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Highlights 5 

• We present a strategy for hydrogeophysical inversion and uncertainty analysis. 6 

• PEST/PEST++ and COMSOL Multiphysics are fully integrated. 7 

• The approach is applied to electrical resistivity monitoring in a coastal aquifer. 8 

• The coupled inversion achieves better delineation of seawater intrusion. 9 

• The iterative Ensemble Smoother is used for uncertainty analysis. 10 

Abstract  11 

Calibration of groundwater models is frequently limited by a lack of direct hydrogeological data. 12 

Non-intrusive geophysical methods are increasingly used to provide higher spatio-temporal resolution 13 

datasets for identification of hydrological processes and estimation of hydraulic properties. In 14 

groundwater model calibration performed through joint or coupled hydrogeophysical inversion, the 15 

hydrogeological datasets are supplemented with auxiliary geophysical data. In this work we propose a 16 

methodological approach to perform coupled inversion by integrating the calibration software 17 

PEST/PEST++ with COMSOL Multiphysics using MATLAB. The strategy provides multiple options for 18 

calibration and uncertainty analysis relevant for a broad range of environmental models. To illustrate 19 

the approach, we show a hydrogeophysical application in which electrical resistivity is used jointly 20 

with borehole data for the identification of seawater intrusion in a coastal aquifer.  21 

Keywords: Hydrogeophysics, Multiphysics modelling, Coupled inversion, Uncertainty analysis. 22 

1 Introduction 23 

Groundwater management and decision making is frequently supported by outcomes from numerical 24 

models (Doherty and Simmons, 2013; Ferré, 2017). To have predictive capabilities numerical 25 



groundwater models are traditionally calibrated (e.g., Anderson et al., 2015) and further evaluated to 26 

quantify prediction uncertainty (Linde et al., 2017). The uncertainty analysis can be conducted either 27 

using a deterministic (error propagation analysis) or stochastic approach, even avoiding the necessity 28 

of a pre-calibrated model (e.g., Scheidt et al., 2018; Hermans et al., 2018, 2019). Model calibration and 29 

uncertainty analysis in groundwater modelling, as for other subsurface systems, is frequently hampered 30 

by the scarcity of direct hydrogeological data, such as head or concentration measurements from wells 31 

or boreholes. As drilling is expensive, intrusive and, generally, provides spatially scattered point 32 

information, key groundwater processes and spatial distribution of hydrogeological properties are not 33 

fully captured, more so in heterogeneous aquifer systems (e.g., Zheng and Gorelick, 2003).  34 

Geophysical methods have been, and are, routinely used in hydrogeological studies to provide 35 

indirect information of the subsurface (Kirsch, 2006). Traditionally and most often, geophysical 36 

methods are processed and interpreted independently and used qualitatively in the initial stages of the 37 

groundwater modelling workflow, typically for geometrical delineation of geological bodies and 38 

structures or the mapping of hydrological features (e.g. Mastrocicco et al., 2010) or processes of interest, 39 

such as the location of the water table (Buchanan, S., & Triantafilis, J., 2009), the identification of 40 

saltwater intrusion (De Franco et al., 2009), soil moisture variations (Chambers et al., 2014) or the 41 

tracking of contaminant plumes (Gasperikova et al., 2012) . 42 

 In the last two decades, there has been a growing interest in a more quantitative use of geophysical 43 

information in hydrogeology including their integration in groundwater models, eventually leading to 44 

the emergence of a new scientific sub-discipline known as hydrogeophysics (Binley et al., 2015). At 45 

the core of the hydrogeophysical approach lies the use or definition of petrophysical relationships (e.g., 46 

Archie, 1942 and its variants; Slater, 2007), commonly derived at the laboratory. These are required to 47 

link geophysical properties (e.g. electrical resistivities) to hydrogeological parameters (e.g. storage 48 

properties; Mezquita-Gonzalez et al., 2021) or state variables (e.g. water salinity content; Klotzsche et 49 

al., 2018).  50 

Previous authors have shown limitations of the capability of geophysical inversion to accurately 51 

resolve subsurface features (Day-Lewis et al., 2005; Singha and Moysey, 2006), typically providing a 52 



blurry, smoother, and sometimes distorted representation of reality, as well as significant uncertainties 53 

in the values of the parameter measured. Although alternative regularization approaches may improve 54 

the inverted model (Hermans et al., 2012; Bouchedda et al., 2017; Thibaut et al., 2021), recent studies 55 

(e.g. Revil et al., 2017; Brunetti and Linde, 2018; González-Quirós and Comte, 2020) have also shown 56 

the importance of conceptual and structural errors in the hydrogeophysical workflow, such as the 57 

assumption of homogeneity in heterogeneous systems when parameterizing the petrophysical model or 58 

the incorrect selection of the petrophysical model itself. As a result, the quantitative use of information 59 

derived from geophysical inversion in groundwater model parametrization (i.e. direct mapping) or 60 

calibration could lead, if incorrectly applied, to unrealistic or erroneous property distributions or 61 

estimations, and consequently, inaccurate hydrological interpretations. Awareness of these limitations 62 

and incorporation of their associated uncertainty in the workflow (e.g. Beaujean et al., 2014; Hermans 63 

and Irving, 2017) have been shown to reduce some of these errors associated with the use quantitative 64 

geophysical information in hydrogeophysical applications. 65 

To overcome these limitations, it was proposed (e.g. Lebbe, 1999) that a more appropriate strategy 66 

for an efficient integration of geophysics in groundwater modelling calibration is through a coupled 67 

hydrogeophysical modelling. In it, both the geophysical and hydrogeological observations, rather than 68 

inversion results, are simultaneously used as model verification datasets (Comte and Banton, 2007), or 69 

in an automated way through coupled hydrogeophysical inversion in which geophysical and 70 

hydrogeological measurements are used as input datasets for automatic groundwater model calibration 71 

(Hinnell et al., 2010; Linde and Doestch, 2016). While the approach is still subject to practical and 72 

structural errors, their main advantage is that the significantly extended multiphysical observation 73 

datasets provide additional constraints in the estimation of the ranges and distributions of hydrological 74 

parameters and variables (or quantities), and in the resolution of groundwater processes, which are the 75 

main objectives in hydrogeological studies (Linde et al., 2015). Coupled modelling approaches start 76 

with the simulation of the hydrological model for some defined distribution of hydrological properties 77 

and boundary conditions. A petrophysical relationship, which can be uncertain (e.g. Irving and Singha, 78 

2010), is used to obtain a spatial distribution of geophysical properties from which the forward 79 



geophysical model is simulated to obtain the geophysical response at locations of interest. Model 80 

predicted geophysical and hydrologic observations are compared with field measurements through an 81 

iterative procedure where the hydrological-geophysical model properties are sequentially adjusted until 82 

an acceptable fit is obtained. In the coupled inversion approaches the iterative comparison and 83 

minimisation of differences between modelled and observed values is automated. 84 

A key difficulty for development and application of coupled hydrogeophysical inversion for real 85 

world applications is the requirement to code or program the necessary governing equations of both, 86 

the groundwater and -at least one- geophysical problems linked with the appropriate petrophysical 87 

relationship. Previous authors have used specific software –e.g. MODFLOW (Harbaugh et al., 2005), 88 

SEAWAT (Langevin et al., 2008), SUTRA (Voss and Provost, 2002) or FEFLOW (Diersch, 2013) for 89 

the groundwater problem, and RES2DMOD/RES2DINV (Loke, 2018), BERT (Rücker et al., 2006) or 90 

R2 (Binley and Kemna, 2005) for the geophysical problem– to solve the hydrogeophysical model 91 

sequentially (e.g. Herckenrath et al., 2013; Kang et al., 2019) or have developed solutions for 92 

hydrogeophysical inversion that usually require the development or programming of in-house codes for 93 

specific applications of (Pollock and Cirpka, 2012; Steklova and Haber, 2017). On this sense, open-94 

source libraries under continuous development, such as SimPEG (Cockett et al., 2015) or PyGIMLI 95 

(Rücker et al., 2017), provide a wide range of solutions to perform coupled hydrogeophysical inversion 96 

or be integrated with a groundwater model. 97 

However, although coupled modelling is usually achievable for models with simple geometries, 98 

representing scenarios that can be straightforwardly conceptualized, and for small multiphysical 99 

calibration datasets, implementation in real-world aquifers targeting complex hydrological processes 100 

and/or large datasets (e.g. Comte et al., 2017) can be time consuming and would benefit from use of 101 

automatic calibration and a much higher degree of flexibility for geometry, meshing, parametrization 102 

and implementation of the governing equations and boundary conditions. Additionally, multiphysical 103 

model calibration and uncertainty analysis demands a robust framework —aside from the mathematical 104 

engine itself— to handle the multiple types of observation datasets and program the specific 105 



relationships between parameter types with geologically realistic distributions of properties (Linde et 106 

al., 2015).  107 

In this work, we propose a methodology to implement a fully coupled multiphysical inversion for 108 

the calibration and uncertainty analysis in hydrogeophysical environmental models. The strategy is 109 

achieved by integrating a fully coupled hydrogeophysical forward model developed with the 110 

commercial finite-element software COMSOL Multiphysics® and the model-independent calibration 111 

software PEST (Doherty, 2020) and PEST++ (White et al., 2020), widely used by the groundwater 112 

community. The coupling of PEST and COMSOL was performed previously by Halloran et al. (2019), 113 

who developed a Java interface for communication. Here we follow a different strategy for 114 

communication using MATLAB instead of Java, and we include some novelties that were not 115 

implemented in COMPEST, such as the use of pilot points for spatial parameterization, Tikhonov 116 

regularization, application of the novel iterative Ensemble Smoother from PEST++, parallelization and 117 

a first application of the strategy to a hydrogeophysical problem. 118 

The paper is organised as follows. In section 2.1 we present some basic concepts and theory behind 119 

PEST and PEST++. In section 2.2 we explain the methodological workflow for integration of 120 

PEST/PEST++ and COMSOL with model parallelization. In section 2.3 we describe the 121 

hydrogeophysical modelling and inversion and present the example model. In section 3 we show the 122 

hydrogeophysical example application results: in section 3.1 the results of a Monte Carlo forward 123 

coupled hydrogeophysical model, in section 3.2 the results of model calibration and in section 3.3 the 124 

results of the uncertainty analysis obtained with application of the iterative ensemble smoother. Finally, 125 

in section 4, we discuss the capabilities of the multiphysical inversion for calibration of environmental 126 

models. 127 



2 Theory, Software and Numerical Methods 128 

2.1 Model Calibration with PEST/PEST++ 129 

2.1.1 PEST and PEST++ 130 

The model-independent calibration software PEST (Doherty, 2020) has been widely used since the 131 

90s by the groundwater community for model calibration. PEST relies on the use of input and output 132 

files to interact with any numerical model. It includes a suite of functionalities for model 133 

parameterization, data conversion or setup of the calibration workflow, including parallelization. 134 

PEST++ (White et al., 2020) development began in 2009 within the USGS and contained much (but 135 

not all) of the capabilities of PEST. During the last decade more functionalities such as global sensitivity 136 

or uncertainty analysis, have been incorporated. Both codes and accompanying utilities can be freely 137 

download in their dedicated webpages.  138 

Below we explain some basic principles of the parameter estimation in environmental sciences for 139 

which PEST and PEST++ provide a wide range of solutions. For more details we refer to their respective 140 

and extensive support documentation for details (Doherty, 2020; White et al., 2020). 141 

2.1.2 Highly Parameterized Parameter Estimation 142 

The parameter estimation or inverse problem in environmental numerical modelling aims to 143 

determine a reduced and finite set of parameters, p (for example permeabilities defined at the discretized 144 

model grid), that agree within a mathematical norm with the set of historical observations, h (for 145 

example hydraulic heads collected in the field)  146 

𝐡 =  𝐗𝐩 +  𝛆 , (1) 

𝐗 is a matrix that represents the action of the model in the parameters and 𝛆 is the noise associated 147 

with the measurements. For a non-linear problem, and omitting the noise term, the previous expression 148 

is often found as  149 



𝐡 =  𝐗(𝐩). (2) 

2.1.3 GLM inversion 150 

From the equation above we can define a vector of residuals, r, as the differences between the field 151 

measurements and the outputs of the model 152 

𝐫 =  𝐡 −  𝐗𝐩, (3) 

and an objective function as the sum of weighted squared residuals such as 153 

Φ𝑑 = (𝐡 −  𝐗𝐩)
𝒕𝐐(𝐡 −  𝐗𝐩), (4) 

where 𝐐 is the weight matrix 154 

𝐐 =  𝜎𝑟
2𝐶−1(𝜀), (5) 

𝜎𝑟
2 is a proportionality constant known as reference variance or variance of unit weight (Doherty, 155 

2015) and 𝑪(𝜺) the covariance matrix that characterises the measurement noise.  156 

Our objective is to find values for 𝐩 improving the fit achieved between model outputs and 157 

observations, that is, to iteratively lower the objective function, Φ𝑑. PEST minimizes the objective 158 

function by using the Gauss-Levenberg-Marquardt (GLM) algorithm (Doherty, 2015). For each 159 

iteration PEST searches an improvement in fit by modifying the model parameters using the formula 160 

𝐩 − 𝐩𝟎 = (𝐉
𝐭𝐐𝐉 + 𝛌𝐈)−𝟏 + 𝐉𝐭𝐐𝐫, (6) 

where 𝐩𝟎 are the parameter values at the start of the iteration, 𝛌 is the Marquardt lambda (Levenberg, 161 

1944; Marquardt, 1963) and 𝐉 the Jacobian matrix, which is filled using finite-difference approximation 162 

of the partial first derivative of the simulated observations, 𝐬 (model simulated equivalent to the field 163 

observations, h), with respect to the parameters, 𝐩,  164 



𝐉[s𝑖 , p𝑗] =
∂s𝑖
∂p𝑗

≈
Δs𝑖
Δp𝑗

. (7) 

The equation above means that to fill the Jacobian matrix it is necessary to run the model at least as 165 

many times as model estimable parameters, which is an important computational limitation for highly 166 

parameterized models and longer computational runs. 167 

2.1.4 Pilot points 168 

For models with thousands, or even millions of elements, the estimation of properties for every cell 169 

of the grid using equation (2) is computationally unachievable. We require a reduced parameter set for 170 

which we can establish a set of spatial relationships. The parametrization of groundwater models using 171 

pilot points has been widely used since the first works of De Marsily et al. (1984). Instead of trying to 172 

estimate the parameters at every cell of the discretized model domain, parameters are estimated in a 173 

smaller set of discrete locations, the pilot points, which values are interpolated to the model cells in 174 

which the domain has been discretized (Doherty et al., 2010). 175 

2.1.5 Tikhonov regularization 176 

Inverse problems in environmental sciences are usually non-unique (e.g. Zhou et al., 2014). 177 

Tikhonov regularization (Tikhonov and Arsenin, 1977) is implemented in PEST to achieve a unique 178 

solution (for which the functional attains its minimal) by introducing either preferred values or 179 

relationships between the estimable parameters expressed as a series of expert knowledge 180 

observations, 𝐡𝒓. A regularization objective function can be defined such as  181 

Φ𝑟 = (𝐡𝒓 − 𝒁𝐩)
𝒕𝐐𝒓(𝐡𝒓 − 𝒁𝐩), (8) 

Here 𝒁 represents the effect of the “regularization model” in the parameters. 𝐐𝒓 is a user-provided 182 

weight matrix, different from 𝐐, which represents the strength of expert belief in the regularization 183 

observations, 𝐡𝒓 (Doherty, 2015). 184 



When adding the regularization term, the final objective function to minimise is the sum of the 185 

measurement or data objective function, Φ𝑑, and the regularization objective function, Φ𝑟, with μ2 a 186 

regularization weight factor. 187 

Φ = (𝐡 −  𝐗𝐩)𝒕𝐐(𝐡 −  𝐗𝐩) + 𝜇2[(𝐡𝒓 − 𝒁𝐩)
𝒕𝐐𝒓(𝐡𝒓 − 𝒁𝐩)], (9) 

Or expressed in compacted form 188 

Φ = Φ𝑑 + 𝜇
2Φ𝑟 , (10) 

which is the total objective function that PEST aims to minimize in regularization mode.  189 

2.1.6 Iterative Ensemble Smoother 190 

When using PEST as described above, the result of the calibration procedure is a unique property 191 

field with minimum error variance that fits the observation datasets. This strategy has some limitations 192 

when using a model for predictive purposes (Doherty, 2015) because (1) it usually provides a smoother 193 

property field in which fine scale heterogeneities -which might have an important impact in the 194 

predictions- are unnoticed, and (2) the unique estimated property field cannot be used alone to perform 195 

an uncertainty analysis. An available technique for uncertainty analysis using the PEST suite is to follow 196 

the known as Null-Space Monte Carlo (NSMC) strategy (Tonkin and Doherty, 2009; Herckenrath et al, 197 

2011). NSMC allows for estimation of calibrated-constrained property fields that can be used with 198 

predictive purposes but requires to perform the calibration to obtain a model that is next disturbed to 199 

obtain an ensemble of calibrated-constrained models used with predictive purposes. The calibration step 200 

can be an important limitation for highly parameterized models and long forward running times. 201 

PEST++ (White et al., 2020) includes the iterative Ensemble Smoother (iES) (White, 2018) with 202 

which it is possible to obtain a number of calibrated-constrained parameter fields that can be used for 203 

predictive uncertainty analysis. An important advantage of the iES is that alleviates the computational 204 

cost for highly parameterized models as the Jacobian matrix does not have to be filled with finite 205 

difference approximation of the partial first derivative at every iteration. At the contrary, the iES only 206 

requires as many models runs per iteration as members of realizations of the ensemble. Instead of using 207 



finite difference approximation, Chen and Oliver (2013) proposed to use a Jacobian matrix obtained 208 

empirically using the following equation  209 

𝐉 ≈ (𝐶−1(𝜀))
1
2⁄ Δs Δp−1(𝐶−1(𝑝))

−1
2⁄ , (11) 

where 210 

Δs =
(𝐶−1(𝜀))

−1
2⁄
(𝑠−𝑠̅)

√𝑁𝐸−1
, (12) 

Δp =
(𝐶−1(𝑝))

−1
2⁄
(𝑝−𝑝̅)

√𝑁𝐸−1
. (13) 

In the equations above, 𝐶−1(𝜀) is the covariance matrix of measurement noise and 𝐶−1(𝑝)is the 211 

prior parameter covariance matrix, 𝑠̅ and 𝑝̅ denote mean simulated and parameter values of the ensemble 212 

and 𝑁𝐸 is the number of realizations in the ensemble. 213 

As the number of parameters has no effect on the computational cost in the update of the model, a 214 

much finer heterogeneity detail with higher density of pilot points (i.e. as many as cells or element in 215 

the mesh of the model) can be introduced to account for smaller scale variability. As a result, it is 216 

possible to work with models with thousands of parameters requiring just some hundreds of runs for a 217 

model until it is calibrated (White, 2018). An advantage of using the iES is that the uncertainty analysis 218 

comes at no extra cost of the calibration. Because the results of application of the iES are not a unique 219 

minimum variance property field, but an ensemble of acceptably calibrated parameter fields that can be 220 

evaluated for uncertainty analysis purposes. On the contrary, and in general, calibrated models using 221 

iES do not reach as best fitting as those using the GLM algorithm (White, 2018). 222 

For further theoretical details of the iES we refer to Chen and Oliver (2013) and to White (2018) and 223 

White et al. (2020) for use of the PEST++ suite and instructions for the additional inputs required in the 224 

PEST control file to define the control variables. 225 



2.2 COMSOL - PEST/PEST++ Integration 226 

2.2.1 General Workflow 227 

The fully coupled inversion (FCI) procedure was implemented through integrating the model-228 

independent calibration software PEST (Doherty, 2020) and PEST++ (White et al., 2020) with 229 

MATLAB and COMSOL (Fig. 1). Previously, Halloran et al. (2019) presented COMPEST, an interface 230 

built in Java to link PEST and COMSOL, that they satisfactorily applied to a case of isotopic 231 

fractionation of groundwater contaminants (Halloran et al., 2021). In this work we follow a different 232 

strategy, using MATLAB for connection instead of Java, and with some important additions, including 233 

the use of pilot points for spatial parametrization, Tikhonov regularization, singular value 234 

decomposition, parallelization to reduce computational burden and the integration with PEST++ that 235 

provides global sensitivity and uncertainty analysis. 236 

In COMSOL, we built the forward coupled hydrogeophysical model with additional pre- and post-237 

processing computations performed using MATLAB (González-Quirós et al., 2019). We used 238 

MATLAB and the LiveLink for MATLAB as a linking platform between COMSOL and 239 

PEST/PEST++. Appropriate COMSOL license is necessary to implement the workflow. 240 

 241 

Fig. 1.- Flowchart of integration. Communication between MATLAB and COMSOL is achieved using the 242 

ComsolServer and Livelink for MATLAB. Template (.tpl) and instruction (.ins) files are required to 243 



communicate PEST with the relevant model inputs and output files. TDS (total dissolved solids) and ERT 244 

(electrical resistivity tomography) represent the observation datasets. FC-MC indicates the forward fully 245 

coupled Monte Carlo workflow explained in section 2.3.2. 246 

2.2.2 PEST/PEST++ input files  247 

Both PEST and PEST++ require, at least, three types of files (Fig. 1): instructions (.ins), template 248 

(.tpl) and control (.pst). The instructions file(s) contain information that point to model output for 249 

comparison between simulated values and the observed datasets. The template file includes the 250 

information of the parameters to be calibrated that are used as input files in the model run. The control 251 

file is the core of the PEST/PEST++ workflow as it contains the options of the model calibration 252 

process, the observation data, groups and weights, parameter ranges and groups, the name of 253 

instructions and template files and the file to run the forward model (wrapped in a .bat file). Specific 254 

details to fill the relevant PEST files can be found in its extensive and complete documentation 255 

(Doherty, 2020) For the additional options necessary in the PEST++ control file to use the iterative 256 

Ensemble Smoother we refer to White et al. (2020). 257 

For implementation of pilot points and regularization, additional applications of the PEST suite 258 

(Doherty, 2020) are necessary. After defining the desired pilot point locations in the model domain, we 259 

used the functionalities PPK2FAC and FAC2G to generate a set of kriging factors from the desired 260 

geostatistical model and for interpolation from the pilot point locations to a defined finer grid. The 261 

generation of kriging factors using PPK2FAC is performed once before the start of the calibration, while 262 

FAC2G functionality is required before every model run and included as part of the workflow in the 263 

batch file to run the model (COMLINE in the PEST control file). 264 

2.2.3 Parallelization  265 

To speed up the procedure we used parallelization through the BEOPEST (Schreuder 2009), for the 266 

model calibration using PEST, and PANTHER parallel run manager (Welter et al., 2019), for use with 267 

PEST++. For each thread, a ComsolServerTM was launched with a different port assigned. Then, each 268 

worker was connected to the designated port using the LiveLink for MATLAB® application. The 269 



COMSOL-MATLAB forward model was wrapped in an .m file and the order to run it was included in 270 

the COMLINE batch file.  271 

2.3 Application to Hydrogeophysical Inversion in Saltwater Intrusion Modelling 272 

2.3.1 Geophysical Monitoring of Saltwater Intrusion 273 

As an example application we show how electrical resistivity and borehole hydrogeological 274 

observations can be used with the proposed methodology to calibrate and perform a sensitivity and 275 

uncertainty analyses of saltwater intrusion in a multiphysical model that simulates a synthetic 276 

heterogeneous coastal aquifer (Fig. 2). Electromagnetic methods (in the broad sense and including 277 

electromagnetic and electrical resistivity techniques among others) are well-established geophysical 278 

investigation techniques in coastal studies because of their sensitivity to saltwater content (Jiao and 279 

Post, 2019). Electrical resistivity imaging (ERI), in particular, with the popularisation of multi-channel 280 

instrumentation enabling rapid high-resolution data acquisition allows hydrogeologists to image 281 

saltwater intrusion patterns over distances of meters to thousands of meters (e.g. Goebel et al., 2017; 282 

Comte et al., 2017; Costall et al., 2018, 2020).  283 

2.3.2 Forward Coupled Modelling 284 

The reference groundwater model for forward and inverse hydrogeophysical modelling is a model 285 

of variable density flow and salt transport in a synthetic heterogeneous coastal aquifer based on a 286 

modification of the well-known Henry’s problem (Henry, 1964) with the following boundary 287 

conditions: towards the coast, a constant hydrostatic pressure condition (no tides or waves) is imposed 288 

in the steeped boundary of the aquifer with a constant saltwater concentration; inland is imposed a 289 

constant freshwater inflow of 1.75·10-3 m·d-1 and at the top and bottom a zero flux condition is imposed. 290 

Table 1 compiles the characteristics of the model.  291 



 292 

Fig. 2 Characteristics of the modelled scenario. A, B and M, N represent, respectively, the current and 293 

potential electrodes of a Wenner-α quadripole. ω is a relative salt mass fraction, 1 for seawater.  294 

Table 1. Groundwater model parameters.  295 

Parameter Symbol Value Unit 

Saltwater density ρs 1025 kg m-3 

Freshwater density ρ0 1000 kg m-3 

Saltwater salinity TDS 35 g l-1 

Freshwater electrical conductivity 𝜎𝐹𝑤 500 μS cm-1 

Saltwater electrical conductivity 𝜎𝑆𝑤 50000 μS cm-1 

Average Mean Hydraulic conductivity Kh 1×10-5 m s-1 

Effective porosity ϕ 0.33 - 

Molecular diffusion Dm 1×10-9 m2 s-1 

Longitudinal dispersivity αL 5 m 

Transversal dispersivity αT 0.5 m 

A petrophysical model —which we assumed perfectly describes the relationship between the 296 

groundwater and electrical models— was used to transfer the groundwater variables and parameters 297 

after solution of the groundwater model into electrical resistivities. In this work we used the Waxman 298 

and Smits (1968) petrophysical relationship and associated petrophysical equations (Appendix A) to 299 

link the groundwater and electrical resistivity models. Finally, a synthetic surface electrical resistivity 300 

acquisition was performed on the surface with a Wenner-alpha array of 72 electrodes with 2 m spacing 301 

centred at coordinate x=0 (Fig. 2). The fully coupled model was implemented in COMSOL and solved 302 

sequentially in a single run following the strategy explained in González-Quirós et al. (2019) and 303 

González-Quirós and Comte. (2020). Two different meshes were used to solve each problem, a fine 304 



mesh for the groundwater problem (19726 elements) and a coarser mesh but refined around the 305 

electrode locations for the ERT problem (7376 elements).  306 

First, we performed a Monte Carlo (FC-MC) analysis to obtain the forward hydrogeophysical 307 

response of 500 random realizations of heterogenous log-permeability multiGaussian fields generated 308 

using the software GCOSIM3D (Gómez-Hernández and Journel, 1993). We used a spherical variogram 309 

with a range of 50 m and a sill of 1. For each permeability scenario we simulated the groundwater (flow 310 

and salinity concentration) and electrical responses (apparent resistivities). The fully coupled Monte 311 

Carlo analysis workflow is illustrated as FC-MC in Fig. 1. Within MATLAB, GCOSIM3D was run to 312 

generate the random permeability fields that were used by COMSOL for simulation of the forward 313 

response applying the petrophysical relationships explained in the Appendix A.  314 

 315 

Fig. 3. Computed hydraulic conductivity (a) and clay fraction (b) for one selected reference model (one of the 316 

500 permeability stochastic realizations). In (a): Blue contour is the DWL and continuous iso-contours are for 317 

relative concentrations of 0.1 (grey), 0.5 (black) and 0.99 (red). The width of the mixing zone is computed between 318 

the contours 0.25 and 0.75 (dashed black contours). Black diamonds are observation points in the two boreholes 319 

and crosses are pilot point locations.  320 

Calculated salinities from the 500 models were analysed using saltwater intrusion indicators. For the 321 

analysis of the models we were mainly interested in the position of the contour associated with the DWL 322 

(for Drinking Water Limit) taken at 0.5 g l-1 (USEPA, 2009). Values with salinity concentrations above 323 



this limit are considered as poor quality or undrinkable water. We also considered the width, or spread, 324 

of the mixing zone between the iso-concentrations 0.25 and 0.75 (Fig. 3). 325 

2.3.3 Observation datasets  326 

From the set of solved models explained in section 2.3.2, we selected a scenario with large saltwater 327 

intrusion as the “true” model (Fig. 3). For the calibration data set we used 12 observation points for salt 328 

concentration (Fig. 3), expressed as TDS in kg·m-3, from different depths of 2 boreholes at coordinates 329 

𝑥 = −50 m and 𝑥 = 50 m, and the apparent resistivities (in Ohm·m, or Ω·m) from 828 ERT 330 

quadripoles of the 72-electrode Wenner-alpha array. For the concentration points we assumed that the 331 

measured data at the two boreholes are those of the aquifer at the same locations.  332 

Theoretical simulated responses, salinity concentrations and logarithm of apparent resistivities, from 333 

the considered true model at the observation locations, were disturbed with uncorrelated Gaussian noise 334 

with standard deviation of 5% to define the observation dataset. These two sets of data were used to 335 

form the measurement objective function, which is calculated as the weighted squared residuals, r𝑖, 336 

between the observations, here the noise contaminated data. The observation weights, 𝑤𝑖, were assigned 337 

as the inverse of the variance of the observation error (Hill and Tiedeman, 2007). TDS and ERT 338 

(apparent resistivity) data were assigned to two different observation groups. To assign the same 339 

contribution from each of the observation groups we used the PWTADJ1 application from the PEST 340 

suite (Doherty, 2020). 341 

2.3.4 Calibration with PEST-GLM 342 

To perform the calibration of the coupled hydrogeophysical inversion model, we first used PEST 343 

(Doherty, 2020) for the estimation of permeability in 636 pilot points uniformly distributed in the 344 

simulation domain (Fig. 3). Although the GLM algorithm was used in COMPEST (Halloran et al., 345 

2019), the use of pilot points for spatial parametrization in COMSOL is a novelty of this work. A 346 

computational limitation, especially for highly parameterized models and long forward running times, 347 

is that the GLM algorithm requires to fill the Jacobian matrix at every iteration by computing a finite-348 

difference approximation of the partial first derivative, which is directly related with the number of 349 



parameters, in our case the same number of pilot point locations, 636. To reduce the computational 350 

burden, we used Singular Value Decomposition (SVD) with a reduced set of super-parameters. To 351 

proceed, we computed once the full Jacobian, which required a total of 636 model runs, as many as the 352 

number of pilot points. After running the SUPCALC application (Doherty, 2020) we chose the 353 

suggested maximum number of 100 super-parameters, which was an important reduction from the 354 

initial 636 pilot-points, and therefore, a decrease of the computational cost in the inversion. Finally, we 355 

ran the SVD-Assist (Doherty, 2020) to generate new control and input files that were used for the 356 

inversion following the same approach explained above and shown in Fig. 1. 357 

2.3.5 Iterative Ensemble Smoother (PEST++ iES) and Uncertainty Analysis 358 

For application of the PEST++ iterative ensemble smoother (iES) to the same hydrogeophysical 359 

saltwater intrusion scenario described in section 2.1 we used the same observation datasets described 360 

in section 2.3.3. To take advantage of the capabilities of parameter space evaluation of the iES, and 361 

aiming to recover finer scale features, we increased the number of pilot points to 4650, distributed 362 

randomly, but using the same geostatistical model explained in the previous sections.  363 

With PEST++-iES the uncertainty analysis comes at no extra cost to the model calibration. Aiming 364 

to perform a post-calibration uncertainty analysis to a quantity of models comparable with the one used 365 

in the stochastic example described in section 2.3.2, we applied the iES to an initial ensemble of 500 366 

random parameter fields. However, the initial fields of the ensemble were generated automatically by 367 

PEST++ and are different than the 500 models used in the Monte Carlo analysis that were generated 368 

using GCOSIM3D. At every iteration, the ensemble was updated as explained in section 2.1.6 and 369 

references therein. We used the last ensemble of models for the uncertainty analysis using as metrics 370 

the same saltwater intrusion indicators (DWL position and penetration and mixing zone width) 371 

explained in section 2.3.2. Additionally, we considered as the best model of the ensemble the one with 372 

the best fit (lowest objective function) and computed the ensemble average and variance for the 373 

estimated hydraulic properties. 374 



3 Results 375 

3.1 Stochastic Groundwater Modelling Results 376 

Each single forward coupled model was computed in less than 80 seconds in an Intel® Core™ i5-377 

8500 with 40 GB RAM. For the forward stochastic modelling exercise, from the total of 500 model 378 

realizations of the random field, 8 failed to converge (i.e., less than 2%), mainly because of a particular 379 

arrange of low hydraulic conductivities in the density-dependent flow model.  380 

Representative computed results are compiled in Fig. 4. Fig. 4a shows the positions of the drinking 381 

water limit contour (TDS=0.5 kg·m-3) for the resolved 492 models. The penetration of the toe position 382 

of the DWL spans for almost 200 m. A more detailed statistical representation of the toe penetration is 383 

shown in the histogram of Fig. 4b. In this figure we present the distribution of computed distances from 384 

the coordinate x = - 150 m (defined at the bottom left corner of the model) to the toe position of the 385 

DWL at 5 m intervals. To represent statistics of the ensemble of models we computed a mean distance 386 

of 117.1 m, median of 119.1 m and a standard deviation of 40.9 m. In the histogram of Fig. 4c we 387 

compile the computed values of width (or spread) of the mixing zone –distance between the iso-contours 388 

of concentrations 0.25 and 0.75— at the bottom of the aquifer. Representative statistics of the ensemble 389 

of models were mean mixing zone width 19.3 m, median 15.7 m, and standard deviation 12.5 m. The 390 

computed spread of the mixing zone for the chosen reference model was 45.7 m. The results of the 391 

reference model are represented in all figures with a red line. The reference model was chosen for being 392 

more challenging for identification during the inversion procedure because representing a statistically 393 

less frequent scenario. This model was characterised by a DWL toe position of 37.5 m from x = -150 394 

and a width of the mixing zone of 45.6 m. 395 



 396 

Fig. 4. Results from the 492 solved models. (a) DWL contour position. (b) Histogram of distances from 397 

coordinate x=-150 m to the DWL at the toe (refer to Figure 2) (c) Width of the mixing zone at the toe. Red lines 398 

indicate the reference model in all graphs (a-c). 399 

3.2 Fully Coupled Hydrogeophysical Inversion Results 400 

Fig. 5 shows the calibration results after application of PEST-GLM. We show data fitting between 401 

measured and modelled (calibrated) apparent resistivities (Fig. 5a) and total dissolved solids (TDS) 402 

(Fig. 5b). To reach these results PEST was run with Tikhonov regularization and SVD (100 403 

superparameters) and required 20 iterations and 3293 model runs (plus the 636 model runs to compute 404 

the initial Jacobian matrix before the SVD implementation). After evaluation of the evolution of the 405 

objective function we observed an acceptable fit after 8 iterations and 841 model runs (Fig. 6). 406 

The iES approach evaluated over an initial ensemble of 500 permeability fields was run for 6 407 

iterations but reached a good fit after 4 iterations and 1874 model runs (Fig. 6). From the initial 408 

ensemble, 53 models were discarded by PEST++ along the procedure. That is, when model run failure 409 

is encountered (e.g., because of convergence problems) PEST++-iES drops one parameter set from the 410 



ensemble before continuing to the next iteration (White, 2020). The remaining 447 models of the final 411 

ensemble were used to perform an uncertainty analysis. In Fig. 5 we show the results of the model with 412 

best data fit (min Φ) for measured and modelled (calibrated) apparent resistivities (Fig. 5c) and total 413 

dissolved solids (TDS). The latest (Fig. 5d) is slightly worse than the results applying the PEST-GLM, 414 

especially for some high values of TDS. Distribution of sum of squared residuals between the initial 415 

and last ensemble is shown or each of the observation groups, ERT and TDS in Fig. 5e and Fig. 5f 416 

respectively.  417 



 418 

Fig. 5. Modelled (calibrated) vs. measured apparent resistivities (in Ohm·m) (a, c) and TDS (in Kg·m-3) 419 

(b, d) for calibration using PEST-GLM (a, b), and best model fit using the iES (c, d). Distribution of the 420 

sum of squared residuals for the two observation groups for the initial and last ensemble of models (e, 421 

f). 422 



 423 

Fig. 6. Evolution of the objective function (normalized with number of observations) with model runs (each 424 

marker represents an iteration) for GLM mode and ensemble minimum, maximum and mean in iES mode. For 425 

reference, one model run with 6 models in parallel and no GUI is computed in ~80 s. 426 

In Fig. 7 we compare the recovered position of the saltwater-freshwater mixing zone between the 427 

calibrated models and the true position. Representative saltwater concentration iso-contours show that 428 

the mixing zone was well resolved, especially around the centre of the domain (coordinate 𝑥 =  0 m) 429 

and near the surface, which are the most sensitive regions to the observation datasets. Some 430 

discrepancies were observed in the toe for the penetration of the DWL and the 0.1 iso-salinity contour 431 

around coordinate 𝑥 = −100 m and in the delineation of the 0.99 salinity concentration. We obtained 432 

a better correspondence in the position of the representative iso-contours using the iES method. This 433 

might be derived from the introduction of heterogeneities out of the regions of data sensitivity, which 434 

is an important difference between the iES and the GLM approaches. It must also be noted that, rather 435 

than a single model, the iES resulted in an ensemble of models that provide a range of uncertainty in 436 

the position of the different salinity contours (this is illustrated in Fig. 9 for the DWL). 437 



 438 

Fig. 7. True (continuous) and recovered (GLM-dotted and iES-dashed) representative position of the 439 

DWL, 0.5 and 0.99 salinity iso-contours. ERT profile and borehole locations are shown for reference. 440 

Fig. 8 shows a comparison between true and best estimate distribution of permeabilities using both 441 

the GLM (Fig. 8b) and iES (Fig. 8c). The use of a much smaller number of pilot points and the minimum 442 

variance strategy of the GLM workflow is well noted in the resolution of the recovered sections shown 443 

compared with the iES. The GLM strategy is prone to create artifacts in the sensitive regions to fit 444 

within the noise level. Some regions were acceptably well recovered, especially in the shallower 20 m 445 

along the domain of investigation of the ERT data in the centre of the domain. Examples of well 446 

recovered are the low permeability shallow regions near the surface at coordinates 𝑥 = 0 m and 𝑥 =447 

−50 m or the higher permeability regions at 𝑥 = −25 m and 𝑥 = 50 m.  448 



 449 

Fig. 8. True (a) and recovered permeability distribution after inversion with (b) GLM and (c) the iterative 450 

ensemble smoother. 451 

The inversion found some problems with the extreme values of highest and lowest permeabilities at 452 

deeper locations, for example around coordinates [50, −40] and [−20,−55] respectively, which are in 453 

the limits of investigation of the electrical resistivity profile (Fig. 10). This was especially problematic 454 

for the GLM inversion that resulted in inaccurate results below 20 m depth and introduced two shifted 455 

higher and lower permeability patches at [−50,−20] and [−25,−25] and “bulls eye” type inversion 456 

artifacts. Also, because the GLM inversion started from a homogeneous distribution of permeabilities, 457 

it only introduced heterogeneity progressively in the central regions of the domain, related with data 458 

coverage, especially ERT. Regions towards inland from 𝑥 = −75 m and towards the sea from 𝑥 =459 

75 m remained homogeneous after the inversion. 460 



3.3 Uncertainty Analysis 461 

Fig. 9 shows representative results (blue lines) for the ensemble of 447 models (of the initial set of 462 

500) obtained after 4 iterations. For comparison purposes we show (in grey) the results of the 463 

unconstrained Monte Carlo analysis presented in in section 3.1. With a red line we show the reference 464 

model and with a green line we indicate the best model estimate (the one presented in section 3.2).  465 

 466 

Fig. 9. Results of the uncertainty analysis, in blue, from the last iteration of the ensemble of realizations 467 

obtained after application of the ES. (a) DWL contour position. (b) Histogram of distances from coordinate 468 

x=-150 to the DWL toe. (c) Toe width of the mixing zone. Red line is true reference model, orange is the best 469 

model of the ensemble, green ensemble average and magenta results of PEST-GLM. We show, for comparison, 470 

the results of the Monte Carlo analysis (MC) from fig Fig. 4.  471 

Fig. 9a shows the position of the DWL contours. Best model estimate is 40.8 m from the origin, 472 

while the computed ensemble mean is 42.9 m, with a standard deviation of 5.2 m (Fig. 9b). The 473 

difference with the true toe location (37.5 m) is 3.3 and 5.4 m, for the true and ensemble mean, 474 

respectively. The width of the mixing zone for the best estimate was 33.8 m, while the computed 475 



ensemble mean was 35 m, with a standard deviation of 5.9 m. Differences with the true width of the 476 

mixing zone at the toe (45.6 m) were 14.1 and 10.6 m, for the true and ensemble mean, respectively. 477 

Fig. 10 illustrates the differences in the distribution of permeability between the true model (Fig. 478 

10a) and the ensemble mean (Fig. 10b) computed from all the models of the final iES ensemble. Some 479 

regions were acceptably well recovered, especially in the central domain of investigation of the ERT 480 

data. Examples of well recovered regions are the low permeability region near the surface at coordinates 481 

𝑥 = 0 and 𝑥 = −50. In Fig. 10c it is shown the variance for the ensemble of realizations. The region 482 

with lower values is located near the surface at the centre of the domain, where the data coverage, 483 

especially ERT, is higher. 484 

 485 

Fig. 10 (a) True (reference) model, (b) ensemble mean and (c) variance of permeability (log10). ERT profile, 486 

boreholes location and contour lines representing true DWL, 0.5 and 0.99 salinities are shown for reference.  487 



4 Discussion 488 

4.1 Comparison with standalone ERT inversion 489 

It is well known that stand-alone inversion of geophysical data is a blurry, usually a smoother, 490 

representation of reality in which small scale features of the subsurface are not well recovered because 491 

of resolution limitations (Day-Lewis et al., 2005; Singha and Moysey, 2006). Additionally, there is a 492 

loss of resolution with depth that, when studying saltwater intrusion in coastal aquifers, has resulted in 493 

discrepancies when comparing tomograms obtained from surface ERI with borehole salinity data (e.g. 494 

Palacios et al., 2020). As a result, when interpreting ER tomograms in terms of salinities there is an 495 

effect of overdispersion (González-Quirós and Comte, 2020) that can be an important source of bias in 496 

uncoupled hydrogeophysical inversion.  497 

Fig. 11 shows the comparison between the true resistivity distribution (Fig. 11a), the results of the 498 

coupled inversion with both the PEST-GLM (Fig. 11b) and the PEST++-iES (Fig. 11c) strategies, and 499 

a stand-alone ERT inversion (performed here with the widely tested software BERT; Günther and 500 

Rücker, 2015) using the same geophysical dataset and measurement error. 501 

With PEST-GLM the inversion recovers some of the heterogeneities in the near surface, mainly in 502 

the higher resistivity (low salinity) regions, and the two patches of higher resistivity located around 503 

coordinate 𝑥 = −70 m. It also introduces other small heterogeneities near the surface that are not 504 

observed in the true model, and which allow PEST to improve the model fitting. The observation 505 

datasets are not sensitive to changes in some zones of the aquifer and, as a result, the inversion cannot 506 

recover some of the higher resistivity zones located towards inland or in the saline water regions. These 507 

zones are recovered with better resolution by PEST++-iES (Fig. 10c) showing the importance of using 508 

appropriate prior information to constraint the inversion. Even though, both fully coupled inversion 509 

routines provide reliable results regarding salinity content, especially in the most conductive regions. 510 

The stand-alone ERT inversion (Fig. 11d) shows a smoother distribution of resistivities, especially 511 

in the mixing zone where the transition between fresh and saltwater aims to be identified. This 512 

complicates the delineation of the mixing zone and the identification of the position of the saltwater 513 



intrusion. When compared with a stand-alone ERT inversion, the fully coupled hydrogeophysical 514 

inversion shows a much better correspondence and definition of the saltwater-freshwater mixing zone, 515 

even when slightly underestimates the toe location. Additionally, it overrides the use of constant 516 

resistivity value to delineate the saltwater intrusion, as the coupled model directly provides a solution 517 

of the groundwater modelling scenario. This is important as it has been shown that using a constant 518 

resistivity threshold for delineation of the mixing zone may introduce large biases in heterogeneous 519 

aquifers (González-Quirós and Comte, 2020), especially when assuming a homogeneous distribution 520 

of petrophysical properties.  521 

By application of a coupled hydrogeophysical inversion, the groundwater model acts as a physically-522 

based constraint for the geophysical model, and therefore more realistic distributions of state variables 523 

can be obtained. This however requires an adequate, and sometimes more complex, forward model that 524 

considers other elements (e.g., the effect in the geophysical measurements of variable saturation near 525 

the surface, temperature variations or the boundary conditions of the groundwater model) not required 526 

in stand-alone ERI inversion. These characteristics that are difficult to quantify in real conditions might 527 

have a strong influence in the results. 528 

It must also be noted that in this work we used a Wenner-alpha array for having low noise in coastal 529 

settings. Other arrays, or a combination of different arrays, with higher sensitivity to the target structures 530 

and higher sampling density would further improve inversion results. In addition, the choice of the 531 

petrophysical model, here assumed to be known and certain, is another important source of error and 532 

uncertainty in hydrogeophysical applications (Irving and Singha, 2010; Brunetti and Linde, 2018; Tso 533 

et al., 2019; González-Quirós and Comte, 2020). 534 



 535 

Fig. 11. Log10 electrical resistivity (Ohm.m): (a) True model, (b) fully coupled inversion using PEST-GLM, 536 

(c) fully coupled inversion using the iterative ensemble smoother and (d) stand-alone ERT inversion. 537 

Continuous lines in (a) show the true representative salinity iso-values. Recovered salinity iso-contours from 538 

fully coupled inversion are shown with short and long dash lines for GLM (b) and iES (c) respectively. In (d), 539 

salinity contours, shown with dotted lines, are obtained from petrophysical transformation assuming a 540 

homogeneous model (as explained in González-Quirós and Comte, 2020). 541 

4.2 Comparison of the Coupled Inversion Strategies 542 

In this work we used to calibration strategies, GLM and iES, available from the suites of PEST and 543 

PEST++ respectively. Both offer distinct strategies and are different in their capabilities and limitations. 544 

As local optimization method, the GLM inversion results in a single minimum variance property 545 

field, with a smoother distribution of properties, conditioned by the number and location of the pilot 546 

points, which results resemble those of the smooth (or Occam’s) type inversion (Constable et al., 1987) 547 

widely used in geophysical applications (Fig. 11). In addition, we observed some artifacts that are well 548 

known in the literature such as “bulls eye” and overfitting (Fig. 8b), associated to the amount and 549 



distribution of pilot points (Doherty et al., 2010). In this work we used a homogeneous distribution of 550 

pilot points aiming for the inversion to be computationally treatable. The use of a very large number of 551 

pilot points is an important limitation of the GLM workflow due to the computational effort required to 552 

calculate the Jacobian. This could be an important drawback for calibration of multiphysical models 553 

that require long computational times. Further analysis towards an optimization number and location of 554 

pilot points when using surface ERT data could improve the results of the coupled inversion using 555 

PEST-GLM. An additional limitation is that the result provided by the GLM is a unique smooth property 556 

field that should not be used on its own to perform an uncertainty analysis, requiring additional efforts 557 

and strategies such as the Null Space Monte Carlo method. On the other hand, the GLM produced a 558 

good estimation of the DWL and the mixing zone (Fig. 7) with lower number of model runs necessary 559 

to achieve and acceptable model fit than the iES (Fig. 6).  560 

The iES strategy, on the contrary, allows for the evaluation of highly parametrized models solving 561 

the restriction in the parameter space, and therefore in computational cost, for the calculation of the 562 

Jacobian. With this advantage it is possible to introduce a much larger number of pilot points resulting 563 

in the recovering of finer scale changes in the distribution of properties. Even more, the resulting 564 

ensemble of acceptably calibrated models can be used for a meaningful multi-model uncertainty 565 

analysis accounting for non-uniqueness at no extra computational cost and without the requirement of 566 

performing or implement additional strategies. On the other hand, the iES approach is based on some 567 

assumptions (linearity, Gaussian distributions of the prior) that might not be valid n some scenarios and 568 

may require different approaches (e.g., Irving and Singha, 2010) to obtain an accurate uncertainty 569 

quantification. Model fit achieves is also not as good as the one obtained with the GLM (Fig. 6). 570 

However, the better fit in the GLM strategy is achieved by creating numerical artifacts (Fig. 8b), which 571 

might be not desirable either. Further analysis is necessary to evaluate the impacts of, among others, 572 

changing the number of members in the iES ensemble, using alternative amounts and locations of pilot 573 

points, or assigning different weights to the multiphysical observation groups. 574 

Finally, as both have advantages and limitation, the coupling workflow presented in this paper 575 

proves that they can be used complementary and applied in the same study with no further difficulties 576 



due to the correspondence between file formats and implementation steps. This provides a framework 577 

for application of a wide range of solutions of the PEST/PEST++ suite, including global optimization 578 

and global sensitivity analysis (Morris and Sobol) methods, not discussed here, but that can be 579 

implemented following the workflow presented in this work with multiphysical models developed in 580 

COMSOL.  581 

4.3 Advantages of the Multiphysical Approach 582 

The methodology presented in this work aims to provide a methodological framework for full 583 

integration of geophysical information for calibration and uncertainty analysis in hydrogeological 584 

studies for decision making support (Ferré, 2017; Doherty and Moore, 2020). In this regard, geophysics 585 

could be used either for conceptual model testing (Linde, 2014; Brunetti et al., 2017; Lopez-Alvis et 586 

al., 2019; Enemark et al., 2020) as an affordable and nimble monitoring alternative for evaluation of 587 

hydrological properties (e.g., storage), aquifer boundary conditions (e.g., recharge, pumping, interaction 588 

with surface water bodies) or alternative forecasts (e.g. to track the evolution of a contaminant plume 589 

and compare with different model predictions).  590 

We have identified two main advantages of fully integrating geophysics in the calibration. First, and 591 

more importantly, our primary objective of characterization of the freshwater-saltwater mixing zone 592 

has been achieved very satisfactorily. The position of the DWL is very well recovered throughout the 593 

model domain both using GLM and iES strategies (Fig. 7). Secondly, the geophysical data is able to 594 

constraint and identify better the spatial distribution of hydraulic properties near the surface, especially 595 

in the freshwater domains (Fig. 10c). Further evaluations on the possibilities of using this information 596 

to identify and constrain structural characteristics of the aquifer, complemented with multiphysical 597 

uncertainty analysis, offers a promising framework for predictive evaluation and risk assessment in 598 

coastal aquifers and other hydrogeological settings. 599 

Even more, the strategy allows to follow a multi-scale, multi-dimension strategy; that is, the 600 

multiphysical forward model can be solved in COMSOL in different domains that are coupled using ad 601 

hoc strategies and operators. An example was shown for an hydrogravity model by González-Quirós 602 



and Fernández-Álvarez (2014), who used a 2D domain to solve the groundwater problem and an 603 

extruded 3D domain to solve, coupled, the gravity problem. Alternative strategies that will require 604 

imaginative solutions, for example to solve the ERT problem in 2.5D in a reduced scale as a subproblem 605 

of a larger regional 3D groundwater model, are possible and computationally more affordable. 606 

Finally, and importantly, the framework enables to assimilate additional hydrological and 607 

geophysical datasets in order to provide additional constraints, such as groundwater heads (which were 608 

not used in this work but are commonly available data in most real field studies) and complementary 609 

geophysical techniques (electromagnetics, potential field, etc). 610 

4.4 Limitations and Future Research 611 

Previous authors (Hinnell et al., 2010; Camporese et al., 2015) have identified some key limitations 612 

for the application of coupled hydrogeophysical inversion. Among them, the definition of the 613 

conceptual model, the use of the appropriate petrophysical relationship and the computational effort 614 

traditionally required for coupled hydrogeophysical simulations. In this work, for simplicity, we have 615 

assumed that the dimensions of the domain, the boundary conditions, the structural model and the 616 

petrophysical relationship were perfectly known. Future research is needed to address these limitations 617 

or hurdles in the application of the FCI that we discuss briefly below. In addition, the impact of variably 618 

saturated media near the surface in the geophysical measurements can have an important impact in the 619 

results if disregarded (González-Quirós and Fernández-Álvarez, 2021). Variable saturation can be 620 

included in the proposed methodology with some additional modelling and computational effort. 621 

The conceptualization problem has gained considerable attention during the last decade (e.g., 622 

Enemark et al., 2019). Previous authors (Carrera et al., 2010) have shown that errors in the 623 

conceptualization can render an inverse routine inadequate, even when using the most sophisticated 624 

methodology available. Additionally, the multiGaussian model used in this work, even when easier to 625 

implement has limitations to identify some type of structures (e.g., high permeability channels) that can 626 

be key flow and contaminant transport paths (Gómez-Hernández and Wen, 1998) in many 627 

environmental applications. Recent applications (e.g., Kang et al., 2019) have shown that coupled 628 



hydrogeophysical inversion can be performed satisfactorily to characterize solute transport in non-629 

Gaussian fields. Implementation in the routine presented in this work is under the scope of our research. 630 

The groundwater community has been more prone for many years to evaluate parameter uncertainty, 631 

disregarding the structural uncertainty of the model (Refsgaard et al., 2012). In the hydrogeophysics 632 

modelling and inversion workflow, the use and application of the petrophysical model is a key element. 633 

However, petrophysical uncertainty has been widely ignored (Linde et al., 2017) even when it can lead 634 

to overconfident favourable impressions of the capability of geophysics for parameter estimation and 635 

for interpretation of results of the hydrogeological modelling (Brunetti et al., 2017). The evaluation and 636 

quantification of petrophysical uncertainty are increasingly receiving more attention in the literature 637 

(Brunetti and Linde, 2018; Tso et al., 2019; Mezquita-González et al., 2020). In many hydrogeophysical 638 

applications, computational burden can prevent a full Bayesian approach for uncertainty quantification, 639 

but recent strategies (e.g., Hermans et al., 2018, 2019; Kang et al., 2019; Tso et al., 2020 or this work) 640 

have shown that is possible to perform uncertainty analysis using an appropriate ensemble of 641 

hydrogeophysical models with an acceptable computational effort. Furthermore, the use of 642 

parallelization shown in this work reduces computational cost and, although not done in this example 643 

application, the workflow could be implemented in a computer cluster with the adequate COMSOL 644 

licensing. 645 

Finally, it must be noted that the coupled multiphysical inversion with integration of COMSOL with 646 

PEST/PEST++ is not limited nor restricted to hydrogeophysical applications like the presented as an 647 

example in this study. The modelling flexibility of COMSOL together with the open-source model-648 

independent capabilities of PEST/PEST++ allows researchers for imaginative approaches to solve a 649 

broad range of environmental problems at multiple scales (from lab-scale to regional scales) integrating 650 

not only geophysical methods, but also other types of observations, such as remote sensing, that are not 651 

traditionally fully incorporated quantitatively in the modelling workflow. The methodology is also not 652 

restricted to stationary models as the example shown here; transient modelling and time-lapse data can 653 

be incorporated into the workflow. 654 



5 Conclusions 655 

The full integration of geophysical data in the groundwater modelling workflow has been identified 656 

as a step forward to provide more reliable models used for decision support. Fully coupled 657 

hydrogeophysical inversion has been proposed as one of the solutions to improve the integration of 658 

geophysics in hydrogeological studies. However, its use in real-world settings has been limited because 659 

of the difficulty of simulating complex field conditions, the unavailability of flexible strategies and the 660 

computational limitations, which have prevented the widespread use by the hydrogeological 661 

community. In this work we have shown an efficient solution to perform fully coupled 662 

hydrogeophysical inversion with integration of PEST/PEST++ and COMSOL. 663 

The integration of COMSOL and PEST/PEST++ using MATLAB provides a solution for model 664 

calibration and uncertainty analysis of multiphysical models. COMSOL is a well-known and powerful 665 

finite element software that provides a high degree of flexibility for the implementation of complex 666 

geometries and the coupled simulation of multiple physics. PEST has been the standard calibration 667 

software in the groundwater community for decades, is open-source and freely available, and in 668 

conjunction with PEST++ provide a powerful toolbox for calibration, sensitivity, and uncertainty 669 

analysis in environmental modelling. Finally, the methodological approach is not restricted to 670 

hydrogeophysical models and can be extended to multiphysical modelling and a broad number of 671 

environmental applications using the flexibility of COMSOL. 672 

Software Availability 673 

PEST (Doherty, 2020) is freely available in its dedicated webpage https://pesthomepage.org/.  674 

PEST++ (White et al., 2020) is accessible and available in the US Geological Survey webpage 675 

https://www.usgs.gov/software/pest-parameter-estimation-code-optimized-large-environmental-676 

models . 677 

MATLAB is a commercial numerical computing platform (https://uk.mathworks.com/, or the 678 

respective webpage for each county). Version 2018a was used in this work.  679 

https://pesthomepage.org/
https://www.usgs.gov/software/pest-parameter-estimation-code-optimized-large-environmental-models
https://www.usgs.gov/software/pest-parameter-estimation-code-optimized-large-environmental-models
https://uk.mathworks.com/


COMSOL Multiphysics is a commercial finite element software (https://www.comsol.com/) 680 

COMSOL version 5.4b was used. Livelink for Matlab license is necessary to establish the connection 681 

between PEST/PEST++ and COMSOL. The ACDC and Subsurface Flow modules are required for the 682 

hydrogeophysical simulation presented in the example. A Floating Network Licence is necessary for 683 

parallelization.  684 

Codes and examples used in this work are available in the A.G. Quiros’ GitHub page 685 

https://github.com/AndresGQuiros.  686 
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Appendix A 693 

In this work we used the Waxman and Smits (1968) petrophysical relationship, defined as 694 

𝜎𝑏𝑢𝑙𝑘 =
1

𝐹
(𝜎𝑤 + 𝐵𝑄𝑣) (A1) 

In this equation 𝜎𝑤 is the fluid conductivity [S m-1] and F is the formation factor, (𝐹 = 1 𝜙𝑚⁄ ) with 695 

𝜙 the porosity and 𝑚 [-] the cementation exponent. B is the equivalent counterion mobility 696 

𝐵0 [1 − 0.6𝑒
(
−𝜎𝑤

0.013⁄ )], 𝐵0 =  4.78 × 10
−8the maximum counterion mobility. Finally, the excess of 697 

surface charge per unit pore volume, 𝑄𝑣 [meq·ml-1], is calculated as (Revil et al., 1998) 698 

𝑄𝑣 = 𝜌𝑔 (
1 − ϕ

𝜙
)𝐶𝐸𝐶 (A2) 

https://www.comsol.com/
https://github.com/AndresGQuiros


Here, CEC [meq·g-1] is the cation exchange capacity which value is proportional to clay content and 699 

depends on the nature of the clay minerals (Revil et al., 1998). To compute the CEC we used the 700 

expression 701 

 𝐶𝐸𝐶 = 𝜑𝑤
𝑐𝑙 × 𝐶𝐸𝐶𝑖 (A3) 

In this model we used a threshold to define a lower permeability value of clay-free sand using the 702 

expression (Revil and Cathles, 1999): 703 

𝑘𝑠𝑑 =
𝑑𝑠𝑑
2 (𝜙𝑠𝑑)

3𝑚𝑠𝑑

24
 (A4) 

Beyond this value we considered that clay was present. In the equation above 𝑑𝑠𝑑
2  is the grain 704 

diameter of sand; 𝜙𝑠𝑑 the porosity of sand and 𝑚𝑠𝑑 is the sand cementation exponent. We assigned 705 

values of 𝑑𝑠𝑑
2 = 2 × 10−4 m, 𝜙𝑠𝑑 = 0.32, 𝑚𝑠𝑑 = 2 and 𝑚𝑠𝑑 = 𝑚𝑐𝑠 = 2 (Power et al. 2013; Kang et 706 

al., 2019). We applied the following equations to compute the clay content (Revil and Cathles, 1999)  707 

{
  
 

  
 
𝑘 < 𝑘𝑠𝑑 𝐶𝑙 =

𝑘𝑠𝑑

1
3𝑚𝑐𝑠 − 𝑘

1
3𝑚𝑐𝑠

𝑘𝑠𝑑

1
3𝑚𝑐𝑠 (

1 − 𝜙𝑐𝑙
𝜙𝑠𝑑

)

𝑘 > 𝑘𝑠𝑑 𝐶𝑙 = 0

 (A5) 

Total porosity was computed applying this expression (Berg, 1995) 708 

𝜙 = 𝜙𝑠𝑑(1 − 𝐶𝑙) + 𝜙𝑐𝑙  𝐶𝑙 (A6) 

Mass fractions of clay (used in equation A3 to compute CEC) and sand grains, 𝜑𝑤
𝑐𝑙 and 𝜑𝑤

𝑠𝑑 were 709 

calculated using the equations (Power et al., 2013; Kang et al., 2019) 710 

𝜑𝑤
𝑐𝑙 =

Cl(1 − 𝜙𝑐𝑙)𝜌𝑐𝑙
Cl(1 − 𝜙𝑐𝑙)𝜌𝑐𝑙 + (1 − 𝐶𝑙)(1 − 𝜙𝑠𝑑)𝜌𝑠𝑑

 (A7) 



𝜑𝑤
𝑠𝑑 = 1 − 𝜑𝑤

𝑐𝑙 (A8) 

In the study we assumed a constant density of mineral grains for sand and clay particles, 𝜌𝑐𝑙 = 𝜌𝑠𝑑 =711 

𝜌𝑔 = 2650 kg·m-3 and cconstant temperature of 25 ºC.  712 

The petrophysical relationship is fully integrated in COMSOL. The models are solved in every run 713 

with a direct spatial correspondence established between the hydraulic parameters (permeability and 714 

porosity), the hydrogeological variables (salinity), the petrophyical relationships (clay fraction) and the 715 

geophysical parameter (bulk resistivity).  716 

Additionally, the following equation was used for conversion of fluid electrical conductivity into 717 

total dissolved solids (TDS) (Jiao and Post, 2019) 718 

𝑇𝐷𝑆 = k𝑐 𝜎𝑤 (14) 

We used a value of k𝑐=0.7 obtained by using the relationship k𝑐 = 𝑇𝐷𝑆𝑆𝑊/𝜎𝑆𝑤 (Jiao and Post, 719 

2019) where 𝑇𝐷𝑆𝑆𝑊 = 35000 mg l-1 (35 kg·m-3) and 𝜎𝑆𝑤 = 50000 µS·cm-1 (5 S·m-1) are the total 720 

dissolved solids and electric conductivity of saltwater. 721 
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