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Abstract: 

This paper investigates the performance of several meta-heuristic algorithms, including particle 

swarm optimisation (PSO), different variants of differential evolution (DE), biogeography-based 

optimisation (BBO), cultural algorithm (CA), optics-inspired optimisation (OIO), and league 

championship algorithm (LCA), for optimum layup of laminated composite plates. The study 

provides detailed Pseudo codes for different algorithms. The buckling capacity maximisation of a 

64-layer laminated composite plate under various load scenarios has been considered as the 

benchmark problem, in which the design variables are the stacking sequences of layers. A deep 

statistical comparison (DSC) method is employed to rank the performance of different algorithms. 

The DSC uses a non-parametric two-sample Kolmogorov–Smirnov (KS) test to conduct the 

performance comparisons between the algorithms. The overall performance rankings obtained 

from the DSC suggest that the LCA, OIO, and PSO algorithms perform remarkably better in 

comparison to other algorithms. The comparisons provide some interesting conclusions on the 

performance of different algorithms. 

Keywords: Composite structure, Meta-heuristics, Deep statistical comparison, Kolmogorov–

Smirnov test 

1. Introduction 

Composite materials refer to multi-phase materials with enhanced properties that are fabricated by 

an artificial combination of two or more distinct materials [1]. These materials have found 

important structural applications to date. One particular structural application of composite 

materials is in the laminated composite plates. Recent advances revealed that laminated composite 

plates are an increasingly popular structural type for a wide range of applications in different 

industries, such as aerospace, automotive, marine, building, and renewable energy industries. The 

high strength-to-weight ratios and flexibility in design are two major advantages of such structures. 

The different design parameters of laminated composite structures provide a great opportunity for 

designers to achieve the desired cost-efficient optimum designs for a given application.   
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A recent literature review provided by Nikbakt et al. [2] reveals that the optimum design of 

laminated composite plates to enhance their mechanical behaviour and minimise costs have been 

attracted much attention in recent years. Researchers have been implemented different 

optimisation algorithms to attain optimum designs for different kinds of design variables, objective 

functions, and constraints. Among the different objective functions investigated in the literature, 

buckling load maximisation is one of the prominent objective functions that have been widely 

taken into consideration by researchers for the optimum design of laminated composites  [3-5]. 

  Meta-heuristic optimisation algorithms, such as genetic algorithms (GAs) [6], simulated 

annealing (SA) [7], differential evolution (DE) [8], ant colony optimisation (ACO) [9], particle 

swarm optimisation (PSO) [10], cultural algorithms (CAs) [11,12], biogeography-based 

optimisation (BBO) [13], and harmony search (HS) [14], are attractive techniques to solve 

complex optimisation problems [15-20]. Meta-heuristics are nature-inspired search techniques that 

take the advantage of solution perturbation and stochasticity to find acceptable solutions for real-

world problems in a reasonable time [21]. Like other engineering disciplines, these algorithms 

have been successfully applied to optimise the laminated composite structures [22-29]. For 

example, Karakaya and Soykasap [30] employed GA and SA to enhance the buckling capacity and 

attain optimum stacking sequence for hybrid laminated composite plates with carbon/epoxy and 

glass/epoxy materials. Kaveh et al. [31] investigated the application of the BBO algorithm in 

stacking sequence optimisation of laminated composite plates for various load cases and aspect 

ratios to maximise the buckling load factor. HS was utilised by Almeida et al. [32] to optimise the 

buckling load factor of the balanced laminated composite plate under compressive in-plane loads. 

Akcair et al. [33] applied DE and SA to optimise the buckling load factor of the laminated 

composite plate under different increments in fibre orientations. Kaveh et al. [34] proposed a novel 

improved rank-based version of quantum-inspired evolutionary algorithm (QEA) for optimum 

stacking sequence of hybrid laminated composite plates under uncertain buckling loads. The 

literature review also reveals that researchers have been adopted/proposed novel meta-heuristic 

algorithms for buckling maximisation of laminated composite plates. For example, Rao et al. [35] 

employed a scatter search algorithm (SSA), Kaveh et al. [36,37] applied the charged system search 

(CSS) algorithm, Jaya algorithm (JA), and colliding bodies optimisation (CBO). 

In recent years, some novel meta-heuristic algorithms have been developed by researchers to 

solve a wide range of engineering problems. League championship algorithm (LCA) [38] inspired 
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by the sporting competitions between the teams in sports leagues is one of such novel algorithms, 

which has been able to exhibit efficient performance for different kinds of problems [39-43]. 

Optics inspired optimisation (OIO) [44] algorithm is another recently developed meta-heuristic 

inspired by the optical characteristics of spherical mirrors in physics, which has been remarkably 

efficient for engineering applications [45-48]. The main objective of this paper is to assess the 

performance of different meta-heuristic algorithms, including PSO, different variants of DE, BBO, 

CA, OIO, and LCA, for optimum layup of laminated composite plates. The buckling capacity 

maximisation of a 64-layer laminated composite plate under various load cases is considered as 

the benchmark problem. A deep statistical comparison (DSC) is conducted to asses the 

performance of different algorithms. The DSC uses the non-parametric two-sample Kolmogorov–

Smirnov (KS) test to pair-wise performance comparison between each pair of algorithms. Then, 

the algorithms are ranked based on the results obtained from the two-sample KS test. The study 

provides some interesting conclusions about the performance of investigated algorithms. 

   The rest of the paper is organised as follows. In Section 2, the algorithmic details of 

investigated meta-heuristics, as well as their Pseudo codes, will be presented. Section 3 will present 

the problem formulation for buckling load maximisation of laminated composite plates. The 

numerical test and comparisons will be presented in Section 4. Finally, the conclusions will be 

provided in Section 5. 

2. Investigated optimisation algorithms 

In this section, the algorithmic details of PSO, DE, CA, LCA, and OIO will be presented. Although 

the description of all details related to the mentioned algorithms in this study is not possible, this 

section will try to explain the main elements of algorithms without discussing the unnecessary 

details. However, the detailed Pseudo codes of algorithms would provide a clear picture to readers 

about how the algorithms work. All algorithms will be described for the minimisation problem 

with the objective function of 𝑓(𝑿) and vector of variables 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛], in which variables 

should satisfy the search space constraints represented by vectors 𝑿min = [𝑥1
min, 𝑥2

min, … , 𝑥𝑛
min] 

and 𝑿max = [𝑥1
max, 𝑥2

max, … , 𝑥𝑛
max] as follows: 𝑥𝑘

min ≤ 𝑥𝑘 ≤ 𝑥𝑘
max, 𝑘 = 1, 2, … , 𝑛. 

2.1. Particle Swarm Optimisation (PSO) 

Cooperative behaviour observed between the individuals in a group of species enhances their 

capabilities to deal with environmental challenges. These cooperation capabilities make them able 
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to achieve difficult goals, which are almost impossible to gain by every single individual in the 

group. Swarm Intelligence (SI) techniques try to inspire the collective intelligence exhibited by a 

group or swarm of species in nature to perform the optimisation process more efficiently [49]. One 

of the prominent SI techniques is the Particle Swarm Optimisation (PSO) algorithm inspired by 

the social behaviour of natural swarms. The PSO was originally developed by Kennedy and 

Eberhart [10] in the 1990s. The algorithm assumes a given set of particles in the search space, 

representing potential solutions for the problem. Each particle has its position and velocity, which 

are defined as 𝑛-dimensional vectors for the 𝑛-dimensional problem. The algorithm tries to benefit 

from the experience acquired by every individual particle and the whole swarm to update the 

positions and velocities of the particles. 

To explain how the algorithm works, let us assume 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡  ] and  

𝑽𝑖
𝑡 = [𝜐𝑖,1

𝑡 , 𝜐𝑖,2
𝑡 , … , 𝜐𝑖,𝑛

𝑡  ] are the position and velocity of the 𝑖th particle in the solution space at 

iteration 𝑡, in which 𝑖 = 1, 2, … , 𝑁𝑝 and 𝑁𝑝 is the swarm size. The PSO updates the velocities and 

positions of particles using the following formulas [10]: 

𝑽𝑖
𝑡+1 = 𝜔𝑡𝑽𝑖

𝑡 + 𝑐1𝑟𝑎𝑛𝑑(𝑷𝑖
𝑡 − 𝑿𝑖

𝑡) + 𝑐2𝑟𝑎𝑛𝑑(𝑮𝑡 − 𝑿𝑖
𝑡) (1) 

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1 (2) 

In equations (1) and (2), 𝑿𝑖
𝑡+1 and 𝑽𝑖

𝑡+1 represent the position and velocity of the 𝑖th particle at 

iteration 𝑡 + 1, 𝜔𝑡 is the weighting parameter at iteration 𝑡 which controls the influence of the 

previous velocity of the particle on its new velocity, 𝑟𝑎𝑛𝑑 represents a uniformly generated 

random number between 0 and 1, 𝑐1 and 𝑐2 are the acceleration parameters, 𝑷𝑖
𝑡 indicates the 

position with the best objective function value experienced by the 𝑖th individual until iteration 𝑡, 

and 𝑮𝑡 is the best position experienced by the whole swarm until iteration 𝑡. This study assumes 

that the value of the weighting parameter is gradually reduced in each iteration as 𝜔𝑡 =

𝜔damp𝜔𝑡−1, in which 𝜔damp is a damping factor. In this study, the initial value for the weighting 

parameter is set to 1 (i.e.,  𝜔0 = 1). Algorithm 1 shows the Pseudo code of the PSO algorithm for 

a minimisation problem. 

2.2. Differential Evolution (DE) 

The Differential Evolution (DE) algorithm originally developed by Storn and Price [50] is a 

population-based evolutionary algorithm (EA). The overall idea of the algorithm is to use the 
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weighted differences of different individuals for generating new individuals in the search space. 

In DE, the solution-finding process is performed by three main operators, including mutation, 

cross-over, and selection operators. 

 

Algorithm 1: Pseudo code of PSO algorithm 

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁𝑝, 𝑐1, 𝑐2, 𝜔damp; 

Initialise the velocity vectors 𝑽𝑖
0 as 𝑛-dimensional zero vectors; 

Generate 𝑁𝑝 particles randomly within the search space: 

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁𝑝; 

Initialise the personal experience of each particle as 𝑷𝒊
𝟎 = 𝑿𝒊

𝟎; 

Evaluate the objective function values of particles 𝑓(𝑿𝑖
0); 

Initialise the global experience vector 𝑮0 as follows: 𝑮0 = 𝑎𝑟𝑔 min {𝑓(𝑿𝑖
0)}; 

Set 𝑡 = 0; 

Set 𝜔0 = 1; 

while termination criteria are not met do 

  Set 𝜔𝑡+1 = 𝜔damp𝜔𝑡; 

for 𝑖 ← 1 to 𝑁𝑝 do 

  Update the velocity: 

  𝑽𝑖
𝑡+1 = 𝜔𝑡+1𝑽𝑖

𝑡 + 𝑐1𝑟𝑎𝑛𝑑(𝑷𝑖
𝑡 − 𝑿𝑖

𝑡) + 𝑐2𝑟𝑎𝑛𝑑(𝑮𝑡 − 𝑿𝑖
𝑡); 

  Update the position: 𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡 + 𝑽𝑖
𝑡+1; 

  Evaluate the objective function value: 𝑓(𝑿𝑖
𝑡+1); 

  Update the personal experience: 

  if 𝑓(𝑿𝑖
𝑡+1) < 𝑓(𝑷𝑖

𝑡) then 

    𝑷𝑖
𝑡 = 𝑿𝑖

𝑡+1; 

    Update the global experience: 

    if 𝑓(𝑿𝑖
𝑡+1) < 𝑓(𝑮𝑡) then 

      𝑮𝑡 = 𝑿𝑖
𝑡+1; 

    end 

  end  

end   

Set 𝑮𝑡+1 = 𝑮𝑡; 

Set 𝑡 = 𝑡 + 1; 

end  

 

The DE kick-starts the optimisation process with 𝑁I randomly generated individuals within the 

search space. For each solution 𝑿𝑖
𝑡, the algorithm applies the mutation operator to generate a 

mutant vector 𝑽𝑖
𝑡+1 = [𝑣𝑖,1

𝑡+1, 𝑣𝑖,2
𝑡+1, … , 𝑣𝑖,𝑛

𝑡+1] in each iteration. These mutant vectors will be used to 

form a new generation of individuals. According to the literature, a variety of mutation operators 
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have been developed for the DE algorithm [51], in which the mutant vectors 𝑽𝑖
𝑡+1 are generated 

by weighted difference combinations of different individuals. The most popular mutation operators 

of DE are as follows [51,52]: 

• “DE\best\1”: 

𝑽𝑖
𝑡+1 = 𝑿Best

𝑡 + 𝐹(𝑿𝑟1
𝑡 − 𝑿𝑟2

𝑡 ) (3) 

• “DE\rand-to-best\ 1”: 

𝑽𝑖
𝑡+1 = 𝑿𝑟1

𝑡 + 𝐹(𝑿Best
𝑡 − 𝑿𝑟2

𝑡 ) +  𝐹(𝑿𝑟3
𝑡 − 𝑿𝑟4

𝑡 ) (4) 

• “DE\current-to-rand\1” 

𝑽𝑖
𝑡+1 = 𝑿𝑟1

𝑡 + 𝐹(𝑿𝑟2
𝑡 − 𝑿𝑖

𝑡) +  𝐹(𝑿𝑟3
𝑡 − 𝑿𝑟4

𝑡 ) (5) 

• “DE\current-to-best\1”: 

𝑽𝑖
𝑡+1 = 𝑿𝑟1

𝑡 + 𝐹(𝑿Best
𝑡 − 𝑿𝑖

𝑡) +  𝐹(𝑿𝑟2
𝑡 − 𝑿𝑟3

𝑡 ) (6) 

In equations (3-6), 𝑽𝑖
𝑡+1 represents the mutant vector constructed for the 𝑖th individual at iteration 

𝑡 + 1, indexes 𝑟1, 𝑟2, 𝑟3, 𝑟4 ∈ [1, 2, … , 𝑁I] indicate the randomly generated numbers which must 

satisfy 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠  𝑟4 ≠ 𝑖, 𝑿Best
𝑡  represents the individual with the best objective function 

value at iteration 𝑡, and 𝐹 is the scaling factor which is usually assumed as a constant value. 

The obtained mutant vectors 𝑽𝑖
𝑡+1 are different than their parent solutions 𝑿𝑖

𝑡 in all dimensions. 

However, changing current solutions in all dimensions may not provide good outcomes at all 

times. The main reason for this statement stems from the fact that the small changes in the solution 

vector can result in significant changes in objective function values. Hence, the DE tries to 

randomly keep the original values of some variables in the offspring solutions. To this end, the 

algorithm employs the cross-over operator to generate a new trial vector 𝑼𝑖
𝑡+1 =

[𝑢𝑖,1
𝑡+1, 𝑢𝑖,2

𝑡+1, … , 𝑢𝑖,𝑛
𝑡+1] based on the mutant vectors 𝑽𝑖

𝑡+1 obtained through one of the above-

mentioned mutation operators as follows: 

𝑢𝑖,𝑘
𝑡+1 = {

𝑣𝑖,𝑘
𝑡+1  if 𝑟𝑎𝑛𝑑 < 𝐶𝑅 or 𝑘 = 𝑟𝑎𝑛𝑑𝑖(1, 𝑛)

𝑥𝑖,𝑘
𝑡                                              otherwise

 (7) 

where 𝑢𝑖,𝑘
𝑡+1 denotes the 𝑘th variable of trial vector 𝑼𝑖

𝑡+1 constructed for the 𝑖th individual at 

iteration 𝑡 + 1, 𝑣𝑖,𝑘
𝑡+1 is the 𝑘th variable of mutant vector 𝑽𝑖

𝑡+1 obtained for the 𝑖th individual at 

iteration 𝑡 + 1, 𝑟𝑎𝑛𝑑 is the random number between 0 and 1, 𝐶𝑅 is the cross-over rate control 
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which is usually considered as a constant value, and 𝑟𝑎𝑛𝑑𝑖(𝑎, 𝑏) represents a random integer 

number between 𝑎 and 𝑏. 

The DE algorithm uses the selection operator to decide whether the trial vector 𝑼𝑖
𝑡+1 generated 

by the cross-over operator could be a member of the next generation or not. The selection operator 

can be expressed as follows [52]: 

𝑿𝑖
𝑡+1 = {

𝑼𝑖
𝑡+1  if 𝑓(𝑼𝑖

𝑡+1) < 𝑓(𝑿𝑖
𝑡)

𝑿𝑖
𝑡                       otherwise

 (8) 

The Pseudo code of the DE algorithm for a minimisation problem is presented in Algorithm 2. In 

this study, we categorise the DE algorithm based on the applied mutation operators into different 

versions, including DE\best\1, DE\rand-to-best\1, DE\current-to-rand\1, and DE\current-to-best\1. 

Algorithm 2: Pseudo code of DE algorithm 

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁I, 𝐶𝑅, 𝐹; 

Generate 𝑁I individuals randomly within the search space: 

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁I; 

Evaluate the objective function values of individuals 𝑓(𝑿𝑖
0); 

Find the individual with the best objective function value 𝑿Best
0  as follows: 

𝑿Best
0 = 𝑎𝑟𝑔 min{𝑓(𝑿𝑖

0)}; 

Set 𝑡 = 0; 
while termination criteria are not met do 

  for 𝑖 ← 1 to 𝑁I do 

 Select the random numbers as 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟4 ≠ 𝑖; 
 Generate the mutant vector 𝑽𝑖

𝑡+1 using one of equations (3-6) 

 Find a random integer between 1 and 𝑛 as follows: 𝑗rand = 𝑟𝑎𝑛𝑑𝑖(1, 𝑛); 
 for 𝑘 ← 1 to 𝑛 do 

  if 𝑟𝑎𝑛𝑑 > 𝐶𝑅 or 𝑗 == 𝑗rand then 

   𝑢𝑖,𝑘
𝑡+1 = 𝜐𝑖,𝑘

𝑡+1; 

  else 

   𝑢𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 ; 

  end 

 end  

 if 𝑓(𝑼𝑖
𝑡+1) < 𝑓(𝑿𝑖

𝑡) then 

  𝑿𝑖
𝑡+1 = 𝑼𝑖

𝑡+1; 
 else  

  𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡; 
 end  

end 

𝑿Best
𝑡+1 = 𝑎𝑟𝑔 min{𝑓(𝑿𝑖

𝑡+1)} ; 
Set 𝑡 = 𝑡 + 1; 

end  
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2.3. Cultural Algorithms (CAs) 

Cultural Algorithms (CAs) developed by Reynolds [11] in the 1990s is an EA inspired by the 

principles of human social evolution. In real human societies, culture can be viewed as a source of 

information exchanged between individuals, which can affect the behaviours of the individuals 

[53]. According to the bio-cultural evolution theory [54], the overall human evolutionary process 

is a combination of genetic and cultural evolutionary processes. CA was developed based on the 

bio-cultural evolutionary mechanism [11], which is computationally different from the 

conventional EAs. The algorithm has found interesting applications in different research areas, 

ranging from computer science to different branches of engineering [12,55-59].  

In contrast to the conventional EAs which are based on a single population space, CA  works 

with two population and belief spaces. These two spaces affect each other through some sorts of 

communication protocols. Like other EAs, the population space consists of a set of individuals 

who are potential solutions for the problem. The belief space records the cultural information 

gained by the individuals during the evolutionary process, which includes different types of 

knowledge components. The general Pseudo-code of the CA is illustrated in Algorithm 3. The 

algorithm consists of a population space ℘𝑡 and a belief space 𝓑𝑡, which interact each other using 

Accept(), Update(), and Influence() functions. 

Algorithm 3: The general Pseudo code of CA [12] 

Set 𝑡 = 0; 

Initialise ℘𝑡 and 𝓑𝑡 

while termination criteria are not met do 

  Set 𝑡 = 𝑡 + 1; 

Evaluate the fitness of individuals in ℘𝑡 using 𝑂𝑏𝑗(); 

Accept some elite individuals from ℘𝑡 using 𝐴𝑐𝑐𝑒𝑝𝑡(); 

Update 𝓑𝑡 using 𝑈𝑝𝑑𝑎𝑡𝑒() 

  Produce new generation ℘𝑡+1 using 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒() 

end  

Let us assume 𝓟𝑡 be the population space, which is consisted of 𝑁S individual solutions 

represented by 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡  ], where 𝑖 = 1, 2, … , 𝑁S. As it was mentioned earlier, the 

belief space includes different knowledge components acquired by individuals. There are different 

kinds of knowledge components in the literature that could be used in CAs depending on the type 

of problem to be solved, including situational, normative, historical, topographical, and domain 
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knowledge components. In this study, it is assumed that the belief space consists of situational and 

normative knowledge components as follows: 

𝓑𝑡 = {𝓢𝑡, 𝓝𝑡} (9) 

where 𝓑𝑡, 𝓢𝑡, and 𝓝𝑡 are the belief space, situational knowledge, and normative knowledge, 

respectively. The situational knowledge component, which can be represented by  

𝓢𝑡 = [𝑠1
𝑡, 𝑠2

𝑡 , … , 𝑠𝑛
𝑡 ], contains the best solution obtained so far. The normative knowledge 

component 𝓝𝑡 is consisted of a set of information for each variable of the problem, which can be 

mathematically expressed as follows: 

𝓝𝑡 = [

𝑰1
𝑡 𝑰2

𝑡 … 𝑰𝑛
𝑡

𝐿1
𝑡 𝐿2

𝑡 … 𝐿𝑛
𝑡

𝑈1
𝑡 𝑈2

𝑡 … 𝑈𝑛
𝑡

] (10) 

where 𝑰𝑘
𝑡 = [𝑥min,𝑘

𝑡 , 𝑥max,𝑘
𝑡 ] indicates the belief interval of the 𝑘th dimension of the problem, 

𝑥min,𝑘
𝑡  and 𝑥max,𝑘

𝑡  are the lower and upper normative bounds for the 𝑘th dimension of the problem, 

respectively, 𝐿𝑘
𝑡  and 𝑈𝑘

𝑡  represent the objective function values corresponding to the lower and 

upper normative bounds, respectively. 

The Accept() function of CA selects some elite individuals from the population space to update 

the belief space in each iteration. Usually, a given percentage of the individuals with better 

objective functions are selected to update the belief space. In this study, it is assumed that 𝑁Accept 

of the population would be accepted to update the belief space. 

The Update() function updates the different knowledge components of the belief space using 

the accepted individuals as follows: 

𝓢𝑡+1 = {
𝑿𝑙

𝑡    if     𝑓(𝑿𝑙
𝑡) < 𝑓(𝓢𝑡)

𝓢𝑡                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

𝑥min,𝑘
𝑡+1 = {

𝑥𝑙,𝑘
𝑡       if  𝑥𝑙,𝑘

𝑡 ≤ 𝑥min,𝑘
𝑡  or 𝑓(𝑿𝑙

𝑡) < 𝐿𝑘
𝑡

𝑥min,𝑘
𝑡                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

𝑥max,𝑘
𝑡+1 = {

𝑥𝑙,𝑘
𝑡       if  𝑥𝑙,𝑘

𝑡 ≥ 𝑥max,𝑘
𝑡  or 𝑓(𝑿𝑙

𝑡) < 𝑈𝑘
𝑡

𝑥𝑚𝑎𝑥,𝑘
𝑡                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

𝐿𝑘
𝑡+1 = {

𝑓(𝑥𝑙
𝑡)      if  𝑥𝑙,𝑘

𝑡 ≤ 𝑥min,𝑘
𝑡  or 𝑓(𝑿𝑙

𝑡) < 𝐿𝑘
𝑡

𝐿𝑘
𝑡                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14) 

𝑈𝑘
𝑡+1 = {

𝑓(𝑥𝑙
𝑡)     if  𝑥𝑙,𝑘

𝑡 ≥ 𝑥max,𝑘
𝑡  or 𝑓(𝑿𝑙

𝑡) < 𝑈𝑘
𝑡

𝑈𝑘
𝑡                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15) 

where 𝑙 = 1, 2, … , %𝑁Accept × 𝑁S, 𝑿𝑙
𝑡 is the 𝑙th accepted individual at iteration 𝑡 and 𝑥𝑙,𝑘

𝑡  

represents its 𝑘th variable. 
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Finally, the Influence() function generates a new generation of individuals based on cultural 

information. There are different influence functions developed for CA in literature. Based on the 

previous experience of authors, the following influence function  is considered in this study: 

𝑥𝑖,𝑘
𝑡+1 = {

𝑥𝑖,𝑘
𝑡 + |𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡 )𝑁𝑖,𝑘(0,1)|    𝑖𝑓 𝑥𝑖,𝑘
𝑡 < 𝑥min,𝑘

𝑡  

𝑥𝑖,𝑘
𝑡 − |𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡 )𝑁𝑖,𝑘(0,1)|   𝑖𝑓 𝑥𝑖,𝑘
𝑡 > 𝑥max,𝑘

𝑡

𝑥𝑖,𝑘
𝑡 + 𝛽𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡 )𝑁𝑖,𝑘(0,1)            otherwise

 (16) 

where 𝑥𝑖,𝑘
𝑡+1 is the 𝑘th variable of the 𝑖th individual at iteration 𝑡 + 1, 𝑠𝑖𝑧𝑒(𝑰𝑘

𝑡 ) = 𝑥max,𝑘
𝑡 − 𝑥min,𝑘

𝑡   

is the size of the normative interval for the 𝑘th variable, 𝑁𝑖,𝑘(0,1) represents the random number 

generated by a normal distribution with the mean value of 0 and standard deviation of 1, and 𝛽 >

0 is a constant parameter. 

Algorithm 4 shows the detailed Pseudo code of CA. Interested readers are referred to Ref. [12] 

for more details on CA and its variants. 

Algorithm 4: The detailed Pseudo code of CA 

Initialise parameters 𝑁S, 𝑛, 𝑿min, 𝑿max, 𝛽, 𝑁Accept; 

Initialise the normative knowledge 𝓝0 as follows: 𝓝0 = [
∞ ∞ … ∞
∞ ∞ … ∞
∞ ∞ … ∞

] ; 

Initialise the empty situational knowledge vector 𝓢0 and set 𝑓(𝓢0) = ∞; 
Initialise the belief space as follows: 𝓑0 = {𝓢0, 𝓝0}; 
Generate 𝑁S individuals randomly within the search space as follows: 

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁S; 

Evaluate the objective function values of individuals 𝑓(𝑿𝑖
0); 

Select %𝑁Accept × 𝑁S  of individuals with better objective function values; 

Update the belief space using equations (11-15) 

Set 𝑡 = 0; 
while termination criteria are not met do 

  for 𝑖 ← 1 to 𝑁S do 

  for 𝑘 ← 1 to 𝑛 do 

   if 𝑥𝑖,𝑘
𝑡 < 𝑥min,𝑘

𝑡  then 

   𝑥𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 + |𝑠𝑖𝑧𝑒(𝑰𝑘
𝑡 )𝑁𝑖,𝑘(0,1)|; 

   else if 𝑥𝑖,𝑘
𝑡 > 𝑥max,𝑘

𝑡  then 

   𝑥𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 − |𝑠𝑖𝑧𝑒(𝑰𝑘
𝑡 )𝑁𝑖,𝑘(0,1)|; 

   else 

   𝑥𝑖,𝑘
𝑡+1 = 𝑥𝑖,𝑘

𝑡 + 𝛽𝑠𝑖𝑧𝑒(𝑰𝑘
𝑡 )𝑁𝑖,𝑘(0,1) 

   end 

  end  

  Evaluate the objective function value 𝑓(𝑿𝑖
𝑡+1); 

end  

Select %𝑁Accept × 𝑁S of individuals with better objective function values; 

Update the belief space using equations (11-15) 

Set 𝑡 = 𝑡 + 1; 
end  
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2.4. Biogeography-Based Optimisation (BBO) 

Biogeography-Based Optimisation (BBO) is another EA inspired by the emigration and 

immigration behaviours of different species in nature. It was originally developed by Simon [13] 

in 2008 based on the mathematical migration models in biogeography science [60] and has been 

found significant applications in different fields [61-64]. In nature, the biological species migrate 

from one habitat to another one to access new resources. The migration process of species follows 

given mathematical patterns. BBO inspires this concept to perform the optimisation process. BBO 

works with a population of habitats, in which each habitat is a potential solution for the problem. 

The algorithm employs two main operators to form a new generation of solutions, including 

migration and mutation operators. 

 
Fig. 1. Migration model in BBO [13] 

Similar to other algorithms explained earlier, let us assume a set of 𝑁H habitats represented by 

vectors 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡  ], where 𝑖 = 1, 2, … , 𝑁H. In BBO, the fitness function of each 

habitat is called as habitat suitability index (HSI), which means the habitats with high HSI values 

represent better solutions for the problem. In the migration operator of the BBO algorithm, two 

immigration and emigration rates are defined for each habitat based on the objective function 

values. Let 𝜆𝑖 and 𝜇𝑖 be the immigration and emigration rates for the 𝑖th habitat. The values of 

these rates for each habitat are obtained based on the migration models available from 

biogeography science. Fig. 1 shows a simple linear migration model which is usually used in 

literature to define the migration rates of BBO. As it can be seen from this figure, the sum of 

immigration and emigration rates for each habitat is equal to one (i.e., 𝜆𝑖 + 𝜇𝑖 = 1). Based on Fig. 

1, the habitats with higher (lower) fitness function values will have lower (larger) immigration 

rates 𝜆𝑖 and larger (lower) emigration rates 𝜇𝑖. The BBO uses these rates to perform the migration 
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operator between the habitats in the search space. In BBO, the migration operator replaces the 𝑘th 

variable of 𝑖th habitat by the corresponding variable of the 𝑗th habitat as follows: 

𝑥𝑖,𝑘
𝑡 ← 𝑥𝑗,𝑘

𝑡  (17) 

where 𝑥𝑖,𝑘
𝑡  represents the 𝑘th variable of habitat 𝑖 at iteration 𝑡 and 𝑥𝑗,𝑘

𝑡  is the 𝑘th variable of habitat 

𝑗 at iteration 𝑡. It should be noted that the index 𝑗 is selected based on the emigration rates 𝜇𝑖 and 

roulette wheel selection method. After performing the migration operator, the mutation operator 

randomly replaces the variables of habitats with a random value generated in the feasible search 

domain. The mutation probability for each habitat depends on the mutation rates 𝑚𝑖, which are 

defined based on the fitness values. The details for calculating mutation rates 𝑚𝑖 are available in 

Ref. [13]. Algorithm 5 shows the detailed Pseudo code for the BBO algorithm. 

Algorithm 5: Pseudo code of BBO algorithm 

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁H; 

Generate 𝑁H habitats randomly within the search space as follows: 

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁H; 

Set 𝑡 = 0; 

while termination criteria are not met do 

 Evaluate the fitness function values of the habitats 𝑓(𝑿𝑖
𝑡); 

 Calculate the immigration (𝜆𝑖) and the emigration (𝜇𝑖) rates for each habitat based on the 

immigration model in Fig. 1; 

  for 𝑖 ← 1 to 𝑁H do 

 𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡; 

 for 𝑘 ← 1 to 𝑛 do 

  % Migration operator: 

  if 𝑟𝑎𝑛𝑑 < 𝜆𝑖 then 

   Select the habitat 𝑗 based on the emigration rates 𝜇𝑖 and roulette wheel selection 

method; 

   Update the 𝑘th variable of the 𝑖th habitat: 𝑥𝑖,𝑘
𝑡+1 ← 𝑥𝑗,𝑘

𝑡
 

  end 

  % Mutation operator: 

  If 𝑟𝑎𝑛𝑑 < 𝑚𝑖 then 

   Mutate the 𝑘th variable of the 𝑖th habitat as follows: 𝑥𝑖,𝑘
𝑡+1 = 𝑈(𝑋𝑘

min, 𝑋𝑘
max); 

  end 

 end 

end 

Set 𝑡 = 𝑡 + 1; 

end 
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2.5. League Championship Algorithm (LCA) 

League Championship Algorithm (LCA) developed by Kashan [38,65] is a population-based meta-

heuristic algorithm inspired by the sporting competitions between the teams in sports leagues. The 

algorithm simulates the sporting league by assuming each solution candidate as a team that 

competes with other teams to provide the best possible solution for the problem. The position and 

fitness function of each team represent its formation and playing strength, respectively. LCA 

performs a match analysis to generate new formations for teams, which simulates the process 

performed by coaches to find a suitable formation for their teams in real sporting competitions. In 

LCA, each week can be assumed as equivalent to one optimisation iteration. 

The solution finding process in LCA is similar to the championship process in sports leagues, 

in which different teams play in pairs based on a league schedule in a given week. The outcome 

of each match is determined based on the strengths of the teams. Then, the teams perform match 

analysis and change their formation to enhance their strengths for the next week. This process is 

repeated until the termination criteria are met. 

Let 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡  ] be the position of the 𝑖th team at week t, where 𝑖 = 1, 2, … , 𝑁𝑡𝑒𝑎𝑚 

and 𝑁𝑡𝑒𝑎𝑚 is the number of teams. Let us also assume that the best formation experience with the 

best strength obtained by the 𝑖th team until week t is represented by 𝑩𝑖
𝑡 = [𝑏𝑖,1

𝑡 , 𝑏𝑖,2
𝑡 , … , 𝑏𝑖,𝑛

𝑡  ]. LCA 

employs a single round-robin schedule to determine the teams that should play against each other. 

Fig. 2 illustrates how different matches in each season are arranged in LCA between the teams. 

For a league with 𝑁𝑡𝑒𝑎𝑚 number of teams, each season will be consisted of 𝑁𝑡𝑒𝑎𝑚 × (𝑁𝑡𝑒𝑎𝑚 −

1)/2 matches. LCA continues the league championship for 𝑆 seasons, which will result in a total 

of 𝑆 × (𝑁𝑡𝑒𝑎𝑚 − 1) weeks of contests. 

 
Fig. 2. League scheduling algorithm in LCA for the case of 𝑁𝑡𝑒𝑎𝑚 = 8 [38] 

When the teams play in pairs with each other, the outcome of the match for a given team can 

be a win, lose, or tie. To find the outcome of each match, LCA employs a probabilistic approach. 

Let us assume team 𝑖 with the formation 𝑿𝑖
𝑡 plays against team 𝑗 with the formation 𝑿𝑗

𝑡. Then, the 

winning probability of team 𝑖 is expressed as follows: 
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𝑝𝑖
𝑡 =

𝑓(𝑿𝑗
𝑡) − 𝑓

𝑓(𝑿𝑗
𝑡) + 𝑓(𝑿𝑖

𝑡) − 2𝑓
 (18) 

where 𝑓 is an arbitrary ideal value which is set to the best objective function value obtained by the 

teams until week 𝑡 (i.e., 𝑓 = 𝑚𝑖𝑛𝑖=1,2,…,𝑁𝑡𝑒𝑎𝑚 {𝑓(𝑩𝑖
𝑡)}). In addition, the winning probability of 

team 𝑗 against team 𝑖 would be equal to 𝑝𝑗
𝑡 = 1 − 𝑝𝑖

𝑡. 

In real sporting competitions, coaches evaluate the strengths and weaknesses of their teams to 

improve their performance. Meanwhile, they need also to evaluate the opportunities and threats 

provided by the opponent teams. The coaches try to take the advantage of opportunities, while they 

have to monitor their opponents to protect their teams against possible external threats. The 

strengths and weaknesses are called internal factors, while the opportunities and threats are the 

external factors. To simulate these concepts, LCA performs a match analysis to update the 

formation of teams. Let us assume team 𝑖 plays against team 𝑙 based on the league schedule. The 

new formation of team 𝑖 denoted by 𝑿𝑖
𝑡+1 = [𝑥𝑖,1

𝑡+1, 𝑥𝑖,2
𝑡+1, … , 𝑥𝑖,𝑛

𝑡+1 ] depends on the previous 

experiences of both teams 𝑖 and 𝑙 at previous week 𝑡. Let 𝑗 be the team that has played with team 

𝑖 at week 𝑡, and 𝑚 be the team that has played with team 𝑙 at week 𝑡. By considering these 

definitions, LCA updates the formation of team 𝑖 as follows: 

• If teams 𝑖 and 𝑙 both had won their opponents at previous week 𝑡: 

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡 ) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡 ))  (19) 

• If team 𝑖 had won its previous match at week 𝑡, but team 𝑙 was a loser at week 𝑡: 

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 ) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡 ))  (20) 

• If team 𝑖 had lost its previous match at week 𝑡, but team 𝑙 was a winner at week 𝑡: 

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡 ) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 ))  (21) 

• If teams 𝑖 and 𝑙 both had lost their matches at previous week 𝑡: 

𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 ) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 ))  (22) 

In the above equations, 𝑏𝑖,𝑘
𝑡 , 𝑏𝑚,𝑘

𝑡 , and 𝑏𝑗,𝑘
𝑡  represent the 𝑘th variable of the best formation 

experienced by teams 𝑖, 𝑚 and 𝑗 until week 𝑡, respectively, 𝜓1 is the approach coefficient that 

controls the acceleration of the team 𝑖 toward the winner, and 𝜓2 is the retreat coefficient that 

controls the retract team 𝑖 from the loser. In equations (19-22), 𝑦𝑖,𝑘
𝑡  is a binary variable that 
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determines whether the kth variable of vector 𝑩𝑖
𝑡 should be changed or not. Let  

𝒀𝑖
𝑡 = [𝑦𝑖,1

𝑡 , 𝑦𝑖,2
𝑡 , … , 𝑦𝑖,𝑛

𝑡  ] be the binary change array, in which the unit (zero) value for a given 

element of the array means the corresponding variable in 𝑩𝑖
𝑡 would (would not) change. LCA uses 

a truncated geometric distribution [66] to calculate the number of ones in array 𝒀𝑖
𝑡, represented by 

𝑞𝑖
𝑡, as follows: 

𝑞𝑖
𝑡 = ⌈

𝑙𝑛(1 − (1 − (1 − 𝑝𝑐)𝑛−𝑞0+1)𝑟𝑎𝑛𝑑)

𝑙𝑛(1 − 𝑝𝑐)
⌉ + 𝑞0 − 1 (23) 

where 𝑝𝑐 is a control parameter and 𝑞0 is the lower bound for 𝑞𝑖
𝑡. 𝑞0 is typically taken as 1 [38]. 

The greater values for the parameter 𝑝𝑐 will result in smaller changes in vector 𝑩𝑖
𝑡 and vice versa. 

Algorithm 6 shows the detailed Pseudo code of LCA. 

2.6. Optics Inspired Optimisation (OIO) 

Optics Inspired Optimisation (OIO), recently developed by Kashan [44], is a meta-heuristic 

algorithm inspired by the optical characteristics of spherical mirrors in physics. In OIO, each 

solution vector is modelled as an artificial light point and the surface of the objective function is 

assumed as a spherical mirror that reflects the incident ray based on the governing equations in 

optics. 

Let us assume 𝑁𝑂 light points represented by vectors 𝑿𝑖
𝑡 = [𝑥𝑖,1

𝑡 , 𝑥𝑖,2
𝑡 , … , 𝑥𝑖,𝑛

𝑡  ] for a 

minimisation problem. For each light point 𝑿𝑖
𝑡, OIO randomly selects another solution represented 

by 𝑿𝑗
𝑡 = [𝑥𝑗,1

𝑡 , 𝑥𝑗,2
𝑡 , … , 𝑥𝑗,𝑛

𝑡  ] from the population as an artificial mirror in which 𝑗 = 1, 2, … , 𝑁𝑂 

and 𝑗 ≠ 𝑖. Depending on the objective function values of light points 𝑖 and 𝑗, the solution 𝑿𝑗
𝑡 can 

be treated as a convex or concave mirror for light point 𝑿𝑖
𝑡. If 𝑓(𝑿𝑖

𝑡) > 𝑓(𝑿𝑗
𝑡), then 𝑿𝑗

𝑡 would be a 

concave mirror for the light point 𝑿𝑖
𝑡. Otherwise, 𝑿𝑗

𝑡 would be a convex mirror. OIO finds the 

image position of the artificial light point 𝑿𝑖
𝑡 formed by the artificial mirror 𝑿𝑗

𝑡 as follows: 

𝑰𝑖
𝑡 = 𝑿𝑗

𝑡 −
𝑟𝑗

𝑡

2𝑝𝑖,𝑗
𝑡 − 𝑟𝑗

𝑡 (𝑿𝑖
𝑡 − 𝑿𝑗

𝑡) (24) 

where 𝑰𝑖
𝑡 represents the image position of the artificial light point 𝑿𝑖

𝑡, 𝑝𝑖,𝑗
𝑡  indicates the distance 

between the artificial light point 𝑖 and the artificial mirror 𝑗 on the objective function axis, and 𝑟𝑗
𝑡 

is the curvature radius of the artificial mirror 𝑿𝑗
𝑡. The parameter 𝑝𝑖,𝑗

𝑡  is defined as follows: 

𝑝𝑖,𝑗
𝑡 =  𝑠𝑖,𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡) (25) 
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Algorithm 6: The detailed Pseudo code of LCA 

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁team, 𝜓1, 𝜓2, 𝑞0, 𝑝𝑐; 

Set 𝑡 = 1; 

Generate formations for 𝑁team teams randomly within the search space: 

𝑿𝑖
1~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁team; 

Evaluate the playing strengths of teams 𝑓(𝑿𝑖
1); 

Set the current formations of teams as their best formations: 𝑩𝑖
1 = 𝑿𝑖

1; 

Generate the league schedule based on the single round-robin method as displayed in Fig. 2; 

while termination criteria are not met do 

  for 𝑡 ← 1 to 𝑁team − 1 do 

 for 𝑖 ← 1 to 𝑁team do 

  Find the team 𝑗 that has played with team 𝑖 at week 𝑡; 

  Find the opponent team 𝑙 based on the league schedule at week 𝑡; 

  Find the team 𝑚 that has played with team 𝑙 at week 𝑡; 

  
Calculate the winning probability of team 𝑖 as follows: 𝑝𝑖

𝑡 =
𝑓(𝑿𝑗

𝑡)−�̂�

𝑓(𝑿𝑗
𝑡)+𝑓(𝑿𝑖

𝑡)−2�̂�
 

  if 𝑟𝑎𝑛𝑑 < 𝑝𝑖
𝑡  then 

   The team 𝑖 is the winner and the team 𝑙 is the loser; 

  else 

   The team 𝑖 is the loser and the team 𝑙 is the winner; 

  end 

  for 𝑘 ← 1 to 𝑛 do 

   if 𝑡𝑒𝑎𝑚𝑠 𝑖 𝑎𝑛𝑑 𝑙 𝑏𝑜𝑡ℎ ℎ𝑎𝑑 𝑤𝑜𝑛 𝑡ℎ𝑒𝑖𝑟 𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡 then 

    𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡 ) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡 )) ; 

   else if 𝑡𝑒𝑎𝑚 𝑖 ℎ𝑎𝑑 𝑤𝑜𝑛 𝑖𝑡𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑐ℎ 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡, 𝑏𝑢𝑡 𝑡𝑒𝑎𝑚 𝑙 𝑤𝑎𝑠 𝑎 𝑙𝑜𝑠𝑒𝑟 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡 then  

    𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 ) + 𝜓1𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑗,𝑘
𝑡 )) ; 

   else if 𝑡𝑒𝑎𝑚 𝑖 ℎ𝑎𝑑 𝑙𝑜𝑠𝑡 𝑖𝑡𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑚𝑎𝑡𝑐ℎ 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡, 𝑏𝑢𝑡 𝑡𝑒𝑎𝑚 𝑙 𝑤𝑎𝑠 𝑎 𝑤𝑖𝑛𝑛𝑒𝑟 𝑎𝑡 𝑤𝑒𝑒𝑘 𝑡 

then 

    𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑖,𝑘

𝑡 − 𝑏𝑚,𝑘
𝑡 ) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 )) ; 

   else 

    𝑥𝑖,𝑘
𝑡+1 = 𝑏𝑖,𝑘

𝑡 + 𝑦𝑖,𝑘
𝑡 (𝜓2𝑟𝑎𝑛𝑑(𝑏𝑚,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 ) + 𝜓2𝑟𝑎𝑛𝑑(𝑏𝑗,𝑘

𝑡 − 𝑏𝑖,𝑘
𝑡 )) ; 

   end 

  end 

 end  

 Evaluate the playing strength of team 𝑖, 𝑓(𝑿𝑖
𝑡+1); 

 if 𝑓(𝑿𝑖
𝑡+1) < 𝑓(𝑩𝑖

𝑡) then 

  𝑩𝑖
𝑡+1 = 𝑿𝑖

𝑡+1; 

 else  

  𝑩𝑖
𝑡+1 = 𝑩𝑖

𝑡; 

 end  

end 

Set 𝑡 = 𝑡 + 1; 

end  
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where 𝑠𝑖,𝑗
𝑡  is the position of artificial light point 𝑖 on the objective function axis. If the artificial 

mirror is concave, 𝑠𝑖,𝑗
𝑡  is randomly selected as 𝑈[𝑓(𝑿𝑖

𝑡), 𝑓(𝑿𝑖
𝑡) + 𝑑∞], where 𝑈[𝑎, 𝑏] represents a 

random value between 𝑎 and 𝑏, and 𝑑∞ indicates the physical infinity that can be any positive 

value. In OIO, the value of physical infinity is initially assumed as 𝑑∞ = |𝑚𝑎𝑥𝑓(𝑿𝑙
𝑡)|𝑙=1,2,…,𝑁𝑂. 

The physical infinity 𝑑∞ would be updated in the artificial spherical aberration stage of the 

algorithm. For the case of a convex mirror, 𝑠𝑖,𝑗
𝑡  is randomly assigned as 𝑈[𝑓(𝑿𝑗

𝑡), 𝑓(𝑿𝑗
𝑡) + 𝑑∞]. 

The curvature radius of the artificial mirror 𝑿𝑗
𝑡 is calculated as follows: 

𝑟𝑗
𝑡 = 𝑚𝑗

𝑡 −  𝑓(𝑿𝑗
𝑡) (26) 

In this equation, 𝑚𝑗
𝑡 is the position of the centre of curvature for artificial mirror 𝑗, which is 

randomly determined as 𝑈[𝑓(𝑿𝑖
𝑡), 𝑓(𝑿𝑖

𝑡) + 𝑑∞] for concave mirrors and 𝑈[𝑓(𝑿𝑖
𝑡) − 𝑑∞, 𝑓(𝑿𝑖

𝑡)] 

for convex mirrors. 

The image vector 𝑰𝑖
𝑡 represents a new solution for the problem, which differs from the artificial 

light point 𝑿𝑖
𝑡 in all dimensions. OIO constructs a new light point (or solution) 𝑿𝑖

𝑡+1 by keeping 

the number of changes in vector 𝑿𝑖
𝑡 less than 𝑛. Let us assume 𝑼𝑖

𝑡 ← 𝑿𝑖
𝑡. OIO uses equation (23) 

to determine the number of changes 𝑞𝑖
𝑡. Then, 𝑞𝑖

𝑡 number of variables are randomly selected from 

𝑰𝑖
𝑡, and their values are assigned to their corresponding variables in vector 𝑼𝑖

𝑡. Finally, if the 

objective function of 𝑼𝑖
𝑡 is better than 𝑿𝑖

𝑡, then 𝑼𝑖
𝑡 would be the new artificial light point, i.e., 

𝑿𝑖
𝑡+1 = 𝑼𝑖

𝑡. Otherwise, the algorithm keeps the previous light point for the next iteration, i.e., 

𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡. 

It should be noted that the value of 𝑚𝑗
𝑡 should satisfy a certain condition. In some cases, the 

difference between the objective function values of artificial light point 𝑖 and the artificial mirror 

𝑗 is significantly high. In these cases, the image of light point 𝑖 on artificial mirror 𝑗 would be a 

blurry image, which can cause premature convergence of OIO from the numerical viewpoint. 

In OIO, to avoid the spherical aberration phenomenon, the algorithm repeatedly updates the 

value of the parameter 𝑚𝑗
𝑡. The interested readers are referred to Ref. [44] for more details on the 

spherical aberration mechanism of OIO. Algorithm 7 shows the full detailed Pseudo code of the 

OIO algorithm. 
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Algorithm 7: The detailed Pseudo code of OIO 

Initialise parameters 𝑛, 𝑿min, 𝑿max, 𝑁𝑂, 𝑞0, 𝑝𝑐; 

Generate 𝑁𝑂 artificial light points randomly within the search space as follows: 

𝑿𝑖
0~𝑼(𝑿min, 𝑿max), 𝑖 = 1, 2, … , 𝑁𝑂; 

Evaluate the objective function values for each artificial light point 𝑓(𝑿𝑖
0); 

Set 𝑡 = 0; 

while termination criteria are not met do 

  for 𝑡 ← 1 to 𝑁𝑂 do 

 Select the solution vector 𝑿𝑗
𝑡 from the population as the artificial mirror, where 𝑗 = 1, 2, … , 𝑁𝑂 and 𝑗 ≠ 𝑖; 

 % Determine the type of the mirror:  

 if 𝑓(𝑿𝑖
𝑡) > 𝑓(𝑿𝑗

𝑡) then 

  Assume 𝑿𝑗
𝑡 as a concave mirror; 

  𝑠𝑖,𝑗
𝑡 = 𝑈[𝑓(𝑿𝑖

𝑡), 𝑓(𝑿𝑖
𝑡) + 𝑑∞]; 

  𝑚𝑗
𝑡 = 𝑈[𝑓(𝑿𝑖

𝑡), 𝑓(𝑿𝑖
𝑡) + 𝑑∞]; 

 else 

  Assume 𝑿𝑗
𝑡 as a convex mirror; 

  𝑠𝑖,𝑗
𝑡 = 𝑈[𝑓(𝑿𝑗

𝑡), 𝑓(𝑿𝑗
𝑡) + 𝑑∞]; 

  𝑚𝑗
𝑡 = 𝑈[𝑓(𝑿𝑖

𝑡) − 𝑑∞, 𝑓(𝑿𝑖
𝑡)]; 

 end 

 Determine the image position of light point 𝑖 as follows: 𝑝𝑖,𝑗
𝑡 =  𝑠𝑖,𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡); 

 Determine the radius of curvature of the mirror as follows: 𝑟𝑗
𝑡 = 𝑚𝑗

𝑡 −  𝑓(𝑿𝑗
𝑡); 

 % Correct the spherical aberration: 

 
while 

(𝑟𝑗
𝑡)

2

2√(𝑟𝑗
𝑡)

2
−(‖𝑿𝑖

𝑡−𝑿𝑗
𝑡‖)

2
−

|𝑟𝑗
𝑡|

2
> 0.01 𝑜𝑟 ‖𝑿𝑖

𝑡 − 𝑿𝑗
𝑡‖ > |𝑟𝑗

𝑡| do 

  Set 𝑑∞ = 2𝑑∞;   

  if 𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑚𝑖𝑟𝑟𝑜𝑟 𝑖𝑠 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 then 

   𝑚𝑗
𝑡 = 𝑚𝑗

𝑡 + 𝑑∞; 

  else 

   𝑚𝑗
𝑡 = 𝑚𝑗

𝑡 − 𝑑∞; 

  end 

  𝑟𝑗
𝑡 = 𝑚𝑗

𝑡 − 𝑓(𝑿𝑗
𝑡); 

 end 

 % Generate the image position of the artificial light point 𝑿𝑖
𝑡: 

 
𝑰𝑖

𝑡 = 𝑿𝑗
𝑡 −

𝑟𝑗
𝑡

2𝑝𝑖,𝑗
𝑡 − 𝑟𝑗

𝑡 (𝑿𝑖
𝑡 − 𝑿𝑗

𝑡); 

 Set 𝑼𝑖
𝑡 = 𝑿𝑖

𝑡; 

 
𝑞𝑖

𝑡 = ⌈
𝑙𝑛(1 − (1 − (1 − 𝑝𝑐)𝑛−𝑞0+1)𝑟𝑎𝑛𝑑)

𝑙𝑛(1 − 𝑝𝑐)
⌉ + 𝑞0 − 1; 

 Randomly select 𝑞𝑖
𝑡 number of variables from 𝑰𝑖

𝑡, and assign their values to their corresponding variables in 𝑼𝑖
𝑡; 

 if 𝑓(𝑼𝑖
𝑡) < 𝑓(𝑿𝑖

𝑡) then 

  𝑿𝑖
𝑡+1 = 𝑼𝑖

𝑡; 

 else  

  𝑿𝑖
𝑡+1 = 𝑿𝑖

𝑡; 

 end  

end 

Set 𝑡 = 𝑡 + 1; 

end  



19 
 

3. Problem Formulation 

As it was mentioned earlier, buckling capacity maximisation for optimum layup of laminated 

composite plates is an important problem that has been widely investigated by researchers. 

Laminated composite plates subjected to in-plane compressive loads are potentially susceptible to 

lose their stability. Hence, the buckling capacity of laminated composites under in-plane 

compressive loads should be considered in the design process. Let us assume a simply supported 

laminated composite plate shown in Fig. 3 with dimensions 𝑎 and 𝑏 in 𝑥 and 𝑦 directions, 

respectively, in which 𝑁𝑥 and 𝑁𝑦 are the in-plane compressive loads in 𝑥 and 𝑦 directions, 

respectively. According to the classical laminated plate theory, the buckling load factor can be 

expressed as follows [67]: 

𝜆𝑏(𝑝, 𝑞) = 𝜋2 [
𝑝4𝐷11 + 2(𝐷12 + 2𝐷66)(𝑟𝑝𝑞)2 + (𝑟𝑞)4𝐷22

(𝑎𝑝)2𝑁𝑥 + (𝑟𝑎𝑞)2𝑁𝑦
] (27) 

where 𝜆𝑏 is the buckling load factor, 𝑟 is the aspect ratio which represents the ratio of length to 

width, 𝐷𝑖𝑗 indicates the bending stiffness of composite plate, 𝑎 and 𝑏 are the dimensions of the 

laminate in x and y directions, respectively, 𝑝 and 𝑞 are the half-waves in the x and y directions, 

respectively, 𝑁𝑥 and 𝑁𝑦 are the in-plane compressive loads in x and y directions, respectively. It 

should be noted that the parameters 𝐷16 and 𝐷26 are neglected in Eq. (27), as they are zero for 

specially orthotropic laminates and very small for the symmetrically balanced laminates. Thus, the 

buckling load factor obtained by Eq. (27) is exact for specially orthotropic laminates and 

approximately correct for the symmetrically balanced laminates. It is clear from Eq. (27) that the 

buckling load factor is a function of the material property, length, width, stacking sequence, 

applied in-plane compressive loads, and value of parameters 𝑝 and 𝑞. It is worth mentioning that 

various values for parameters 𝑝 and 𝑞 will result in different buckling load factors. The smallest 

buckling load factor yielded by Eq. (27) for different values of parameters 𝑝 and 𝑞 will be the 

critical buckling load factor for the laminated composite plate. 

 
Fig. 3. Laminated composite plate 
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The optimum stacking sequence problem of the laminated composite plates under in-plane 

compressive loads for maximum buckling capacity can be mathematically expressed as follows: 

Find 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛] 

To maximise: 𝑓(𝑿) = 𝜆𝑏 

Subjected to:  

𝑥𝑖𝜖 𝑺 = [𝑠1, 𝑠2, … , 𝑠𝑝] 

(28) 

where 𝑓(. ) represents the objective function of the problem, 𝑿 = [𝑥1, 𝑥2, … , 𝑥𝑛] indicates the 

vector of design variables, 𝑥𝑖 is the fibre orientation for the 𝑖th ply which should be selected from 

a given discrete set, 𝑛 is the number of design variables, 𝑺 is the vector containing the allowable 

fibre orientations, and 𝑝 is the number of allowable fibre orientations. It should be noted that for a 

composite laminate with m layers, the number of design variables will be equal to m/2 due to 

symmetry (i.e., 𝑛 = 𝑚/2).   

4. Numerical Results 

In this section, the performance of different meta-heuristics in the buckling maximisation of a 64-

layer laminated composite plate will be investigated. The plate is assumed as a symmetrically 

balanced laminated composite with simply supported boundary conditions. The design variables 

are the stacking sequences of layers, which should be selected from the discrete set of 

[02, ±15, ±30, ±45, ±60, ±75, 902]. In previous studies, possible fibre orientations were 

taken as [02, ±45, 902 ] [27,31]. However, this study considers more possible fibre orientations to 

make the problem more challenging for the algorithms. It is assumed that the laminated composite 

plate is made of graphite/epoxy material with mechanical properties presented in Table 1. The 

length of the plate is assumed to be 0.508 m with various aspect ratios and load cases listed in 

Table 2. 

 

 

Table 1. Mechanical properties of the graphite/epoxy [27]. 

Property Graphite/epoxy 

Young's modulus, 𝐸1(GPa) 127.55 

Young's modulus, 𝐸2(GPa) 13.03 

Shear modulus, 𝐺12 (GPa) 6.41 

Poisson's ratio, 𝜈12 0.3 

Lamina thickness, t (mm) 0.127 
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Table 2. Different load cases, lengths, and widths considered for 64-layer laminated composite plate 
Load cases a (m) b (m) 𝑁𝑥 𝑁𝑦 

LC1 0.508 0.254 1 1 

LC2 0.508 0.508 1 1 

LC3 0.508 1.016 1 1 

LC4 0.508 0.254 1 0.5 

LC5 0.508 0.508 1 0.5 

LC6 0.508 1.016 1 0.5 

LC7 0.508 0.254 1 2 

LC8 0.508 0.508 1 2 

LC9 0.508 1.016 1 2 

4.1. Internal parameters 

According to Section 2, the algorithms have a set of internal parameters which can significantly 

affect their performance. To find the best possible values for these parameters, several performance 

sensitivity analyses have been performed by considering different values for internal parameters. 

The sensitivity analyses were performed based on a trial and error approach. Table 3 lists the 

possible values for internal parameters of each algorithm alongside their suitable values obtained 

from the sensitivity analyses. From different combinations of possible values, the suitable 

parameter values were selected based on the best performance exhibited by each algorithm. To 

keep the article in a manageable size, only the final results of sensitivity analyses were presented 

in Table 3. In this study, the obtained internal parameters from the sensitivity analyses will be used 

to assess the performance of different algorithms.  

Table 3. Internal parameters of different algorithms and their appropriate values obtained from the sensitivity 

analyses 
Algorithm Possible values Selected values from sensitivity analysis 

PSO 𝑁𝑝𝜖{20, 30, 40} 𝑁𝑝 = 40 

𝑐1, 𝑐2𝜖{1, 2} 𝑐1 = 2, 𝑐2 = 1 

𝜔damp𝜖{0.95, 0.99} 𝜔damp = 0.99 

DE\best\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 40 

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.8 

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.7 

DE\rand-to-best\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 20 

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.9 

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.5 

DE\current-to-rand\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 20 

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.8 

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.5 

DE\current-to-best\1 𝑁𝐼𝜖{20, 30, 40} 𝑁𝐼 = 20 

𝐶𝑅𝜖{0.8, 0.9} 𝐶𝑅 = 0.8 

𝐹𝜖{0.5, 0.7, 0.9} 𝐹 = 0.5 

CA 𝑁𝑆𝜖{20, 30, 40} 𝑁𝑆 = 40 

𝑁Accept𝜖{0.1, 0.2, 0.3, 0.4} 𝑁Accept = 0.2 

𝛽𝜖{0.1, 0.2, 0.3, 0.4,0.5} 𝛽 = 0.1 

BBO 𝑁𝐻𝜖{20, 30, 40} 𝑁𝐻 = 40 

OIO 𝑁𝑂𝜖{9, 21, 30} 𝑁𝑂 = 30 

𝑝𝑐𝜖{0.0001, 0.5, 0.999} 𝑝𝑐 = 0.0001 

LCA 𝑁team𝜖{10, 20, 30} 𝑁team = 20 

𝜓1, 𝜓2𝜖{1. 1.5, 2} 𝜓1 =  𝜓2 = 1 

𝑝𝑐𝜖{0.0001, 0.5, 0.999} 𝑝𝑐 = 0.0001 
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 4.2. Performance comparisons 

To investigate the performance of different algorithms in optimum design of 64-layer laminated 

composite, 5000 function evaluations was defined as the termination criterion. The algorithms 

were repeated for 30 independent runs, and their best, average, and worst results alongside the 

standard deviations for different load cases were reported. 

For different load cases, Tables 4-12 present the optimum stacking sequences corresponding to 

the maximum buckling load factors obtained by each algorithm alongside the best, mean, standard 

deviation, and worst results. At first glance, it is observable from the results in Tables 4-12 that 

none of the algorithms is capable of exhibiting better performance than others in all load cases and 

the efficiency of each algorithm differs from a given load case to another one. The reason behind 

this contradiction can be explained based on the “No Free Lunch” theorem [68] which states that 

it is almost impossible to develop a general strategy to solve different problem types in an equally 

efficient manner. With this introductory statement, the performance of the algorithms will be 

investigated in more detail in this section to find out which algorithms are capable of providing 

the most promising results for the different load cases of the laminated composite layup 

optimisation problem. 

From Tables 4-12, it can be seen that the algorithms exhibit quite similar performances for the 

second, fifth, and eighth load cases, whereas their performances seem to be different for other load 

cases. The numerical results in Tables 4-12 can be interpreted in different ways. In terms of the 

best results, for the first load case, it is turn out that PSO, CA, OIO, and LCA can find the maximum 

buckling load factor. LCA found better best solution than all other algorithms in the third case. On 

the other hand, PSO and BBO exhibit better performances than others for the fourth load case in 

terms of the best solution. Moreover, the best solutions obtained by PSO, BBO, and LCA are better 

than those yielded by other algorithms in the ninth load case. For the rest of the load cases, all 

algorithms were able to find the optimum buckling load factors. 

If the results reported in Tables 4-12  are compared in terms of standard deviations, it can be 

seen that the standard deviations yielded by BBO, OIO, and LCA algorithms for the second, fifth, 

and eighth load cases are equal to zero, which indicate that these algorithms are capable of finding 

the optimum solutions in each independent run. Comparison of the standard deviations yielded by 

different algorithms for other load cases suggests that LCA and OIO algorithms are capable of 

providing the lowest standard deviations for the almost rest of the load cases except the seventh 
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load case, which make their performance more impressive than others. Comparing with other 

algorithms, the efficiency of LCA and OIO may stem from the fact that their search operators can 

keep the diversity of the population at a high level to avoid premature convergence to the local 

optimum points in the search space. Although the DE\current-to-rand\1 algorithm yielded the 

lowest standard deviation for the seventh load case, the LCA and OIO are still competitive in this 

load case as well.  

 The worst results obtained from 30 independent runs for each algorithm is also another 

important criterion, which can show how the algorithms are capable of generating better results in 

the worst-case scenarios. For the second, fifth, and eighth load cases, the BBO, OIO, and LCA 

performed better than other algorithms in terms of worst results. For the rest of the load cases 

except the seventh and last load cases, LCA obtained better worst results than all other algorithms. 

However, DE\current-to-rand\1 and OIO algorithms provided better worst buckling load factors 

for the seventh and last load cases, respectively. 

Table 4. Optimum stacking sequences and statistical results obtained by different algorithms for load case 1 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 720616.44 720489.75 134.23 720093.61 [±756/±60/±752/±605/±75/±60]𝑠 

DE\best\1 720498.49 718577.92 1658.90 712666.84 [±753/±60/±756/±602/902/±752/±45]𝑠 

DE\rand-to-best\1 720493.99 719645.94 509.35 718451.13 [±755/(±60, ±75)2/±752/±60/±752/902/±15]𝑠 

DE\current-to-rand\1 720503.07 719554.38 535.65 717826.67 [±754/±60/±753/±60/±752/±60/902/±75/904]𝑠 

DE\current-to-best\1 720381.08 719546.57 638.74 718158.63 [±756/±60/±75/±602/±75/±60/±75/906]𝑠 

CA 720616.44 719891.49 719.38 717953.80 [±756/±60/±752/±605/±75/±60]𝑠 

BBO 720602.77 719355.15 854.85 717381.11 [±756/±602/(±752, ±60)2/±60/±45]𝑠 

OIO 720616.44 720482.28 140.91 720077.26 [±756/±60/±752/±605/±75/±60]𝑠 

LCA 720616.44 720578.74 29.63 720521.13 [±756/±60/±752/±605/±75/±60]𝑠 
 

Table 5. Optimum stacking sequences and statistical results obtained by different algorithms for load case 2 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 242823.08 242814.40 27.83 242715.57 [±4516]𝑠 

DE\best\1 242823.08 242187.80 857.37 239382.59 [±4516]𝑠 

DE\rand-to-best\1 242823.08 242745.37 196.58 241985.59 [±4516]𝑠 

DE\current-to-rand\1 242823.08 242822.33 4.13 242800.45 [±4516]𝑠 

DE\current-to-best\1 242823.08 242785.36 111.73 242393.02 [±4516]𝑠 

CA 242823.08 242822.89 1.03 242817.42 [±4516]𝑠 

BBO 242823.08 242823.08 0.00 242823.08 [±4516]𝑠 

OIO 242823.08 242823.08 0.00 242823.08 [±4516]𝑠 

LCA 242823.08 242823.08 0.00 242823.08 [±4516]𝑠 
 

Table 6. Optimum stacking sequences and statistical results obtained by different algorithms for load case 3 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 180150.69 180101.05 73.71 179813.21 [±155/±30/±153/(±302, ±15)2/±45]𝑠 

DE\best\1 180140.92 179737.47 263.91 179004.20 [±157/±303/±15/±302/±15/02/±30]𝑠 

DE\rand-to-best\1 180124.62 179911.88 144.75 179546.03 [±154/(±30, ±153)2/±30/±152/±60]𝑠 

DE\current-to-rand\1 180109.63 179863.70 138.42 179445.58 [±15/(±153, ±30)2/±152/±30/02/±152/±30]𝑠 

DE\current-to-best\1 180087.22 179851.20 176.28 179154.11 [±155/(±30, ±15)2/±15/±30/±15/04/±15/02]𝑠 

CA 180150.69 179949.77 188.70 179490.83 [±154/±30/±155/±304/±15/±45]𝑠 

BBO 180147.01 179916.47 187.43 179452.23 [±157/±303/±15/±302/±15/04]𝑠 

OIO 180149.46 180110.70 40.01 179977.96 [±152/±30/±158/±30/±154]𝑠 

LCA 180150.90 180140.06 15.63 180073.69 [±152/±30/±158/±30/±153/02]𝑠 



24 
 

Table 7. Optimum stacking sequences and statistical results obtained by different algorithms for load case 4 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 1119540.28 1119250.08 318.47 1117991.76 [±604/±75/±60/(±75, ±602)2/±753/902]𝑠 

DE\best\1 1119452.35 1118513.39 1308.49 1112891.38 [±605/(±75, ±60)2/±753/±60/±75/904]𝑠 

DE\rand-to-best\1 1119445.95 1118916.13 316.33 1118355.16 [±604/±75/±602/(±75, ±60)2/±753/±60/±45]𝑠 

DE\current-to-rand\1 1119437.74 1118883.15 347.43 1118123.88 [±604/(±75, ±60)2/(±60, ±75)2/±604]𝑠 

DE\current-to-best\1 1119441.92 1118298.54 1798.76 1109502.65 [±604/±752/±605/±752/902/±75/±45]𝑠 

CA 1119530.70 1118057.95 1946.47 1112408.51 [±604/±75/±602/±75/±60/±752/±602/±753]𝑠 

BBO 1119540.28 1119249.54 244.54 1118452.16 [±604/±75/±60/(±75, ±602)2/±753/±902]𝑠 

OIO 1119530.70 1119363.52 181.27 1118716.08 [±604/±75/±602/(±75, ±60)2/±753/±60/±75]𝑠 

LCA 1119514.33 1119461.82 66.75 1119193.36 [±75/±608/±75/±604/904]𝑠 

 
Table 8. Optimum stacking sequences and statistical results obtained by different algorithms for load case 5 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 323764.11 323759.08 26.16 323620.75 [±4516]𝑠 

DE\best\1 323764.11 323568.19 269.84 322949.26 [±4516]𝑠 

DE\rand-to-best\1 323764.11 323761.09 9.21 323733.93 [±4516]𝑠 

DE\current-to-rand\1 323764.11 323755.31 38.83 323552.85 [±4516]𝑠 

DE\current-to-best\1 323764.11 323723.62 145.07 323190.69 [±4516]𝑠 

CA 323764.11 323758.83 28.93 323605.67 [±4516]𝑠 

BBO 323764.11 323764.11 0.00 323764.11 [±4516]𝑠 

OIO 323764.11 323764.11 0.00 323764.11 [±4516]𝑠 

LCA 323764.11 323764.11 0.00 323764.11 [±4516]𝑠 
 

Table 9. Optimum stacking sequences and statistical results obtained by different algorithms for load case 6 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 208148.56 208132.26 17.15 208092.62 [04/(±15, 02)2/010/±153/04]𝑠 

DE\best\1 208148.56 207918.78 1024.87 202532.00 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠 

DE\rand-to-best\1 208148.56 208144.68 7.93 208109.91 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠 

DE\current-to-rand\1 208148.56 208145.36 7.46 208109.91 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠 

DE\current-to-best\1 208148.56 208124.08 117.56 207502.00 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠 

CA 208148.56 208099.28 83.45 207756.63 [02/(04, ±15)2/(02, ±15)2/±15/08]𝑠 

BBO 208148.56 208126.44 31.79 207985.48 [±15/012/(02, ±15)2/(±15, 02)2/02]𝑠 

OIO 208148.56 208138.52 11.88 208094.36 [±15/02/(08, ±15)2/04/±152]𝑠 

LCA 208148.56 208144.69 5.65 208126.77 [02/±15/02/(06, ±15)2/±15/04/±15/02]𝑠 
 

Table 10. Optimum stacking sequences and statistical results obtained by different algorithms for load case 7 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 416297.12 416246.54 87.70 415833.10 [902/±75/908/±75/906/±752/904/±75/902]𝑠 

DE\best\1 416297.12 416045.22 672.26 413665.23 [904/±75/902/±75/9012/±753/904]𝑠 

DE\rand-to-best\1 416297.12 416290.44 16.47 416207.77 [902/±75/906/±75/908/±75/906/±752]𝑠 

DE\current-to-rand\1 416297.12 416293.75 5.89 416275.78 [904/(±75, 902)2/904/(904, ±75)2/±75/902]𝑠 

DE\current-to-best\1 416297.12 416293.52 8.36 416265.21 [902/±75/902/(906, ±75)2/±75/904/±75/902]𝑠 

CA 416297.12 416211.30 100.16 415883.44 [904/±75/906/±752/9010/±752/902]𝑠 

BBO 416297.12 416243.94 49.67 416093.90 [902/±75/906/±75/9010/±752/904/±75]𝑠 

OIO 416297.12 416285.32 11.43 416243.21 [±75/902/(908, ±75)2/±75/904/±752]𝑠 

LCA 416297.12 416290.63 9.60 416258.83 [906/±75/904/±75/(902, ±75)2/±75/908]𝑠 
 

Table 11. Optimum stacking sequences and statistical results obtained by different algorithms for load case 8 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 161882.05 161881.17 4.82 161855.65 [±4516]𝑠 

DE\best\1 161882.05 161386.10 518.11 159950.55 [±4516]𝑠 

DE\rand-to-best\1 161882.05 161836.78 122.78 161323.73 [±4516]𝑠 

DE\current-to-rand\1 161882.05 161882.05 0.00 161882.05 [±4516]𝑠 

DE\current-to-best\1 161882.05 161848.35 87.96 161595.35 [±4516]𝑠 

CA 161882.05 161872.50 52.35 161595.35 [±4516]𝑠 

BBO 161882.05 161882.05 0.00 161882.05 [±4516]𝑠 

OIO 161882.05 161882.05 0.00 161882.05 [±4516]𝑠 

LCA 161882.05 161882.05 0.00 161882.05 [±4516]𝑠 
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Table 12. Optimum stacking sequences and statistical results obtained by different algorithms for load case 9 
Algorithm Statistical results Stacking Sequence 

 Best Mean Std Worst 
PSO 139942.53 139917.16 26.46 139831.96 [±304/±15/±302/(±15, ±30)2/±153/±30/02]𝑠 

DE\best\1 139915.42 139535.79 512.21 138043.81 [±302/±15/±304/±15/±303/±15/±30/±152/02]𝑠 

DE\rand-to-best\1 139930.05 139880.17 33.40 139794.40 [±306/±154/±302/±15/06]𝑠 

DE\current-to-rand\1 139930.35 139848.15 67.12 139623.36 [±305/±152/±302/±15/±30/±153/02/±15]𝑠 

DE\current-to-best\1 139931.54 139873.65 47.68 139733.88 [±303/±15/±304/±15/±30/±154/04]𝑠 

CA 139939.29 139860.59 81.75 139639.57 [±15/±308/±15/±304/04]𝑠 

BBO 139942.53 139901.46 42.23 139767.83 [±304/±15/±302/±15/±30/±152/±302/±152/02]𝑠 

OIO 139938.09 139901.46 15.45 139880.39 [±30/(±15, ±305)2/±30/02/±15]𝑠 

LCA 139942.53 139929.94 21.31 139824.37 [±304/±15/±302/±15/±30/±152/±302/±152/02]𝑠 

Fig. 4 presents the boxplots to provide statistical intuitive performance comparisons between 

different algorithms for the first and fourth load cases. The reason behind the selection of these 

load cases stems from the fact that these load cases are challenging enough to clearly show the 

statistical differences between the algorithms. For the first load case, it can be seen from Fig. 4 

that the ranges and variances of the results obtained by the PSO, OIO, and LCA are significantly 

smaller than those for other algorithms, which show the stability of these algorithms in finding 

maximum buckling load factors. For the fourth load case, the superiority of PSO, OIO, and LCA 

is still observable. However, the BBO is also exhibited competitive performance in the fourth load 

case. It can also be seen that the mean values obtained by the PSO, OIO, and LCA for the first and 

fourth load cases are well distributed near the optimum buckling load factors. The overall 

conclusion that can make from Fig. 4 is that the LCA is statistically more stable than all other 

algorithms. However, the statistical performances of PSO and OIO are also remarkable. 

To investigate the convergence properties of different algorithms, the average convergence 

diagrams for the first and fourth load cases are illustrated in Fig. 5. From  Fig. 5, it can be observed 

that the LCA and PSO exhibit faster convergence rates than other algorithms. Although the 

convergence rate of OIO is slower than others, this algorithm can find higher quality solutions than 

most of the other algorithms as the iterations proceed. This may reflect the fact that the trade-offs 

between the exploration and exploitation phases in LCA and PSO are more appropriately 

implemented and they are computationally more efficient. It seems that OIO switches from the 

exploration phase to the exploitation phase with a significant delay in comparison to the LCA and 

PSO. However, despite this delay, OIO is still capable of converging to better final solutions in 

comparison to most of the investigated algorithms. It is also observable from Fig. 5 that the 

convergence behaviours of different variants of DE seem to be somehow similar. 
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Fig. 4. Box plots of different algorithms: a) first load case, b) fourth load case 
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Fig. 5. Average convergence diagrams of different algorithms: a) first load case, b) fourth load case 

4.3. Deep statistical comparison 

Recent research trends in meta-heuristics revealed that the comparison of the efficiency of 

algorithms only based on the basic statistical parameters, such as best, mean, worst, and standard 

deviation, is not statistically enough to make proper conclusions [69,70]. Various statistical tests 

in the literature are applicable to evaluate, compare, and rank the performance of meta-heuristics 

for a given problem [69]. Recently, Eftimov et al. [70] proposed a deep statistical comparison 

(DSC) method for the performance comparison of algorithms. The approach uses the two-sample 

Kolmogorov–Smirnov (KS) test to pair-wise performance comparison between each pair of 

algorithms. Then, the algorithms are ranked based on the results obtained from the two-sample KS 

test. In this study, in order to provide a fair comparison, the DSC method is employed to rank the 
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performance of investigated algorithms in the optimum layup problem of laminated composite 

plates. 

The two-sample KS test is a non-parametric statistical test that determines whether two sets of 

data come from the same continuous distribution or not. The test assumes the null hypothesis that 

the results obtained from each pair of algorithms come from the same continuous distribution. In 

other words, the KS test considers the null hypothesis that the performances of each pair of 

algorithms are statistically equivalent. Let us assume 𝛼KS be the significance level used by the KS 

test, which indicates the probability threshold for acceptance or rejection of the null hypothesis. 

For the selected significance level 𝛼KS, the KS test computes 𝑝value for each pair of algorithms. If 

𝑝value is smaller than the significance level 𝛼KS, the null hypothesis would be rejected. Otherwise, 

the null hypothesis would be accepted. The acceptance of the null hypothesis means that there is 

no significant difference between the two algorithms and they perform statistically the same. 

However, if the null hypothesis is rejected, it means that the two algorithms perform statistically 

different. The DSC approach use the 𝑝value for ranking the performance of different algorithms. 

For more details about the ranking formulations, the interested readers are referred to Ref. [70]. 

The selection of 𝛼KS plays an important role in the acceptance or rejection of the null 

hypothesis. Inappropriate values for this parameter could result in the wrong conclusion about the 

performances of different algorithms. If 𝛼KS is taken as 1, it would result in the rejection of the 

null hypothesis for all values of 𝑝value, which would mean the performances of all algorithms are 

always statistically different. The value of 𝛼KS is typically considered between 0.05 and 0.1 [70]. 

In this study, the significance level is taken as 𝛼KS = 0.05. The 𝑝value obtained from the KS test 

for each pair of algorithms in different load cases are illustrated in Fig. 6. It is obvious that the 

diagonal elements in Fig. 6 should be equal to one, which means that each algorithm comes from 

the same distribution in comparison to itself. Fig. 6 illustrates some interesting information about 

the difference between algorithms in each load case. Firstly, the null hypothesis is accepted for all 

of the algorithms except DE\best\1 in load cases 2, 5, and 8. This means that there are significant 

differences between the performances of the DE\best\1 algorithm and others in these load cases. It 

also implies that there are no significant differences between most of the algorithms in load cases 

2, 5, and 8, and their performances are statistically equivalent. In the rest of the load cases which 

are more challenging than load cases 2, 5, and 8, the null hypotheses are rejected and there are 

significant differences between the performances of different algorithms. 
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Fig. 6. 𝑝value obtained from the two-sample Kolmogorov-Smirnov (KS) test for each pair of algorithms 

in different load cases 
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Finally, Table 13 lists the performance rankings of different algorithms for different load cases. 

The algorithms with the same rank values in each load case reveal the fact that their performances 

are statistically equivalent. From this table, it can be concluded that the LCA algorithm performs 

better or equal in comparison to other algorithms in different load cases, except load case 7. Among 

different variants of the DE algorithm, the DE\current-to-rand\1 performs better than others as it 

is ranked as the first algorithm in load cases 6 and 7. The last column of Table 13 shows the overall 

ranking of algorithms calculated based on the overall scores obtained in different load cases, in 

which the LCA and OIO algorithms are ranked as the two most efficient algorithms between the 

investigated nine algorithms. 

Table 13. Ranking of different algorithms obtained by the DSC approach for different load cases 
 Load cases Overall 

 LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 

PSO 2 6 3 3 5 5 6 5 3 3 

DE\best\1 9 9 9 7 9 9 9 9 9 9 

DE\rand-to-best\1 5 8 6 5 4 3 4 8 5 6 

DE\current-to-rand\1 6 5 7 6 7 1 1 2.5 8 5 

DE\current-to-best\1 7 7 8 8 8 7 2 7 6 8 

CA 4 4 4 9 6 8 8 6 7 7 

BBO 8 2 5 4 2 6 7 2.5 4 4 

OIO 3 2 2 2 2 4 5 2.5 2 2 

LCA 1 2 1 1 2 2 3 2.5 1 1 

5. Concluding remarks 

The performance of nine meta-heuristic algorithms, including PSO, different variants of DE, CA, 

BBO, OIO and LCA, were assessed for the optimum layup problem of laminated composite plates. 

The buckling capacity maximisation of a 64-layer laminated composite plate under various load 

cases has been investigated as the benchmark problem, in which the design variables are the 

stacking sequences of layers. The performances of algorithms in finding maximum buckling load 

factors were evaluated in terms of the basic statistical parameters, including best, mean, standard 

deviation, and worst results. The numerical results revealed that the ranges and variances of the 

results obtained by the PSO, OIO, and LCA are significantly smaller than those for other 

algorithms, which show the stability of these algorithms in finding maximum buckling load 

factors. 

To provide a fair comparison between the algorithms, a deep statistical comparison (DSC) 

method was employed to rank the performance of different algorithms. The DSC approach uses a 

non-parametric two-sample Kolmogorov–Smirnov (KS) test for pair-wise performance 

comparison between each pair of algorithms. The KS test assumes the null hypothesis that the 
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performances of each pair of algorithms are statistically equivalent. The results obtained from the 

KS test with the significance level of 𝛼KS = 0.05 revealed that there are significant differences 

between the performances of different algorithms for most of the load cases. The performance 

rankings obtained from the DSC method suggested that the LCA algorithm performs better or 

equal in comparison to other algorithms in most of the load cases. The overall ranking of 

algorithms calculated based on the overall scores obtained from different load cases was as 

follows: LCA>OIO>PSO>BBO>DE\current-to-rand\1>DE\rand-to-best\1>CA>DE\current-to-

best\1>DE\best\1. The convergence diagrams obtained from 30 independent runs revealed that the 

PSO and LCA exhibit faster convergence rates than other algorithms. This may reflect the fact that 

the trade-offs between the exploration and exploitation phases in LCA and PSO are more 

adequately implemented. Despite its remarkable performance in terms of final results, the 

convergence rate of OIO is slower than other algorithms. It was observed that OIO switches from 

the exploration phase to the exploitation phase with a significant delay in comparison to the LCA 

and PSO.   
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