationship of the tether collision rates with the geome-
try of phase space allows the closer examination of the transition
pathways between regions of phase space. The surface area of the
phase space boundary corresponding to the tether contacts that are
exposed to the system represents the cross-sections of the “hallways”
through which the system can travel. The collision rate of the tether
allows the determination of the surface area of sections of phase
space not blocked off by sphere overlaps. By increasing the tether
length, we can observe how the area of this transition hallway varies.
This allows the identification of bottlenecks, where this area reaches
a minimum, between regions of phase space that correspond to
different “macrostates” of the system (e.g., fluid and crystalline).
The tether collision rate depicted in Fig. 8 corresponds to a sys-
tem where the FCC crystal region of phase space is connected to
the fluid region through relatively narrow pathways. The “areas” of
these paths can be quantified, which with further analysis can be
used to estimate transition rates between these states. We are cur-
rently exploring developing this approach to examine the transition
states and pathways of different systems, such as the nucleation of
crystals in hard-sphere systems and the folding of polymers in helix
forming systems.23–25

While the scope of this paper has been limited to single com-
ponent systems, the expressions in this work can easily be extended
to any multicomponent, discontinuous potential system. Addition-
ally, in this work, the tethering potential was considered to act on
single spheres, confining them to be located within a cell; how-
ever, this is only one example of a tethering potential. Many other
alternatives are possible, and they can be considered in much
more general terms. For example, the tethering potential might act
between pairs of spheres in order to keep them within a set dis-
tance from one another. This type of tethering simulation can be
used to obtain the potential of mean force between particles or col-
lections of particles, such as polymer chains. Another example is
to confine a group of spheres to within a certain cell. This would
allow the calculation of the entropy penalty of clustering spheres
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to form aggregates. These offer interesting directions for future
work.
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