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Abstract. Suppose (X, g) is a compact, spin Riemannian 7-manifold, with

Dirac operator /D
g

: C∞(X, /S) → C∞(X, /S). Let G be SU(m) or U(m), and
E → X be a rank m complex bundle with G-structure. Write BE for the

infinite-dimensional moduli space of connections on E, modulo gauge. There

is a natural principal Z2-bundle O
/Dg

E → BE parametrizing orientations of

det /D
g
AdA for twisted elliptic operators /D

g
AdA at each [A] in BE . A theorem

of Walpuski [33] shows O
/Dg

E is trivializable.

We prove that if we choose an orientation for det /D
g
, and a flag structure

on X in the sense of [17], then we can define canonical trivializations of O
/Dg

E
for all such bundles E → X, satisfying natural compatibilities.

Now let (X,ϕ, g) be a compact G2-manifold, with d(∗ϕ) = 0. Then we can

consider moduli spaces MG2
E of G2-instantons on E → X, which are smooth

manifolds under suitable transversality conditions, and derived manifolds in

general, with MG2
E ⊂ BE . The restriction of O

/Dg

E to MG2
E is the Z2-bundle

of orientations on MG2
E . Thus, our theorem induces canonical orientations on

all such G2-instanton moduli spaces MG2
E .

This contributes to the Donaldson–Segal programme [11], which proposes

defining enumerative invariants of G2-manifolds (X,ϕ, g) by counting moduli

spaces MG2
E , with signs depending on a choice of orientation.
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1. Introduction

This is the third of six papers: Upmeier [30], Joyce–Tanaka–Upmeier [21], this
paper, Cao–Gross–Joyce [7], and the authors [22, 23], on orientability, canonical
orientations, and spin structures, for gauge-theoretic moduli spaces.

The first [30] proves the Excision Theorem (see Theorem 2.15 below), which
relates orientations on different moduli spaces. The second [21] develops the general
theory of orientations of moduli spaces, and applies it in dimensions 3,4,5 and 6.
This paper studies orientations of moduli spaces in dimension 7. It uses results
from [21, 30], but is self-contained and can be read independently. The sequel [7]
concerns dimension 8.
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Let X be a compact connected manifold, G be SU(m) or U(m) for m > 1, and
g be the Lie algebra of G, and E → X be a rank m complex vector bundle with a
G-structure, so that E is associated to a principal G-bundle Q → X in the vector
representation. Let AdE be the associated bundle of Lie algebras, the bundle of
skew-Hermitian endomorphisms of E, trace-free if G = SU(m).

Definition 1.1. AE ⊂ Ω1(Q, g) is the space of connections on Q, equipped with
its affine Fréchet structure modelled on Ω1(X,AdE). The gauge group G = Aut(Q)
acts continuously on AE by pullback. The quotient space BE := AE/G is the moduli
space of connections on E, as a topological space with the quotient topology. As
in [10, p. 133], a connection ∇ ∈ AE is irreducible if the stabilizer group of ∇ under

the G-action on AE equals the centre Z(G). Write Airr
E ⊂ AE for the subset of

irreducible connections, and Birr
E = Airr

E /G ⊂ BE for the moduli space of irreducible
connections.

Suppose now that (X, g) is an odd-dimensional compact Riemannian spin mani-
fold with real spinor bundle /S→ X. The real Dirac operator coupled to the induced
connections on AdE defines a family of self-adjoint elliptic operators

(1.1) /D
g
AdA : C∞(X, /S⊗R AdE) −→ C∞(X, /S⊗R AdE), ∀A ∈ AE .

Let det /D
g
AdE be the determinant line bundle of this family, a real line bundle over

AE , and let Ō
/Dg

E :=
(
det /D

g
AdE \ {zero section}

)/
R>0 be the associated orientation

double cover, a principal Z2-bundle Ō
/Dg

E → AE , where Z2 = {±1}. As AE is

contractible, Ō
/Dg

E is trivializable, and we have two possible orientations.
For X a compact spin 7-manifold and G = SU(m) the argument of Walpuski in

[33, Prop. 6.3] shows that the gauge group acts trivially on the set of trivializations

of Ō
/Dg

E , and [21, Ex. 2.13] implies that this also holds for G = U(m). Hence Ō
/Dg

E

descends to a principal Z2-bundle O
/Dg

E → BE , and orientations may be constructed
equivalently over AE or BE . See [21] for more details.

We define a G2-manifold (X,ϕ, g) to be a 7-manifold X with a G2-structure
(ϕ, g), not necessarily torsion-free. (This differs from [15, §10–§12], where (ϕ, g) was
supposed torsion-free.) Suppose (X,ϕ, g) is a compact G2-manifold with d(∗ϕ) = 0.
As in Donaldson–Thomas [12] and Donaldson–Segal [11], a connection A on E is
called a G2-instanton if its curvature FA satisfies

FA ∧ ∗ϕ = 0.

As d(∗ϕ) = 0 the deformation theory of G2-instantons is elliptic, and therefore the

moduli space MG2

E of irreducible G2-instantons on E modulo gauge is a smooth
manifold (of dimension 0) under suitable transversality assumptions, and a derived
manifold (of virtual dimension 0) in the sense of [16, 18–20] in the general case.
Examples and constructions of G2-instantons on compact G2-manifolds are given
in [26–28,32–34].

As in [21, §4.1], the restriction of O
/Dg

E → BE to MG2

E ⊂ BE is the principal Z2-

bundle of orientations of MG2

E , as a (derived) manifold. Thus MG2

E is orientable,

and an orientation of O
/Dg

E → BE determines an orientation of MG2

E . Such orienta-
tions are important for the programme of [11,12].

In the present paper, we solve the problem of defining canonical orientations for
MG2

E . As for moduli spaces of anti-self-dual instantons in dimension four, where
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orientations depend on an orientation of H0(X) ⊕ H1(X) ⊕ H2
+(X) (see Donald-

son [9] and Donaldson–Kronheimer [10, Prop. 7.1.39]), this will depend on some
additional algebro-topological data, a so-called flag structure [17, §3.1].

Oversimplifying a bit, a flag structure F on a 7-manifold X assigns F (Y, s)
= ±1 to each compact 3-submanifold Y ⊂ X with a nonvanishing section s of the
normal bundle NY → Y, such that if s, s′ have winding number d(s, s′) ∈ Z then

F (Y, s′) = (−1)d(s,s′)F (Y, s), and if C ⊂ X×[0, 1] is an compact 4-submanifold with
nonvanishing normal section t and boundary ∂(C, t) = (Y0×{0}, s0)q(Y1×{1}, s1)
then F (Y0, s0) = F (Y1, s1). See §3 for more details.

When (X,ϕ, g) is a compact G2-manifold one can define an interesting class of
minimal 3-submanifolds Y in X called associative 3-folds [15, §10.8]. Compact
associative 3-folds have elliptic deformation theory, and form well-behaved moduli
spaces Mass, as (derived) manifolds. In the spirit of [11, 12], the first author [17]
discussed defining enumerative invariants of (X,ϕ, g) counting associative 3-folds.
To determine signs, he defined canonical orientations on moduli spacesMass, using
the new idea of flag structures.

Now Donaldson and Segal [11] (see also Walpuski [34]) explain that associative
3-folds are connected to G2-instantons, as a sequence of G2-instantons (E,Ai)

∞
i=1

can ‘bubble’ along an associative 3-fold Y as i → ∞. So the problems of defining
canonical orientations on moduli spaces of associative 3-folds and of G2-instantons
should be related. In [17, Conj. 8.3], the first author conjectured that one should de-
fine canonical orientations for moduli spaces of G2-instantons using flag structures.
This paper proves that conjecture.

We make heavy use of ideas and results from the previous paper [21], recalled in

Section 3. Given the O
/Dg

E → BE are orientable, [21, Th. 2.27] gives a way to choose

orientations on all O
/Dg

E andMG2

E after making finitely many algebraic choices. But

here we do something different: we construct orientations on all O
/Dg

E and MG2

E

depending on a geometric structure on X, the flag structure. We use a general
procedure for doing this using excision outlined in [21, §3.3].

In (2.2) we define the orientation Z2-torsor OrE of a SU(m)-bundle E. Up to
an orientation for the untwisted Diracian, this is the set of orientations on the
determinant line bundle of (1.1). For a SU(m1)-bundle E1 → X and SU(m2)-
bundle E2 → X we have canonical isomorphisms (Proposition 2.14)

OrE1⊕E2
∼= OrE1

⊗Z2
OrE2

,(1.2)

OrCm ∼= Z2,(1.3)

where (1.3) corresponds to the ‘standard orientations’ of [21, §2.2.2].
Here is our main result. The proof is sketched below.

Theorem 1.2. A flag structure F on a compact spin 7-manifold X determines,
for every SU(m)-bundle E → X and m ∈ N, a canonical orientation

(1.4) oF (E) ∈ OrE

satisfying the following axioms, by which oF (E) is uniquely determined:

(a) (Normalization.) For E = Cm trivial, let oflat(E) ∈ OrE be the image of
1 ∈ Z2 under the isomorphism (1.3). Then

(1.5) oF (E) = oflat(E).
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(b) (Stabilization.) Under the isomorphism OrE⊕C ∼= OrE ⊗Z2
OrC ∼= OrE ,

using (1.2) and (1.3), we have

(1.6) oF (E ⊕ C) = oF (E).

(c) (Excision.) Let E± → X± be SU(m)-bundles over a pair of compact spin
7-manifolds with flag structures F±. Let ρ± be SU(m)-frames of E± out-
side compact subsets of open U± ⊂ X±. Let Φ: E+|U+ → φ∗(E−|U−) be
a SU(m)-isomorphism covering a spin diffeomorphism φ : U+ → U−. As-
sume Φ ◦ ρ+ = φ∗ρ− outside a compact subset of U+. Under the excision
isomorphism of Theorem 2.15 we then have

Or(φ,Φ, ρ+, ρ−)
(
oF

+

(E+)
)

=
(
F+|U+/φ∗(F−|U−)

)
(α+) · oF

−
(E−),

(1.7)

where α+ ∈ H3(U+;Z) is the homology class Poincaré dual to the relative
Chern class c2(E+|U+ , ρ+) ∈ H4

cpt(U
+;Z).

Moreover, the following additional properties hold:

(i) (Direct sums.) Let E1 → X be a SU(m1)-bundle and E2 → X a SU(m2)-
bundle. Under the isomorphism (1.2) we then have

(1.8) oF (E1 ⊕ E2) = oF (E1)⊗ oF (E2).

(ii) (Families.) Let P be a compact Hausdorff space, X a compact spin 7-
manifold, and E → X × P a SU(m)-bundle. The union of all torsors
Or(E|X×{p}) for each p ∈ P is a double cover of P, of which the map

p 7→ oF (E|X×{p}) defines a continuous section. In particular, canonical
orientations are deformation invariant.

Now let E → X be a rank m complex vector bundle with U(m)-structure. Then

Ẽ = E ⊕ ΛmE∗ is a rank m+ 1 complex vector bundle with SU(m+ 1)-structure,
and [21, Ex. 2.13] defines a canonical isomorphism of Z2-torsors OrE ∼= OrẼ .
Hence the first part gives canonical orientations oF (E) ∈ OrE for all U(m)-bundles
E → X. These satisfy the analogues of (a)–(c) and (ii), but may not satisfy (i).

Remark 1.3. The problem with extending (i) to U(m)-bundles in the last part,
is that if E1, E2 → X are U(m1)- and U(m2)-bundles then the left hand side of
(1.8) comes from the orientation for the SU(m1 + m2 + 1)-bundle (E1 ⊕ E2) ⊕
Λm1+m2(E1 ⊕ E2)∗, but the right hand side comes from the orientation for the
SU(m1 +m2 + 2)-bundle (E1 ⊕ Λm1E∗1 )⊕ (E2 ⊕ Λm2E∗2 ), which is different.

The orientations oF (E) for U(m)-bundles defined in the last part may not satisfy
(i). For example, let X = CP3×S1, which has two flag structures F+, F−, and take
E1 = π∗CP3(O(k)) and E2 = π∗CP3(O(l)) for k, l ∈ Z odd. Using (1.7) we find that

changing from F+ to F− changes the sign of all three of oF
±

(E1), oF
±

(E2), oF
±

(E1⊕
E2), so (1.8) holds for only one of F+, F−.

It may still be possible to choose orientations oF (E) for all U(m)-bundles E → X
satisfying (a),(b),(i),(ii), and perhaps (c), by a different method.

One application of this theorem is to the problem of defining orientations for
moduli spaces of G2-instantons MG2

E . As the moduli space is zero-dimensional,
there are many arbitrary orientations, so the point of the problem is to come up
with a natural assignment, in particular one that is stable under deformations of
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the G2-structure. Following [21, §4.1], we have already explained how Walpuski [33,
Prop. 6.3] and Theorem 1.2 imply the following:

Corollary 1.4. Let (X,ϕ, g) be a compact G2-manifold with d(∗ϕ) = 0, and choose
an orientation of det /D

g
for the untwisted Diracian and a flag structure F on X.

Then we can define a canonical orientation for the moduli space MG2

E of G2-
instantons on X whenever E → X is a SU(m)- or U(m)-bundle.

Donaldson and Segal [11] have proposed to define enumerative invariants of

(X,ϕ, g) by counting MG2

E , with signs, and adding correction terms from asso-

ciative 3-folds in X. To determine the signs we need an orientation of MG2

E . Thus,
Corollary 1.4 contributes to the Donaldson–Segal programme.

It is natural to want to extend Theorem 1.2 and Corollary 1.4 to moduli spaces of
connections on principal G-bundles Q→ X for Lie groups G other than SU(m) and
U(m), but this is not always possible. Section 2.4 gives an example of a compact,

spin 7-manifold X for which O
/Dg

Q → BQ is not orientable when Q = X×Sp(m)→ X

is the trivial Sp(m)-bundle, for all m > 2.
In the sequels [22,23] we use Theorem 1.2 to construct ‘spin structures’ on moduli

spaces BP for principal U(m)- or SU(m)-bundles P → X over a compact spin 6-
manifold X, and apply this to construct ‘orientation data’ for Calabi–Yau 3-folds
X, as in Kontsevich and Soibelman [24, §5], solving a long-standing problem in
Donaldson–Thomas theory.

Outline of the paper. We begin in §2 by recalling background material on determi-
nant line bundles. Then our main object of study, the orientation torsor OrE of
a SU(m)-bundle E → X, is introduced along with its basic properties. We recall
from [30] the excision technique from index theory in the context of orientations. It
can be regarded as extending the functoriality of orientation torsors from globally
defined isomorphisms to local ones. Section 3 briefly recalls flag structures, and §4
proves Theorem 1.2. In brief, the proof works as follows:

(A) Let X be a compact spin 7-manifold with flag structure F, and E → X a
SU(m)-bundle. We show that we can find:
(a) A compact 3-submanifold Y ⊂ X.
(b) An SU(m)-trivialization ρ : Cm|X\Y

∼=−→E|X\Y .
(c) An embedding ι : Y ↪→ S7, so Y ′ = ι(Y ) is a 3-submanifold of S7.
(d) An isomorphism Ψ : NY → ι∗(NY ′) between the normal bundles of Y

in X and Y ′ in S7, preserving orientations and spin structures.
(e) Tubular neighbourhoods U of Y in X and U ′ of Y ′ in S7, and a spin

diffeomorphism ψ : U → U ′ with ψ|Y = ι and dψ|NY = Ψ.
Define a SU(m)-bundle E′ → S7 by E′|S7\Y ′ ∼= Cm, E′|U ′ ∼= ψ∗(E|U ),

identified over U ′ \ Y ′ by (ψ|U\Y )∗(ρ), with Ξ : E|U
∼=−→ψ∗(E′|U ′). Then

we have an excision isomorphism Or(ψ,Ξ, ρ, ρ′) : OrE → OrE′ .
Now every SU(m)-bundle on S7 is stably trivial, so Theorem 1.2(a),(b)

determine a unique orientation oflat(E′) ∈ OrE′ . Following Theorem 1.2(c)
we define an orientation oFY,ρ,ι,Ψ(E) ∈ OrE by

(1.9) oFY,ρ,ι,Ψ(E) =
(
F |U/ψ∗(FS7 |U ′)

)
[Y ] ·Or(ψ,Ξ, ρ, ρ′)−1(oflat(E′)),

where FS7 is the unique flag structure on S7.
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Observe that if the conditions Theorem 1.2(a)–(c) hold, they force oF (E) =
oFY,ρ,ι,Ψ(E). Thus, if orientations oF (E) exist satisfying Theorem 1.2(a)–(c),
then they are uniquely determined, as claimed.

(B) We prove oFY,ρ,ι,Ψ(E) is independent of the choices in (A)(a)–(e):

(i) Independence of U,U ′, ψ for fixed Y, ρ, ι,Ψ is obvious from properties
of excision isomorphisms.

(ii) Independence of Ψ for fixed Y, ρ, ι is nontrivial. Given two different
choices Ψ0,Ψ1 and ψ0, ψ1, we compute the signs comparing how ψ0, ψ1

act on orientations of bundles trivial away from Y, and how ψ0, ψ1 act
on flag structures near Y, and show these signs are the same, so the
combined effect of both signs in (1.9) cancels out. This is the main
point where flag structures are used in the proof.

(iii) Independence of ι : Y ↪→ S7 for fixed Y, ρ is easy, as any two such
embeddings are isotopic through embeddings.

(iv) Independence of Y, ρ is again nontrivial, and is proved by analyzing a
bordism Z ⊂ X × [0, 1] between two choices Y0, Y1 ⊂ X.

We can now define oF (E) = oFY,ρ,ι,Ψ(E) for all X,F and E → X.

(C) We verify the oF (E) in (B) satisfy Theorem 1.2(a)–(c),(i)–(ii).
(D) We extend from SU(m)-bundles to U(m)-bundles, which is easy.
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Yalong Cao, Aleksander Doan, Sebastian Goette, Jacob Gross, Andriy Haydys,
Johannes Nordström, Yuuji Tanaka, Richard Thomas and Thomas Walpuski for
helpful conversations, and the referee.

2. Orientations and determinants

2.1. The Quillen determinant.

2.1.1. Finite dimensions. For finite-dimensional vector spaces, the top exterior
power has the fundamental property that a short exact sequence

0 // U
f // V

g // W // 0

induces a canonical isomorphism

ΛtopU ⊗ ΛtopW ∼= ΛtopV.

Lemma 2.1. For finite-dimensional vector spaces V and W we have

Λtop(V ⊗W ) ∼= (ΛtopV )⊗ dimW ⊗ (ΛtopW )⊗ dimV .

2.1.2. Fredholm determinant. The determinant of a morphism f : V 0 → V 1 of
finite-dimensional vector spaces is an element of (ΛtopV 0)∗ ⊗ ΛtopV 1. This is iso-
morphic to (Λtop Ker f)∗ ⊗ Λtop Coker f, by the fundamental property applied to

0 // Ker f // V 0 // V 1 // Coker f // 0.

Definition 2.2. Let F : H0 → H1 be a Fredholm operator between Hilbert spaces.
The determinant line of F is detF := Λtop KerF ⊗ (Λtop CokerF )

∗
.
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Proposition 2.3. For every commutative diagram of bounded operators

0 // F0 //

F ��

G0

G ��

// H0

H ��

// 0

0 // F1 // G1 // H1 // 0

with exact rows and F,G,H Fredholm there is a canonical isomorphism

(2.1) detG ∼= detF ⊗ detH.

Proof. Snake lemma and the fundamental property in finite dimensions. �

Definition 2.4. Let T be a paracompact Hausdorff space. A T -family of Fredholm
operators {Ft : H0

t → H
1
t}t∈T is a homomorphism F : H0 → H1 of Hilbert space

bundles over T whose restriction to every fibre is Fredholm. The determinant line
bundle of F is detF :=

⊔
t∈T detFt.

To see that detF is locally trivial, pick t0 ∈ T and s(t0) : Ck → H1
t0 so that

Ft0 ⊕ s(t0) is surjective. Extend s to a neighbourhood of t0. Proposition 2.3 for

(F, F ⊕ s,Ck → {0}) gives

detF = det(F ⊕ s) = Λtop Ker(F ⊕ s)∗.

Since F ⊕ s is surjective near t0, Ker(F ⊕ s) is a subbundle there.

Example 2.5. Let D be a family of elliptic differential or pseudo-differential opera-
tors over a compact manifold X. These determine Fredholm operators by regarding
them as acting on Sobolev spaces. The determinant line bundle is independent of
the degree of the Sobolev space, since by elliptic regularity the kernels of D and
D∗ consist of smooth sections. Here, D∗ denotes the formally adjoint differential
operator and we recall KerD∗ ∼= CokerD.

For a family of differential operators the manifold and vector bundle may depend
on t ∈ T, as long as they form a fibre bundle [6].

Lemma 2.6. Let {F 0
t : H0

t → H1
t}t∈T and {F 1

t : H0
t → H1

t}t∈T be homotopic
through T -families of Fredholm operators. Then detF 0 ∼= detF 1.

Proof. By definition, a homotopy is a (T × [0, 1])-family of Fredholm operators
H(t, s). The determinant line bundle of H restricts over T × {s} to detF s for
s = 0, 1. The inclusions of the endpoints of T × [0, 1] are homotopic and as T is
paracompact Hausdorff, the pullbacks detH|T×{0} and detH|T×{0} are isomorphic.

�

Up to this point the discussion applies to operators over both the real or the
complex numbers. From now on we need real operators.

Definition 2.7. The orientation cover of a T -family of real Fredholm operators
{Ft : H0

t → H
1
t}t∈T is OrF := (detF \ {zero section})/R>0. An orientation for the

determinant of the family is a global section of OrF.

As detF is locally trivial, OrF is a double cover of T, so for T connected there
are either two orientations or none. An advantage of orientation covers is their
deformation invariance. The argument for Lemma 2.6 now gives:
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Lemma 2.8. Let {F 0
t : H0

t → H1
t}t∈T and {F 1

t : H0
t → H1

t}t∈T be homotopic
through T -families of real Fredholm operators. Then we have a canonical fibre
transport isomorphism OrF 0 ∼= OrF 1.

In particular, the orientation cover of a T -family of real elliptic operators D
depends only on the principal symbol.

2.2. Orientation torsors and excision.

2.2.1. Basic construction. We now simplify the discussion by restricting to Dira-
cians twisted by connections. On the level of orientations only the underlying vector
bundles matter:

Definition 2.9. Let (X, g) be an odd-dimensional compact spin manifold with
real spinor bundle /S. Let E → X be a vector bundle with SU(m)-structure, and let
AdE be the associated bundle of Lie algebras. The twisted Diracians

/D
g
AdA : C∞(X, /S⊗R AdE) −→ C∞(X, /S⊗R AdE), A ∈ AE ,

determine a family /D
g
AdE of real elliptic operators parametrized by the space AE

of SU(m)-connections on E. Let /D
g
AdCm,0 be the Diracian twisted by the trivial

bundle AdCm and zero connection. The orientation torsor of E → X is

(2.2) OrE := C∞
(
AE , Ō /Dg

E

)
⊗Z2

Or
(
det(/D

g
AdCm,0)

)∗
.

Similarly, for a paracompact Hausdorff P and a P -family of SU(m)-bundles, mean-
ing a SU(m)-bundle E → X×P smooth in the X directions, we get a double cover
OrE → P by taking global sections only in the X-direction.

By Lemma 2.8, OrE does not depend on g up to canonical isomorphism. More
formally, one may take global sections also in this contractible variable.

Remark 2.10. Let Q be the principal SU(m)-frame bundle of E. In the terminol-
ogy of [21], when BQ is n-orientable, the orientation torsor OrE is the set of global

sections of the n-orientation bundle Ǒ
/Dg

Q → BQ.

Remark 2.11. As /D
g
AdCm,0 is symmetric, the second factor in (2.2) is canonically

trivial. However, when m is even, this orientation is sensitive to the metric and
changes discontinuously according to the spectral flow of /D

g
. We prefer to keep

track of an extra choice of orientation for the untwisted Diracian /D
g
. By (2.1) it

induces a trivialization of Or
(
det(/D

g
AdCm,0)

)
. The second factor in (2.2) has been

introduced to simplify the formulation of the excision principle below.

Remark 2.12. For anti-self-dual moduli spaces in dimension four the Diracian is
replaced by d ⊕ d∗+ : C∞(Λ0T ∗X ⊕ Λ2

+T
∗X) → C∞(Λ1T ∗X), as in Donaldson–

Kronheimer [10]. For these OrE is canonically trivial and the untwisted operator
is responsible for the dependence of orientations on H0(X)⊕H1(X)⊕H2

+(X).

Definition 2.13. For E = Cm we can evaluate at the zero connection and canon-
ically identify the orientation torsor with Z2. We write oflat(Cm) ∈ OrCm for this
canonical base-point.
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2.2.2. Orientations and direct sums. The behaviour of orientation bundles under
direct sums is studied in the companion paper [21, Ex. 2.11]. From there we recall
the following:

Proposition 2.14. Let E1 be a SU(m1)-bundle, E2 a SU(m2)-bundle over a com-
pact odd-dimensional spin manifold X. We have a canonical isomorphism

(2.3) λE1,E2
: OrE1

⊗Z2
OrE2

−→ OrE1⊕E2
.

These have the following properties:

(i) (Families.) Let P be compact Hausdorff, E1 → X × P a SU(m1)-bundle,
and E2 → X × P a SU(m2)-bundle, regarded as P -families of bundles.
Then the collection of all maps λE1|X×{p},E2|X×{p} for each p ∈ P becomes
a continuous map of double covers over P.

(ii) (Associative.) λE1,E2⊕E3 ◦(idOrE1
⊗λE2,E3) = λE1⊕E2,E3 ◦(λE1,E2⊗idOrE3

).

(iii) (Commutative.) Or(flip) ◦ λE1,E2
=λE2,E1

◦ flip: OrE1
⊗OrE2

→OrE2⊕E1
.

(iv) (Unital.) λCm1 ,Cm2

(
oflat(Cm1)⊗ oflat(Cm2)

)
= oflat(Cm1+m2).

Moreover, in (2.5) we will see that the isomorphisms (2.3) are natural.

We shall adopt the product notation u · v := λE1,E2(u⊗ v).

Proof. We briefly recall the argument of [21, Ex. 2.11]. For the adjoint bundles
Ad(E1 ⊕ E2) ∼= Ad(E1)⊕Ad(E2)⊕ R⊕HomC(E1, E2), so by (2.1)

Ō
/Dg

E1⊕E2

∼= Ō
/Dg

E1
⊗Z2

Ō
/Dg

E2
⊗Z2

Or
(
detR /D

g)⊗Z2
Or
(
detR(/D

g
HomC(E1,E2))

)
.

As the Diracian twisted by HomC(E1, E2) is complex linear, its kernels and cokernels
are complex vector spaces and Or

(
detR(/D

g
HomC(E1,E2))

)
is canonically trivial. This,

combined with the same for Cm1 , Cm2 in place of E1, E2, gives (2.3). The same
proof works for families. Associativity is [21, (2.12)] and commutativity is [21,
(2.11)], noting that indices vanish in odd dimensions. �

2.2.3. Excision. Seeley’s excision principle [29, Th. 1 on p. 198] (also called trans-
planting) is one of the key techniques in the K-theory proof of the Atiyah–Singer
index theorem [4, §8]. Donaldson first applied excision to gauge theory in [9], see
also [10, §7]. In [30], the second author observes that on the level of orientations
these ideas can be formalized into a ‘categorification’ of the classical calculus for
the numerical index. Here is [30, Th. 2.13] in the case G = SU(m):

Theorem 2.15 (Excision). Let E± → X± be SU(m)-bundles over compact con-
nected spin manifolds. Let U± ⊂ X± be open and let ρ± be SU(m)-frames of E±

defined outside compact subsets of U±. Let φ : U+ → U− be a spin diffeomorphism
covered by a SU(m)-isomorphism Φ: E+|U+ → E−|U− with Φ◦ρ+ = φ∗ρ− outside
some compact subset of U+. This data induces an excision isomorphism

(2.4) Or(φ,Φ, ρ+, ρ−) : OrE+ −→ OrE− .

These excision isomorphisms have the following properties:

(i) (Functoriality.) Let E× → X× be a SU(m)-bundle, U× ⊂ X× open,
ψ : U− → U× a spin diffeomorphism, ρ× a SU(m)-frame defined outside
a compact subset of U×, and Ψ a SU(m)-isomorphism covering ψ that
identifies ρ− and ρ× outside a compact subset of U−. Then

Or(ψ,Ψ, ρ−, ρ×) ◦Or(φ,Φ, ρ+, ρ−) = Or(ψ ◦ φ,Ψ ◦ Φ, ρ+, ρ×).

Moreover, Or(id, id, ρ+, ρ−) = idOrE .
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(ii) (Families.) Let E± → X± × P be SU(m)-bundles, where P is a compact
Hausdorff space. Let ρ± be SU(m)-frames of E± outside compact subsets
of open U± ⊂ X±. Let Φ: E+|U+ → E−|U− be a SU(m)-isomorphism
covering a continuous P -family of spin diffeomorphisms φ : U+ → U−.
Assume Φ ◦ ρ+ = φ∗ρ− outside a compact subset of U+. Then the collection
of all maps (2.4) for each p ∈ P becomes a continuous map of double covers
over P.

In particular, when E± is pulled back from X± along the projection, the
isomorphism (2.4) is unchanged under deformation of the rest of the data
U±, ρ±, φ,Φ.

(iii) (Empty set.) If U± = ∅ then Or(φ,Φ, ρ+, ρ−) = idZ2
under the isomor-

phisms OrE± ∼= Z2 induced by Definition 2.13 and E+ ρ+

= Cm ρ−

= E−.
(iv) (Direct sums.) For k = 1, 2 let E±k → X± be SU(mk)-bundles and let

ρ±k be SU(mk)-frames of E±k outside compact subsets of U± ⊂ X±. Let
φ : U+ → U− be a spin diffeomorphism covered by SU(mk)-isomorphisms
Φk : E+

k → E−k for k = 1, 2. Then we have a commutative diagram

(2.5)

OrE+
1
⊗OrE+

2

(2.3)
��

Or(φ,Φ1,ρ
±
1 )⊗Or(φ,Φ2,ρ

±
2 )

// OrE−1
⊗OrE−2

(2.3)
��

OrE+
1 ⊕E

+
2

Or(φ,Φ1⊕Φ2,ρ
±
1 ⊕ρ

±
2 ) // OrE−1 ⊕E

−
2
.

(v) (Restriction.) Let φ̃ : Ũ+ → Ũ− be a spin diffeomorphism extending φ to

open supersets U± ⊂ Ũ± ⊂ X±, let Φ̃ be a SU(m)-isomorphism over φ̃

extending Φ, and assume Φ̃ ◦ ρ+ = φ̃∗ρ− outside a compact subset of U+.
Then Or(φ,Φ, ρ+, ρ−) = Or(φ̃, Φ̃, ρ+, ρ−).

Here we recall from [25, p. 86] that a spin diffeomorphism is an orientation-
preserving diffeomorphism φ : X+ → X− together with a choice of lift of the induced
map on GL+(R)-frame bundles to the topological spin bundles.

If E± → X are SU(m)-bundles and Φ : E+ → E− a SU(m)-isomorphism, we
may take X+ = X− = U+ = U− = X, and φ = idX , and ρ+ = ∅ = ρ− to be
defined over the empty set. Then we use the shorthand

Or(Φ) = Or(idX ,Φ, ∅, ∅) : OrE+ −→ OrE− .

2.3. Global automorphisms.

2.3.1. Mapping torus. Theorem 2.15 includes as the special case U± = X± the
more obvious functoriality for globally defined diffeomorphisms φ : X+ → X− and
Φ. The theorem can be regarded as extending this functoriality to open manifolds
and compactly supported data. The effect of a globally defined diffeomorphism can
be studied using the following construction.

Definition 2.16. The mapping torus of a diffeomorphism ψ : X → X is the quo-
tient Xψ of X × [0, 1] by the equivalence relation (x, 1) ∼ (ψ(x), 0).

Proposition 2.17. The mapping torus has the following properties:

(i) If X is compact, then Xψ is compact.

(ii) Xψ is a fibre bundle over S1 with typical fibre X.
(iii) If X is oriented and ψ is orientation preserving, then Xψ is oriented.
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(iv) When X has a spin structure and ψ is a spin structure preserving diffeo-
morphism we get a topological spin structure on Xψ.

(v) Let E → X be a vector bundle and Ψ: E → E an automorphism covering
ψ. Then the mapping torus EΨ is a vector bundle over Xψ.

2.3.2. Calculating the effect on orientations using the mapping torus.

Proposition 2.18. Let X be an odd-dimensional compact spin manifold and Ψ: E →
ψ∗(E) a SU(m)-isomorphism of a SU(m)-bundle E → X covering a spin diffeo-
morphism ψ : X → X. Then Or(ψ,Ψ, ∅, ∅) = (−1)δ(ψ,Ψ) · idOrE for

δ(ψ,Ψ) :=

∫
Xψ

Â(TXψ)
(
ch(E∗Ψ ⊗ EΨ)− rk(EΨ)2

)
.

Proof. By choosing a connection A0 ∈ AE and any smooth path At, t ∈ [0, 1] from
A0 to A1 = Ψ∗A0 we may regard EΨ → Xψ as a S1-family of SU(m)-bundles with
connection. Pick a metric on Xψ. Using the induced metrics gt on Xt we can form

the S1-family of Diracians /D
gt
AdAt twisted by AdE and the S1-family /D

gt
AdCm,0

twisted by the flat connection. Then Or
(
/D
gt
AdAt

)
⊗Z2 Or

(
/D
gt
AdCm,0

)∗
is a double

cover of S1 with monodromy Or(ψ,Ψ, ∅, ∅). On the other hand, since dimX is odd,
the Diracians are self-adjoint and the monodromy coincides with the spectral flow
around the loop [3, Th. 7.4].

As explained by Atiyah–Patodi–Singer in [3, p. 95], the spectral flow around a
loop agrees with the index of a single operator on the mapping torus, using [2,

Th. 3.10]. For the family /D
gt
AdAt we get the positive Diracian /D

+
on Xψ twisted

by AdEΨ. To compute the index of a single operator we may complexify and can
then apply the cohomological index formula of Atiyah–Singer [5] to get

ind(/D
+
AdEΨ

) =

∫
Xψ

Â(TXψ)ch(AdEΨ ⊗R C)

=

∫
Xψ

Â(TXψ)
(
ch(E∗Ψ ⊗ EΨ)− 1

)
,

using (AdEΨ ⊗R C) ⊕ C ∼= E∗Ψ ⊗ EΨ. Applying the same argument to the family
/D
gt
AdCm,0 and subtracting yields the desired result. �

Proposition 2.19. For ψ,Ψ as in Proposition 2.18 and dimX = 7 we have

(2.6) δ(ψ,Ψ) ≡
∫
Xψ

c2(EΨ)2 ≡ 1

2

∫
Xψ

p1(TXψ)c2(EΨ) mod 2.

Hence Or(Ψ) := Or(id,Ψ, ∅, ∅) = id for an SU(m)-automorphism Ψ : E → E
(this was obtained by Walpuski in [33, Prop. 6.3]). Therefore Or(ψ,Ψ1, ∅, ∅) =
Or(ψ,Ψ2, ∅, ∅) whenever Ψ1 and Ψ2 cover the same spin diffeomorphism.

Proof. The proof is similar to that of Walpuski [33, Prop. 6.3]. We have

δ(ψ,Ψ) =

∫
Xψ

m+ 6

6
c2(EΨ)2 − m

3
c4(EΨ) +

m

12
p1(TXψ)c2(EΨ).
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By the Atiyah–Singer index theorem [5]

A :=

∫
Xψ

Â(TXψ)
(
ch(EΨ)−m

)
=

∫
Xψ

c2(EΨ)2 − 2c4(EΨ)

12
+
p1(TXψ)c2(EΨ)

24

is an index and hence an integer. Then (2.6) follows from

δ(ψ,Ψ)− 2m ·A =

∫
Xψ

c2(EΨ)2,

δ(ψ,Ψ)− (12 + 2m)A = 2

∫
Xψ

c4(EΨ) +
1

2
p1(TXψ)c2(EΨ).

Finally, for ψ = idX we have Xψ = X × S1 and p1(TXψ) = pr∗X p1(TX). On the
spin 7-manifold X the cohomology class p1(TX) is divisible by four. �

Example 2.20. Let E → X be a SU(m)-bundle over a compact spin 7-manifold
with second Chern class Poincaré dual to a 3-submanifold Y ⊂ X.

Let Ψ: E → E be a SU(m)-isomorphism covering a spin diffeomorphism ψ : X →
X satisfying ψ|Y = idY . Then we may regard Y × S1 ⊂ Xψ.

Formula (2.6) is the self-intersection (mod 2) of the class α in H4(Xψ) Poincaré

dual to c2(EΨ). We have α = [Y ×S1]+β for some β ∈ H4(X), where X is included
into Xψ at some fixed point of [0, 1]. As the cross term appears twice and β •β = 0
in Xψ, we get

δ(ψ,Ψ) ≡
∫
Xψ

c2(EΨ)2 ≡ α • α ≡ [Y × S1] • [Y × S1] mod 2.

This again shows that δ(id,Ψ) ≡ 0 when ψ = id.

2.4. An example of a non-orientable moduli space BQ. Suppose (X, g) is
a compact, spin Riemannian 7-manifold, and G is any Lie group, and Q → X
is a principal G-bundle. Then generalizing §1 we may define moduli spaces AQ
of connections on Q and BQ = AQ/G of connections on Q modulo gauge, and a

principal Z2-bundle Ō
/Dg

Q → AQ parametrizing orientations on det /D
g
AdA for A ∈

AQ.
In §1 we took G = SU(m) or U(m), and then Walpuski [33, Prop. 6.3] and [21,

Ex. 2.13] show that G acts trivially on the set of global sections of Ō
/Dg

Q , so that

Ō
/Dg

Q descends to a principal Z2-bundle O
/Dg

Q → BQ, which is orientable. But what
about other Lie groups G?

This section will give an example of (X, g) for which when G = Sp(m) for m > 2
and Q = X×Sp(m)→ X is the trivial Sp(m)-bundle, G acts non-trivially on the set

of global sections of Ō
/Dg

Q , so that although Ō
/Dg

Q does in fact descend to a principal

Z2-bundle O
/Dg

Q → BQ, this is non-orientable (i.e. it has no global sections). Hence

the analogue of [33, Prop. 6.3] is false for Sp(m)-bundles.

A result on stabilizing Hm-bundles [21, Ex. 2.16] implies that if O
/Dg

Q → BQ is

non-orientable for Q = X ×Sp(2) the trivial Sp(2)-bundle, then the same holds for
Q = X × Sp(m) for m > 2. So we consider only G = Sp(2).
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To show that O
/Dg

Q → BQ is non-orientable, it is enough to find a smooth loop

γ : S1 → BQ such that the monodromy of O
/Dg

Q around γ is −1. As in [7, §2.2], a

smooth loop γ : S1 → BQ is equivalent to a principal Sp(2)-bundle R → X × S1

which is trivial on X × {1}, together with a partial connection on R in the X
directions, and any such R may be written as the mapping torus Rf of a smooth
map f : X → Sp(2), obtained by taking the trivial bundle on X × [0, 1] and
identifying endpoints using the gauge transformation f : X → Sp(2).

As in Walpuski [33, §6.1] or in Proposition 2.18, the monodromy of O
/Dg

Q around

γ is (−1)SF(γ), where SF(γ) is the spectral flow of the family of elliptic operators(
/D
g
Ad γ(t)

)
t∈S1 , which may be computed as an index SF(γ) = ind(/D

+
Ad(Rf )) of the

positive Dirac operator /D
+

on X × S1 twisted by any connection on Ad(Rf ).

Thus, to show that O
/Dg

Q → BQ is non-orientable on X, we should find a compact

spin 7-manifold X and a smooth f : X → Sp(2) such that ind(/D
+
Ad(Rf )) is odd. We

will do this in Example 2.24, after some initial computations.

Lemma 2.21. For a Sp(2)-bundle R over an 8-dimensional base we have

(2.7) ch(Ad(R)⊗R C) = 10− 6c2(R) +
3

2
c2(R)2 − 2c4(R).

Proof. This can be computed using Chern roots, meaning it suffices to establish
(2.7) in the case that the H2-bundle (R × H2)/ Sp(2) → X associated to R is the
direct sum of quaternionic line bundles. �

Proposition 2.22. Let X be a compact spin 7-manifold and R → X × S1 a
Sp(2)-bundle. Then the index has the parity of the Euler number of R:

ind /D
+
Ad(R) ≡

∫
X×S1

c4(R) mod 2.

Proof. Using (2.7) we find that

ind /D
+
Ad(R) + 6 · ind /D

+
R =

∫
X×S1

p1(TX)c2(R)

2
+ 2c2(R)2 − 3c4(R).

As p1(TX) is divisible by four, the first term on the right is even. �

Let Rf be the mapping torus bundle over X × S1 of a smooth f : X → Sp(2).
Then the Euler number of Rf is the degree of

X
f−→ Sp(2)

π−→ Sp(2)/Sp(1) = S7.

For non-orientability, we seek X and f such that this degree is odd.

Example 2.23. Let X = S7 and f : S7 → Sp(2) be smooth. Then the degree

of π ◦ f is always divisible by 12 and therefore O
/Dg

Q → BQ is orientable, for Q

the trivial Sp(2)-bundle over S7. To see this, consider the long exact sequence of
homotopy groups of the fibration π:

· · · // π7 Sp(2)
π∗ // π7S7 = Z ∂ // π6 Sp(1) // π6 Sp(2) // · · ·

As π6 Sp(1) = Z12 and π6 Sp(2) = {0}, the cokernel of π∗ is Z12. Hence orientability
holds for the moduli space of Sp(2)-connections on S7.
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Example 2.24. For
(
a b
c d

)
∈ Sp(2) and q ∈ Sp(1), define

M :=

(
|a|2 + bqb̄ ac̄+ bqd̄
cā+ dqb̄ |c|2 + dqd̄

)
.

Then M ∈ Sp(2). Replacing (a, b, c, d, q) by (ar, bs, cr, ds, s̄qs) for r, s ∈ Sp(1) does
not change the matrix M. Hence the formula defines a map

f : X = Sp(2)×Sp(1)×Sp(1) Sp(1) −→ Sp(2),

where the diagonal subgroup (r, s) ∈ Sp(1) × Sp(1) ⊂ Sp(2) acts on q ∈ Sp(1) by
conjugating with the second factor q 7→ sqs̄. It is easy to see that deg(π ◦ f) = 1. It

follows that O
/Dg

Q → BQ is non-orientable, where Q = X × Sp(2)→ X is the trivial

Sp(2)-bundle over X.

In the sequel [7, Ex. 1.14] we will use Example 2.24 to find non-orientable moduli
spaces of Sp(m)-connections BQ for m > 2 on the 8-manifold X × S1.

3. Flag structures

We recall the following from [17, §3.1]. Here X is not assumed to be compact.

Definition 3.1. Let X be an oriented 7-manifold, and consider pairs (Y, s) of
a compact, oriented 3-submanifold Y ⊂ X, and a non-vanishing section s of the
normal bundle NY of Y in X. We call (Y, s) a flagged submanifold in X.

For non-vanishing sections s, s′ of NY define

(3.1) d(s, s′) := Y •
{
t · s(y) + (1− t) · s′(y)

∣∣ t ∈ [0, 1], y ∈ Y
}
∈ Z,

using the intersection product ‘•’ between a 3-cycle and a 4-chain whose boundary
does not meet the cycle, see Dold [8, (13.20)], where we identify Y with the zero
section in NY .

Let (Y1, s1), (Y2, s2) be disjoint flagged submanifolds with [Y1] = [Y2] inH3(X;Z).
Choose an integral 4-chain C with ∂C = Y2−Y1. Let Y ′1 , Y

′
2 be small perturbations

of Y1, Y2 in the normal directions s1, s2. Then Y ′1 ∩ Y1 = Y ′2 ∩ Y2 = ∅ as s1, s2 are
non-vanishing, and Y ′1 ∩Y2 = Y ′2 ∩Y1 = ∅ as Y1, Y2 are disjoint and Y ′1 , Y

′
2 are close

to Y1, Y2. Define D((Y1, s1), (Y2, s2)) to be the intersection number (Y ′2 −Y ′1) •C in
homology over Z. Here we regard

[C] ∈ H4(X,Y1 ∪ Y2;Z), [Y ′1 ], [Y ′2 ] ∈ H3(Y ′1 ∪ Y ′2 , ∅;Z).

Note that since Y ′1 , Y
′
2 are small perturbations and Y1, Y2 are disjoint we have (Y1∪

Y2) ∩ (Y ′1 ∪ Y ′2) = ∅. This is independent of the choices of C and Y ′1 , Y
′
2 .

In [17, Prop.s 3.3 & 3.4] the first author shows that if (Y1, s1), (Y2, s2), (Y3, s3)
are disjoint flagged submanifolds with [Y1] = [Y2] = [Y3] in H3(X;Z) then

D((Y1, s1), (Y3, s3)) ≡ D((Y1, s1), (Y2, s2))

+D((Y2, s2), (Y3, s3)) mod 2,
(3.2)

and if (Y ′, s′) is any small deformation of (Y, s) with Y, Y ′ disjoint then

(3.3) D((Y, s), (Y ′, s′)) ≡ 0 mod 2.

Definition 3.2. A flag structure on X is a map

F :
{

flagged submanifolds (Y, s) in X
}
−→ {±1},

satisfying:
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(i) F (Y, s) = F (Y, s′) · (−1)d(s,s′).
(ii) If (Y1, s1), (Y2, s2) are disjoint flagged submanifolds in X with [Y1] = [Y2]

in H3(X;Z) then

F (Y2, s2) = F (Y1, s1) · (−1)D((Y1,s1),(Y2,s2)).

This is a well behaved condition by (3.2)–(3.3).
(iii) If (Y1, s1), (Y2, s2) are disjoint flagged submanifolds then

F (Y1 q Y2, s1 q s2) = F (Y1, s1) · F (Y2, s2).

Flag structures restrict to open subsets in the obvious way.

Here is [17, Prop. 3.6]:

Proposition 3.3. Let X be an oriented 7-manifold. Then:

(a) There exists a flag structure F on X.
(b) If F, F ′ are flag structures on X then there exists a unique group morphism

H3(X;Z)→ {±1}, denoted F ′/F, such that

(3.4) F ′(Y, s) = F (Y, s) · (F ′/F )[Y ] for all (Y, s).

(c) Let F be a flag structure on X and ε : H3(X;Z)→ {±1} a morphism, and
define F ′ by (3.4) with F ′/F = ε. Then F ′ is a flag structure on X.

Thus the set of flag structures on X is a torsor for Hom
(
H3(X;Z),Z2

)
.

Example 3.4. Every oriented 7-manifold X with H3(X;Z) = 0 has a unique flag
structure. More generally, a basis [Yi] of the image of H3(X;Z)→H3(X;Z2) for
submanifolds Yi ⊂ X with chosen normal sections si induce a unique flag structure
F with F (Yi, si) = 1. For example, S7 has a unique flag structure FS7 , and Y 3×S4

has a preferred flag structure F with F (Y × {x}, Y × v) = 1 for any x ∈ S4

and 0 6= v ∈ TxS4.

Definition 3.5. Let ψ : X ′ → X be an orientation-preserving diffeomorphism and
F a flag structure on X. The pullback flag structure on X ′ is (ψ∗F )(Y ′, s′) :=
F (ψ(Y ′),dψ ◦ s′). The pushforward flag structure is defined to be the pullback
along ψ−1.

When X ′ = X we can compare a flag structure to its pullback along ψ:

Proposition 3.6. Let X be an oriented 7-manifold and Y ⊂ X a compact oriented
3-submanifold. Suppose ψ : X → X is an orientation-preserving diffeomorphism
with ψ|Y = idY . Then

(F/ψ∗F )[Y ] = (−1)[Y×S1]•[Y×S1]

for any flag structure F on X, where [Y ×S1] • [Y ×S1] is the self-intersection of
Y × S1 in the mapping torus Xψ.

Proof. Pick a non-vanishing normal section s : Y → NY . For y ∈ Y and t ∈ [0, 1]
define Γ(y, t) := (1− t)s(y) + t · dψ ◦ s(y). By Proposition 3.3(b), Definition 3.2(i)
and (3.1)

(F/ψ∗F )[Y ] = F (Y, s) · F (Y,dψ ◦ s)−1 = (−1)d(s,dψ◦s) = (−1)Y •Im(Γ).

The normal bundle of Y ×S1 in Xψ is the mapping torus of dψ : NY → NY , so we

can regard Γ as a normal section of Y × S1 in Xψ by Γ̂(y, t) := [Γ(y, t), t]. There

being no intersection points at t = 0, 1 we have Y • Im(Γ) = (Y × S1) • Im(Γ̂).

Finally, by taking s to zero Γ̂ is homologous to Y × S1 in Xψ. �
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4. Canonical orientations

This section proves our main result Theorem 1.2, following the outline in §1.

4(A). The construction of orientations oFY,ρ,ι,Ψ(E).

4(A)(i). Stably trivial bundles. We first extend oflat(Cm) ∈ OrCm from Defini-
tion 2.13 to stably trivial bundles.

Definition 4.1. Let E → X be a stably trivial SU(m)-bundle over a compact spin

7-manifold. Then we find a SU(m+ k)-isomorphism Φ: E ⊕Ck → Cm+k over idX .
Using (2.3) and Or(Φ) we can identify OrE with Z2. That is, there exists a unique
oflat(E) ∈ OrE satisfying

(4.1) Or(Φ)
(
oflat(E) · oflat(Ck)

)
= oflat(Cm+k),

using the product notation defined after Proposition 2.14.

Proposition 4.2. These orientations have the following properties:

(i) (Well-defined.) The definition of oflat(E) is independent of k,Φ.
(ii) (Families.) Let P be compact Hausdorff and E → X × P stably trivial.

Then p 7→ oflat(E|X×{p}) is a continuous section of the double cover OrE .
(iii) (Functoriality.) Let E1 and E2 be a SU(m1)- and SU(m2)-bundle over X,

both stably trivial. Let `1, `2 ∈ N and let Ψ: E1 ⊕ C`1 → E2 ⊕ C`2 be a
SU-isomorphism. Then Or(Ψ)(oflat(E1 ⊕ C`1)) = oflat(E2 ⊕ C`2).

(iv) (Stability.) oflat(E ⊕ C`) = oflat(E) · oflat(C`).
(v) (Direct sums.) Let E1, E2 → X be SU(m1)- and SU(m2)-bundles, both

stably trivial. Then oflat(E1 ⊕ E2) = oflat(E1) · oflat(E2).

Proof. (i) Given ` ∈ N and Φ: E ⊕ Ck → Cm+k we use the properties of Proposi-
tion 2.14 and find

oflat(Cm+k+`) = oflat(Cm+k) · oflat(C`) (unital)

= Or(Φ)
(
oflat(E) · oflat(Ck)

)
· oflat(C`) (by (4.1))

= Or(Φ⊕ idC`)
[(
oflat(E) · oflat(Ck)

)
· oflat(C`)

]
(by (2.5))

= Or(Φ⊕ idC`)
[
oflat(E) ·

(
oflat(Ck) · oflat(C`)

)]
(assoc.)

= Or(Φ⊕ idC`)
(
oflat(E) · oflat(Ck+`)

)
(unital).

This proves independence of k. The independence of Φ follows from Proposition 2.19.
Once oflat is well-defined, (iii)–(iv) are clear.

(ii) We know already that Or(Φ) and λ are continuous maps of double covers over

P and that oflat(Ck) and oflat(Cm+k) are continuous sections.
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(v) Let Φi : E1 ⊕ Cki → Cmi+ki be SU(mi + ki)-isomorphisms. Then

oflat(Cm1+m2+k1+k2)

= oflat(Cm1+k1) · oflat(Cm2+k2) (unital)

= Or(Ψ1)
(
oflat(E1)·oflat(Ck1)

)
·Or(Ψ2)

(
oflat(E2)·oflat(Ck2)

)
(by (4.1))

= Or(Ψ1 ⊕Ψ2)
(
oflat(E1) · oflat(Ck1) · oflat(E2) · oflat(Ck2)

)
(by (2.5))

= Or(Ψ1 ⊕Ψ2) Or(idE1 ⊕ flip⊕idCk2 )(
oflat(E1) · oflat(E2) · oflat(Ck1) · oflat(Ck2)

)
(comm.).

On the other hand, by using the trivialization (Φ1 ⊕ Φ2) ◦ (idE1
⊕ flip⊕idCk2 ) of

E1 ⊕ E2 ⊕ Ck1+k2 in the definition (4.1) we have

Or(Φ1 ⊕ Φ2) ◦Or(idE1
⊕ flip⊕idCk2 )(oflat(E1 ⊕ E2) · oflat(Ck1+k2))

= oflat(Cm1+m2+k1+k2).

The last two equations and unitality imply the result. �

Example 4.3. Since π6(SU(m)) = 0 for m ≥ 4, every SU(m)-bundle E over S7 is
stably trivial.

4(A)(ii). Trivializing SU(m)-bundles outside codimension 4. We now explain how
to trivialize a SU(m)-bundle E → X outside a submanifold Y ⊂ X of codimension
4. One might expect this on general grounds, as πi(B SU(m)) = 0 for i < 4, but
the construction may be of independent interest.

Construction 4.4. Let X be a compact, oriented manifold of dimension n, with
n 6 11, and E → X be a rank m complex vector bundle with SU(m)-structure, for
m > 1. Write Cm−1 = X × Cm−1 for the trivial vector bundle over X with fibre
Cm−1, and Hom(Cm−1, E)→ X for the bundle of complex vector bundle morphisms

over X, and Hom(k)(Cm−1, E) for the determinantal variety of homomorphisms s :
Cm−1 → Ex of rank m − 1 − k for k = 0, . . . ,m − 1, which is a submanifold of
Hom(Cm−1, E) of real codimension 2k(k + 1).

A morphism s : Cm−1 → E is a section s : X → Hom(Cm−1, E). We call s generic

if it is transverse to each Hom(k)(Cm−1, E). This is an open dense condition on such

s. If s is generic then s−1
(
Hom(k)(Cm−1, E)

)
is a submanifold of X of dimension

n− 2k(k + 1), and so is empty if k > 2 as n 6 11.

Write Y = s−1
(
Hom(1)(Cm−1, E)

)
, the degeneracy locus of s. Then Y is an

embedded submanifold of X of dimension n−4. It is closed in X, as the closure lies

in the union of s−1
(
Hom(k)(Cm−1, E)

)
for k > 1, but these are empty for k > 1. It is

oriented as X is, and the fibres of Hom(Cm−1, E)→ X and Hom(1)(Cm−1, E)→ X
are complex manifolds and so oriented.

As X \ Y = s−1
(
Hom(0)(Cm−1, E)

)
, we see that s|X\Y : Cm−1|X\Y → E|X\Y

is injective. Let s∗|X\Y : E|X\Y → Cm−1|X\Y be its Hermitian adjoint, with

respect to the Hermitian metrics on E and Cm−1. Then s∗ ◦ s|X\Y : Cm−1|X\Y →
Cm−1|X\Y is invertible with positive eigenvalues, and thus has an inverse square

root (s∗ ◦ s)|−1/2
X\Y : Cm−1|X\Y → Cm−1|X\Y . Consider

s|X\Y ◦ (s∗ ◦ s)|−1/2
X\Y : Cm−1|X\Y −→ E|X\Y .
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This is an injective linear map of complex vector bundles which is isometric for the
Hermitian metrics on Cm−1|X\Y and E|X\Y .

As E has a SU(m)-structure, there is a unique isomorphism of SU(m)-bundles

ρ : Cm|X\Y → E|X\Y , such that ρ|Cm−1|X\Y = s|X\Y ◦(s∗ ◦s)|−1/2
X\Y , regarding Cm−1

as a vector subbundle of Cm = Cm−1 ⊕ C.
Thus, for any SU(m)-bundle E → X we can find a codimension 4 submanifold

Y ⊂ X and a SU(m)-framing ρ : Cm|X\Y
∼=−→E|X\Y of E outside Y.

From the definition of Chern classes in terms of degeneracy cycles in Griffiths
and Harris [13, p. 412-3], we see that the homology class [Y ] ∈ Hn−4(X;Z) is
Poincaré dual to the second Chern class c2(E) ∈ H4(X;Z). More generally, if U is
any open neighbourhood of Y in X then [Y ] ∈ Hn−4(U ;Z) is Poincaré dual to the
compactly-supported second Chern class c2(E|U , ρ|U\Y ) ∈ H4

cpt(U ;Z).

4(A)(iii). Two embedding theorems. We will need the following variation on Whit-
ney’s Embedding Theorem:

Theorem 4.5 (Haefliger [14, p. 47]). Let Y be a compact 3-manifold. Then:

(i) There is an embedding Y ↪→ S7.
(ii) Any two embeddings Y ↪→ S7 are isotopic through embeddings.

Wall has shown the following:

Theorem 4.6 (Wall [31, p. 567]). Let Z be a compact connected 4-manifold with
non-empty boundary. Then there exists an embedding Z ↪→ S7.

4(A)(iv). Definition of the orientations oFY,ρ,ι,Ψ(E).

Definition 4.7. Suppose X is a compact, oriented, spin 7-manifold with flag struc-
ture F, and E → X is a rank m complex vector bundle with SU(m)-structure. After
making some arbitrary choices, we will define an orientation oFY,ρ,ι,Ψ(E) in OrE .

As in Construction 4.4, choose a generic morphism s : Cm−1 → E, and from
this construct a compact, oriented 3-submanifold Y ⊂ X and a SU(m)-framing ρ :

Cm|X\Y
∼=−→E|X\Y of E outside Y. By Theorem 4.5(i) we may choose an embedding

ι : Y ↪→ S7. Set Y ′ = ι(Y ), a 3-submanifold of S7. Write NY , NY ′ for the normal
bundles of Y, Y ′ in X,S7.

We claim that we may choose an isomorphism Ψ : NY → ι∗(NY ′) of vector
bundles on Y, which identifies the orientations and spin structures on the total
spaces of NY , NY ′ induced by the orientations and spin structures on X,S7. Here
when we say that Ψ identifies the spin structures, we mean that it has a lift Ψ̂ to
the spin bundles of NY , NY ′ .

To see this, choose a spin structure on the oriented 3-manifold Y and transport
it along ι to Y ′. Using the spin structures on X,S7 we get, by 2-out-of-3 [25,
Prop. 1.15], spin structures PSpin(NY ) → Y and PSpin(NY ′) → Y ′ on NY and
NY ′ . As dimY = dimY ′ = 3 and Spin(4) is 2-connected, these are trivial principal
bundles, and therefore we may choose an oriented, spin isomorphism Ψ between
the normal bundles NY , NY ′ .

Choose tubular neighbourhoods U ⊂ X and U ′ ⊂ S7 of Y, Y ′ in X,S7, iden-
tified with open ε-balls in NY , NY ′ for small ε > 0. Then Ψ induces a diffeomor-
phism ψ : U → U ′ identifying orientations and spin structures on U,U ′, with
ψ|Y = ι and dψ|NY = Ψ. As in Construction 4.4, [Y ] ∈ H3(U ;Z) is Poincaré dual
to c2(E|U , ρ|U\Y ) ∈ H4

cpt(U ;Z).
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Define a rank m complex vector bundle E′ → S7 with SU(m)-structure by
E′|S7\Y ′ ∼= Cm and E′|U ′ ∼= ψ∗(E|U ), identified over U ′ \ Y ′ by (ψ|U\Y )∗(ρ). Write

Ξ: E|U → ψ∗(E′|U ′) for the natural isomorphism and ρ′ = Ξ ◦ ρ ◦ ψ−1 for the nat-

ural SU(m)-framing Cm|S7\Y ′
∼=−→E′|S7\Y ′ . Then Theorem 2.15 gives a canonical

excision isomorphism Or(ψ,Ξ, ρ, ρ′) : OrE → OrE′ in (2.4).
By Example 4.3, E′ → S7 is stably trivial, so Definition 4.1 gives an orientation

oflat(E′) ∈ OrE′ . As in (1.9), define oFY,ρ,ι,Ψ(E) ∈ OrE by

(4.2) oFY,ρ,ι,Ψ(E) =
(
F |U/ψ∗(FS7 |U ′)

)
[Y ] ·Or(ψ,Ξ, ρ, ρ′)−1(oflat(E′)),

where FS7 is the unique flag structure on S7, and F |U/ψ∗(FS7 |U ′) is as in Propo-
sition 3.3(b) for the flag structures F |U and ψ∗(FS7 |U ′) on U.

4(A)(v). Uniqueness of orientations, if they exist. Uniqueness of orientations, sub-
ject to our axioms, is explained in the outline of the proof in §1(A).

4(B). oFY,ρ,ι,Ψ(E) is independent of choices. We will prove the orientation oFY,ρ,ι,Ψ(E)
in Definition 4.7 depends only on X,F and E → X, and not on the other arbitrary
choices.

4(B)(i). oFY,ρ,ι,Ψ(E) is independent of U,U ′, ψ for fixed Y, ρ, ι,Ψ. In the situation

of Definition 4.7, let X,F,E, Y, ρ, ι,Ψ be fixed, and let U0, U
′
0, ψ0 and U1, U

′
1, ψ1 be

alternative choices for U,U ′, ψ. Then by properties of tubular neighbourhoods we
can find families Ut, U

′
t and ψt : Ut → U ′t depending smoothly on t ∈ [0, 1] and

interpolating between U0, U
′
0, ψ0 and U1, U

′
1, ψ1. For each t ∈ [0, 1] we get an orien-

tation oFY,ρ,ι,Ψ(E)t in Definition 4.7 defined using Ut, U
′
t , ψt. The families property

Theorem 2.15(ii) of excision isomorphisms implies that oFY,ρ,ι,Ψ(E)t depends con-

tinuously on t, and so is constant. Hence oFY,ρ,ι,Ψ(E) is independent of the choice

of U,U ′, ψ.

4(B)(ii). oFY,ρ,ι,Ψ(E) is independent of Ψ for fixed Y, ρ, ι. We will need the following:

Proposition 4.8. Let Y be a compact n-manifold, N → Y be a rank 2k real
vector bundle with an orientation and spin structure on its fibres, and Φ : N → N
be an orientation and spin-preserving automorphism of N covering idY : Y →
Y. Suppose E → N is a rank m complex vector bundle with U(m)-structure for
2m > n+ 2k with a framing ρ outside a compact subset of N. Then there exists a
U(m)-isomorphism Θ: E → Φ∗(E) over idN with Θ◦ρ = Φ∗(ρ) outside a compact
subset of N.

When n = 3 and 2k = 4, the same holds with SU(m) in place of U(m).

Proof. By Atiyah, Bott, and Shapiro [1, Th. 12.3(ii)], the spin structure on N deter-
mines a Thom isomorphism Thom : K0(Y )→ K0

cpt(N), a form of Bott periodicity.
By naturality we have a commutative diagram

K0(Y )

id∗Y��

Thom
// K0

cpt(N)

Φ∗ ��
K0(Y )

Thom // K0
cpt(N).

Since the horizontal maps are isomorphisms we see that Φ∗ = id. Thus we have
[E, ρ] = [Φ∗(E),Φ∗(ρ)] in K0

cpt(N). As we are in the stable range 2m > k, the
K-theory class determines the bundle up to isomorphism, so Θ exists as claimed.
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For the second part, every Spin(4)-bundle over a compact 3-manifold Y is triv-
ializable, and Ω4B SU ' Ω4BU means that stably there is no difference between
unitary and special unitary bundles on N ∪ {∞} ∼= Y + ∧ S4. �

Proposition 4.9. oFY,ρ,ι,Ψ(E) is independent of Ψ.

Proof. In the situation of Definition 4.7, let X,F,E, Y, ρ, ι, Y ′ be fixed, and let
Ψ0,Ψ1 : NY → ι∗(NY ′) be alternative choices for Ψ. Using the same tubular neigh-
bourhoods U,U ′ for Y, Y ′ in X,S7, which do not affect oFY,ρ,ι,Ψi(E) by §4(B)(i),

these induce diffeomorphisms ψ0, ψ1 : U → U ′. Let E′0, E
′
1 → S

7 be the corre-
sponding SU(m)-bundles, with SU(m)-framings ρ′0, ρ

′
1 over S7 \ Y ′.

Pick a spin structure on Y ∼= Y ′, which determines spin structures on the fibres
NY , NY ′ by 2-out-of-3 for spin structures, where Ψ0,Ψ1 preserve these spin struc-
tures. Write φ = Ψ−1

1 ◦ Ψ0 : NY → NY , so that φ preserves orientations and spin
structures on the fibres of NY .

Write S(NY ⊕R) for the sphere bundle of the vector bundle NY ⊕R→ Y, so that
S(NY ⊕ R) → Y is a S4-bundle, containing NY as an open set, and obtained by
adding a point at infinity to each fibre R4 of NY → Y, making the fibres R4q{∞} =
S4. Then S(NY ⊕ R) is a compact, oriented, spin 7-manifold, and Y embeds in

S(NY ⊕ R) as the zero section of NY . Write φ̃ : S(NY ⊕ R) → S(NY ⊕ R) for the
diffeomorphism induced by φ : NY → NY .

As U is a tubular neighbourhood of Y in X it is diffeomorphic to the bundle of
open ε-balls in NY , so we can regard U as an open neighbourhood of Y in NY and
S(NY ⊕ R). Write Ẽ → S(NY ⊕ R) for the rank m complex vector bundle with

SU(m)-structure given by Ẽ|U ∼= E|U (identifying the open subsets U in X and

S(NY ⊕ R)), and Ẽ|S(NY ⊕R)\Y ∼= Cm|S(NY ⊕R)\Y , identified over U \ Y by ρ|U\Y .
Write ρ̃ : Cm|S(NY ⊕R)\Y

∼=−→ Ẽ|S(NY ⊕R)\Y for the obvious SU(m)-framing. Then

c2(Ẽ) is Poincaré dual to [Y ] ∈ H3(S(NY ⊕ R);Z).

After stabilizing by Cl for l > 0 with 2(m + l) > 7, using Proposition 4.8 on
NY ⊂ S(NY ⊕ R) we obtain an isomorphism of SU(m+ l)-bundles

Θ: Ẽ ⊕ Cl −→ φ̃∗(Ẽ ⊕ Cl) ∼= φ̃∗(Ẽ)⊕ Cl,

compatible outside a compact subset of NY ⊂ S(NY ⊕ R) with the SU(m + l)-
framings induced by ρ̃. Thus Theorem 2.15 gives an isomorphism

(4.3) Or(φ̃,Θ, ∅, ∅) : OrẼ⊕Cl −→ OrẼ⊕Cl .

Let F̃ be the unique flag structure on S(NY ⊕R) with F̃ |U = F |U , regarding U
as an open subset of both S(NY ⊕ R) and X. Then combining Propositions 2.19

and 3.6 and Example 2.20, we find that Or(φ̃,Θ, ∅, ∅) in (4.3) is multiplication by
the sign

(4.4) (F̃ /φ̃∗F̃ )[Y ]=
(
F̃ |U/φ̃|∗U (F̃ |U )

)
[Y ]=

(
F |U/(ψ−1

1 ◦ψ0)∗(F |U )
)
[Y ],

since identifying subsets U of X and S(NY ⊕ R) identifies φ̃|U with ψ−1
1 ◦ ψ0.
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By functoriality of excision there is a commutative diagram

OrE⊕Cl

Or(ψ−1
1 ◦ψ0,Θ|U ,ρ⊕idCl ,ρ⊕idCl )��

Or(idU ,idE⊕Cl|U
,ρ⊕idCl ,ρ̃⊕idCl ) // OrẼ⊕Cl

Or(φ̃,Θ,∅,∅)=
multiplication by (4.4) ��

OrE⊕Cl
Or(idU ,idE⊕Cl|U

,ρ⊕idCl ,ρ̃⊕idCl )
// OrẼ⊕Cl ,

which implies that Or(ψ−1
1 ◦ ψ0,Θ|U , ρ⊕ idCl , ρ⊕ idCl) is multiplication by (4.4).

Similarly, we have a commutative diagram

OrE⊕Cl

Or(ψ−1
1 ◦ψ0,Θ|U ,ρ⊕idCl ,ρ⊕idCl )=

multiplication by (4.4)��

Or(ψ0,Ξ0⊕idCl|U
,ρ⊕idCl ,ρ

′⊕idCl )

--
OrE′⊕Cl ,

OrE⊕Cl
Or(ψ1,Ξ1⊕idCl|U

,ρ⊕idCl ,ρ
′⊕idCl )

11

which implies that Or(ψi,Ξi⊕ idCl|U , ρ⊕ idCl , ρ
′⊕ idCl) for i = 0, 1 differ by a factor

(4.4). And for i = 0, 1 we have commutative diagrams

OrE

λ
E,Cl⊗(−⊗Z2

oflat(Cl))
��

Or(ψi,Ξi,ρ,ρ
′)

// OrE′

λ
E′,Cl⊗(−⊗Z2

oflat(Cl))
��

OrE⊕Cl
Or(ψi,Ξi⊕idCl|U

,ρ⊕idCl ,ρ
′⊕idCl ) // OrE′⊕Cl ,

so that that Or(ψi,Ξi, ρ, ρ
′) for i = 0, 1 also differ by a factor (4.4). Hence

oFY,ρ,ι,Ψ0
(E) =

(
F |U/ψ∗0(FS7 |U ′)

)
[Y ] ·Or(ψ0,Ξ0, ρ, ρ

′)−1(oflat(E′))

=
(
F |U/ψ∗0(FS7 |U ′)

)
[Y ] ·

(
F |U/(ψ−1

1 ◦ ψ0)∗(F |U )
)
[Y ]·

Or(ψ1,Ξ1, ρ, ρ
′)−1(oflat(E′))

=
(
F |U/ψ∗1(FS7 |U ′)

)
[Y ] ·Or(ψ1,Ξ1, ρ, ρ

′)−1(oflat(E′)) = oFY,ρ,ι,Ψ1
(E),

using (4.2) in the first and fourth steps, that Or(ψi,Ξi, ρ, ρ
′) for i = 0, 1 differ by

(4.4) in the second, and functoriality of F ′/F in Proposition 3.3(b) in the third.
This completes the proof. �

4(B)(iii). oFY,ρ,ι,Ψ(E) is independent of ι : Y ↪→ S7 for fixed Y, ρ. In a similar way to

§4(B)(i), this is immediate from Theorem 4.5(ii) and the families property Theorem
2.15(ii) of excision isomorphisms.

4(B)(iv). oFY,ρ,ι,Ψ(E) is independent of s, Y, ρ.

Proposition 4.10. oFY,ρ,ι,Ψ(E) is independent of s, Y, ρ.

Proof. In Definition 4.7, let s0, s1 : Cm−1 → E be alternative generic choices for
s, and let Y0, ρ0, ι0,Ψ0, . . . and Y1, ρ1, ι1,Ψ1, . . . be subsequent choices, so we have
orientations oFY0,ρ0,ι0,Ψ0

(E) and oFY1,ρ1,ι1,Ψ1
(E) in OrE .

Choose a generic morphism š : Cm−1 × [0, 1] → E × [0, 1] over X × [0, 1] with
š|X×{i} = si for i = 0, 1, and let Z be the degeneracy locus of š. Then as in Con-
struction 4.4, Z ⊂ X × [0, 1] is a compact embedded 4-submanifold with bound-
ary ∂Z = (Y0 × {0})q (Y1 × {1}).

By genericness, Z intersects the hypersurface X × {t} in X × [0, 1] for t ∈ [0, 1]
transversely, except at finitely many points (xi, ti) for i = 1, . . . , k, with 0 < t1 <
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· · · < tk < 1. Also the projection πX |Z : Z → X is an immersion except at finitely
many points (x̃j , t̃j) for j = 1, . . . , l, where {t1, . . . , tk} ∩ {t̃1, . . . , t̃l} = ∅.

Define Yt =
{
y ∈ X : (y, t) ∈ Z

}
for each t ∈ [0, 1]. If t ∈ [0, 1] \ {t1, . . . , tk} then

X × {t} intersects Z transversely, so Yt is a compact embedded 3-submanifold of
X, which depends smoothly on t. But when t = ti, Yti is generally singular at xi,
and the topology of Yt changes by a surgery as t crosses ti in [0, 1].

For t ∈ [0, 1] \ {t1, . . . , tk} we have an orientation oFYt,ρt,ιt,Ψt(E) from Definition

4.7 with st = š|X×{t} and Yt in place of s and Y, where §4(B)(i)–§4(B)(iii) imply
these are independent of the additional choices ιt,Ψt, . . . . Locally in t we can make
these additional choices depend smoothly on t. Hence Theorem 2.15(ii) implies
that for t in each connected component of [0, 1] \ {t1, . . . , tk} this oFYt,ρt,ιt,Ψt(E)

depends continuously on t, and hence is constant. Thus, to show that oFY0,ρ0,ι0,Ψ0
(E)

= oFY1,ρ1,ι1,Ψ1
(E), it suffices to prove that

(4.5) oFYti−ε,ρti−ε,ιti−ε,Ψti−ε
(E) = oFYti+ε,ρti+ε,ιti+ε,Ψti+ε

(E)

for all i = 1, . . . , k, where ε > 0 is small.
Since {t1, . . . , tk}∩ {t̃1, . . . , t̃l} = ∅, if ε is small then [ti− ε, ti + ε] contains no t̃j

for j = 1, . . . , l, so that πX |··· : Z ∩ (X × [ti − ε, ti + ε]) → X is an immersion. As
it is injective on Yti , which is compact, making ε smaller we can suppose this is an
embedding, so that Wi := πX

(
Z∩(X×[ti−ε, ti+ε])

)
is an embedded 4-submanifold

in X with boundary ∂Wi = Yti−εqYti+ε. As the bordism Wi involves only a single
surgery at (xi, ti), each connected component of Wi must have nonempty boundary.

By Theorem 4.6 there exists an embedding  : Wi ↪→ S7. Since X and S7 are both
oriented and spin, the normal bundles of Wi in X and in S7 are (noncanonically)
isomorphic. Hence we can choose open tubular neighbourhoods V of Wi in X and
V ′ of W ′i = (Wi) in S7 and a spin diffeomorphism χ : V → V ′.

Let Uti±ε be tubular neighbourhoods of Yti±ε in V. By §4(B)(i)–§4(B)(iii) we are
free to define oFYti±ε,ρti±ε,ιti±ε,Ψti±ε

(E) using ιti±ε = χ|Yti±ε , Uti±ε, U
′
ti±ε = ξ(Uti±ε)

and ψti±ε = χ|Uti±ε . Then we have

oFYti−ε,ρti−ε,ιti−ε,Ψti−ε
(E)

=
(
F |Uti−ε/ψ

∗
ti−ε(FS7 |U ′ti−ε)

)
[Y ] ·

Or(ψti−ε,Ξti−ε|Uti−ε , ρti−ε, ρ
′
ti−ε)

−1(oflat(E′ti−ε))

=
(
F |V /χ∗(FS7 |V ′)

)
[Y ]

·Or(χ,Ξti−ε, ρti−ε|X\Wi
, ρ′ti−ε|S7\W ′i )

−1(oflat(E′ti−ε))

=
(
F |V /χ∗(FS7 |V ′)

)
[Y ]

·Or(χ,Ξti+ε, ρti+ε|X\Wi
, ρ′ti+ε|S7\W ′i )

−1(oflat(E′ti+ε))

=
(
F |Uti+ε/ψ

∗
ti+ε(FS7 |U ′ti+ε)

)
[Y ] ·

Or(ψti+ε,Ξti+ε|Uti+ε , ρti+ε, ρ
′
ti+ε)

−1(oflat(E′ti+ε))

= oFYti+ε,ρti+ε,ιti+ε,Ψti+ε
(E).

Here the first and fifth steps come from (4.2). In the second and fourth steps we
use ψti±ε = χ|Uti±ε , expanding the open sets Uti±ε, U

′
ti±ε to V, V ′, and shrinking

the domains X \ Yti±ε,S
7 \ Y ′ti±ε of ρti±ε, ρ

′
ti±ε to X \Wi,S7 \W ′i .
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In the third step, with E, V, χ fixed, we deform the SU(m)-framing ρt|X\Wi
:

Cm|X\Wi
→ E|X\Wi

defined using st smoothly over t ∈ [ti−ε, ti+ε], and hence also
smoothly deforming the data E′t,Ξt, ρ

′
t|S7\W ′i constructed using ρt|X\Wi

. Theorem

2.15(ii) implies that the corresponding family of orientations deforms continuously
in t ∈ [ti− ε, ti + ε], so has the same value at ti± ε. This proves equation (4.5), and
the proposition. �

4(B)(v). The orientations oF (E) are well-defined. We have seen above in Sections
4(B)(i)–4(B)(iv) that oFY,ρ,ι,Ψ(E) in Definition 4.7 depends only on X,F,E, and not

on the additional choices s, Y, ρ, ι,Ψ, U, U ′, ψ. Thus we can now define canonical
orientations oF (E) = oFY,ρ,ι,Ψ(E) ∈ OrE for all X,F and SU(m)-bundles E → X,
as in the first part of Theorem 1.2.

4(C). Verification of the axioms. Axiom (1.5) in Theorem 1.2(a) is obvious.

Proposition 4.11. Let E1, E2 → X be SU(m1)- and SU(m2)-bundles. Then
under (1.2) we have oF (E1 ⊕ E2) = oF (E1) · oF (E2), proving Theorem 1.2(i).
Taking E2 = C gives the stabilization axiom (1.6) in Theorem 1.2(b).

Proof. In the situation of Definition 4.7, pick generic sk : Cmk−1 → Ek for k = 1, 2,
and let Yk, ρk, ιk, Y

′
k,Ψk, Uk, ψk, U

′
k, . . . be the subsequent choices. By genericity we

may assume that Y1 ∩ Y2 = ∅ and Y ′1 ∩ Y ′2 = ∅, and making the tubular neighbour-
hoods smaller we can take U1 ∩ U2 = ∅ and U ′1 ∩ U ′2 = ∅.

As in §4(B)(v) we have oF (Ek) = oFYk,ρk,ιk,Ψk(Ek) for k = 1, 2. Also we may

write oF (E1 ⊕ E2) = oFY,ρ,ι,Ψ(E1 ⊕ E2), where Y = Y1 q Y2, ρ = ρ1|X\Y ⊕ ρ2|X\Y ,
ι = ι1 q ι2, Ψ = Ψ1 q Ψ2, and oFY,ρ,ι,Ψ(E1 ⊕ E2) is defined using U = U1 q U2,

ψ = ψ1 q ψ2, U
′ = U ′1 q U ′2, E′ = E′1 ⊕ E′2, and ρ′ = ρ′1|S7\Y ′ ⊕ ρ′2|S7\Y ′ .

Proposition 4.2(v) gives

oflat(E′) = oflat(E′1) · oflat(E′2).

By applying Or(ψ,Ψ, ρ, ρ′) to this equation and using compatibility of excision with
λ and with restriction we find that

Or(ψ,Ψ, ρ, ρ′)
(
oflat(E′)

)
= Or(ψ1,Ψ1, ρ1, ρ

′
1)
(
oflat(E′1)

)
·Or(ψ2,Ψ2, ρ2, ρ

′
2)
(
oflat(E′2)

)
.

The proposition then follows from (4.2) by multiplying this equation by(
F |U/ψ∗(FS7 |U ′)

)
[Y1 ∪ Y2]

=
(
F |U1

/(ψ1)∗(FS7 |U1
)
)
[Y1] ·

(
F |U2

/(ψ2)∗(FS7 |U2
)
)
[Y2]. �

Proposition 4.12. The excision axiom (1.7) in Theorem 1.2(c) holds.

Proof. Work in the set up of Theorem 1.2(c). Suppose that Φ ◦ ρ+|U+\K+ =

φ∗ρ−|U+\K+ holds for K+ ⊂ U+ compact. Enlarging K+ within U+ to Ǩ+ which is

the closure of an open subset of U+, we can choose a smooth morphism s+ : Cm−1 →
E+ on X+ with s+|X+\Ǩ+ = ρ+|Cm−1|X+\Ǩ+

, such that s+ is generic in the interior

of Ǩ+.
As in Definition 4.7, let Y + be the degeneracy locus of s+, and construct

a SU(m)-framing ρ̌+ : Cm|X+\Y + → E+|X+\Y + from s+|X+\Y + . This satisfies

ρ̌+|X+\Ǩ+ = ρ+|X+\Ǩ+ as s+|X+\Ǩ+ = ρ+|Cm−1|X+\Ǩ+
. Choose an embedding
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ι+ : Y + ↪→ S7, an isomorphism of normal bundles Ψ+ : NY + → ι+∗(NY ′) for Y ′ =
ι+(Y +), tubular neighbourhoods Ǔ+, U ′ of Y +, Y ′ in X+,S7 with Ǔ+ ⊆ U+, and
a spin diffeomorphism ψ+ : Ǔ+ → U ′ with ψ+|Y + = ι+ and dψ+|NY+ = Ψ+. As in

Definition 4.7 we get from these a vector bundle E′ → S7 with SU(m)-structure, iso-

morphism Ξ+ : E+|Ǔ+ → ψ+∗(E′|U ′) and SU(m)-framing ρ′ : Cm|S7\Y ′
∼=−→E′|S7\Y ′ .

Using the isomorphisms φ : U+ → U− and Φ: E+|U+ → φ∗(E−|U−), we can
transport Ǩ+, Y +, ρ̌+, ι+,Ψ+, Ǔ+, ψ+,Ξ+ to Ǩ−, . . . ,Ξ− on X− with

Ǩ− = φ(Ǩ+), Y − = φ(Y +), ρ̌−|X−\Ǩ− = ρ−|X−\Ǩ− ,

ι− = ι+ ◦ φ|−1
Y + , Ψ− = Ψ+ ◦ dφ|−1

NY+
, ρ̌−|U−\Y − = φ∗(ρ̌

+),

Ǔ− = φ(Ǔ+), ψ− = ψ+ ◦ φ|−1
Ǔ+ .(4.6)

Note that the data Y ′, NY ′ , U
′, E′, ρ′ on S7 is the same in both +,− cases. Then

as in §4(B)(v) we have

(4.7) oF
±

(E±) = oF
±

Y ±,ρ̌±,ι±,Ψ±(E±) ∈ OrE± .

We now have

Or(φ,Φ, ρ+, ρ−)
(
oF

+

(E+)
)

=
(
F+|Ǔ+/ψ+∗(FS7 |U ′)

)
[Y +] ·

Or(φ,Φ, ρ+, ρ−) ◦Or(ψ+,Ξ+, ρ̌+, ρ′)−1(oflat(E′))

=
(
F+|Ǔ+/φ|∗Ǔ+(F−|Ǔ−)

)
[Y +] ·

(
F−|Ǔ−/ψ

−∗(FS7 |U ′)
)
[Y −] ·

Or(ψ−,Ξ−, ρ̌−, ρ′)−1(oflat(E′))

=
(
F+|U+/φ∗(F−|U−)

)
(α+) · oF

−
(E−),

using (4.2) and (4.7) in the first step, (4.6) and functoriality of Or(−) and F ′/F in
the second, and using (4.2) and (4.7) and writing α+ = [Y +] in H3(U+;Z) in the
third. Since α+ is Poincaré dual to c2(E+|U+ , ρ+) ∈ H4

cpt(U
+;Z) as in Definition

4.7, this proves (1.7). �

To check assertion (ii) in Theorem 1.2, regarding families, let E → X × P be
a SU(m)-bundle. By compactness of X each p0 ∈ P has an open neighbourhood
P0 with E|X×P0

∼= E|X×{p0} × P0. By (1.7) we have oF (E|X×{p0})
∼= oF (E|X×{p})

for every p ∈ P0 under the excision isomorphism, which depends continuously on
p. This completes the proof of the first part of Theorem 1.2, on SU(m)-bundles.

4(D). Extension to U(m)-bundles. The last step is to extend Theorem 1.2 to
U(m)-bundles. Clearly the canonical orientations oF (E) for U(m)-bundles E → X
are well-defined. They also satisfy Theorem 1.2(a)–(c) and (ii), since mapping the

U(m)-bundle E to the SU(m + 1)-bundle Ẽ = E ⊕ ΛmE∗ commutes with all the
operations in (a)–(c) and (ii).
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