
1

Performance assessment of meta-heuristics for composite

layup optimisation

Shahin Jalilia,* , Reza Khanib, Alireza Maheria, Yousef Hosseinzadehb

aSchool of Engineering, University of Aberdeen, King's College, Aberdeen, AB24 3UE, United Kingdom
bFaculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract:

This paper investigates the performance of several meta-heuristic algorithms, including particle

swarm optimisation (PSO), different variants of differential evolution (DE), biogeography-based

optimisation (BBO), cultural algorithm (CA), optics-inspired optimisation (OIO), and league

championship algorithm (LCA), for optimum layup of laminated composite plates. The study

provides detailed Pseudo codes for different algorithms. The buckling capacity maximisation of a

64-layer laminated composite plate under various load scenarios has been considered as the

benchmark problem, in which the design variables are the stacking sequences of layers. A deep

statistical comparison (DSC) method is employed to rank the performance of different algorithms.

The DSC uses a non-parametric two-sample Kolmogorov–Smirnov (KS) test to conduct the

performance comparisons between the algorithms. The overall performance rankings obtained

from the DSC suggest that the LCA, OIO, and PSO algorithms perform remarkably better in

comparison to other algorithms. The comparisons provide some interesting conclusions on the

performance of different algorithms.

Keywords: Composite structure, Meta-heuristics, Deep statistical comparison, Kolmogorov–

Smirnov test

1. Introduction

Composite materials refer to multi-phase materials with enhanced properties that are fabricated by

an artificial combination of two or more distinct materials [1]. These materials have found

important structural applications to date. One particular structural application of composite

materials is in the laminated composite plates. Recent advances revealed that laminated composite

plates are an increasingly popular structural type for a wide range of applications in different

industries, such as aerospace, automotive, marine, building, and renewable energy industries. The

high strength-to-weight ratios and flexibility in design are two major advantages of such structures.

The different design parameters of laminated composite structures provide a great opportunity for

designers to achieve the desired cost-efficient optimum designs for a given application.

* Corresponding author: Shahin Jalili, email: s.jalili@abdn.ac.uk, School of Engineering, University of Aberdeen,

King’s College, Aberdeen, AB24 3UE, United Kingdom

2

A recent literature review provided by Nikbakt et al. [2] reveals that the optimum design of

laminated composite plates to enhance their mechanical behaviour and minimise costs have been

attracted much attention in recent years. Researchers have been implemented different

optimisation algorithms to attain optimum designs for different kinds of design variables, objective

functions, and constraints. Among the different objective functions investigated in the literature,

buckling load maximisation is one of the prominent objective functions that have been widely

taken into consideration by researchers for the optimum design of laminated composites [3-5].

 Meta-heuristic optimisation algorithms, such as genetic algorithms (GAs) [6], simulated

annealing (SA) [7], differential evolution (DE) [8], ant colony optimisation (ACO) [9], particle

swarm optimisation (PSO) [10], cultural algorithms (CAs) [11,12], biogeography-based

optimisation (BBO) [13], and harmony search (HS) [14], are attractive techniques to solve

complex optimisation problems [15-20]. Meta-heuristics are nature-inspired search techniques that

take the advantage of solution perturbation and stochasticity to find acceptable solutions for real-

world problems in a reasonable time [21]. Like other engineering disciplines, these algorithms

have been successfully applied to optimise the laminated composite structures [22-29]. For

example, Karakaya and Soykasap [30] employed GA and SA to enhance the buckling capacity and

attain optimum stacking sequence for hybrid laminated composite plates with carbon/epoxy and

glass/epoxy materials. Kaveh et al. [31] investigated the application of the BBO algorithm in

stacking sequence optimisation of laminated composite plates for various load cases and aspect

ratios to maximise the buckling load factor. HS was utilised by Almeida et al. [32] to optimise the

buckling load factor of the balanced laminated composite plate under compressive in-plane loads.

Akcair et al. [33] applied DE and SA to optimise the buckling load factor of the laminated

composite plate under different increments in fibre orientations. Kaveh et al. [34] proposed a novel

improved rank-based version of quantum-inspired evolutionary algorithm (QEA) for optimum

stacking sequence of hybrid laminated composite plates under uncertain buckling loads. The

literature review also reveals that researchers have been adopted/proposed novel meta-heuristic

algorithms for buckling maximisation of laminated composite plates. For example, Rao et al. [35]

employed a scatter search algorithm (SSA), Kaveh et al. [36,37] applied the charged system search

(CSS) algorithm, Jaya algorithm (JA), and colliding bodies optimisation (CBO).

In recent years, some novel meta-heuristic algorithms have been developed by researchers to

solve a wide range of engineering problems. League championship algorithm (LCA) [38] inspired

3

by the sporting competitions between the teams in sports leagues is one of such novel algorithms,

which has been able to exhibit efficient performance for different kinds of problems [39-43].

Optics inspired optimisation (OIO) [44] algorithm is another recently developed meta-heuristic

inspired by the optical characteristics of spherical mirrors in physics, which has been remarkably

efficient for engineering applications [45-48]. The main objective of this paper is to assess the

performance of different meta-heuristic algorithms, including PSO, different variants of DE, BBO,

CA, OIO, and LCA, for optimum layup of laminated composite plates. The buckling capacity

maximisation of a 64-layer laminated composite plate under various load cases is considered as

the benchmark problem. A deep statistical comparison (DSC) is conducted to asses the

performance of different algorithms. The DSC uses the non-parametric two-sample Kolmogorov–

Smirnov (KS) test to pair-wise performance comparison between each pair of algorithms. Then,

the algorithms are ranked based on the results obtained from the two-sample KS test. The study

provides some interesting conclusions about the performance of investigated algorithms.

 The rest of the paper is organised as follows. In Section 2, the algorithmic details of

investigated meta-heuristics, as well as their Pseudo codes, will be presented. Section 3 will present

the problem formulation for buckling load maximisation of laminated composite plates. The

numerical test and comparisons will be presented in Section 4. Finally, the conclusions will be

provided in Section 5.

2. Investigated optimisation algorithms

In this section, the algorithmic details of PSO, DE, CA, LCA, and OIO will be presented. Although

the description of all details related to the mentioned algorithms in this study is not possible, this

section will try to explain the main elements of algorithms without discussing the unnecessary

details. However, the detailed Pseudo codes of algorithms would provide a clear picture to readers

about how the algorithms work. All algorithms will be described for the minimisation problem

with the objective function of 𝑓(𝑿) and vector of variables 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛], in which variables

should satisfy the search space constraints represented by vectors 𝑿min = [𝑥1
min, 𝑥2

min, … , 𝑥𝑛
min]

and 𝑿max = [𝑥1
max, 𝑥2

max, … , 𝑥𝑛
max] as follows: 𝑥𝑘

min ≤ 𝑥𝑘 ≤ 𝑥𝑘
max, 𝑘 = 1, 2, … , 𝑛.

2.1. Particle Swarm Optimisation (PSO)

Cooperative behaviour observed between the individuals in a group of species enhances their

capabilities to deal with environmental challenges. These cooperation capabilities make them able

4

to achieve difficult goals, which are almost impossible to gain by every single individual in the

group. Swarm Intelligence (SI) techniques try to inspire the collective intelligence exhibited by a

group or swarm of species in nature to perform the optimisation process more efficiently [49]. One

of the prominent SI techniques is the Particle Swarm Optimisation (PSO) algorithm inspired by

the social behaviour of natural swarms. The PSO was originally developed by Kennedy and

Eberhart [10] in the 1990s. The algorithm assumes a given set of particles in the search space,

representing potential solutions for the problem. Each particle has its position and velocity, which

are defined as 𝑛-dimensional vectors for the 𝑛-dimensional problem. The algorithm tries to benefit

from the experience acquired by every individual particle and the whole swarm to update the

positions and velocities of the particles.

To explain how the algorithm works, let us assume 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡] and

𝑽𝑖
𝑡 = [𝜐𝑖,1

𝑡 , 𝜐𝑖,2
𝑡 , … , 𝜐𝑖,𝑛

𝑡] are the position and velocity of the 𝑖th particle in the solution space at

iteration 𝑡, in which 𝑖 = 1, 2, … , 𝑁𝑝 and 𝑁𝑝 is the swarm size. The PSO updates the velocities and

positions of particles using the following formulas [10]:

𝑽𝑖
𝑡+1 = 𝜔𝑡𝑽𝑖

𝑡 + 𝑐1𝑟𝑎𝑛𝑑(𝑷𝑖
𝑡 − 𝑿𝑖

𝑡) + 𝑐2𝑟𝑎𝑛𝑑(𝑮𝑡 − 𝑿𝑖
𝑡) (1)

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1 (2)

In equations (1) and (2), 𝑿𝑖
𝑡+1 and 𝑽𝑖

𝑡+1 represent the position and velocity of the 𝑖th particle at

iteration 𝑡 + 1, 𝜔𝑡 is the weighting parameter at iteration 𝑡 which controls the influence of the

previous velocity of the particle on its new velocity, 𝑟𝑎𝑛𝑑 represents a uniformly generated

random number between 0 and 1, 𝑐1 and 𝑐2 are the acceleration parameters, 𝑷𝑖
𝑡 indicates the

position with the best objective function value experienced by the 𝑖th individual until iteration 𝑡,

and 𝑮𝑡 is the best position experienced by the whole swarm until iteration 𝑡. This study assumes

that the value of the weighting parameter is gradually reduced in each iteration as 𝜔𝑡 =

𝜔damp𝜔𝑡−1, in which 𝜔damp is a damping factor. In this study, the initial value for the weighting

parameter is set to 1 (i.e., 𝜔0 = 1). Algorithm 1 shows the Pseudo code of the PSO algorithm for

a minimisation problem.

2.2. Differential Evolution (DE)

The Differential Evolution (DE) algorithm originally developed by Storn and Price [50] is a

population-based evolutionary algorithm (EA). The overall idea of the algorithm is to use the

5

weighted differences of different individuals for generating new individuals in the search space.

In DE, the solution-finding process is performed by three main operators, including mutation,

cross-over, and selection operators.

Algorithm 1: Pseudo code of PSO algorithm

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁𝑝, 𝑐1, 𝑐2, 𝜔damp;

Initialise the velocity vectors 𝑽𝑖
0 as 𝑛-dimensional zero vectors;

Generate 𝑁𝑝 particles randomly within the search space:

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁𝑝;

Initialise the personal experience of each particle as 𝑷𝒊
𝟎 = 𝑿𝒊

𝟎;

Evaluate the objective function values of particles 𝑓(𝑿𝑖
0);

Initialise the global experience vector 𝑮0 as follows: 𝑮0 = 𝑎𝑟𝑔 min {𝑓(𝑿𝑖
0)};

Set 𝑡 = 0;

Set 𝜔0 = 1;

while termination criteria are not met do

 Set 𝜔𝑡+1 = 𝜔damp𝜔𝑡;

for 𝑖 ← 1 to 𝑁𝑝 do

 Update the velocity:

 𝑽𝑖
𝑡+1 = 𝜔𝑡+1𝑽𝑖

𝑡 + 𝑐1𝑟𝑎𝑛𝑑(𝑷𝑖
𝑡 − 𝑿𝑖

𝑡) + 𝑐2𝑟𝑎𝑛𝑑(𝑮𝑡 − 𝑿𝑖
𝑡);

 Update the position: 𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1;

 Evaluate the objective function value: 𝑓(𝑿𝑖
𝑡+1);

 Update the personal experience:

 if 𝑓(𝑿𝑖
𝑡+1) < 𝑓(𝑷𝑖

𝑡) then

 𝑷𝑖
𝑡 = 𝑿𝑖

𝑡+1;

 Update the global experience:

 if 𝑓(𝑿𝑖
𝑡+1) < 𝑓(𝑮𝑡) then

 𝑮𝑡 = 𝑿𝑖
𝑡+1;

 end

 end

end

Set 𝑮𝑡+1 = 𝑮𝑡;

Set 𝑡 = 𝑡 + 1;

end

The DE kick-starts the optimisation process with 𝑁I randomly generated individuals within the

search space. For each solution 𝑿𝑖
𝑡, the algorithm applies the mutation operator to generate a

mutant vector 𝑽𝑖
𝑡+1 = [𝑣𝑖,1

𝑡+1, 𝑣𝑖,2
𝑡+1, … , 𝑣𝑖,𝑛

𝑡+1] in each iteration. These mutant vectors will be used to

form a new generation of individuals. According to the literature, a variety of mutation operators

6

have been developed for the DE algorithm [51], in which the mutant vectors 𝑽𝑖
𝑡+1 are generated

by weighted difference combinations of different individuals. The most popular mutation operators

of DE are as follows [51,52]:

• “DE\best\1”:

𝑽𝑖
𝑡+1 = 𝑿Best

𝑡 + 𝐹(𝑿𝑟1
𝑡 − 𝑿𝑟2

𝑡) (3)

• “DE\rand-to-best\ 1”:

𝑽𝑖
𝑡+1 = 𝑿𝑟1

𝑡 + 𝐹(𝑿Best
𝑡 − 𝑿𝑟2

𝑡) + 𝐹(𝑿𝑟3
𝑡 − 𝑿𝑟4

𝑡) (4)

• “DE\current-to-rand\1”

𝑽𝑖
𝑡+1 = 𝑿𝑟1

𝑡 + 𝐹(𝑿𝑟2
𝑡 − 𝑿𝑖

𝑡) + 𝐹(𝑿𝑟3
𝑡 − 𝑿𝑟4

𝑡) (5)

• “DE\current-to-best\1”:

𝑽𝑖
𝑡+1 = 𝑿𝑟1

𝑡 + 𝐹(𝑿Best
𝑡 − 𝑿𝑖

𝑡) + 𝐹(𝑿𝑟2
𝑡 − 𝑿𝑟3

𝑡) (6)

In equations (3-6), 𝑽𝑖
𝑡+1 represents the mutant vector constructed for the 𝑖th individual at iteration

𝑡 + 1, indexes 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ [1, 2, … , 𝑁I] indicate the randomly generated numbers which must

satisfy 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑖, 𝑿Best
𝑡 represents the individual with the best objective function

value at iteration 𝑡, and 𝐹 is the scaling factor which is usually assumed as a constant value.

The obtained mutant vectors 𝑽𝑖
𝑡+1 are different than their parent solutions 𝑿𝑖

𝑡 in all dimensions.

However, changing current solutions in all dimensions may not provide good outcomes at all

times. The main reason for this statement stems from the fact that the small changes in the solution

vector can result in significant changes in objective function values. Hence, the DE tries to

randomly keep the original values of some variables in the offspring solutions. To this end, the

algorithm employs the cross-over operator to generate a new trial vector 𝑼𝑖
𝑡+1 =

[𝑢𝑖,1
𝑡+1, 𝑢𝑖,2

𝑡+1, … , 𝑢𝑖,𝑛
𝑡+1] based on the mutant vectors 𝑽𝑖

𝑡+1 obtained through one of the above-

mentioned mutation operators as follows:

𝑢𝑖,𝑘
𝑡+1 = {

𝑣𝑖,𝑘
𝑡+1 if 𝑟𝑎𝑛𝑑 < 𝐶𝑅 or 𝑘 = 𝑟𝑎𝑛𝑑𝑖(1, 𝑛)

𝑥𝑖,𝑘
𝑡 otherwise

 (7)

where 𝑢𝑖,𝑘
𝑡+1 denotes the 𝑘th variable of trial vector 𝑼𝑖

𝑡+1 constructed for the 𝑖th individual at

iteration 𝑡 + 1, 𝑣𝑖,𝑘
𝑡+1 is the 𝑘th variable of mutant vector 𝑽𝑖

𝑡+1 obtained for the 𝑖th individual at

iteration 𝑡 + 1, 𝑟𝑎𝑛𝑑 is the random number between 0 and 1, 𝐶𝑅 is the cross-over rate control

7

which is usually considered as a constant value, and 𝑟𝑎𝑛𝑑𝑖(𝑎, 𝑏) represents a random integer

number between 𝑎 and 𝑏.

The DE algorithm uses the selection operator to decide whether the trial vector 𝑼𝑖
𝑡+1 generated

by the cross-over operator could be a member of the next generation or not. The selection operator

can be expressed as follows [52]:

𝑿𝑖
𝑡+1 = {

𝑼𝑖
𝑡+1 if 𝑓(𝑼𝑖

𝑡+1) < 𝑓(𝑿𝑖
𝑡)

𝑿𝑖
𝑡 otherwise

 (8)

The Pseudo code of the DE algorithm for a minimisation problem is presented in Algorithm 2. In

this study, we categorise the DE algorithm based on the applied mutation operators into different

versions, including DE\best\1, DE\rand-to-best\1, DE\current-to-rand\1, and DE\current-to-best\1.

Algorithm 2: Pseudo code of DE algorithm

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁I, 𝐶𝑅, 𝐹;

Generate 𝑁I individuals randomly within the search space:

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁I;

Evaluate the objective function values of individuals 𝑓(𝑿𝑖
0);

Find the individual with the best objective function value 𝑿Best
0 as follows:

𝑿Best
0 = 𝑎𝑟𝑔 min{𝑓(𝑿𝑖

0)};

Set 𝑡 = 0;
while termination criteria are not met do

 for 𝑖 ← 1 to 𝑁I do

 Select the random numbers as 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑖;
 Generate the mutant vector 𝑽𝑖

𝑡+1 using one of equations (3-6)

 Find a random integer between 1 and 𝑛 as follows: 𝑗rand = 𝑟𝑎𝑛𝑑𝑖(1, 𝑛);
 for 𝑘 ← 1 to 𝑛 do

 if 𝑟𝑎𝑛𝑑 > 𝐶𝑅 or 𝑗 == 𝑗rand then

 𝑢𝑖,𝑘
𝑡+1 = 𝜐𝑖,𝑘

𝑡+1;

 else

 𝑢𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 ;

 end

 end

 if 𝑓(𝑼𝑖
𝑡+1) < 𝑓(𝑿𝑖

𝑡) then

 𝑿𝑖
𝑡+1 = 𝑼𝑖

𝑡+1;
 else

 𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡;
 end

end

𝑿Best
𝑡+1 = 𝑎𝑟𝑔 min{𝑓(𝑿𝑖

𝑡+1)} ;
Set 𝑡 = 𝑡 + 1;

end

8

2.3. Cultural Algorithms (CAs)

Cultural Algorithms (CAs) developed by Reynolds [11] in the 1990s is an EA inspired by the

principles of human social evolution. In real human societies, culture can be viewed as a source of

information exchanged between individuals, which can affect the behaviours of the individuals

[53]. According to the bio-cultural evolution theory [54], the overall human evolutionary process

is a combination of genetic and cultural evolutionary processes. CA was developed based on the

bio-cultural evolutionary mechanism [11], which is computationally different from the

conventional EAs. The algorithm has found interesting applications in different research areas,

ranging from computer science to different branches of engineering [12,55-59].

In contrast to the conventional EAs which are based on a single population space, CA works

with two population and belief spaces. These two spaces affect each other through some sorts of

communication protocols. Like other EAs, the population space consists of a set of individuals

who are potential solutions for the problem. The belief space records the cultural information

gained by the individuals during the evolutionary process, which includes different types of

knowledge components. The general Pseudo-code of the CA is illustrated in Algorithm 3. The

algorithm consists of a population space ℘𝑡 and a belief space 𝓑𝑡, which interact each other using

Accept(), Update(), and Influence() functions.

Algorithm 3: The general Pseudo code of CA [12]

Set 𝑡 = 0;

Initialise ℘𝑡 and 𝓑𝑡

while termination criteria are not met do

 Set 𝑡 = 𝑡 + 1;

Evaluate the fitness of individuals in ℘𝑡 using 𝑂𝑏𝑗();

Accept some elite individuals from ℘𝑡 using 𝐴𝑐𝑐𝑒𝑝𝑡();

Update 𝓑𝑡 using 𝑈𝑝𝑑𝑎𝑡𝑒()

 Produce new generation ℘𝑡+1 using 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒()

end

Let us assume 𝓟𝑡 be the population space, which is consisted of 𝑁S individual solutions

represented by 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡], where 𝑖 = 1, 2, … , 𝑁S. As it was mentioned earlier, the

belief space includes different knowledge components acquired by individuals. There are different

kinds of knowledge components in the literature that could be used in CAs depending on the type

of problem to be solved, including situational, normative, historical, topographical, and domain

9

knowledge components. In this study, it is assumed that the belief space consists of situational and

normative knowledge components as follows:

𝓑𝑡 = {𝓢𝑡, 𝓝𝑡} (9)

where 𝓑𝑡, 𝓢𝑡, and 𝓝𝑡 are the belief space, situational knowledge, and normative knowledge,

respectively. The situational knowledge component, which can be represented by

𝓢𝑡 = [𝑠1
𝑡, 𝑠2

𝑡 , … , 𝑠𝑛
𝑡], contains the best solution obtained so far. The normative knowledge

component 𝓝𝑡 is consisted of a set of information for each variable of the problem, which can be

mathematically expressed as follows:

𝓝𝑡 = [

𝑰1
𝑡 𝑰2

𝑡 … 𝑰𝑛
𝑡

𝐿1
𝑡 𝐿2

𝑡 … 𝐿𝑛
𝑡

𝑈1
𝑡 𝑈2

𝑡 … 𝑈𝑛
𝑡

] (10)

where 𝑰𝑘
𝑡 = [𝑥min,𝑘

𝑡 , 𝑥max,𝑘
𝑡] indicates the belief interval of the 𝑘th dimension of the problem,

𝑥min,𝑘
𝑡 and 𝑥max,𝑘

𝑡 are the lower and upper normative bounds for the 𝑘th dimension of the problem,

respectively, 𝐿𝑘
𝑡 and 𝑈𝑘

𝑡 represent the objective function values corresponding to the lower and

upper normative bounds, respectively.

The Accept() function of CA selects some elite individuals from the population space to update

the belief space in each iteration. Usually, a given percentage of the individuals with better

objective functions are selected to update the belief space. In this study, it is assumed that 𝑁Accept

of the population would be accepted to update the belief space.

The Update() function updates the different knowledge components of the belief space using

the accepted individuals as follows:

𝓢𝑡+1 = {
𝑿𝑙

𝑡 if 𝑓(𝑿𝑙
𝑡) < 𝑓(𝓢𝑡)

𝓢𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11)

𝑥min,𝑘
𝑡+1 = {

𝑥𝑙,𝑘
𝑡 if 𝑥𝑙,𝑘

𝑡 ≤ 𝑥min,𝑘
𝑡 or 𝑓(𝑿𝑙

𝑡) < 𝐿𝑘
𝑡

𝑥min,𝑘
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12)

𝑥max,𝑘
𝑡+1 = {

𝑥𝑙,𝑘
𝑡 if 𝑥𝑙,𝑘

𝑡 ≥ 𝑥max,𝑘
𝑡 or 𝑓(𝑿𝑙

𝑡) < 𝑈𝑘
𝑡

𝑥𝑚𝑎𝑥,𝑘
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13)

𝐿𝑘
𝑡+1 = {

𝑓(𝑥𝑙
𝑡) if 𝑥𝑙,𝑘

𝑡 ≤ 𝑥min,𝑘
𝑡 or 𝑓(𝑿𝑙

𝑡) < 𝐿𝑘
𝑡

𝐿𝑘
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14)

𝑈𝑘
𝑡+1 = {

𝑓(𝑥𝑙
𝑡) if 𝑥𝑙,𝑘

𝑡 ≥ 𝑥max,𝑘
𝑡 or 𝑓(𝑿𝑙

𝑡) < 𝑈𝑘
𝑡

𝑈𝑘
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15)

where 𝑙 = 1, 2, … , %𝑁Accept × 𝑁S, 𝑿𝑙
𝑡 is the 𝑙th accepted individual at iteration 𝑡 and 𝑥𝑙,𝑘

𝑡

represents its 𝑘th variable.

10

Finally, the Influence() function generates a new generation of individuals based on cultural

information. There are different influence functions developed for CA in literature. Based on the

previous experience of authors, the following influence function is considered in this study:

𝑥𝑖,𝑘
𝑡+1 = {

𝑥𝑖,𝑘
𝑡 + |𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡)𝑁𝑖,𝑘(0,1)| 𝑖𝑓 𝑥𝑖,𝑘
𝑡 < 𝑥min,𝑘

𝑡

𝑥𝑖,𝑘
𝑡 − |𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡)𝑁𝑖,𝑘(0,1)| 𝑖𝑓 𝑥𝑖,𝑘
𝑡 > 𝑥max,𝑘

𝑡

𝑥𝑖,𝑘
𝑡 + 𝛽𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡)𝑁𝑖,𝑘(0,1) otherwise

 (16)

where 𝑥𝑖,𝑘
𝑡+1 is the 𝑘th variable of the 𝑖th individual at iteration 𝑡 + 1, 𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡) = 𝑥max,𝑘
𝑡 − 𝑥min,𝑘

𝑡

is the size of the normative interval for the 𝑘th variable, 𝑁𝑖,𝑘(0,1) represents the random number

generated by a normal distribution with the mean value of 0 and standard deviation of 1, and 𝛽 >

0 is a constant parameter.

Algorithm 4 shows the detailed Pseudo code of CA. Interested readers are referred to Ref. [12]

for more details on CA and its variants.

Algorithm 4: The detailed Pseudo code of CA

Initialise parameters 𝑁S, 𝑛, 𝑿min, 𝑿max, 𝛽, 𝑁Accept;

Initialise the normative knowledge 𝓝0 as follows: 𝓝0 = [
∞ ∞ … ∞
∞ ∞ … ∞
∞ ∞ … ∞

] ;

Initialise the empty situational knowledge vector 𝓢0 and set 𝑓(𝓢0) = ∞;
Initialise the belief space as follows: 𝓑0 = {𝓢0, 𝓝0};
Generate 𝑁S individuals randomly within the search space as follows:

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁S;

Evaluate the objective function values of individuals 𝑓(𝑿𝑖
0);

Select %𝑁Accept × 𝑁S of individuals with better objective function values;

Update the belief space using equations (11-15)

Set 𝑡 = 0;
while termination criteria are not met do

 for 𝑖 ← 1 to 𝑁S do

 for 𝑘 ← 1 to 𝑛 do

 if 𝑥𝑖,𝑘
𝑡 < 𝑥min,𝑘

𝑡 then

 𝑥𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 + |𝑠𝑖𝑧𝑒(𝑰𝑘
𝑡)𝑁𝑖,𝑘(0,1)|;

 else if 𝑥𝑖,𝑘
𝑡 > 𝑥max,𝑘

𝑡 then

 𝑥𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 − |𝑠𝑖𝑧𝑒(𝑰𝑘
𝑡)𝑁𝑖,𝑘(0,1)|;

 else

 𝑥𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 + 𝛽𝑠𝑖𝑧𝑒(𝑰𝑘
𝑡)𝑁𝑖,𝑘(0,1)

 end

 end

 Evaluate the objective function value 𝑓(𝑿𝑖
𝑡+1);

end

Select %𝑁Accept × 𝑁S of individuals with better objective function values;

Update the belief space using equations (11-15)

Set 𝑡 = 𝑡 + 1;
end

11

2.4. Biogeography-Based Optimisation (BBO)

Biogeography-Based Optimisation (BBO) is another EA inspired by the emigration and

immigration behaviours of different species in nature. It was originally developed by Simon [13]

in 2008 based on the mathematical migration models in biogeography science [60] and has been

found significant applications in different fields [61-64]. In nature, the biological species migrate

from one habitat to another one to access new resources. The migration process of species follows

given mathematical patterns. BBO inspires this concept to perform the optimisation process. BBO

works with a population of habitats, in which each habitat is a potential solution for the problem.

The algorithm employs two main operators to form a new generation of solutions, including

migration and mutation operators.

Fig. 1. Migration model in BBO [13]

Similar to other algorithms explained earlier, let us assume a set of 𝑁H habitats represented by

vectors 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡], where 𝑖 = 1, 2, … , 𝑁H. In BBO, the fitness function of each

habitat is called as habitat suitability index (HSI), which means the habitats with high HSI values

represent better solutions for the problem. In the migration operator of the BBO algorithm, two

immigration and emigration rates are defined for each habitat based on the objective function

values. Let 𝜆𝑖 and 𝜇𝑖 be the immigration and emigration rates for the 𝑖th habitat. The values of

these rates for each habitat are obtained based on the migration models available from

biogeography science. Fig. 1 shows a simple linear migration model which is usually used in

literature to define the migration rates of BBO. As it can be seen from this figure, the sum of

immigration and emigration rates for each habitat is equal to one (i.e., 𝜆𝑖 + 𝜇𝑖 = 1). Based on Fig.

1, the habitats with higher (lower) fitness function values will have lower (larger) immigration

rates 𝜆𝑖 and larger (lower) emigration rates 𝜇𝑖. The BBO uses these rates to perform the migration

12

operator between the habitats in the search space. In BBO, the migration operator replaces the 𝑘th

variable of 𝑖th habitat by the corresponding variable of the 𝑗th habitat as follows:

𝑥𝑖,𝑘
𝑡 ← 𝑥𝑗,𝑘

𝑡 (17)

where 𝑥𝑖,𝑘
𝑡 represents the 𝑘th variable of habitat 𝑖 at iteration 𝑡 and 𝑥𝑗,𝑘

𝑡 is the 𝑘th variable of habitat

𝑗 at iteration 𝑡. It should be noted that the index 𝑗 is selected based on the emigration rates 𝜇𝑖 and

roulette wheel selection method. After performing the migration operator, the mutation operator

randomly replaces the variables of habitats with a random value generated in the feasible search

domain. The mutation probability for each habitat depends on the mutation rates 𝑚𝑖, which are

defined based on the fitness values. The details for calculating mutation rates 𝑚𝑖 are available in

Ref. [13]. Algorithm 5 shows the detailed Pseudo code for the BBO algorithm.

Algorithm 5: Pseudo code of BBO algorithm

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁H;

Generate 𝑁H habitats randomly within the search space as follows:

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁H;

Set 𝑡 = 0;

while termination criteria are not met do

 Evaluate the fitness function values of the habitats 𝑓(𝑿𝑖
𝑡);

 Calculate the immigration (𝜆𝑖) and the emigration (𝜇𝑖) rates for each habitat based on the

immigration model in Fig. 1;

 for 𝑖 ← 1 to 𝑁H do

 𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡;

 for 𝑘 ← 1 to 𝑛 do

 % Migration operator:

 if 𝑟𝑎𝑛𝑑 < 𝜆𝑖 then

 Select the habitat 𝑗 based on the emigration rates 𝜇𝑖 and roulette wheel selection

method;

 Update the 𝑘th variable of the 𝑖th habitat: 𝑥𝑖,𝑘
𝑡+1 ← 𝑥𝑗,𝑘

𝑡

 end

 % Mutation operator:

 If 𝑟𝑎𝑛𝑑 < 𝑚𝑖 then

 Mutate the 𝑘th variable of the 𝑖th habitat as follows: 𝑥𝑖,𝑘
𝑡+1 = 𝑈(𝑋𝑘

min, 𝑋𝑘
max);

 end

 end

end

Set 𝑡 = 𝑡 + 1;

end

13

2.5. League Championship Algorithm (LCA)

League Championship Algorithm (LCA) developed by Kashan [38,65] is a population-based meta-

heuristic algorithm inspired by the sporting competitions between the teams in sports leagues. The

algorithm simulates the sporting league by assuming each solution candidate as a team that

competes with other teams to provide the best possible solution for the problem. The position and

fitness function of each team represent its formation and playing strength, respectively. LCA

performs a match analysis to generate new formations for teams, which simulates the process

performed by coaches to find a suitable formation for their teams in real sporting competitions. In

LCA, each week can be assumed as equivalent to one optimisation iteration.

The solution finding process in LCA is similar to the championship process in sports leagues,

in which different teams play in pairs based on a league schedule in a given week. The outcome

of each match is determined based on the strengths of the teams. Then, the teams perform match

analysis and change their formation to enhance their strengths for the next week. This process is

repeated until the termination criteria are met.

Let 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡] be the position of the 𝑖th team at week t, where 𝑖 = 1, 2, … , 𝑁𝑡𝑒𝑎𝑚

and 𝑁𝑡𝑒𝑎𝑚 is the number of teams. Let us also assume that the best formation experience with the

best strength obtained by the 𝑖th team until week t is represented by 𝑩𝑖
𝑡 = [𝑏𝑖,1

𝑡 , 𝑏𝑖,2
𝑡 , … , 𝑏𝑖,𝑛

𝑡]. LCA

employs a single round-robin schedule to determine the teams that should play against each other.

Fig. 2 illustrates how different matches in each season are arranged in LCA between the teams.

For a league with 𝑁𝑡𝑒𝑎𝑚 number of teams, each season will be consisted of 𝑁𝑡𝑒𝑎𝑚 × (𝑁𝑡𝑒𝑎𝑚 −

1)/2 matches. LCA continues the league championship for 𝑆 seasons, which will result in a total

of 𝑆 × (𝑁𝑡𝑒𝑎𝑚 − 1) weeks of contests.

Fig. 2. League scheduling algorithm in LCA for the case of 𝑁𝑡𝑒𝑎𝑚 = 8 [38]

When the teams play in pairs with each other, the outcome of the match for a given team can

be a win, lose, or tie. To find the outcome of each match, LCA employs a probabilistic approach.

Let us assume team 𝑖 with the formation 𝑿𝑖
𝑡 plays against team 𝑗 with the formation 𝑿𝑗

𝑡. Then, the

winning probability of team 𝑖 is expressed as follows:

14

𝑝𝑖
𝑡 =

𝑓(𝑿𝑗
𝑡) − 𝑓

𝑓(𝑿𝑗
𝑡) + 𝑓(𝑿𝑖

𝑡) − 2𝑓
 (18)

where 𝑓 is an arbitrary ideal value which is set to the best objective function value obtained by the

teams until week 𝑡 (i.e., 𝑓 = 𝑚𝑖𝑛𝑖=1,2,…,𝑁𝑡𝑒𝑎𝑚 {𝑓(𝑩𝑖
𝑡)}). In addition, the winning probability of

team 𝑗 against team 𝑖 would be equal to 𝑝𝑗
𝑡 = 1 − 𝑝𝑖

𝑡.

In real sporting competitions, coaches evaluate the strengths and weaknesses of their teams to

improve their performance. Meanwhile, they need also to evaluate the opportunities and threats

provided by the opponent teams. The coaches try to take the advantage of opportunities, while they

have to monitor their opponents to protect their teams against possible external threats. The

strengths and weaknesses are called internal factors, while the opportunities and threats are the

external factors. To simulate these concepts, LCA performs a match analysis to update the

formation of teams. Let us assume team 𝑖 plays against team 𝑙 based on the league schedule. The

new formation of team 𝑖 denoted by 𝑿𝑖
𝑡+1 = [𝑥𝑖,1

𝑡+1, 𝑥𝑖,2
𝑡+1, … , 𝑥𝑖,𝑛

𝑡+1] depends on the previous

experiences of both teams 𝑖 and 𝑙 at previous week 𝑡. Let 𝑗 be the team that has played with team

𝑖 at week 𝑡, and 𝑚 be the team that has played with team 𝑙 at week 𝑡. By considering these

definitions, LCA updates the formation of team 𝑖 as follows:

• If teams 𝑖 and 𝑙 both had won their opponents at previous week 𝑡:

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡)) (19)

• If team 𝑖 had won its previous match at week 𝑡, but team 𝑙 was a loser at week 𝑡:

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡)) (20)

• If team 𝑖 had lost its previous match at week 𝑡, but team 𝑙 was a winner at week 𝑡:

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡)) (21)

• If teams 𝑖 and 𝑙 both had lost their matches at previous week 𝑡:

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡)) (22)

In the above equations, 𝑏𝑖,𝑘
𝑡 , 𝑏𝑚,𝑘

𝑡 , and 𝑏𝑗,𝑘
𝑡 represent the 𝑘th variable of the best formation

experienced by teams 𝑖, 𝑚 and 𝑗 until week 𝑡, respectively, 𝜓1 is the approach coefficient that

controls the acceleration of the team 𝑖 toward the winner, and 𝜓2 is the retreat coefficient that

controls the retract team 𝑖 from the loser. In equations (19-22), 𝑦𝑖,𝑘
𝑡 is a binary variable that

15

determines whether the kth variable of vector 𝑩𝑖
𝑡 should be changed or not. Let

𝒀𝑖
𝑡 = [𝑦𝑖,1

𝑡 , 𝑦𝑖,2
𝑡 , … , 𝑦𝑖,𝑛

𝑡] be the binary change array, in which the unit (zero) value for a given

element of the array means the corresponding variable in 𝑩𝑖
𝑡 would (would not) change. LCA uses

a truncated geometric distribution [66] to calculate the number of ones in array 𝒀𝑖
𝑡, represented by

𝑞𝑖
𝑡, as follows:

𝑞𝑖
𝑡 = ⌈

𝑙𝑛(1 − (1 − (1 − 𝑝𝑐)𝑛−𝑞0+1)𝑟𝑎𝑛𝑑)

𝑙𝑛(1 − 𝑝𝑐)
⌉ + 𝑞0 − 1 (23)

where 𝑝𝑐 is a control parameter and 𝑞0 is the lower bound for 𝑞𝑖
𝑡. 𝑞0 is typically taken as 1 [38].

The greater values for the parameter 𝑝𝑐 will result in smaller changes in vector 𝑩𝑖
𝑡 and vice versa.

Algorithm 6 shows the detailed Pseudo code of LCA.

2.6. Optics Inspired Optimisation (OIO)

Optics Inspired Optimisation (OIO), recently developed by Kashan [44], is a meta-heuristic

algorithm inspired by the optical characteristics of spherical mirrors in physics. In OIO, each

solution vector is modelled as an artificial light point and the surface of the objective function is

assumed as a spherical mirror that reflects the incident ray based on the governing equations in

optics.

Let us assume 𝑁𝑂 light points represented by vectors 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡] for a

minimisation problem. For each light point 𝑿𝑖
𝑡, OIO randomly selects another solution represented

by 𝑿𝑗
𝑡 = [𝑥𝑗,1

𝑡 , 𝑥𝑗,2
𝑡 , … , 𝑥𝑗,𝑛

𝑡] from the population as an artificial mirror in which 𝑗 = 1, 2, … , 𝑁𝑂

and 𝑗 ≠ 𝑖. Depending on the objective function values of light points 𝑖 and 𝑗, the solution 𝑿𝑗
𝑡 can

be treated as a convex or concave mirror for light point 𝑿𝑖
𝑡. If 𝑓(𝑿𝑖

𝑡) > 𝑓(𝑿𝑗
𝑡), then 𝑿𝑗

𝑡 would be a

concave mirror for the light point 𝑿𝑖
𝑡. Otherwise, 𝑿𝑗

𝑡 would be a convex mirror. OIO finds the

image position of the artificial light point 𝑿𝑖
𝑡 formed by the artificial mirror 𝑿𝑗

𝑡 as follows:

𝑰𝑖
𝑡 = 𝑿𝑗

𝑡 −
𝑟𝑗

𝑡

2𝑝𝑖,𝑗
𝑡 − 𝑟𝑗

𝑡 (𝑿𝑖
𝑡 − 𝑿𝑗

𝑡) (24)

where 𝑰𝑖
𝑡 represents the image position of the artificial light point 𝑿𝑖

𝑡, 𝑝𝑖,𝑗
𝑡 indicates the distance

between the artificial light point 𝑖 and the artificial mirror 𝑗 on the objective function axis, and 𝑟𝑗
𝑡

is the curvature radius of the artificial mirror 𝑿𝑗
𝑡. The parameter 𝑝𝑖,𝑗

𝑡 is defined as follows:

𝑝𝑖,𝑗
𝑡 = 𝑠𝑖,𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡) (25)

16

Algorithm 6: The detailed Pseudo code of LCA

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁team, 𝜓1, 𝜓2, 𝑞0, 𝑝𝑐;

Set 𝑡 = 1;

Generate formations for 𝑁team teams randomly within the search space:

𝑿𝑖
1~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁team;

Evaluate the playing strengths of teams 𝑓(𝑿𝑖
1);

Set the current formations of teams as their best formations: 𝑩𝑖
1 = 𝑿𝑖

1;

Generate the league schedule based on the single round-robin method as displayed in Fig. 2;

while termination criteria are not met do

 for 𝑡 ← 1 to 𝑁team − 1 do

 for 𝑖 ← 1 to 𝑁team do

 Find the team 𝑗 that has played with team 𝑖 at week 𝑡;

 Find the opponent team 𝑙 based on the league schedule at week 𝑡;

 Find the team 𝑚 that has played with team 𝑙 at week 𝑡;

Calculate the winning probability of team 𝑖 as follows: 𝑝𝑖

𝑡 =
𝑓(𝑿𝑗

𝑡)−�̂�

𝑓(𝑿𝑗
𝑡)+𝑓(𝑿𝑖

𝑡)−2�̂�

 if 𝑟𝑎𝑛𝑑 < 𝑝𝑖
𝑡 then

 The team 𝑖 is the winner and the team 𝑙 is the loser;

 else

 The team 𝑖 is the loser and the team 𝑙 is the winner;

 end

 for 𝑘 ← 1 to 𝑛 do

 if 𝑡𝑒𝑎𝑚𝑠 𝑖 𝑎𝑛𝑑 𝑙 𝑏𝑜𝑡ℎ ℎ𝑎𝑑 𝑤𝑜𝑛 𝑡ℎ𝑒𝑖𝑟 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡 then

 𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡)) ;

 else if 𝑡𝑒𝑎𝑚 𝑖 ℎ𝑎𝑑 𝑤𝑜𝑛 𝑖𝑡𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑐ℎ 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡, 𝑏𝑢𝑡 𝑡𝑒𝑎𝑚 𝑙 𝑤𝑎𝑠 𝑎 𝑙𝑜𝑠𝑒𝑟 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡 then

 𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡)) ;

 else if 𝑡𝑒𝑎𝑚 𝑖 ℎ𝑎𝑑 𝑙𝑜𝑠𝑡 𝑖𝑡𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑐ℎ 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡, 𝑏𝑢𝑡 𝑡𝑒𝑎𝑚 𝑙 𝑤𝑎𝑠 𝑎 𝑤𝑖𝑛𝑛𝑒𝑟 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡

then

 𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡)) ;

 else

 𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡)) ;

 end

 end

 end

 Evaluate the playing strength of team 𝑖, 𝑓(𝑿𝑖
𝑡+1);

 if 𝑓(𝑿𝑖
𝑡+1) < 𝑓(𝑩𝑖

𝑡) then

 𝑩𝑖
𝑡+1 = 𝑿𝑖

𝑡+1;

 else

 𝑩𝑖
𝑡+1 = 𝑩𝑖

𝑡;

 end

end

Set 𝑡 = 𝑡 + 1;

end

17

where 𝑠𝑖,𝑗
𝑡 is the position of artificial light point 𝑖 on the objective function axis. If the artificial

mirror is concave, 𝑠𝑖,𝑗
𝑡 is randomly selected as 𝑈[𝑓(𝑿𝑖

𝑡), 𝑓(𝑿𝑖
𝑡) + 𝑑∞], where 𝑈[𝑎, 𝑏] represents a

random value between 𝑎 and 𝑏, and 𝑑∞ indicates the physical infinity that can be any positive

value. In OIO, the value of physical infinity is initially assumed as 𝑑∞ = |𝑚𝑎𝑥𝑓(𝑿𝑙
𝑡)|𝑙=1,2,…,𝑁𝑂.

The physical infinity 𝑑∞ would be updated in the artificial spherical aberration stage of the

algorithm. For the case of a convex mirror, 𝑠𝑖,𝑗
𝑡 is randomly assigned as 𝑈[𝑓(𝑿𝑗

𝑡), 𝑓(𝑿𝑗
𝑡) + 𝑑∞].

The curvature radius of the artificial mirror 𝑿𝑗
𝑡 is calculated as follows:

𝑟𝑗
𝑡 = 𝑚𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡) (26)

In this equation, 𝑚𝑗
𝑡 is the position of the centre of curvature for artificial mirror 𝑗, which is

randomly determined as 𝑈[𝑓(𝑿𝑖
𝑡), 𝑓(𝑿𝑖

𝑡) + 𝑑∞] for concave mirrors and 𝑈[𝑓(𝑿𝑖
𝑡) − 𝑑∞, 𝑓(𝑿𝑖

𝑡)]

for convex mirrors.

The image vector 𝑰𝑖
𝑡 represents a new solution for the problem, which differs from the artificial

light point 𝑿𝑖
𝑡 in all dimensions. OIO constructs a new light point (or solution) 𝑿𝑖

𝑡+1 by keeping

the number of changes in vector 𝑿𝑖
𝑡 less than 𝑛. Let us assume 𝑼𝑖

𝑡 ← 𝑿𝑖
𝑡. OIO uses equation (23)

to determine the number of changes 𝑞𝑖
𝑡. Then, 𝑞𝑖

𝑡 number of variables are randomly selected from

𝑰𝑖
𝑡, and their values are assigned to their corresponding variables in vector 𝑼𝑖

𝑡. Finally, if the

objective function of 𝑼𝑖
𝑡 is better than 𝑿𝑖

𝑡, then 𝑼𝑖
𝑡 would be the new artificial light point, i.e.,

𝑿𝑖
𝑡+1 = 𝑼𝑖

𝑡. Otherwise, the algorithm keeps the previous light point for the next iteration, i.e.,

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡.

It should be noted that the value of 𝑚𝑗
𝑡 should satisfy a certain condition. In some cases, the

difference between the objective function values of artificial light point 𝑖 and the artificial mirror

𝑗 is significantly high. In these cases, the image of light point 𝑖 on artificial mirror 𝑗 would be a

blurry image, which can cause premature convergence of OIO from the numerical viewpoint.

In OIO, to avoid the spherical aberration phenomenon, the algorithm repeatedly updates the

value of the parameter 𝑚𝑗
𝑡. The interested readers are referred to Ref. [44] for more details on the

spherical aberration mechanism of OIO. Algorithm 7 shows the full detailed Pseudo code of the

OIO algorithm.

18

Algorithm 7: The detailed Pseudo code of OIO

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁𝑂, 𝑞0, 𝑝𝑐;

Generate 𝑁𝑂 artificial light points randomly within the search space as follows:

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁𝑂;

Evaluate the objective function values for each artificial light point 𝑓(𝑿𝑖
0);

Set 𝑡 = 0;

while termination criteria are not met do

 for 𝑡 ← 1 to 𝑁𝑂 do

 Select the solution vector 𝑿𝑗
𝑡 from the population as the artificial mirror, where 𝑗 = 1, 2, … , 𝑁𝑂 and 𝑗 ≠ 𝑖;

 % Determine the type of the mirror:

 if 𝑓(𝑿𝑖
𝑡) > 𝑓(𝑿𝑗

𝑡) then

 Assume 𝑿𝑗
𝑡 as a concave mirror;

 𝑠𝑖,𝑗
𝑡 = 𝑈[𝑓(𝑿𝑖

𝑡), 𝑓(𝑿𝑖
𝑡) + 𝑑∞];

 𝑚𝑗
𝑡 = 𝑈[𝑓(𝑿𝑖

𝑡), 𝑓(𝑿𝑖
𝑡) + 𝑑∞];

 else

 Assume 𝑿𝑗
𝑡 as a convex mirror;

 𝑠𝑖,𝑗
𝑡 = 𝑈[𝑓(𝑿𝑗

𝑡), 𝑓(𝑿𝑗
𝑡) + 𝑑∞];

 𝑚𝑗
𝑡 = 𝑈[𝑓(𝑿𝑖

𝑡) − 𝑑∞, 𝑓(𝑿𝑖
𝑡)];

 end

 Determine the image position of light point 𝑖 as follows: 𝑝𝑖,𝑗
𝑡 = 𝑠𝑖,𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡);

 Determine the radius of curvature of the mirror as follows: 𝑟𝑗
𝑡 = 𝑚𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡);

 % Correct the spherical aberration:

while

(𝑟𝑗
𝑡)

2

2√(𝑟𝑗
𝑡)

2
−(‖𝑿𝑖

𝑡−𝑿𝑗
𝑡‖)

2
−

|𝑟𝑗
𝑡|

2
> 0.01 𝑜𝑟 ‖𝑿𝑖

𝑡 − 𝑿𝑗
𝑡‖ > |𝑟𝑗

𝑡| do

 Set 𝑑∞ = 2𝑑∞;

 if 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑚𝑖𝑟𝑟𝑜𝑟 𝑖𝑠 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 then

 𝑚𝑗
𝑡 = 𝑚𝑗

𝑡 + 𝑑∞;

 else

 𝑚𝑗
𝑡 = 𝑚𝑗

𝑡 − 𝑑∞;

 end

 𝑟𝑗
𝑡 = 𝑚𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡);

 end

 % Generate the image position of the artificial light point 𝑿𝑖
𝑡:

𝑰𝑖

𝑡 = 𝑿𝑗
𝑡 −

𝑟𝑗
𝑡

2𝑝𝑖,𝑗
𝑡 − 𝑟𝑗

𝑡 (𝑿𝑖
𝑡 − 𝑿𝑗

𝑡);

 Set 𝑼𝑖
𝑡 = 𝑿𝑖

𝑡;

𝑞𝑖

𝑡 = ⌈
𝑙𝑛(1 − (1 − (1 − 𝑝𝑐)𝑛−𝑞0+1)𝑟𝑎𝑛𝑑)

𝑙𝑛(1 − 𝑝𝑐)
⌉ + 𝑞0 − 1;

 Randomly select 𝑞𝑖
𝑡 number of variables from 𝑰𝑖

𝑡, and assign their values to their corresponding variables in 𝑼𝑖
𝑡;

 if 𝑓(𝑼𝑖
𝑡) < 𝑓(𝑿𝑖

𝑡) then

 𝑿𝑖
𝑡+1 = 𝑼𝑖

𝑡;

 else

 𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡;

 end

end

Set 𝑡 = 𝑡 + 1;

end

19

3. Problem Formulation

As it was mentioned earlier, buckling capacity maximisation for optimum layup of laminated

composite plates is an important problem that has been widely investigated by researchers.

Laminated composite plates subjected to in-plane compressive loads are potentially susceptible to

lose their stability. Hence, the buckling capacity of laminated composites under in-plane

compressive loads should be considered in the design process. Let us assume a simply supported

laminated composite plate shown in Fig. 3 with dimensions 𝑎 and 𝑏 in 𝑥 and 𝑦 directions,

respectively, in which 𝑁𝑥 and 𝑁𝑦 are the in-plane compressive loads in 𝑥 and 𝑦 directions,

respectively. According to the classical laminated plate theory, the buckling load factor can be

expressed as follows [67]:

𝜆𝑏(𝑝, 𝑞) = 𝜋2 [
𝑝4𝐷11 + 2(𝐷12 + 2𝐷66)(𝑟𝑝𝑞)2 + (𝑟𝑞)4𝐷22

(𝑎𝑝)2𝑁𝑥 + (𝑟𝑎𝑞)2𝑁𝑦
] (27)

where 𝜆𝑏 is the buckling load factor, 𝑟 is the aspect ratio which represents the ratio of length to

width, 𝐷𝑖𝑗 indicates the bending stiffness of composite plate, 𝑎 and 𝑏 are the dimensions of the

laminate in x and y directions, respectively, 𝑝 and 𝑞 are the half-waves in the x and y directions,

respectively, 𝑁𝑥 and 𝑁𝑦 are the in-plane compressive loads in x and y directions, respectively. It

should be noted that the parameters 𝐷16 and 𝐷26 are neglected in Eq. (27), as they are zero for

specially orthotropic laminates and very small for the symmetrically balanced laminates. Thus, the

buckling load factor obtained by Eq. (27) is exact for specially orthotropic laminates and

approximately correct for the symmetrically balanced laminates. It is clear from Eq. (27) that the

buckling load factor is a function of the material property, length, width, stacking sequence,

applied in-plane compressive loads, and value of parameters 𝑝 and 𝑞. It is worth mentioning that

various values for parameters 𝑝 and 𝑞 will result in different buckling load factors. The smallest

buckling load factor yielded by Eq. (27) for different values of parameters 𝑝 and 𝑞 will be the

critical buckling load factor for the laminated composite plate.

Fig. 3. Laminated composite plate

20

The optimum stacking sequence problem of the laminated composite plates under in-plane

compressive loads for maximum buckling capacity can be mathematically expressed as follows:

Find 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛]

To maximise: 𝑓(𝑿) = 𝜆𝑏

Subjected to:

𝑥𝑖𝜖 𝑺 = [𝑠1, 𝑠2, … , 𝑠𝑝]

(28)

where 𝑓(.) represents the objective function of the problem, 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛] indicates the

vector of design variables, 𝑥𝑖 is the fibre orientation for the 𝑖th ply which should be selected from

a given discrete set, 𝑛 is the number of design variables, 𝑺 is the vector containing the allowable

fibre orientations, and 𝑝 is the number of allowable fibre orientations. It should be noted that for a

composite laminate with m layers, the number of design variables will be equal to m/2 due to

symmetry (i.e., 𝑛 = 𝑚/2).

4. Numerical Results

In this section, the performance of different meta-heuristics in the buckling maximisation of a 64-

layer laminated composite plate will be investigated. The plate is assumed as a symmetrically

balanced laminated composite with simply supported boundary conditions. The design variables

are the stacking sequences of layers, which should be selected from the discrete set of

[02, ±15, ±30, ±45, ±60, ±75, 902]. In previous studies, possible fibre orientations were

taken as [02, ±45, 902] [27,31]. However, this study considers more possible fibre orientations to

make the problem more challenging for the algorithms. It is assumed that the laminated composite

plate is made of graphite/epoxy material with mechanical properties presented in Table 1. The

length of the plate is assumed to be 0.508 m with various aspect ratios and load cases listed in

Table 2.

Table 1. Mechanical properties of the graphite/epoxy [27].

Property Graphite/epoxy

Young's modulus, 𝐸1(GPa) 127.55

Young's modulus, 𝐸2(GPa) 13.03

Shear modulus, 𝐺12 (GPa) 6.41

Poisson's ratio, 𝜈12 0.3

Lamina thickness, t (mm) 0.127

21

Table 2. Different load cases, lengths, and widths considered for 64-layer laminated composite plate
Load cases a (m) b (m) 𝑁𝑥 𝑁𝑦

LC1 0.508 0.254 1 1

LC2 0.508 0.508 1 1

LC3 0.508 1.016 1 1

LC4 0.508 0.254 1 0.5

LC5 0.508 0.508 1 0.5

LC6 0.508 1.016 1 0.5

LC7 0.508 0.254 1 2

LC8 0.508 0.508 1 2

LC9 0.508 1.016 1 2

4.1. Internal parameters

According to Section 2, the algorithms have a set of internal parameters which can significantly

affect their performance. To find the best possible values for these parameters, several performance

sensitivity analyses have been performed by considering different values for internal parameters.

The sensitivity analyses were performed based on a trial and error approach. Table 3 lists the

possible values for internal parameters of each algorithm alongside their suitable values obtained

from the sensitivity analyses. From different combinations of possible values, the suitable

parameter values were selected based on the best performance exhibited by each algorithm. To

keep the article in a manageable size, only the final results of sensitivity analyses were presented

in Table 3. In this study, the obtained internal parameters from the sensitivity analyses will be used

to assess the performance of different algorithms.

Table 3. Internal parameters of different algorithms and their appropriate values obtained from the sensitivity

analyses
Algorithm Possible values Selected values from sensitivity analysis

PSO 𝑁𝑝𝜖{20, 30, 40} 𝑁𝑝 = 40

𝑐1, 𝑐2𝜖{1, 2} 𝑐1 = 2, 𝑐2 = 1

𝜔damp𝜖{0.95, 0.99} 𝜔damp = 0.99

DE\best\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 40

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.8

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.7

DE\rand-to-best\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 20

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.9

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.5

DE\current-to-rand\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 20

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.8

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.5

DE\current-to-best\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 20

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.8

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.5

CA 𝑁𝑆𝜖{20, 30, 40} 𝑁𝑆 = 40

𝑁Accept𝜖{0.1, 0.2, 0.3, 0.4} 𝑁Accept = 0.2

𝛽𝜖{0.1, 0.2, 0.3, 0.4,0.5} 𝛽 = 0.1

BBO 𝑁𝐻𝜖{20, 30, 40} 𝑁𝐻 = 40

OIO 𝑁𝑂𝜖{9, 21, 30} 𝑁𝑂 = 30

𝑝𝑐𝜖{0.0001, 0.5, 0.999} 𝑝𝑐 = 0.0001

LCA 𝑁team𝜖{10, 20, 30} 𝑁team = 20

𝜓1, 𝜓2𝜖{1. 1.5, 2} 𝜓1 = 𝜓2 = 1

𝑝𝑐𝜖{0.0001, 0.5, 0.999} 𝑝𝑐 = 0.0001

22

 4.2. Performance comparisons

To investigate the performance of different algorithms in optimum design of 64-layer laminated

composite, 5000 function evaluations was defined as the termination criterion. The algorithms

were repeated for 30 independent runs, and their best, average, and worst results alongside the

standard deviations for different load cases were reported.

For different load cases, Tables 4-12 present the optimum stacking sequences corresponding to

the maximum buckling load factors obtained by each algorithm alongside the best, mean, standard

deviation, and worst results. At first glance, it is observable from the results in Tables 4-12 that

none of the algorithms is capable of exhibiting better performance than others in all load cases and

the efficiency of each algorithm differs from a given load case to another one. The reason behind

this contradiction can be explained based on the “No Free Lunch” theorem [68] which states that

it is almost impossible to develop a general strategy to solve different problem types in an equally

efficient manner. With this introductory statement, the performance of the algorithms will be

investigated in more detail in this section to find out which algorithms are capable of providing

the most promising results for the different load cases of the laminated composite layup

optimisation problem.

From Tables 4-12, it can be seen that the algorithms exhibit quite similar performances for the

second, fifth, and eighth load cases, whereas their performances seem to be different for other load

cases. The numerical results in Tables 4-12 can be interpreted in different ways. In terms of the

best results, for the first load case, it is turn out that PSO, CA, OIO, and LCA can find the maximum

buckling load factor. LCA found better best solution than all other algorithms in the third case. On

the other hand, PSO and BBO exhibit better performances than others for the fourth load case in

terms of the best solution. Moreover, the best solutions obtained by PSO, BBO, and LCA are better

than those yielded by other algorithms in the ninth load case. For the rest of the load cases, all

algorithms were able to find the optimum buckling load factors.

If the results reported in Tables 4-12 are compared in terms of standard deviations, it can be

seen that the standard deviations yielded by BBO, OIO, and LCA algorithms for the second, fifth,

and eighth load cases are equal to zero, which indicate that these algorithms are capable of finding

the optimum solutions in each independent run. Comparison of the standard deviations yielded by

different algorithms for other load cases suggests that LCA and OIO algorithms are capable of

providing the lowest standard deviations for the almost rest of the load cases except the seventh

23

load case, which make their performance more impressive than others. Comparing with other

algorithms, the efficiency of LCA and OIO may stem from the fact that their search operators can

keep the diversity of the population at a high level to avoid premature convergence to the local

optimum points in the search space. Although the DE\current-to-rand\1 algorithm yielded the

lowest standard deviation for the seventh load case, the LCA and OIO are still competitive in this

load case as well.

 The worst results obtained from 30 independent runs for each algorithm is also another

important criterion, which can show how the algorithms are capable of generating better results in

the worst-case scenarios. For the second, fifth, and eighth load cases, the BBO, OIO, and LCA

performed better than other algorithms in terms of worst results. For the rest of the load cases

except the seventh and last load cases, LCA obtained better worst results than all other algorithms.

However, DE\current-to-rand\1 and OIO algorithms provided better worst buckling load factors

for the seventh and last load cases, respectively.

Table 4. Optimum stacking sequences and statistical results obtained by different algorithms for load case 1
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 720616.44 720489.75 134.23 720093.61 [±756/±60/±752/±605/±75/±60]𝑠

DE\best\1 720498.49 718577.92 1658.90 712666.84 [±753/±60/±756/±602/902/±752/±45]𝑠

DE\rand-to-best\1 720493.99 719645.94 509.35 718451.13 [±755/(±60, ±75)2/±752/±60/±752/902/±15]𝑠

DE\current-to-rand\1 720503.07 719554.38 535.65 717826.67 [±754/±60/±753/±60/±752/±60/902/±75/904]𝑠

DE\current-to-best\1 720381.08 719546.57 638.74 718158.63 [±756/±60/±75/±602/±75/±60/±75/906]𝑠

CA 720616.44 719891.49 719.38 717953.80 [±756/±60/±752/±605/±75/±60]𝑠

BBO 720602.77 719355.15 854.85 717381.11 [±756/±602/(±752, ±60)2/±60/±45]𝑠

OIO 720616.44 720482.28 140.91 720077.26 [±756/±60/±752/±605/±75/±60]𝑠

LCA 720616.44 720578.74 29.63 720521.13 [±756/±60/±752/±605/±75/±60]𝑠

Table 5. Optimum stacking sequences and statistical results obtained by different algorithms for load case 2
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 242823.08 242814.40 27.83 242715.57 [±4516]𝑠

DE\best\1 242823.08 242187.80 857.37 239382.59 [±4516]𝑠

DE\rand-to-best\1 242823.08 242745.37 196.58 241985.59 [±4516]𝑠

DE\current-to-rand\1 242823.08 242822.33 4.13 242800.45 [±4516]𝑠

DE\current-to-best\1 242823.08 242785.36 111.73 242393.02 [±4516]𝑠

CA 242823.08 242822.89 1.03 242817.42 [±4516]𝑠

BBO 242823.08 242823.08 0.00 242823.08 [±4516]𝑠

OIO 242823.08 242823.08 0.00 242823.08 [±4516]𝑠

LCA 242823.08 242823.08 0.00 242823.08 [±4516]𝑠

Table 6. Optimum stacking sequences and statistical results obtained by different algorithms for load case 3
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 180150.69 180101.05 73.71 179813.21 [±155/±30/±153/(±302, ±15)2/±45]𝑠

DE\best\1 180140.92 179737.47 263.91 179004.20 [±157/±303/±15/±302/±15/02/±30]𝑠

DE\rand-to-best\1 180124.62 179911.88 144.75 179546.03 [±154/(±30, ±153)2/±30/±152/±60]𝑠

DE\current-to-rand\1 180109.63 179863.70 138.42 179445.58 [±15/(±153, ±30)2/±152/±30/02/±152/±30]𝑠

DE\current-to-best\1 180087.22 179851.20 176.28 179154.11 [±155/(±30, ±15)2/±15/±30/±15/04/±15/02]𝑠

CA 180150.69 179949.77 188.70 179490.83 [±154/±30/±155/±304/±15/±45]𝑠

BBO 180147.01 179916.47 187.43 179452.23 [±157/±303/±15/±302/±15/04]𝑠

OIO 180149.46 180110.70 40.01 179977.96 [±152/±30/±158/±30/±154]𝑠

LCA 180150.90 180140.06 15.63 180073.69 [±152/±30/±158/±30/±153/02]𝑠

24

Table 7. Optimum stacking sequences and statistical results obtained by different algorithms for load case 4
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 1119540.28 1119250.08 318.47 1117991.76 [±604/±75/±60/(±75, ±602)2/±753/902]𝑠

DE\best\1 1119452.35 1118513.39 1308.49 1112891.38 [±605/(±75, ±60)2/±753/±60/±75/904]𝑠

DE\rand-to-best\1 1119445.95 1118916.13 316.33 1118355.16 [±604/±75/±602/(±75, ±60)2/±753/±60/±45]𝑠

DE\current-to-rand\1 1119437.74 1118883.15 347.43 1118123.88 [±604/(±75, ±60)2/(±60, ±75)2/±604]𝑠

DE\current-to-best\1 1119441.92 1118298.54 1798.76 1109502.65 [±604/±752/±605/±752/902/±75/±45]𝑠

CA 1119530.70 1118057.95 1946.47 1112408.51 [±604/±75/±602/±75/±60/±752/±602/±753]𝑠

BBO 1119540.28 1119249.54 244.54 1118452.16 [±604/±75/±60/(±75, ±602)2/±753/±902]𝑠

OIO 1119530.70 1119363.52 181.27 1118716.08 [±604/±75/±602/(±75, ±60)2/±753/±60/±75]𝑠

LCA 1119514.33 1119461.82 66.75 1119193.36 [±75/±608/±75/±604/904]𝑠

Table 8. Optimum stacking sequences and statistical results obtained by different algorithms for load case 5
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 323764.11 323759.08 26.16 323620.75 [±4516]𝑠

DE\best\1 323764.11 323568.19 269.84 322949.26 [±4516]𝑠

DE\rand-to-best\1 323764.11 323761.09 9.21 323733.93 [±4516]𝑠

DE\current-to-rand\1 323764.11 323755.31 38.83 323552.85 [±4516]𝑠

DE\current-to-best\1 323764.11 323723.62 145.07 323190.69 [±4516]𝑠

CA 323764.11 323758.83 28.93 323605.67 [±4516]𝑠

BBO 323764.11 323764.11 0.00 323764.11 [±4516]𝑠

OIO 323764.11 323764.11 0.00 323764.11 [±4516]𝑠

LCA 323764.11 323764.11 0.00 323764.11 [±4516]𝑠

Table 9. Optimum stacking sequences and statistical results obtained by different algorithms for load case 6
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 208148.56 208132.26 17.15 208092.62 [04/(±15, 02)2/010/±153/04]𝑠

DE\best\1 208148.56 207918.78 1024.87 202532.00 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠

DE\rand-to-best\1 208148.56 208144.68 7.93 208109.91 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠

DE\current-to-rand\1 208148.56 208145.36 7.46 208109.91 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠

DE\current-to-best\1 208148.56 208124.08 117.56 207502.00 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠

CA 208148.56 208099.28 83.45 207756.63 [02/(04, ±15)2/(02, ±15)2/±15/08]𝑠

BBO 208148.56 208126.44 31.79 207985.48 [±15/012/(02, ±15)2/(±15, 02)2/02]𝑠

OIO 208148.56 208138.52 11.88 208094.36 [±15/02/(08, ±15)2/04/±152]𝑠

LCA 208148.56 208144.69 5.65 208126.77 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠

Table 10. Optimum stacking sequences and statistical results obtained by different algorithms for load case 7
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 416297.12 416246.54 87.70 415833.10 [902/±75/908/±75/906/±752/904/±75/902]𝑠

DE\best\1 416297.12 416045.22 672.26 413665.23 [904/±75/902/±75/9012/±753/904]𝑠

DE\rand-to-best\1 416297.12 416290.44 16.47 416207.77 [902/±75/906/±75/908/±75/906/±752]𝑠

DE\current-to-rand\1 416297.12 416293.75 5.89 416275.78 [904/(±75, 902)2/904/(904, ±75)2/±75/902]𝑠

DE\current-to-best\1 416297.12 416293.52 8.36 416265.21 [902/±75/902/(906, ±75)2/±75/904/±75/902]𝑠

CA 416297.12 416211.30 100.16 415883.44 [904/±75/906/±752/9010/±752/902]𝑠

BBO 416297.12 416243.94 49.67 416093.90 [902/±75/906/±75/9010/±752/904/±75]𝑠

OIO 416297.12 416285.32 11.43 416243.21 [±75/902/(908, ±75)2/±75/904/±752]𝑠

LCA 416297.12 416290.63 9.60 416258.83 [906/±75/904/±75/(902, ±75)2/±75/908]𝑠

Table 11. Optimum stacking sequences and statistical results obtained by different algorithms for load case 8
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 161882.05 161881.17 4.82 161855.65 [±4516]𝑠

DE\best\1 161882.05 161386.10 518.11 159950.55 [±4516]𝑠

DE\rand-to-best\1 161882.05 161836.78 122.78 161323.73 [±4516]𝑠

DE\current-to-rand\1 161882.05 161882.05 0.00 161882.05 [±4516]𝑠

DE\current-to-best\1 161882.05 161848.35 87.96 161595.35 [±4516]𝑠

CA 161882.05 161872.50 52.35 161595.35 [±4516]𝑠

BBO 161882.05 161882.05 0.00 161882.05 [±4516]𝑠

OIO 161882.05 161882.05 0.00 161882.05 [±4516]𝑠

LCA 161882.05 161882.05 0.00 161882.05 [±4516]𝑠

25

Table 12. Optimum stacking sequences and statistical results obtained by different algorithms for load case 9
Algorithm Statistical results Stacking Sequence

 Best Mean Std Worst
PSO 139942.53 139917.16 26.46 139831.96 [±304/±15/±302/(±15, ±30)2/±153/±30/02]𝑠

DE\best\1 139915.42 139535.79 512.21 138043.81 [±302/±15/±304/±15/±303/±15/±30/±152/02]𝑠

DE\rand-to-best\1 139930.05 139880.17 33.40 139794.40 [±306/±154/±302/±15/06]𝑠

DE\current-to-rand\1 139930.35 139848.15 67.12 139623.36 [±305/±152/±302/±15/±30/±153/02/±15]𝑠

DE\current-to-best\1 139931.54 139873.65 47.68 139733.88 [±303/±15/±304/±15/±30/±154/04]𝑠

CA 139939.29 139860.59 81.75 139639.57 [±15/±308/±15/±304/04]𝑠

BBO 139942.53 139901.46 42.23 139767.83 [±304/±15/±302/±15/±30/±152/±302/±152/02]𝑠

OIO 139938.09 139901.46 15.45 139880.39 [±30/(±15, ±305)2/±30/02/±15]𝑠

LCA 139942.53 139929.94 21.31 139824.37 [±304/±15/±302/±15/±30/±152/±302/±152/02]𝑠

Fig. 4 presents the boxplots to provide statistical intuitive performance comparisons between

different algorithms for the first and fourth load cases. The reason behind the selection of these

load cases stems from the fact that these load cases are challenging enough to clearly show the

statistical differences between the algorithms. For the first load case, it can be seen from Fig. 4

that the ranges and variances of the results obtained by the PSO, OIO, and LCA are significantly

smaller than those for other algorithms, which show the stability of these algorithms in finding

maximum buckling load factors. For the fourth load case, the superiority of PSO, OIO, and LCA

is still observable. However, the BBO is also exhibited competitive performance in the fourth load

case. It can also be seen that the mean values obtained by the PSO, OIO, and LCA for the first and

fourth load cases are well distributed near the optimum buckling load factors. The overall

conclusion that can make from Fig. 4 is that the LCA is statistically more stable than all other

algorithms. However, the statistical performances of PSO and OIO are also remarkable.

To investigate the convergence properties of different algorithms, the average convergence

diagrams for the first and fourth load cases are illustrated in Fig. 5. From Fig. 5, it can be observed

that the LCA and PSO exhibit faster convergence rates than other algorithms. Although the

convergence rate of OIO is slower than others, this algorithm can find higher quality solutions than

most of the other algorithms as the iterations proceed. This may reflect the fact that the trade-offs

between the exploration and exploitation phases in LCA and PSO are more appropriately

implemented and they are computationally more efficient. It seems that OIO switches from the

exploration phase to the exploitation phase with a significant delay in comparison to the LCA and

PSO. However, despite this delay, OIO is still capable of converging to better final solutions in

comparison to most of the investigated algorithms. It is also observable from Fig. 5 that the

convergence behaviours of different variants of DE seem to be somehow similar.

26

Fig. 4. Box plots of different algorithms: a) first load case, b) fourth load case

27

Fig. 5. Average convergence diagrams of different algorithms: a) first load case, b) fourth load case

4.3. Deep statistical comparison

Recent research trends in meta-heuristics revealed that the comparison of the efficiency of

algorithms only based on the basic statistical parameters, such as best, mean, worst, and standard

deviation, is not statistically enough to make proper conclusions [69,70]. Various statistical tests

in the literature are applicable to evaluate, compare, and rank the performance of meta-heuristics

for a given problem [69]. Recently, Eftimov et al. [70] proposed a deep statistical comparison

(DSC) method for the performance comparison of algorithms. The approach uses the two-sample

Kolmogorov–Smirnov (KS) test to pair-wise performance comparison between each pair of

algorithms. Then, the algorithms are ranked based on the results obtained from the two-sample KS

test. In this study, in order to provide a fair comparison, the DSC method is employed to rank the

28

performance of investigated algorithms in the optimum layup problem of laminated composite

plates.

The two-sample KS test is a non-parametric statistical test that determines whether two sets of

data come from the same continuous distribution or not. The test assumes the null hypothesis that

the results obtained from each pair of algorithms come from the same continuous distribution. In

other words, the KS test considers the null hypothesis that the performances of each pair of

algorithms are statistically equivalent. Let us assume 𝛼KS be the significance level used by the KS

test, which indicates the probability threshold for acceptance or rejection of the null hypothesis.

For the selected significance level 𝛼KS, the KS test computes 𝑝value for each pair of algorithms. If

𝑝value is smaller than the significance level 𝛼KS, the null hypothesis would be rejected. Otherwise,

the null hypothesis would be accepted. The acceptance of the null hypothesis means that there is

no significant difference between the two algorithms and they perform statistically the same.

However, if the null hypothesis is rejected, it means that the two algorithms perform statistically

different. The DSC approach use the 𝑝value for ranking the performance of different algorithms.

For more details about the ranking formulations, the interested readers are referred to Ref. [70].

The selection of 𝛼KS plays an important role in the acceptance or rejection of the null

hypothesis. Inappropriate values for this parameter could result in the wrong conclusion about the

performances of different algorithms. If 𝛼KS is taken as 1, it would result in the rejection of the

null hypothesis for all values of 𝑝value, which would mean the performances of all algorithms are

always statistically different. The value of 𝛼KS is typically considered between 0.05 and 0.1 [70].

In this study, the significance level is taken as 𝛼KS = 0.05. The 𝑝value obtained from the KS test

for each pair of algorithms in different load cases are illustrated in Fig. 6. It is obvious that the

diagonal elements in Fig. 6 should be equal to one, which means that each algorithm comes from

the same distribution in comparison to itself. Fig. 6 illustrates some interesting information about

the difference between algorithms in each load case. Firstly, the null hypothesis is accepted for all

of the algorithms except DE\best\1 in load cases 2, 5, and 8. This means that there are significant

differences between the performances of the DE\best\1 algorithm and others in these load cases. It

also implies that there are no significant differences between most of the algorithms in load cases

2, 5, and 8, and their performances are statistically equivalent. In the rest of the load cases which

are more challenging than load cases 2, 5, and 8, the null hypotheses are rejected and there are

significant differences between the performances of different algorithms.

29

Fig. 6. 𝑝value obtained from the two-sample Kolmogorov-Smirnov (KS) test for each pair of algorithms

in different load cases

30

Finally, Table 13 lists the performance rankings of different algorithms for different load cases.

The algorithms with the same rank values in each load case reveal the fact that their performances

are statistically equivalent. From this table, it can be concluded that the LCA algorithm performs

better or equal in comparison to other algorithms in different load cases, except load case 7. Among

different variants of the DE algorithm, the DE\current-to-rand\1 performs better than others as it

is ranked as the first algorithm in load cases 6 and 7. The last column of Table 13 shows the overall

ranking of algorithms calculated based on the overall scores obtained in different load cases, in

which the LCA and OIO algorithms are ranked as the two most efficient algorithms between the

investigated nine algorithms.

Table 13. Ranking of different algorithms obtained by the DSC approach for different load cases
 Load cases Overall

 LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9

PSO 2 6 3 3 5 5 6 5 3 3

DE\best\1 9 9 9 7 9 9 9 9 9 9

DE\rand-to-best\1 5 8 6 5 4 3 4 8 5 6

DE\current-to-rand\1 6 5 7 6 7 1 1 2.5 8 5

DE\current-to-best\1 7 7 8 8 8 7 2 7 6 8

CA 4 4 4 9 6 8 8 6 7 7

BBO 8 2 5 4 2 6 7 2.5 4 4

OIO 3 2 2 2 2 4 5 2.5 2 2

LCA 1 2 1 1 2 2 3 2.5 1 1

5. Concluding remarks

The performance of nine meta-heuristic algorithms, including PSO, different variants of DE, CA,

BBO, OIO and LCA, were assessed for the optimum layup problem of laminated composite plates.

The buckling capacity maximisation of a 64-layer laminated composite plate under various load

cases has been investigated as the benchmark problem, in which the design variables are the

stacking sequences of layers. The performances of algorithms in finding maximum buckling load

factors were evaluated in terms of the basic statistical parameters, including best, mean, standard

deviation, and worst results. The numerical results revealed that the ranges and variances of the

results obtained by the PSO, OIO, and LCA are significantly smaller than those for other

algorithms, which show the stability of these algorithms in finding maximum buckling load

factors.

To provide a fair comparison between the algorithms, a deep statistical comparison (DSC)

method was employed to rank the performance of different algorithms. The DSC approach uses a

non-parametric two-sample Kolmogorov–Smirnov (KS) test for pair-wise performance

comparison between each pair of algorithms. The KS test assumes the null hypothesis that the

31

performances of each pair of algorithms are statistically equivalent. The results obtained from the

KS test with the significance level of 𝛼KS = 0.05 revealed that there are significant differences

between the performances of different algorithms for most of the load cases. The performance

rankings obtained from the DSC method suggested that the LCA algorithm performs better or

equal in comparison to other algorithms in most of the load cases. The overall ranking of

algorithms calculated based on the overall scores obtained from different load cases was as

follows: LCA>OIO>PSO>BBO>DE\current-to-rand\1>DE\rand-to-best\1>CA>DE\current-to-

best\1>DE\best\1. The convergence diagrams obtained from 30 independent runs revealed that the

PSO and LCA exhibit faster convergence rates than other algorithms. This may reflect the fact that

the trade-offs between the exploration and exploitation phases in LCA and PSO are more

adequately implemented. Despite its remarkable performance in terms of final results, the

convergence rate of OIO is slower than other algorithms. It was observed that OIO switches from

the exploration phase to the exploitation phase with a significant delay in comparison to the LCA

and PSO.

Conflict of interest

The authors declare that they have no conflict of interest.

References:

[1] Chung, D.L.D (2010) Composite materials: science and applications. Springer Science & Business

Media.

[2] Nikbakt S., Kamarian S., Shakeri, M. A review on optimization of composite structures Part I:

Laminated composites. Composite Structures. 2018. 195. 158–185.

[3] Riche, R.L., Haftka, R.T. Optimization of laminate stacking sequence for buckling load maximization

by genetic algorithm. AIAA journal. 1993. 31, 5. 951–956.

[4] Erdal, O., Sonmez, F.O. Optimum design of composite laminates for maximum buckling load capacity

using simulated annealing. Composite Structures. 2005. 71, 1. 45–52.

[5] Soykasap, O., Karakaya, S. Structural optimization of laminated composite plates for maximum

buckling load capacity using genetic algorithm. Key Engineering Materials. 348. 2007. 725–728.

[6] Holland, J.H. Genetic algorithms. Scientific American. 1992. 267, 1. 66–73.

[7] Van Laarhoven, P.J.M, Aarts, E.H.L. Simulated annealing. Simulated annealing: Theory and

applications. 1987. 7–15.

[8] Price, K.V. Differential evolution. Handbook of optimization. 2013. 187–214.

32

[9] Dorigo, M., Di Caro, G. Ant colony optimization: a new meta-heuristic. Proceedings of the 1999

congress on evolutionary computation-CEC99 (Cat. No. 99TH8406). 2. 1999. 1470–1477.

[10] Kennedy, J., Eberhart, R. Particle swarm optimization. Proceedings of ICNN’95-international

conference on neural networks. 4. 1995. 1942–1948.

[11] Reynolds, R.G. An introduction to cultural algorithms. Proceedings of the third annual conference on

evolutionary programming. 24. 1994. 131–139.

[12] Maheri, A., Jalili, S., Hosseinzadeh, Y., Khani, R., Miryahyavi, M. A comprehensive survey on cultural

algorithms. Swarm and Evolutionary Computation. 2021. 62. 100846.

[13] Simon, D. Biogeography-based optimization. IEEE transactions on evolutionary computation. 2008.

12, 6. 702–713.

[14] Geem Z.W., Kim, J.H., Loganathan, G.V. A new heuristic optimization algorithm: harmony search.

simulation. 2001. 76, 2. 60–68.

[15] Wu. Y. A survey on population-based meta-heuristic algorithms for motion planning of aircraft. Swarm

and Evolutionary Computation. 2021. 62. 100844

[16] Gao, K.Z., He, Z.M., Huang, Y., Duan, P.Y., Suganthan, P.N. A survey on meta-heuristics for solving

disassembly line balancing, planning and scheduling problems in remanufacturing. Swarm and

Evolutionary Computation. 2020. 57. 100719

[17] Abu Arqub, O., Abo-Hammour, Z. Numerical solution of systems of second-order boundary value

problems using continuous genetic algorithm. Information Sciences. 2014. 279. 396-415.

[18] Abo-Hammour, Z., Abu Arqub, O., Alsmadi, O., Momani, S., Alsaedi, A. An optimization algorithm

for solving systems of singular boundary value problems. Applied Mathematics Information Sciences.

2014. 8, 6. 2809.

[19] Abo-Hammour, Z., Alsmadi, O., Momani, S., Abu Arqub, O. A genetic algorithm approach for

prediction of linear dynamical systems. Mathematical Problems in Engineering. 2013. 2013.

[20] Abu Arqub, O., Abo-Hammour, Z., Momani, S., Shawagfeh, N. Solving singular two-point boundary

value problems using continuous genetic algorithm. Abstract and Applied Analysis. 2012. 2012.

[21] Jalili, S., Nallaperuma, S., Keedwell, E., Dawn, A., Oakes-Ash, L. Application of metaheuristics for

signal optimisation in transportation networks: A comprehensive survey. Swarm and Evolutionary

Computation. 2021. 63. 100865

[22] Aymerich, F., Serra, M. Optimization of laminate stacking sequence for maximum buckling load using

the ant colony optimization (ACO) metaheuristic. Composites Part A: Applied Science and

Manufacturing. 2008. 39, 2. 262–272.

[23] Wang, W., Guo, S., Chang, N., Zhao, F., Yang, W. A modified ant colony algorithm for the stacking

sequence optimisation of a rectangular laminate. Structural and Multidisciplinary Optimization. 2010.

41, 5. 711–720.

33

[24] Deveci, H.A., Aydin, L., Secil, A.H. Buckling optimization of composite laminates using a hybrid

algorithm under Puck failure criterion constraint. Journal of Reinforced Plastics and Composites. 2016.

35, 16. 1233–1247.

[25] Lakshmi, K., Rao, A., Rama, M. Optimal design of laminate composite plates using dynamic hybrid

adaptive harmony search algorithm. Journal of Reinforced Plastics and Composites. 2015. 34, 6. 493–

518.

[26] Hosseinzadeh, Y., Jalili, S., Khani, R. Investigating the effects of flax fibers application on multi-

objective optimization of laminated composite plates for simultaneous cost minimization and frequency

gap maximization. Journal of Building Engineering. 2020. 32. 101477

[27] Karakaya, S., Soykasap, O. Buckling optimization of laminated composite plates using genetic

algorithm and generalized pattern search algorithm Structural and Multidisciplinary Optimization. 2009.

39, 5. 477.

[28] Chang, N., Wang, W., Yang, W., Wang, J. Ply stacking sequence optimization of composite laminate

by permutation discrete particle swarm optimization. Structural and Multidisciplinary Optimization.

2010. 41, 2. 179–187.

[29] Jalili, S., Khani, R., Hosseinzadeh, Y. On the performance of flax fibres in multi-objective design of

laminated composite plates for buckling and cost. 2021. 33. 3094-3106

[30] Karakaya, S., Soykasap, O. Natural frequency and buckling optimization of laminated hybrid

composite plates using genetic algorithm and simulated annealing. Structural and Multidisciplinary

Optimization. 2011. 43, 1. 61–72.

[31] Kaveh, A., Dadras, A., Malek, N.G. Buckling load of laminated composite plates using three variants

of the biogeography-based optimization algorithm. Acta Mechanica. 2018. 229, 4. 1551–1566.

[32] Almeida, F.S. Stacking sequence optimization for maximum buckling load of composite plates using

harmony search algorithm. Composite Structures. 2016. 143. 287–299.

[33] Akcair, M., Savran, M., Aydın, L., Ayakdas ̧O., Ozturk. S., Kucukdogan, N. Optimum design of anti-

buckling behavior of graphite/epoxy laminated composites by differential evolution and simulated

annealing method. Research on Engineering Structures and Materials. 2019. 5, 2.

[34] Kaveh, A., Dadras, A., Malek, N.G. Robust design optimization of laminated plates under uncertain

bounded buckling loads. Structural and Multidisciplinary Optimization. 2019. 59, 3. 877–891.

[35] Rao, A.R.M., Arvind N. A scatter search algorithm for stacking sequence optimisation of laminate

composites. Composite Structures. 2005. 70, 4. 383–402.

[36] Kaveh, A., Hashemi, S.B., Sheikholeslami, R. Optimal design of laminated composite structures via

hybrid charged system search and particle swarm optimization. Asian Journal of Civil Engineering

(Building Engineering). 2013.

[37] Kaveh, A., Dadras, A., Malek, N.G. Optimum stacking sequence design of composite laminates for

maximum buckling load capacity using parameter-less optimization algorithms. Engineering with

Computers. 2019. 35, 3. 813–832.

34

[38] Kashan, A.H. An efficient algorithm for constrained global optimization and application to mechanical

engineering design: League championship algorithm (LCA). Computer-Aided Design. 2011. 43, 12.

1769–1792.

[39] Alimoradi, M.R., Kashan, A.H. A league championship algorithm equipped with network structure

and backward Q-learning for extracting stock trading rules. Applied Soft Computing. 2018. 68. 478–

493.

[40] Jalili, S., Kashan, A.H., Hosseinzadeh, Y. League championship algorithms for optimum design of

pin-jointed structures. Journal of Computing in Civil Engineering. 2017. 31, 2. 04016048.

[41] Bouchekara, H.R.E.H., Abido, M.A., Chaib, A.E., Mehasni, R. Optimal power flow using the league

championship algorithm: a case study of the Algerian power system. Energy conversion and

management. 2014. 87. 58–70.

[42] Kashan, A.H., Jalili, S., Karimiyan, S. Optimum structural design with discrete variables using league

championship algorithm. Civil Engineering Infrastructures Journal. 2018. 51, 2. 253-275.

[43] Kashan, A.H., Jalili, S., Karimiyan, S. Premier league championship algorithm: A multi-population-

based algorithm and its application on structural design optimization. Socio-cultural Inspired

Metaheuristics. 2019. 828. Springer.

[44] Kashan, A.H. An effective algorithm for constrained optimization based on optics inspired

optimization (OIO). Computer-Aided Design. 2015. 63. 52–71.

[45] Lalwani, P., Banka, H., Kumar, C. CRWO: Clustering and routing in wireless sensor networks using

optics inspired optimization. Peer-to-Peer Networking and Applications. 2017. 10, 3. 453–471.

[46] Ozdemir, M.T., Ozturk, D. Comparative performance analysis of optimal PID parameters tuning based

on the optics inspired optimization methods for automatic generation control. Energies. 2017. 10, 12.

2134.

[47] Jalili, S., Kashan, A.H. Optimum discrete design of steel tower structures using optics inspired

optimization method. The Structural Design of Tall and Special Buildings. 2018. 27, 9. e1466.

[48] Jalili, S., Kashan, A.H. An optics inspired optimization method for optimal design of truss structures.

The Structural Design of Tall and Special Buildings. 2019. 8, 6. e1598.

[49] Mavrovouniotis Michalis, Li Changhe, Yang Shengxiang. A survey of swarm intelligence for dynamic

optimization: Algorithms and applications. Swarm and Evolutionary Computation. 2017. 33. 1–17.

[50] Storn Rainer, Price Kenneth. Differential evolution–a simple and efficient heuristic for global

optimization over continuous spaces. Journal of global optimization. 1997. 11, 4. 341–359.

[51] Das Swagatam, Suganthan Ponnuthurai Nagaratnam. Differential evolution: A survey of the state-of-

the-art // IEEE transactions on evolutionary computation. 2010. 15, 1. 4–31.

[52] Qin A Kai, Huang Vicky Ling, Suganthan Ponnuthurai N. Differential evolution algorithm with

strategy adaptation for global numerical optimization. IEEE transactions on Evolutionary Computation.

2008. 13, 2. 398–417.

35

[53] Richerson Peter J, Boyd Robert. Not by genes alone: How culture transformed human evolution. 2008.

[54] Laland Kevin N. Exploring gene–culture interactions: insights from handedness, sexual selection and

niche-construction case studies. Philosophical Transactions of the Royal Society B: Biological Sciences.

2008. 363, 1509. 3577–3589.

[55] Ali, M.Z., Awad, N.H. A novel class of niche hybrid cultural algorithms for continuous engineering

optimization, Information Science. 2014. 267. 158–190.

[56] Awad, N.H., Ali, M.Z., Suganthan, P.N., Reynolds, R.G., CADE: a hybridization of cultural algorithm

and differential evolution for numerical optimization, Information Science. 2017. 378. 215–241.

[57] Jalili, S., Hosseinzadeh, Y. A cultural algorithm for optimal design of truss structures. Latin American

Journal of Solids & Structures. 2015. 12, 2. 1721-1747.

[58] Yan, X., Song, T. & Wu, Q. An improved cultural algorithm and its application in image matching.

Multimedia Tools & Applications. 2017. 76, 14951–14968.

[59] Jalili, S., Hosseinzadeh, Y., Rabczuk, T. Simultaneous size and shape optimization of dome-shaped

structures using improved cultural algorithm, in: Socio-cultural Inspired Metaheuristics, Springer, 2019,

pp. 93–120.

[60] MacArthur Robert H, Wilson Edward O. The theory of island biogeography. 1. 2001.

[61] Guo, W., Ming, C., Wang, L., Mao, Y., Wu, Q. A survey of biogeography-based optimization. Neural

Computing & Applications. 2017. 25. 1909–1926.

[62] Ma, H., Simon, D., Siarry, P., Yang, Z., Fei, M. Biogeography-based optimization: a 10-year review.

IEEE Transactions on Emerging Topics in Computational Intelligence. 2017. 1, 5. 391-407.

[63] Carbas, S. Optimum structural design of spatial steel frames via biogeography-based optimization.

Neural Computing & Applications. 2017. 28. 1525–1539.

[64] Jalili, S., Hosseinzadeh, Y., Taghizadieh, N. A biogeography-based optimization for optimum discrete

design of skeletal structures. Engineering Optimization. 2015. 48, 9. 1491-1514.

[65] Kashan Ali Husseinzadeh. League championship algorithm: a new algorithm for numerical function

optimization. Soft Computing and Pattern Recognition, 2009. SOCPAR’09. International Conference

of. 2009. 43–48.

[66] Chattopadhyay, S., Murthy, C. A., Pal, S. K. (2014). Fitting truncated geometric distributions in large

scale real world networks. Theoretical Computer Science, 551, 22-38.

[67] Soremekun G, G¨ urdal Z, Haftka RT, Watson LT. Composite laminate design optimization by genetic

algorithm with generalized elitist selection // Computers & structures. 2001. 79, 2. 131–143.

36

[68] Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput

1:67–82

[69] Carrasco Jacinto, Garc´ıa Salvador, Rueda MM, Das S, Herrera Francisco. Recent trends in the use of

statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a

critical review // Swarm and Evolutionary Computation. 2020. 54. 100665

[70] Eftimov Tome, Korosec Peter, Seljak Barbara Korousic. A novel approach to statistical comparison of

meta-heuristic stochastic optimization algorithms using deep statistics. Information Sciences. 2017. 417.

186–215.

