Morphology, internal architectures and formation mechanisms of mega-pockmarks on the northwestern South China Sea margin

Journal:	Interpretation
Manuscript ID	INT-2020-0175
Manuscript Type:	Technical Paper (if no special section applies)
Date Submitted by the Author:	13-Aug-2020
Complete List of Authors:	Lu, Yintao; Petrochina Hangzhou Research Institute of Geology Xu, Xiaoyong; Petrochina Hangzhou Research Institute of Geology Luan, Xiwu; Qingdao Institute of Marine Geology; Qingdao National Laboratory for Marine Science and Technology Jiang, Shu; China University of Geosciences Ran, Weimin; Qingdao Institute of Marine Geology; Qingdao National Laboratory for Marine Science and Technology Yang, Taotao; etroChina Hangzhou Research Institute of Geology Lu, Fuliang; PetroChina Hangzhou Research Institute of Geology Zhou, Yingfang; University of Aberdeen, School of Engineering Yang, Zhiliang; etroChina Hangzhou Research Institute of Geology
Keywords:	Asia, fluid, seafloor, seismic geomorphology, volcanics
Subject Areas:	Structural, stratigraphic, and sedimentologic interpretation

SCHOLARONE[™] Manuscripts

3	_	
4	1	Morphology, internal architectures and formation mechanisms of
6		
7	2	mega-pockmarks on the northwestern South China Sea margin
8		
9	3	Vintao Lua* Xiaovong Xua Xiwu Luan ^{b,c} Shu Jiang ^d Weimin Ran ^{b,c} Taotao Vanga
10	J	Tintao Lu , Alaoyong Au, Alwa Luan , Shu shang , Wennin Kan , Taotao Tang ,
11		
12	4	Fuliang Lyu ^a , Yingfang Zhou ^e , Zhili Yang ^a
13		
15	5	a Petrochina Hangzhou Research Institute of Geology, Hangzhou, China, 310023;
16	-	
17	~	
18	6	b Qingdao Institute of Marine Geology, Qingdao, 266071, China
19		
20	7	c Function Laboratory of Marine Mineral Resources, Qingdao National Laboratory for Marine Science
21		
22	0	
25 24	8	and Technology, Qingdao, 266237, China
25		
26	9	d China University of Geosciences, Wuhan, 430074, China
27		
28	10	a University of Aberdeen Aberdeen AD24 211E United Kingdom
29	10	e University of Aberdeen, Aberdeen, Ab24 50E, United Kingdom
30		
31	11	*corresponding author: Yintao Lu, Petrochina Hangzhou Research Institute of Geology, No.920, Xixi
32 22		
34	12	Road Hanozhou 310023 China E-mail address: luvt hz@netrochina.com.cn
35		
36		
37	13	
38		
39	14	Abstract
40		
41 42	1 5	Destructure of demonstrian manufactory related to fluid accord on the section and
43	15	Pockmarks, as depression morphology related to fluid escape on the seaffoor, are
44		
45	16	revealed by three-dimension (3D) seismic data on the northwestern South China Sea
46		
47	17	(SCS) margin. The nockmarks can be classified into two groups by their various
48	17	(Seb) margin. The poekinarks can be classified into two groups by their various
49 50	_	
50	18	shapes in plan-view, which are circular group and elongating group. These pockmarks
52		
53	19	in the study area could be defined as mega-pockmarks, as their maximum diameters
54		
55	20	
56	20	can reach to 7.5 km. They commonly develop more than one crater, which are central
57		
50 50	21	crater and secondary crater. The seismic data illuminated their complicated internal
60		

architectures in the subsurface, as well as their evolution periods, such as initiation stage, mature stage and abandonment stage. According to the buried structures and their genesis mechanism, the mega-pockmarks could be classified into linear faults-associated pockmarks and volcano-associated pockmarks. The linear faults-associated pockmarks root on the top Middle Miocene, where the linear faults distribute. The linear faults on the top of fluid reservoir in Middle Miocene act as conduits for fluid seepage. The fluid seepage is driven by the break of balance between the hydrostatic and pore pressure. When the fluid seepage initiate, they will migrate along the linear faults, making the linear feature of pockmarks on the seafloor. Both thermogenic gas from deep intervals and biogenic gas in shallow intervals may be fluid source for the genesis of pockmarks. On the other hand, the volcanic activities control the genesis and evolution of volcano-associated pockmarks. The volcano-associated pockmarks root on the craters of volcanoes. The volcanoes underneath the pockmarks provide volcanic hydrothermal solutions, such as phreatomagmatic eruptions through the volcanic craters. The confined fluid seepages make the pockmarks on exhibiting more circular shape on the seafloor. Long-term, multi-episode fluid expulsions generate the complicated internal architecture that leads to multi-cratered mega-pockmarks on the northwestern margin of SCS. Keywords

41 Pockmarks; Linear faults; Volcano; Fluid seepage; South China Sea

43 Introduction

Pockmarks, as depression morphology related to fluid escape on the seafloor, are widely identified on the present seafloor at a wide range of water depths all around the world (Bertoni, et al., 2019; Tasianas, et al., 2018; Maestrelli, et al., 2017; Krämer, et al., 2017; Cartwright and Santamarina, 2015; Sun et al., 2011a; Moss and Cartwright, 2010; Judd and Hovland., 2009; Cartwright, et al., 2007). Pockmarks with various shapes are commonly observed to be circular- to elongate-shaped, conical crater-like depressions, with numerous irregular shapes being described as well (Cole et al., 2000; Hovland et al., 2002). The dimensions of pockmarks could reach to very large scale, which are defined to mega-pockmarks. The diameters of mega-pockmarks are generally greater than 1000 m, and with depth more than 150 m (Pilcher and Argent, 2007).

Because the fluids from the subsurface supplied by various geological structures and different migration conduits, pockmarks are of great significance in studies of marine biology (Harris et al., 2012; Decker et al., 2010; King and MacLean, 1970), diapirs (Hovland and Judd, 1988; Hovland, 1991, 1992; Dimitrov and Woodside, 2003; Pilcher and Argent, 2007; Rowan et al., 1999; Whelan et al., 2005), deepwater sedimentology (Wenau et al., 2017; Judd and Hovland, 2009; Pilcher and Argent, 2007), climatology (Mazzini et al., 2017; Wenau et al., 2017; Riboulot et al., 2014), ocean bottom currents (Picard et al., 2018; Sun et al., 2011a; Anderson et al., 2008), geohazards (Hovland et al., 2002; Tjelta et al., 2007), deepwater gas hydrates (Lu et

al., 2017; Riboulot et al., 2016), and oil and gas exploration (Nicholas et al., 2015).

The newly formed pockmarks are normally considered to have a flat-bottomed cone shape, due to slumping or the deposition of fine-grained sediment, that may develop over long time periods (Gay et al., 2006a, b; Pilcher and Argent, 2007). In contrast, paleo-pockmarks are those in which formation activity has ceased, i.e. fluid expulsion is not active, buried by younger sediments (Hovland, 1982; Cole et al., 2000; Games, 2001; Gay et al., 2003, 2006a, b; Pilcher and Argent, 2007). According to spatial arrangement, distribution, related underlying geology or local disturbance of the seafloor, and genesis mechanisms, the pockmarks could be defined into several classes, and the controlling factors for their genesis could be attributed to fault-strikes, buried channels, mud diapirs, slump, currents and icebergs (Pilcher and Argent, 2007).

Pockmarks on the northwestern margin of South China Sea (SCS), adjacent to study area, have previously been identified using high resolution seismic data and bathymetric data (Sun et al., 2011a; Chen et al., 2015). This discovery also reveals the great scale of pockmarks, of which diameter could reach to 3.31 km. Meanwhile, the potential formation mechanisms of the mega-pockmarks on the northwestern margin of SCS have been proposed to be reaction between the fluid seepages and bottom currents (Sun et al., 2011a; Chen et al., 2015). However, due to the limited coverage of multi-beam bathymetric and seismic data, there are still numerous mega-pockmarks have not been identified in this area. Furthermore, the buried

Page 5 of 60

Interpretation

structures in subsurface which control the genesis of pockmarks, and relationship
between pockmarks and the buried structures, have not been have not been identified
and analysed yet (Lu et al., 2017).

In this study, we describe and analyze, for the first time, 27 mega-pockmarks on the NW SCS margin using high-resolution 3D seismic data. These mega-pockmarks display various shapes on the seafloor and they have diameters of up to 7.5 km, which are much larger than those documented by the previous studies in the South China Sea (Sun et al., 2011; Chen et al., 2015) and other continental margins worldwide (Hovland and Judd, 1988; Fader, 1991; Foland et al., 1999; Haskell et al., 1999; Pilcher and Argent, 2007). The morphology, internal architecture and formation mechanisms of these mega-pockmarks have been revealed in detailed in this study. Meanwhile, according to the facies and geological structures identified under the pockmarks, two different categories pockmarks have been classified, and the different stages of their evolution have been reconstructed. The buried structures and associated pockmarks imply that linear faults in top of Middle Miocene and volcanic activities controlled the genesis and evolution of the pockmarks. The multi-episode evolution of the pockmarks represents fluid expulsion events in the NW SCS, which create the world-class scales and complicated internal architectures of mega-pockmarks.

103 Geological setting

104 The study area is located in the northeastern part of Zhongjiannan Basin (ZJNB),105 adjacent to Qiongdongnan Basin (QDNB), between the Guangle Platform (GLP) and

the Xisha Platform (XSP), where the water depth varies from 1,000 m to 1,500 m (Figure 1). The geologic framework of the study area is complex, having experienced since strong tectonic movements the Early Tertiary, primarily due to northeast-directed extensional activity (Lüdmann et al., 2005; Yan et al., 2006). Tectonic activity along the western margin of the basin formed the NW-striking Red River Fault Zone (RRFZ), which is the boundary fault zone of the SCS. The XSP and GLP formed in the Neogene, during which time the Xisha Uplift and Guangle Uplift developed (Fyhn et al., 2009; Ma et al., 2011; Sun et al., 2011a). Both the XSP and GLP are active and developing carbonate platforms, comprised of large atoll- and patch-reefs (Ma et al., 2011). The complex topography of the seafloor in the study area has experienced substantial recent alteration by bottom currents (Sun et al., 2011a).

Page 7 of 60

Interpretation

Figure 1 The study area (red rectangle), located to the south of Qiongdongnan Basin and the west of Zhongsha Uplift, with a water depth ranging from 1000 to 1,500 m. ZJNB: Zhongjiannan Basin; QDNB: Qiongdongnan Basin; PRMB: Pearl River Mouth Basin; YGHB: Yinggehai Basin; RRFZ: Red River Fault Zone. The yellow boxes indicate the locations where fluid samples were collected. The depositional history of the study region has been divided into two mega-sequences based on tectonic activity: a period of rifting in the Eocene–Oligocene, and a post-rift period in the Miocene–Quaternary (Figure 2; Xie et al., 2006). The Paleogene stratigraphy of the rift stage mega-sequence is composed of three formations, which have a total thickness of several kilometres (Xie et al., 2006; Zhu et al., 2009). These sediments, specifically the Lington Formation deposited in the Eocene, and the Yacheng and Lingshui Formations deposited in the Oligocene, are characterized by lacustrine facies mudstones, neritic mudstones and coastal plain coal-bearing strata, which serve as source rock for thermogenic gas in petroleum systems (Figure 2; Huang et al., 2003; Xie et al., 2006; Zhu et al., 2009).

Figure 2 Generalized chronostratigraphic chart of the study area and adjacent area (after Xie et al., 2006; Zhu et al., 2009; Sun et al., 2010) showing the sequence stratigraphic horizons used in study. The global eustatic sea level data and sea level change data used in this study were adopted from Haq et al. (1987) and Miller et al. (2005), respectively. Fm: Formation.

Interpretation

The Neogene stratigraphy can be further divided into four formations, which are dominated by hemipelagic-pelagic deposition (e.g., Xie et al., 2006; Sun et al., 2010, 2011a). These sediment intervals provide significant hydrocarbon reservoirs for the petroleum system in northern SCS (Xie et al., 2006; Sun et al., 2010, 2011a; Lu et al., 2017). Among the reservoirs, the carbonate reservoir in Middle Miocene represents a carbonate development event in northern SCS, especially distributed in the carbonate platforms successively developed on the paleo-uplifts (Xie et al., 2006; Lu et al., 2017).

The relative change in seafloor in the SCS coincides with the global relative seafloor change after 5.7 Ma (Figure 2; Zhao et al., 2001). The target interval used in this study was deposited during the post-rift thermal subsidence stage, when tectonic activity was relatively weak (Zhou et al., 1995). However, neo-tectonic movement has continued since the late Miocene, and is associated with the collision between Taiwan and the mainland Chinese continent, as well as the change in movement direction of the RRFZ (Lüdmann and Wong, 1999). One consequence of the recent tectonic activity has been the generation of igneous intrusions. The emplacement of the intrusions has produced high heat flow in the area, which started in the late Miocene (Yan et al., 2006; Sun et al., 2011a), and has driven regional uplift and erosion (Fyhn et al., 2009).

Besides these events, polygon faults in the Meishan and Huangliu Formationshave also played an important role in the evolution of sedimentary sequence in

Neogene (Sun et al., 2009, 2010). The sediment was dominated by fine-grained muddy and silty pelagic and hemipelagic deposits after the Middle Miocene (Lu et al., 2011, 2017; Sun et al., 2012), providing comfortable condition for the genesis of polygonal fault system (PFS) (Cartwright et al., 2003; 1999). The processes for formation of polygonal faults, such as dewatering and compaction processes (Cartwright et al., 1999; 2003) would result in porosity changes in bulk sediment as well as fluid supply for sediment environment. Materials and Methods High quality 3D seismic data in the study area were acquired in 2011. Seismic data was processed with bin spacings of 12.5 m and 25 m in line and crossline directions, respectively. The sampling interval was 2 ms, and the dominant frequency (< 2 s two-way time, TWT) was 50 Hz, with the vertical resolution of about 10 m. High resolution topography of the seafloor (Figure 3), including pockmarks was extracted by seismic interpretation in 1-line by 1-trace grid. Other seismic horizons, such as T40, T30, and T20, were also acquired by seismic interpretation. The detailed geometry of pockmarks is displayed by 3D visualization technology, demonstrating the internal architecture, as well as the contact relationship with surrounding strata. Seismic dip and coherence attributes were extracted by using interpolated

178 Seismic dip and coherence attributes were extracted by using interpolated 179 seismic surfaces. Figure 3a shows the geometry of the seafloor as calculated from 180 seismic horizons using a water velocity of 1500 m/s. Figure 3b shows the dip 181 extracted from the seafloor horizon. The coherence attribute was used to identify the

plane distribution of faults, subtle sedimentary features, as well as pockmarks in
subsurface. Polygonal faults were also identified in seismic sections and displayed by
using coherence attribute in map view.

185 Morphology study has been used in this study, to differentiate various shapes of 186 different pockmarks. The higher shape factor value means more circular shape, while 187 the lower value means more linear shape.

Figure 3 a) Shaded relief map of seafloor calculated from 3D seismic data using a
water velocity of 1500 m/s, showing the distribution of pockmarks in this area.
The red labels numbers represent the pockmarks associated with buried
volcanoes; the purple labels numbers represent the pockmarks associated with
linear faults; b) seafloor dip map extracted from seismic data.

Results

1	
2	
3	
4	
5	
6	
7	
, 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
55	
54	
55	
56	
57	
58	
59	
60	

196	Morphology of mega-pockmarks
197	The 3D seismic data reveals densely distributed depression features in the study
198	area. These depressions are pockmarks, according to their similar plan-view shapes
199	and section profiles with other pockmarks all around the world (Bertoni, et al., 2019;
200	Tasianas, et al., 2018; Maestrelli, et al., 2017; Krämer, et al., 2017; Lu et al., 2017;
201	Cartwright and Santamarina, 2015; Sun et al., 2011). These depressions commonly
202	develop giant size, with diameters $> 6,000$ m, or lengths $> 8,000$ m on the seafloor,
203	with various shapes. The scale of these giant depressions is several times larger than
204	those pockmarks reported previously (Hovland and Judd, 1988; Fader, 1991; Foland
205	et al., 1999; Haskell et al., 1999; Pilcher and Argent, 2007), including those classified
206	as giant pockmarks in the adjacent area (Sun et al., 2011). Therefore, these
207	depressions are defined as mega-pockmarks (Figure 4).
208	The acreage of individual mega-pockmarks in study area ranges from 1 km ² to
209	31.7 km ² (Figure 5), with the length of long axis ranges from 1.5 km to 12.8 km
210	(Figure 4). The largest pockmark, D4, locates in the southwest of the study area,
211	reaches 31.7 km ² in area and 223 m in depth (Figure 5, 6). D16, locates in the
212	northeast of the study area, has developed the greatest long axis length, which reaches
213	12.8 km. The water depth of the base of pockmarks on the seafloor ranges from 996 m

to 1,358 m, with an average water depth of 1,225 m. The depth of mega-pockmarks

varies across a wide range from 21 to 223 m (Figure 6).

Figure 4 Dimensions of mega-pockmarks on the seafloor in the study area. Log-log plot showing the relationship between diameter or long axis and depth of pockmarks, throughout the world and in the study area. The pockmarks in the study area are larger than any others discovered globally.

The variety of the morphology of pockmarks on seafloor indicates the unique structural and sedimentary feature. The pockmarks could be divided into circular and linear ones by their plan-view, and they have different shape factor values (Figure 5). Some of the depressions exhibit circular and semi-circular shape, very similar to the shape of pockmarks observed globally on the current seafloor (Hovland, 1982; Cole et al., 2000; Games, 2001; Gay et al., 2003, 2006a, b; Pilcher and Argent, 2007; Sun et al., 2011a; Lu et al., 2017). Another group of pockmarks exhibit more linear features,

D7, D8, and D9. Elongated depressions also exhibit central craters, but these have

developed as a relatively crescent-shaped trough at the front of the main structure, e.g.,

D11, D12 and D15. Secondary craters express asymmetrical features, with a deeper

base on the down slope side, and a shallower base on the up-slope side.

Page 17 of 60

Figure 7 Diverse profile features of pockmarks on the seafloor. Depressions in the pockmarks exhibit a range of shapes. The pockmarks normally develop secondary craters alongside central craters. The secondary craters generally develop asymmetrically around the margins of pockmarks, with a steeper wall on the basinward side. See the location in Figure 3.

The pockmark morphology is mainly distributed around margin of platform, while it is absent on the central platform (Figure 3). Furthermore, the circular pockmarks tend to have developed in the west of the study area, while linear pockmarks are more common in the east of the study area. Moreover, the long axes of elliptical pockmarks are generally oriented northwest to southeast (Figure 3).

Internal architectures of mega-pockmarks

High-resolution 3D seismic data revealed subsurface depression features. The
roots of depressions can be identified in the subsurface at 1,900 ms, about 550 m
below the seafloor, assuming the seismic velocity of the shallow intervals to be 2,200
m/s. As shown in Figure 8 and Figure 9, the internal architectures of both circular and
linear-shaped group of pockmarks are very complicated and thus their shape couldn't

be characterized by simple "U" or "V" shaped profiles. The boundaries between pockmarks and surrounding strata are very sharp as identified by differential seismic reflection. The reflectors inside pockmarks could be correlated with surrounding strata, although the sediment thickness within the depressions is marginally greater than the same layers in the surrounding strata. Meanwhile, the architectures between them are quite different. The surrounding strata is characterized by horizontal, parallel and higher frequency reflection, while the internal strata are featured by undulate and lower amplitude reflection, locally developing chaotic reflectors. The deformation is common inside pockmarks, with dim reflection, indicating slumping and sliding during depression formation. Furthermore, the sliding feature, and differential reflections between pockmarks and surrounding strata imply the boundaries are review sliding planes.

seafloor and the inner architecture of PM4. Pockmark size is marked on the

maps and seismic sections. FS: fault system; HAR: high amplitude reflectors. See

Some high amplitude reflectors (HARs) could be recognized close to pockmarks,

which could be tracked to sliding planes (Figure 8, 9). Meanwhile, some pipe-like

reflectors could be identified inside pockmarks, from root onto seafloor. They exhibit

transparent feature, even with pull-down characteristic (Figure 9).

sit n pull-dow.

2	
3	
4	
-	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
י <u>-</u> רר	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
21	
52	
53	
54	
55	
55	
30	
57	
58	

1

276

277

278

279

280

281

282

Figure 3 for the locations of PM4.

Page 22 of 60

Interpretation

seafloor and the inner architecture of PM12. Pockmark size is marked on the
maps and seismic sections. FS: fault system; HAR: high amplitude reflectors. See
Figure 3 for the locations of PM4.

289 Distribution of faults and buried volcanoes

Numerous, closely-spaced normal faults with small offsets were identified from the 3D seismic data. Two-tier fault systems could be identified in the seismic cross sections, developing in Middle Miocene and Upper Miocene to Pliocene, which are called FS-1 and FS-2 respectively (Figure 8, 9). These faults have developed associated small fault throw, and generally extend a limited distance, to form complicated fault network (Figure 10). The elder one, FS-1, terminates at seismic horizon T40, correlating to top Middle Miocene, which is dominated by carbonate deposition intervals as petroleum reservoirs (Sun et al., 2009, 2010; Lu et al., 2011; 2017). The younger one, FS-2, develops between seismic horizon T40 and T20, which correlates to Upper Miocene to Pliocene (Figure 2, 8, 9). Some pockmarks are rooted on the top of Middle Miocene, which can be identified in the seismic data (Figure 8, 9) and coherence slice (Figs.10). These faults divide the strata into numerous faulted blocks, which are characterized as high amplitude, low frequency, discontinuous reflectors in the seismic sections (Figure 8, 9).

The coherence attribute along top of Middle Miocene is extracted to obtain a plan-view of the fault systems (Figure 10a). The coherence attribute slices show that the linear faults are mainly distributed around the margin of platform, exhibiting Page 23 of 60

Interpretation

higher density in the eastern and western parts of study area (Figure 10a). Faults strike
dominantly NW–SE, with subordinate NE–SW-striking faults also present. The long
axis of pockmarks on the seafloor also tend to be oriented mainly NW–SE (Figure
10a). Some of these faults, with typical polygonal planform geometry, are referred to
polygonal faults (Figure 10c). The typical polygonal faults, as a part of FS-1, are
developed at the top of Middle Miocene (Figure 8, 9).

The coherence slice at the top of Middle Miocene shows more direct and consistent relationships between linear faults with the pockmarks. Where the pockmarks are developed on the seafloor, seismic data shows related linear faults have developed underneath the pockmarks. In the central platform and the toe of slope, the density of faults is reduced, although the faults are still as arranged in typical polygonal planform geometry (Figure 10c). Besides the density of faults, the pockmarks are also absent where the polygonal faults developed.

Other pockmarks are rooted on just above the volcanoes, which are characterized by their hump or moundy shape, as well as sharp and high amplitude reflections boundaries between surrounding strata (Figure 8, 9). The inner architecture of volcanoes is characterized by chaotic, low frequent and with medium amplitude reflectors. The volcanoes strongly re-construct the surrounding strata, making the strata deformed. The volcanoes are widely recognized by seismic data in south part of the study area. They are characterized by low coherence value anomalies with circular 327 or stripped shape in plan-view (Figure 10a, b). The diameter of top volcanoes could

reach to more than 1 km, and their root could be tracked to very deep intervals.

Figure 10 Seismic coherence slice of top Middle Miocene (T40), which shows the
distribution of fault system and volcanoes. a) Pockmarks superimposed on
coherence slices at the top of Middle Miocene, as the plan-view of FS-1. Oriented
linear faults have developed around margin of platform, especially in the
western and eastern regions, while typical polygonal faults have developed in the

central region and along the south edge. Pockmarks are developed where linear faults have a high density, especially where NW-SE striking linear faults are most abundant; b) Zoom-in coherence slice of typical volcanoes in southwestern margin of study area, which show round or stripped-shape of low coherence value; c) Zoom-in image of typical polygonal faults in toe of slope, which show less coincidence between polygonal faults with pockmarks. KOX, Discussion Pockmark classification Although pockmarks express similar features on the seafloor, different types of pockmark have experienced a different evolution. According to the relationship between pockmarks and volcanoes or linear faults, the pockmarks have been classified to two major types; i) linear fault-associated pockmarks, and ii) volcano-associated pockmarks. In general, the linear fault-associated pockmarks have a lower shape factor value, in particular PM15 and PM16. The volcano-associated pockmarks have a higher shape factor value, e.g., PM4, PM6, PM7, PM26, and PM27 (Figure 3, 5). Linear fault-associated pockmarks

Most depressions on the seafloor are rooted on the top of Middle Miocene, and show close relationship with linear faults, e.g., D1, D2, D3, D8, and D10–D25, which are classified as pockmarks associated with linear faults. They tend to exhibit

elongated feature, such as crescent-like, elliptical, and irregular shapes in plan-view, with the long axis in NW-SE direction (Figure 3). They are mainly distributed around the margin of platform, especially in the eastern and northwestern parts of study area (Figure 10a). The occurrence and elongated axis of pockmarks has a high coincidence with dense linear fault distribution, along NW-SE direction (Figure 10). This NW-SE-oriented character was more emphasized along the western and eastern part of study area, and along the edge of the platform in the middle of study area, where the density of pockmarks is larger. Meanwhile, pockmarks are absent in the central platform and the basin floor, even in the area where the typical polygonal faults develop (Figure 3, 10). These linear faults acted as essential conduits for fluid escape (Pilcher and Argent, 2007), rather than polygonal faults. Therefore, the set of NW-SE faults in Middle Miocene can be classified as the conduits group. Lien

Page 27 of 60

PM27, which are classified as volcano-associated pockmarks. Volcanoes were
revealed to lie beneath these pockmarks in the seismic sections (Figure 8, 12). The
pockmarks were densely developed in the southwestern part of the study area (Figure
3a, 10), having a larger scale and more circular shaped than pockmarks on the
seafloor (Figure 3, 5).

The sediment sequences inside pockmarks are comparable with the surrounding strata (Figure 12, 13, 14), indicting the same sedimentary history. While on the other hand, the volcanoes should be active until very late time, even until recent (Lu et al., 2011; 2014). The volcanoes distribute along NE-SW direction, such as PM4, PM5, PM6, PM7, and PM9 in the south margin of 3D survey, and PM26 and PM27 in the middle-west part of study area (Figure 3, 10). For example, the volcanoes underneath PM26 and PM27 exhibit volcanic bend feature, distributed with NE-SW strike (Figure 10b, 11). The distribution pattern of volcanoes implies the volcanoes which are prolonged volcanoes in northern margin of SCS (Zhao et al., 2016, 2020), are aligned in NE-SW direction.

The volcano-associated pockmarks were very limited developed in the southern part of the study area (Figure 3a, 10). Most of the pockmarks above the volcanoes are randomly distributed, and have a larger scale and more circular shape than linear faults-associated ones on the seafloor (Figure 3). The scale of the volcano-associated pockmarks shows coincidence with the scale of the volcanoes underneath them, while the larger pockmarks relate to larger volcanoes (Figure 12). The seismic sections also

Interpretation

reveal several volcano-associated pockmarks with smaller scales on the seafloor, as

404 Plan view of the top of MFS-3.0; b) Plan view of the top of PFS-1; c) Seismic

interpretation, and associated plan views constructed from coherence slices. a)

section through PM4 and PM26; d) Interpreted seismic section through PM4and
PM26. And the green horizon represents the top of PFS-1, while the blue horizon
represents the top of PFS-2. See Figure 3 for map locations.

408 Initiation and evolution of mega-pockmarks

Analysis of the formation and evolution phases of pockmarks has been reported
previously (Sun et al., 2011a; Chen et al., 2015; Lu et al., 2017; Wenau et al., 2017;
Hovland, 1991; Hovland et al., 2002). However, direct observation of the stages of
pockmarks evolution is still lacking. In the study area, different phases of pockmark
development are revealed in the high resolution 3D seismic data, which have been
termed the early, mature, and abandonment stages.

Initiation stage

The initial stage of pockmark formation is expressed by gentle deformation of the seafloor, such as that associated with PM26 (Figure 12) and PM27 (Figure 13). The depth of crater of PM26 is about 75 m, while PM27 is 25 m, which is much smaller than others in the study area. Both PM26 and PM27 appear as low relief depressions on the seafloor, with elliptical outlines. A volcano can be identified beneath PM27 (Figure 13), indicated by a mound with a conical shape. Several fault-like features have developed above the top of the volcano, exhibiting funnel shape, which is Initiation stage of volcano-associated pockmark.

424 The seismic horizon T20 divides these funnel shape structure, as early stage425 pockmark, into two parts (Figure 13). Within the lower part, the fault-like features are

Page 31 of 60

Interpretation

denser than the upper group, while they are characterized by dip dim reflections. This funnel shape early stage pockmark is capped by HARs, where fault-like features terminate. These HARs are interpreted into shallow gas or fluid accumulation, while these dip fault-like features are fluid conduits for fluid migration (Figure 13). The upper part of this pockmark also develops HARs, indicating fluid accumulation as well. However, the upper part of this pockmark exhibits much clearer features, lacking chaotic reflectors, as well as lacking fluid conduits. The observation of two parts of PM27 implies that most of the fluid did not migrate to the seafloor, but mainly remained trapped in the lower section, while some portions seeps into the upper part. This also resulted in the gentle deformation in the upper part, and negligible deformation on the seafloor. Therefore, the processes could not create noticeable depression on the seafloor, differential with the seafloor where the pockmarks develop. PM27 is regarded as initiation stage pockmark, since its lack of fluid seepage and gentle deformation for the sediment intervals.

Figure 13 a) Seismic section across early phase pockmark 27; b) The same seismic section with interpretation. The green horizon represents the top of polygonal fault system 1 (PFS-1), while the blue horizon represents the top of polygonal fault system 2 (PFS-2). See Figure 3 for location.

445 *Mature stage*

446 Most pockmarks in the study area are currently in the mature phase, generally
447 rooted on linear faults or on top of volcanoes, exhibiting strong deformation and
448 slumping. As shown in Figure 14, the fault systems below these mature pockmarks

Page 33 of 60

Interpretation

are much more complex than pockmarks in the initiation stage. The deformation and
sliding features are common inside pockmarks, which are characterized by chaotic
reflectors, especially in the lower part or root of pockmarks.

As shown in Figure 12, the boundary of PM8, as sliding plane, is characterized by continuous and high amplitude reflection. Some HARs are recognized close to boundary of PM8, even on the seafloor, indicating gas or fluid accumulation. These fluid seepage and accumulation features indicate sliding plane act as major fluid conduits. A vertical pipe-like dim reflector could be identified inside PM8, from middle part onto seafloor. This pipe is also regarded as minor conduit for the fluid seepage, causing gentle depression on the seafloor. There are probably two conduits for fluid migration; one in the central area of the pockmark, while another at the boundary of the pockmark, especially in the basinward direction. Accordingly, more than one crater can develop in mature pockmarks, in both the central and marginal areas. Figure 14 shows the shallow subsurface interval of the central area has been strongly deformed, which is consistent with crater formation on the seafloor.

Some pockmarks, such as PM8, show migration features in seismic sections; these pockmarks are similar to pockmarks observed in the Western Mediterranean, and could be interpreted to form as the result of fluid activity (Riboulot et al., 2014). As presented in Figure 3 and 14, PM8 is located in a slope environment, with a ring-shaped crater in the downslope direction. PM8 generally dips towards the downslope direction, with its root oriented in the upslope direction. A basinward slide

plane was identified in the seismic section, dipping to SE direction. The slide plane acts as the boundary of PM8, with seismic reflectors terminating in this plane. Several paleo-slide planes could be identified by their chaotic reflectors, which reflect slumping, sliding, or deformation processes. The architecture of PM8 is characterized by different funnel-like features, which are filled with parallel reflectors, and interbedded with chaotic and deformation reflectors. A vertical but minor conduit could be identified in the centre of PM8, associated with a low relief depression on or peer period

the seafloor.

484 conduit. Note that sediment layer thicknesses inside the pockmark are slightly
485 thicker than outside the pockmark, as marked by double-headed arrows. See
486 Figure 3 for location.

The craters of paleo-pockmarks showed noticeable basinward offset compared to present-day seafloor pockmarks in variance attribute maps (Figure 3, 10), indicating the craters of PM8 migrate from platform margin to slope direction. The sediment accumulated in the central region of PM8 is much thicker compared with that at marginal areas and the surrounding strata (Figure 14), which indicate syn-deformation or syn-slumping sediment processes during the genesis of pockmark (Anderson et al., 2008; Hoyland et al., 2002).

During the migration period during mature phase, the contour current may rework the architecture of pockmarks, especially for the crescent-like, elliptical, and irregular shape pockmarks (Su et al., 2011a; Anderson et al., 2008). The distribution of these pockmarks exhibits platform margin dominancy, where the bottom currents might be violent.

Abandonment stage

The abandonment, or burial, stage of pockmarks initiated after they ceased development, indicating the cessation of fluid migration caused by tectonic movements or sediment processes. Younger sediment, which is characterized by parallel seismic reflectors, filled pockmark depressions (Figure 15). Some pockmarks appear to have resumed activity, e.g., PM8, inheriting the previous structure (Figure

SE

mic Amplitud

Pliocene

FS-2

Middle Miocer

FS-

Upper Miocene

1

59

60

512 was characterized by deformation of soft, fine-grained sediment, as captured by
513 chaotic seismic reflectors. See Figure 3 for location.

Paleo-pockmarks exhibit no close relationship with present seafloor pockmarks. Funnel features of paleo-pockmark could easily be identified, which represent the main body of the paleo-pockmarks. The distinct boundaries between paleo-pockmarks and surrounding strata imply different depositional regimes. The lower part of pockmark exhibits lower frequency and amplitude reflection, with some fault-like features indicating sliding or slumping structure. The upper part of paleo-pockmark displays more gentle deformation than the lower part. The continuous HARs were interrupted at the top of the paleo-pockmarks, which are just close to the margin of pockmark. Meanwhile, the amplitude of HARs decreases far away pockmark. Another conduit and associated crater are identified in the main body of paleo-pockmark, with a series of HARs along the conduit as well as the top of pockmark. However, all the HARs terminate at T20, which represent the termination of Neogene. Above the T20, the intervals become horizontal, indicating cessation of fluid seepage. Therefore, the abandoned pockmark stopped developing at T20, then abandoned and buried by younger sediments.

529 Controlling factors on the mega-pockmark formation

530 Volcanisms

531 The close spatial relationship between volcanoes and volcano-associated532 pockmarks indicates that the volcanoes themselves provide a fluid source for the

Interpretation

genesis of the pockmarks. The genesis of pockmarks related to diapirs are revealed and discussed in several other regions globally (Hovland and Judd, 1988; Hovland, 1991, 1992; Dimitrov and Woodside, 2003; Pilcher and Argent, 2007). The roots of the observed diapirs in previous study could reach down to the deep interval which provides fluid source. Therefore, the geo-fluids could migrate along diapirs, providing fluid source for formation of pockmarks in fine-grained soft sediment intervals above Middle Miocene (Hovland and Judd, 1988; Hovland, 1991, 1992; Dimitrov and Woodside, 2003; Pilcher and Argent, 2007).

However, the genesis and evolution of pockmarks related to volcanoes have not widely discussed yet. Previous study confirmed that the genesis and distribution of diatremes is controlled by the activities of volcanoes in offshore areas (Suiting and Schmincke, 2009, 2010, 2012; Go et al., 2017). The volcanic activities could deform the sediment intervals by both "hard intrusion" (Lu et al., 2011; Zhao et al., 2016; 2020) and "soft deformation". The genesis of volcano-associated pockmarks in study area is closely related to "soft deformation", which is dominated by fluid activities. The craters of most volcanoes are buried in subsurface, rather than reach to the seafloor. However, the fluid conduits, such as forced faults, could be identified in seismic section, which root on the crater of volcanoes. That implies the fluid from phreatomagmatic eruptions, such as gas and volcanic hydrothermal solutions, escaping from the volcanoes, seeping to seafloor. These fluids are essential for the genesis of pockmarks, as other pockmarks identified all around the world (Sun et al.,

2011a; Cartwright, 2011; Chen et al., 2015). The sediment sequences inside
volcano-associated pockmarks are comparable with the surrounding strata (Figure 14,
15), indicating the genesis of volcano-associated pockmarks lasts to very young age;
that implies the volcanic activities could be very young.

Besides of central crater of volcano-associated pockmarks, secondary craters also develop on the seafloor (Figure 14). The secondary craters, exhibit ring-shape and distribute around the margin of volcano-associated pockmarks. The distribution of secondary craters implies that marginal sliding planes are also fluid conduits for the seepage of volcanic fluids. Meanwhile, the secondary craters imply the study area experiences multi-episode volcanic explosion events, which also create significant mega-pockmarks on the seafloor.

The fluids for the genesis of volcano-associated pockmarks escape from volcanoes, like a "point-source". The volcanoes releases gas and hydrothermal solutions from a constant point-like area, the fluid trends to escape in a limited area. Therefore, volcano-associated pockmarks are primarily circular and semi-circular shape, and exhibit great scale depression features on the seafloor (Figure 3, 5, 12).

Linear faults

The linear faults-associated pockmarks rooted on the top of Middle Miocene, where the NW-SE oriented linear faults densely develop. The Middle Miocene is significant carbonate reservoirs of petroleum system in study area (Lu et al., 2017; 2011). The coincidence between linear faults-associated pockmarks and linear faults Page 41 of 60

Interpretation

underneath them indicates these linear faults acted as essential conduits for fluid escape (Pilcher and Argent, 2007). The development of NW-SE fault system controls the distribution of linear faults-associated pockmarks. The NW-SE fault system breaks the preservation condition of the fluid reservoirs in Middle Miocene, and provides migration path for the fluids. The fluid expulsion could occur when the balance between pore pressure and hydrostatic pressure is broken by tectonic or sedimentary events, such as sea level fall (Lafuerza et al., 2009; Plaza-Faverola et al., 2011; Nakajima et al., 2014). The frequent sea level changes during Neogene in adjacent area have been documented by the well studies, such as wells XK-1, XY-1 and CK-1 (Xie et al., 2006; Wu et al., 2016). The escaped fluid will seep to the seafloor through and along the linear faults, which caused the NW-SE direction elongating feature of linear faults-associated pockmarks (Figure 3, 10). The fluids for the genesis of pockmarks in study area mainly escape from linear faults, like a linear source. Comparing with the circular volcano-associated pockmarks, the differential fluid escaping pattern of linear faults-associated pockmarks creates diverse depression features on the seafloor.

The linear faults create central craters of the pockmarks, which subsequently lead to the slumps and slides in the margins of pockmarks (Figure 14, 16). The slumping and sliding events create slide planes which acted as secondary conduits at the margins of pockmarks, which form secondary craters inside the pockmarks (Figure 14, 16).

The difference in sediment thickness between pockmarks and surrounding strata is subtle, allowing seismic reflectors with the pockmarks and the surrounding strata to be compared (Figure 12-15). Such comparison indicates that slumping and sliding comprise the major formation events (Hovland, 1982; Anderson, 2008). The fact that only minor differences are observed in the thickness of layers within pockmarks and the surrounding strata implies that the pockmarks accepts same sediment with the surrounding strata during their formation. The similar sediment between inside and outside of pockmarks also imply the linear faults are still active as the fluid seeps through them until present.

The slumping events inside pockmarks provide more space for sediment accumulation, as well as driving the sediment deformed. The several sediment sequences indicate the filling inside pockmarks experience several syn-slumping Lieu sediment periods.

Fluid source

The formation of pockmarks on the seafloor was generally controlled by two primary factors: the source of fluid, and the soft fine grained pelagic sediments that comprise the shallow intervals. The liquid fluid for genesis of pockmarks has been suggested to be water (Harrington, 1985), and the primary gas fluid suggested to be both biogenic gas and thermogenic gas (Davies et al, 1999; Owen, 2003; Rogers et al., 2006; Hartwig et al., 2012). Meanwhile, Gas hydrates have also been shown to play a significant role in the formation of pockmarks (Plaza-Faverola et al., 2011; Sun et al.,

Page 43 of 60

Interpretation

617 2012; Lu et al., 2017). The internal architecture of pockmarks and paleo-pockmarks
618 indicate that all pockmarks have experienced long-term evolution. Long-term,
619 multi-episode fluid expulsion events have resulted in complex morphologies, as well
620 as the great scale of mega-pockmarks.

621 The fluid source for the genesis of volcano-associated and linear 622 faults-associated pockmarks have different origins. For the linear faults-associated 623 pockmarks, the linear faults act as fluid conduits for the migration of fluid source 624 from deep intervals or surrounding intervals. In the study area, all pockmarks are 625 located above top Middle Miocene, and most of them are associated with NW-SE 626 linear faults (Figure 10, 16). This implies that the thermogenic gas and fluid sources at 627 deeper intervals dominantly contribute to the formation of pockmarks.

Oligocene and Eocene source rocks are major source rocks for thermogenic gas in northwestern SCS, while Middle Miocene is significant carbonate reservoirs (Lu et al., 2011; 2017). The thermogenic gas could migrate from source kitchen into hydrocarbon reservoirs in shallower intervals through faults or other conduits (Lu et al., 2011; 2017). Besides thermogenic gas, the biogenic gas generated in shallow intervals also provide fluid source for genesis of pockmarks. The organic rich fine-grained muddy and silty sediments provided source rock for biogenic methane (Rice and Claypool, 1981; Hovland et al., 1993). The gas seeps in the northern slope of the SCS, Haima cold seeps adjacent study area, revealed a mixed gas source of biogenic and thermogenic gas, that could account for the formation of pockmarks

638 (Huang et al. 2003; Chen et al., 2006; Zhu et al. 2009; Tong et al., 2013; Liang et al.,

639 2017; Niu et al., 2017; Gong et al., 2018). Meanwhile, gas hydrates, formed either
640 from thermogenic gas in deeper intervals or biogenic gas in shallow intervals, may
641 also played a secondary role in the formation of pockmarks (Buffett, 2000; Boswell et
642 al., 2012b; Boswell et al., 2016; Lu et al., 2017).

For the volcano-associated pockmarks, the fluid source for their development is more likely from the volcanic activities, such as gas and volcanic hydrothermal solutions, escaping from the phreatomagmatic eruptions (Figure 16).

Figure 16 Schematic geological model showing the genesis of pockmarks of
different styles. The different styles and shapes of pockmarks were derived from
seismic sections. PPM: paleo-pockmark.

650 Conclusions

651 Mega-pockmarks and other fluid activity-related structures are identified and652 interpreted using high resolution 3D seismic images. The unique features of the

Interpretation

653 mega-pockmarks are observed on the seafloor, and the internal architectures in the 654 shallow subsurface are imaged by 3D seismic data. The initiation and evolution of 655 mega-pockmarks recorded long-term and multi-episode fluid activity in the study area. 656 The scale of mega-pockmarks indicates the complicated tectonic and sedimentary 657 activities in northwest margin of SCS.

1. The pockmarks can be classified into two different categories, which are linear
fault-associated pockmarks, and volcano-associated pockmarks. The polygonal
fault-associated pockmarks exhibit elongating shape, and distribute abundantly in the
east and west regions of the study area. The volcano-associated pockmarks are
commonly circular shape, and develop in the southwest part of study area.

663 2. Initiation, mature and abandonment stages of pockmarks could be identified in
664 seismic sections. The pockmarks in mature stage generally develop more than one
665 crater. Long time and multi-episode fluid seepages lead to the great scale and
666 complicated architecture of pockmarks.

3. The roots of linear faults-associated pockmarks generally reached the top of
Middle Miocene, which is reservoir of petroleum system. The linear faults play
significant roles in the migration of gas and fluids, and the genesis of pockmarks. The
fluid sources for the genesis of volcano-associated pockmarks are mainly from the
volcanic activities.

673 Acknowledgements

674	We would like to thank Hangzhou Research Institute of Geology research team,
675	especially the South China Sea team for their contributions, and the approval of this
676	publication. This study was supported by the China ASEAN marine seismic data
677	platform and Research Center (12120100500017001) and the National Natural
678	Science Foundation of China (41676041 and 41276053).
679	
680	References
681	Andresen, K. J., Huuse, M. 2011. "Bulls-eye" pockmarks and polygonal faulting in
682	the Lower Congo Basin: Relative timing and implications for fluid expulsion
683	during shallow burial. Mar. Geol. 279, 111–127.
684	doi:10.1016/j.margeo.2010.10.016.
685	Andresen, K.J., Huusew, M., Clausenn, O. R., 2008. Morphology and distribution of
686	Oligocene and Miocene pockmarks in the Danish North Sea - implications for
687	bottomcurrent activity and fluid migration. Basin Research, 20, 445-466.
688	Bertoni, C., Gan, Y. P., Paganoni, M., Mayer, J., Cartwright, J., Martin, J., Van
689	Rensbergen, P., Wunderlich, A., Clare, A., 2019. Late Paleocene pipe swarm in
690	the Great South–Canterbury Basin (New Zealand). Marine and Petroleum
691	Geology, 107, 451-466.
692	Bøe, R., Rise, L., Ottesen, D., 1998. Elongate depressions on the southern slope of the
693	Norwegian Trench (Skagerrak): morphology and evolution. Marine Geology 146,
694	191-203.

Page 47 of 60

1

Interpretation

2		
3 4 5	695	Boswell, R., 2007, Resource potential of methane hydrate coming into focus. Journal
6 7 8	696	of Petroleum Science and Engineering, 56, 9-13.
9 10	697	Boswell, R., Shipp, C., Reichel, T., Shelander, D., Saeki, T., Frye, M., Shedd, W.,
11 12 13	698	Collett, T. S., McConnell, D. R., 2016. Prospecting for marine gas hydrate
14 15 16	699	resources. Interpretation 4, SA13-SA24.
17 18	700	Boswell, R., Frye, M., Shelander, D., Shedd, W., McConnelle, D. R., Cook, A., 2012a.
19 20 21	701	Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green
22 23 24	702	Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico:
25 26 27	703	Marine and Petroleum Geology 34, 134-149.
27 28 29	704	Boswell, R., Collett, T. S., Frye, M., Shedd, W., McConnell, D. R., Shelander, D.,
30 31 32	705	2012b. Subsurface gas hydrates in the northern Gulf of Mexico. Marine and
33 34 35	706	Petroleum Geology, 34, 4-30.
36 37	707	Buffett, B. A., 2000. Clathrate hydrates. Annual Review of Earth and Planetary
38 39 40	708	Science 28, 477-507.
41 42 43	709	Cartwright, J., Santamarina, C., 2015. Seismic characteristics of fluid escape pipes in
44 45	710	sedimentary basins: implications for pipe genesis. Marine and Petroleum
46 47 48	711	Geology, 65, 126-140.
49 50 51	712	Cartwright, J. A., 2011. Diagenetically induced shear failure of fine-grained sediment
52 53	713	sand the development of polygonal fault systems. Marine and Petroleum
55 56	714	Geology, 28, 1593-1610.
57 58 59 60	715	Cartwright, J., Huuse, M., Aplin, A., 2007. Seal bypass systems. AAPG bulletin,

2	
3	
4	
5	
6 7	
7 8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
23	
24	
25	
26 27	
27	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
40 47	
48	
49	
50	
51	
52 52	
55	
55	
56	
57	
58	
59 60	

91(8), 1141-1166. 716

717	Cartwright, J. A., James, D., Bolton, A., 2003. The genesis of polygonal fault systems:
718	a review. In Van Rensbergen, P., Hillis, R. R., Maltman, A. J., Morley, C. K.
719	(Eds), 2003. Subsurface Sediment Mobilization. Geological Society, London,
720	Special Publications 216, 223-243.
721	Cartwright, J. A., 1999. Polygonal fault systems: a new type of fault structure
722	revealed by 3-Dseismic data from the North Sea Basin. In Weimer P. and T. L.
723	Davis, (Eds.), 1999. AAPG Studies in Geology No. 42 and SEG Geophysical
724	Developments Series No. 5, AAPG/SEG, Tulsa, 225-230.
725	Cathles, L.M., Su, Z., Chen, D.F., 2010. The physics of gas chimney and pockmark
726	formation, with implications for assessment of seafloor hazards and gas
727	sequestration. Marine and Petroleum Geology 27, 82-91.
728	Chen, J. X., Song, H. B., Guan, Y. X., Yang, S. X., Pinheiro, L. M., Bai, Y., Liu, B.
729	R., Geng, M. H., 2015. Morphologies, classification and genesis of pockmarks,
730	mud volcanoes and associated fluid escape features in the northern Zhongjiannan
731	Basin, South China Sea. Deep-Sea Research II 122, 106–117.
732	Chen, Z., Yan, W., Chen, M.H., Wang, S.H., Lu, J., Zhang, F., Xiang, R., Xiao, S.B.,
733	Yan, P., Gu, S.C., 2006. Discovery of seep carbonate nodules as new evidence
734	for gas venting on the northern continental slope of South China Sea. Chinese
735	Science Bulletin 51, 1228-1237.
736	Cole, D., Stewart, S.A., Cartwright, J.A., 2000. Giant irregular pockmark craters in

1		
2		
4	737	the Palaeogene of the Outer Moray Firth Basin, UK North Sea. Mar. Pet. Geol.
5		
6 7	738	17 563-577
8	750	1,000 077.
9	720	Device D. Contaministi I.A. Device I. 1000. Ciant homeoclasis data materia
10	/39	Davies, R., Cartwright, J.A., Rana, J., 1999. Giant nummocks in deep-water marine
11		
12 13	740	sediments: evidence for large-scale differential compaction and density inversion
14		
15	741	during early burial. Geology 27, 907–910.
16		
17 10	742	Decker, C., Olu, K., 2010, Does macrofaunal nutrition vary among habitats at the
10		
20	7/2	Håkon Moshy mud volcano? Cabiers De Biologie Marine 51, 361, 367
21	745	Hakon wosby mud volcano? Camers De Biologie Warme, 51, 501–507.
22		
23 24	/44	Dimitrov, L., Woodside, J., 2003. Deep sea pockmark environments in the eastern
25		
26	745	Mediterranean. Mar. Geol. 195, 263–276.
27		
28 29	746	Fader, G.B.J., 1991. Gas-related sedimentary features from the eastern Canadian
30		
31	747	continental shelf Cont Shelf Res 11 1123–1153
32		
33 24	740	Foland S.S. Mahar N. Vun I.W. 1000 Pockmarks along the Californian
35	740	Foldid, S.S., Maner, N., Tun, J.W., 1999. Fockinarks along the Camorinan
36		
37	749	Continental Margin: implications for fluid flow. Abstract. AAPG Bull. 83,
38		
39 40	750	681–706.
41		
42	751	Fyhn, M. B. W., Nielsen, L. H., Boldrell, L. O., Thang, L. D., Bojesen, K. J., Petersen,
43		
44 45	752	H I Huven N T Duc N A Day N T Mathiesen A Reid I Huong D T
46	,01	11. 1., 11a jon, 11. 1., 2 ao, 11. 11., 2 ao, 11. 1., 11. anno 201, 11., 11. 11., 11.
47	750	Tuen II A High L V Nuteft II D betrig L 2000 Caplegical evolution
48	/55	Tuali, H. A., Hieli, L. V., Nytoli, H. P., Datzis, I., 2009. Geological evolution,
49 50		
50	754	regional perspectives and hydrocarbon potential of the northwest Phu Khanh
52		
53	755	Basin, offshore Central Vietnam. Marine and Petroleum Geology 26, 1-24.
54	756	Cap U.E. 2012 Saismia facios' abarrataristic of turbiditas and say layed abarras in
55 56	001	Gao, 11.1., 2012. Scisinic facies characteristic of turbidites and sea level change in
57	757	the northwest sub-basin of South China Sea since late Miocene (Chinese with
58	1.51	are northwest sub bush of South China Sea since fate whotelie (Chinese with
59	758	English Abstract). Journal of Tropical Oceanography, 31(3), 113-119.
00		\mathbf{C}

https://mc.manuscriptcentral.com/interpretation

2		
4	759	Gay, A., Berndt, C., 2007. Cessation/reactivation of polygonal faulting and effects on
5 6	760	fluid flow in the Vøring Basin, Norwegian margin. Journal of the Geological
7 8 9	761	Society 164:129-141.
10 11 12	762	Gay, A, Lopez, M., Berndt, C., Séranne, M., 2007. Geological controls on focused
13 14 15	763	fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine
15 16 17	764	Geology 244, 68–92.
18 19 20	765	Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., Brigaud, F., 2003. Sinuous
21 22 23	766	pockmark belt as indicator of a shallow buried turbiditic channel on the lower
24 25	767	slope of the Congo basin, West African margin. In:Van Rensbergen, P., Hillis,
26 27 28	768	R.R., Maltman, A.J., Morley, C.K. (Eds.), Subsurface Sediment Mobilization.
29 30 31	769	Geol. Soc. Lond. Spec. Pub., vol. 216, pp. 173–189.
32 33 34	770	Gay, A., Lopez, M., Cochonat, P., Levache, D., Sermondadaz, G., Séranne, M., 2006a.
35 36	771	Evidences of early to late fluid migration from an upper Miocene turbiditic
37 38 39	772	channel revealed by 3D seismic coupled to geochemical sampling within
40 41 42	773	seafloor pockmarks, Lower Congo Basin. Marine and Petroleum Geology 23,
43 44	774	387-399.
45 46 47	775	Gay, A., Lopez, M., Cochonat, P., Séranne, M., Levaché, D., Sermondadaz, G., 2006b.
48 49 50	776	Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults
51 52	777	and stacked Oligocene-Miocene turbiditic palaeo channels in the Lower Congo
53 54 55	778	Basin. Marine Geology 226, 25–40.
56 57 58	779	Gong, S.G., Hu, Y., Li, N., Feng, D., Liang, Q.Y., Tong H.P., Peng, Y.B., Tao, J.,
59 60	780	Chen, D.F., 2018. Environmental controls on sulfur isotopic compositions of

Page 51 of 60

Interpretation

2		
3 4 5	781	sulfide minerals in seep carbonates from the South China Sea. Journal of Asian
6 7 8	782	Earth Sciences, https://doi.org/10.1016/j.jseaes.2018.04.037.
9 10	783	Gong, Z.S., 1997, The Major Offshore Oil and Gas Fields in China: Petroleum
12 13	784	Industry Press, Beijing (in Chinese with English abstract).
14 15 16	785	Hammer, O., Webb, K. E., 2010. Piston coring of Inner Oslo fjord Pockmarks,
17 18 10	786	Norway: constraints on age and mechanism. Nor. J. Geol. 90, 79-91.
20 21	787	Haq, B.U., Hardenbol, J., VAIL, P. R., 1987. Chronology of fluctuating sea levels
22 23 24	788	since the Triassic. Science 235, 1156–1167.
25 26 27	789	Harrington, P.K., 1985. Formation of pockmarks by pore-water escape. Geo-Marine
28 29	790	Letters 5, 193-197.
30 31 32	791	Harris, P.T.; Baker, E.K., 2012. Seafloor Geomorphology as Benthic Habitat, 1st ed.;
33 34 35	792	Elsevier: London, UK; p. 900.
36 37	793	Hartwig A, Anka Z, di Primio R, 2012. Evidence of a widespread paleo-pockmarked
38 39 40	794	field in the Orange Basin: an indication of an early Eccene massive fluid escape
41 42 43	795	event offshore South Africa. Marine Geology, 332: 222-234.
44 45	796	Haskell, N., Grindhaug, J., Dhanani, S., Heath, R., Kantorowicz, J., Antrim, L.,
40 47 48	797	Cubanski, M., Nataraj, R., Schilly, M., Wigger, S., 1999. Delineation of geological
49 50 51	798	drilling hazards using 3-D seismic attributes. Leading Edge, 18, 373–382.
52 53	799	Hovland, M., 1982. Pockmarks and the recent geology of the central section of the
54 55 56 57 58 59 60	800	Norwegian Trench. Marine Geology, 47, 283-301.

3 4 5	801	Hovland, M., Judd, A.G., 1988. Seabed Pockmarks and Seepages. Impact on Geology,
6 7 8	802	Biology and the Marine Environment. Graham & Trotman, London. 293 pp.
9 10	803	Hovland, M., 1991. Large Pockmarks, gas-charged sediments and possible clay
11 12 13	804	diapirs in the Skagerrak. Marine and Petroleum Geology, 8, 311–316.
14 15 16	805	Hovland, M., 1992. Hydrocarbon seeps in northern marine waters -their occurrence
17 18	806	and effects. Palaeios 7, 376-382.
19 20 21	807	Hovland, M., Judd, A. G., Burke Jr. R. A., 1993. The global flux of methane from
22 23 24	808	shallow submarine sediments. Chemosphere 26, 559–578.
25 26 27	809	Hovland, M., Gardner, J. V., Judd, A.G., 2002. The significance of pockmarks to
27 28 29	810	understanding fluid flow processes and geohazards. Geofluids 2, 127-136.
30 31 32	811	doi:10.1046/j.1468-8123.2002.00028.x
33 34 35	812	Huang, B. J., Xiao, X. M., Zhang, M. Q., 2003. Geochemistry, grouping and origins
36 37	813	of crude oils in the Western Pearl River Mouth Basin, offshore South China Sea:
38 39 40	814	Organic Geochemistry 34, 993-1008.
41 42 43	815	Judd, A. G., Hovland, M., Dimitrov, L. I., Garca Gil, S., Jukes, V., 2002. The
44 45 46	816	geological methane budget at continental margins and its influence on climate
40 47 48	817	change. Geofluids2, 109–126.
49 50 51	818	Judd, A.G., Hovland, M., 2009. Seabed Fluid Flow: The Impact on Geology, Biology
52 53 54	819	and the Marine Environment; Cambridge University Press: Cambridge, UK,
55 56	820	2007; p. 475.
57 58 59 60	821	King, L.H., MacLean, B., 1970. Pockmarks on the Scotian shelf. Geological Society

Interpretation

2		
3 4	077	of America Dullatin 81 2141 2149
5	022	of America Bunetin, 81, 5141–5148.
6 7 8	823	Krämer, K., Holler, P., Herbst, G., Bratek, A., Ahmerkamp, S., Neumann, A., Winter,
9 10 11	824	C., 2017. Abrupt emergence of a large pockmark field in the German Bight,
12 13	825	southeastern North Sea. Scientific reports, 7(1), 5150.
14 15 16	826	Lafuerza, S., N. Sultan, M. Canals, J. Frigola, S. Berné, G. Jouet, M. Galavazi, and F.
17 18 19	827	J. Sierro, 2009. Overpressure within upper continental slope sediments from
20 21	828	CPTU data, Gulf of Lion, NW Mediterranean Sea. International Journal of Earth
22 23 24	829	Sciences, 98(4), 751–768. doi:10.1007/s00531-008-0376-2.
25 26 27	830	Liang, Q.Y., Hu, Y., Feng, D., Peckmann, J., Chen, L.Y., Yang, S.X., Liang, J.Q.,
28 29 30	831	Tao, J., Chen, D.F., 2017. Authigenic carbonates from newly discovered active
31 32	832	cold seeps on the northwestern slope of the South China Sea: Constraints on
33 34 35	833	fluid sources, formation environments, and seepage dynamics. Deep-Sea
36 37 38	834	Research Part I, 124, 31–41.
39 40 41	835	Lu, Y.T., Wang, B., Lü, F. L., He, X. S., Fan, G. Z., Wu, J. W., 2011. Basin Evolution
42 43	836	and Petroleum Prospecting Potential of Deepwater Sedimentary Basins around
44 45 46	837	Xisha Islands (In Chinese with English abstract). Marine Origin Petroleum
47 48 49	838	Geology, 16, 32-38.
50 51	839	Lu, Y.T., Luan, X.W., Lyu, F.L., Wang, B., Yang, Z.L., Yang, T.T., Yao, G.S., 2017.
52 53 54	840	Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan
55 56 57	841	Basin, Western margin of the South China Sea. Marine and Petroleum Geology,
58 59 60	842	84, 274-288.

2		
3 4 5	843	Lüc
6 7 8	844	
9 10	845	Lüc
11 12 13	846	
14 15 16	847	
17 18 10	848	Ma
20 21	849	
22 23 24	850	
25 26 27	851	
28 29	852	Ma
30 31 32	853	
33 34 35	854	
36 37	855	
39 40	856	Ma
41 42 43	857	
44 45 46	858	
47 48	859	
49 50 51	860	Mil
52 53 54	861	
55 56 57	862	
58 59	863	Mo
60		

843	Lüdmann, T. Wong, H. K., 1999. Neotectonic regime at the passive continental
844	margin of the northern South China Sea. Tectonophysics 311, 113-138.
845	Lüdmann, T., Wong, H. K., Kai, B., 2005. Upward flow of North Pacific Deep Water
846	in the northern South China Sea as deduced from the occurrence of drift
847	sediments: Geophysical Research Letters, 32, 215-236.
848	Ma, Y. B., Wu, S. G., Lv, F. L., Dong, D. D., Sun, Q. L., Lu, Y. T., Gu, M. F., 2011.
849	Seismic characteristics and development of the Xisha carbonate platforms,
850	northern margin of the South China Sea. Journal of Asian Earth Sciences 40,
851	770–783.
852	Maestrelli, D., Iacopini, D., Jihad, A. A., Bond, C. E., Bonini, M., 2017. Seismic and
853	structural characterization of fluid escape pipes using 3D and partial stack
854	seismic from the Loyal Field (Scotland, UK): A multiphase and repeated
855	intrusive mechanism. Marine and Petroleum Geology, 88, 489-510.
856	Mazzini, A., Svensen, H.H., Forsberg, C.F., Linge, H., Lauritzen, S.E., Haflidason, H.,
857	Hammer, Ø., Planke, S., Tjelta, T.I., 2017. A climatic trigger for the giant Troll
858	pockmark field in the northern North Sea. Earth Planet Science Letter 464, 24-34.
859	doi:10.1016/j.epsl.2017.02.014.
860	Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz,
861	M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., Pekar, S.F., 2005. The
862	Phanerozoic record of global sea-level change. Science 310, 1293-1299.
863	Moss, J. L., & Cartwright, J. (2010). 3D seismic expression of km-scale fluid escape

Page 55 of 60

1

Interpretation

2		
3 4 8 5	64	pipes from offshore Namibia. Basin Research, 22(4), 481-501.
6 7 8 8	65 Na	kajima, T., Kakuwa, Y., Yasudomi, Y., Itaki, T., Motoyama, I., Tomiyama, T.,
9 10 8	66	Machiyama, H., Katayama, H., Okitsu, O., Morita, S., Tanahashi, M.,
11 12 8 13	67	Matsumoto, R., 2014. Formation of pockmarks and submarine canyons
14 15 8 16	68	associated with dissociation of gas hydrates on the Joetsu Knoll, eastern margin
17 18 8	69	of the Sea of Japan. Journal of Asian Earth Sciences 90, 228-242.
19 20 8 21 8	70 Nic	cholas, W.A., Carroll, A., Picard, K., Radke, L., Siwabessy, J., Chen, J., Howard,
22 23 8 24	571	F.J.F., Dulfer, H., Tran, M., Consoli, C., Przeslawski, R., Li, J., Jones, L.E.A.
25 26 8	372	2015. Seabed environments, shallow sub-surface geology and connectivity,
27 28 29 8	73	Petrel Sub-basin, Bonaparte Basin, Timor Sea: Interpretative report from marine
30 31 8 32	374	survey GA0335/SOL5463. Record 2015/24. Geoscience Australia, Canberra: p.
33 34 8	75	124. http://dx.doi.org/10.11636/Record.2015.024.
36 37 8	76 Niu	ı, M.Y., Fan, X.B., Zhuang G.C., Liang Q.Y., Wang F.P., 2017.
38 39 40	77	Methane-metabolizing microbial communities in sediments of the Haima cold
41 42 8 43	78	seep area, northwest slope of the South China Sea. FEMS Microbiology Ecology,
44 45 8	79	93, 1-13.
46 47 48 8	80 Ow	ven, G., 2003. Load structures: gravity-driven sediment mobilization in the shallow
49 50 8 51	81	subsurface. Geological Society, London, Special Publications 216, 21-34.
52 53 8	82 Pic	ard, K., Radke, L., Williams, D., Nicholas, W., Siwabessy, P., Howard, F., Gafeira,
54 55 8 57 58 59 60	83	J., Przeslawski, R., Huang, Z., Nichol, S., 2018. Origin of High Density Seabed

3 4 5	884	Pockmark Fields and Their Use in Inferring Bottom Currents. Geosciences 195,
6 7 8	885	1-23. doi:10.3390/geosciences8060195.
9 10	886	Pilcher, R., Argent, J., 2007. Mega-pockmarks and linear pockmark trains on the
11 12 13	887	West African continental margin. Marine Geology 244, 15-23.
14 15 16	888	Plaza-Faverola, A., Bünz, S., Mienert, J., 2011. Repeated fluid expulsion through
17 18	889	sub-seabed chimneys offshore Norway in response to glacial cycles. Earth
19 20 21	890	Planetary. Science Letters, 305, 297–308. doi:10.1016/j.epsl.2011.03.001.
22 23 24	891	Riboulot, V., Cattaneo, A., Sultan, N., Garziglia, S., Ker, S., Imbert, P., Voisset, M.,
25 26 27	892	2013. Sea-level change and free gas occurrence influencing a submarine
28 29	893	landslide and pockmark formation and distribution in deepwater Nigeria. Earth
30 31 32	894	Planet. Sci. Lett. 375, 78–91.
33 34 35	895	Riboulot, V., Thomas, Y., Berné, S., Jouet, G., Cattaneo, A., 2014. Control of
36 37	896	Quaternary sea-level changes on gas seeps. Geophys. Res. Lett. 41, 4970–4977.
38 39 40	897	doi:10.1002/2014GL060460.
41 42 43	898	Rice, D. D., Claypool, G. E., 1981. Generation, accumulation and resource potential
44 45 46	899	of biogenic gas. AAPG Bull. 65, 5–25.
47 48	900	Rollet, N., Logan, G. A., Kennard, J. M., O'Brien, P. E., Jones, A. T., Sexton, M.,
49 50 51	901	2006. Characterisation and correlation of active hydrocarbon seepage using
52 53 54	902	geophysical data sets: an example from the tropical, carbonate Yampi Shelf,
55 56 57	903	Northwest Australia. Mar. Pet. Geol. 23, 145–164.
57 58 59 60	904	Rowan, M.G., Jackson, M.P.A., Trudgill, B.D., 1999. Salt-related fault families and

Page 57 of 60

Interpretation

1 ว		
2 3		
4 5	905	fault welds in the northern Gulf of Mexico. AAPG Bull. 83, 1454-1484.
6 7 8	906	Sun, Q. L., Wu, S. G., Yao, G. S., Lü, F. L., 2009. Characteristics and Formation
9 10 11	907	Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China
12 13	908	Sea. Journal of Earth Science 20, 180–192.
14 15 16	909	Sun, Q. L., Wu, S. G., Lü, F.L., Yuan, S. Q., 2010. Polygonal faults and their
17 18 19	910	implications for hydrocarbon reservoirs in the southern Qiongdongnan Basin,
20 21 22	911	South China Sea. Journal of Asian Earth Science 39, 470-479.
22 23 24	912	Sun, Q. L., Wu, S. G., Hovland, M., Luo, P., Lu, Y. T., Qu, T., 2011a. The
25 26 27	913	morphologies and genesis of mega-pockmarks near the Xisha Uplift, South
28 29 30	914	China Sea. Marine and Petroleum Geology 28, 1146-1156.
31 32	915	Sun, Q. L., Wu, S. G., Lüdmann, T., Wang, B., Yang, T. T., 2011b. Geophysical
33 34 35	916	evidence for cyclic sediment deposition on the southern slope of Qiongdongnan
36 37 38	917	Basin, South China Sea. Marine Geophysical Researches 32, 415-428.
39 40 41	918	Sun, Q. L., Wu, S. G., Cartwright, J., Dong, D. D., 2012a. Shallow gas and focused
42 43	919	fluid flow systems in the Pearl River Mouth Basin, northern South China Sea.
44 45 46	920	Marine Geology 315-318, 1-14.
47 48 49	921	Sun, Y. B., Wu, S. G., Dong, D. D., Lüdmann, T., Gong, Y. H., 2012b. Gas hydrates
50 51	922	associated with gas chimneys in fine-grained sediments of the northern South
52 53 54	923	China Sea. Marine Geology 311-314, 32–40.
55 56 57	924	Sun, Q. L., Wu, S. G., Joseph, C., Lüdmann, T., Yao, G. S., 2013. Focused fluid flow
58 59 60	925	systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea. Basin

1 2		
3 4 5	926	Research 25, 97-111.
6 7 8	927	Tasianas, A., Bünz, S., Bellwald, B., Hammer, Ø., Planke, S., Lebedeva-Ivanova, N.,
9 10	928	Krassakis, P., 2018. High-resolution 3D seismic study of pockmarks and shallow
12 13	929	fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea.
14 15 16	930	Marine Geology, 403, 247-261.
17 18 19	931	Tjelta, T.I., Svanø, G., Strout, J.M., Forsberg, C.F., Planke, S., Johansen, H., 2007.
20 21	932	Gas seepage and pressure build-up at a North Sea platform location: Gas origin,
22 23 24	933	transportation, and potential hazards. In Proceedings of the Offshore Technology
25 26 27	934	Conference (OTC), Houston, TX, USA, 30 April-4 May 2007; p. 11, OTC paper
28 29 30	935	no.18699.
31 32	936	Tong, H.P., Feng, D., Cheng, H., Yang, S.X., Wang, H.B., Min, A.G., Edwards, R.L.,
33 34 35	937	Chen, Z., Chen, D.F., 2013. Authigenic carbonates from seeps on the northern
36 37 38	938	continental slope of the South China Sea: New insights into fluid sources and
39 40	939	geochronology. Marine and Petroleum Geology 43, 260-271.
41 42 43	940	Wrona T, Magee C, Jackson CA-L, Huuse M and Taylor KG (2017). Kinematics of
44 45 46	941	Polygonal Fault Systems: Observations from the Northern North Sea. Frontiers
47 48 49	942	in Earth Science, 5: 101.
50 51	943	Wang, X. J., Wu, S. G., Yuan, S. Q., Wang, D. W., Yao, G. S., Gong, Y., Zhang, G.
52 53 54	944	X., 2010. Geophysical signatures associated with fluid flow and gas hydrate
55 56 57	945	occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South
58 59 60	946	China Sea. Geofluids10, 351-368.

Page 59 of 60

1 2

Interpretation

3 4 5	947	Wenau, S., Spieß, V., Pape, T., Fekete, N., 2017. Controlling mechanisms of giant
6 7 8	948	deep water pockmarks in the Lower Congo Basin. Marine and Petroleum
9 10	949	Geology, 83, 140-157. doi:10.1016/j.marpetgeo.2017.02.030.
11 12 13	950	Whelan, J., Eglinton, L., Cathles Iii, L., Losh, S., Roberts, H., 2005. Surface and
14 15 16	951	subsurface manifestations of gas movement through a NeS transect of the Gulf of
17 18	952	Mexico. Marine and Petroleum Geology, 22, 479-497.
19 20 21	953	Wu, F., Guo, L.Y., Zhnag, D.J., Xie, X.N., You, L., Du, X.B., 2016. High resolution
22 23 24	954	sequence units division based on geochemical data: Taking Quaternary reef-bank
25 26 27	955	strata of well XK1 as an example (Chinese with English abstract). Geological
28 29	956	Science and Technology Information, 35(5), 42-51.
30 31 32	957	Xie, X. N., Müller, R. D., Li, S. T., Gong, Z. S., Steinberger, B., 2006. Origin of the
33 34 35	958	anomalous subsidence along the Northern South China Sea margin and its
36 37	959	relationship to dynamic topography. Marine and Petroleum Geology 23,
38 39 40	960	745-765.
41 42 43	961	Yan, P., Deng, H., Liu, H. L., Zhang, Z. R., Jiang, Y. K 2006. The temporal and
44 45 46	962	spatial distribution of volcanism in the South China Sea region. Journal of Asian
47 48	963	Earth Science 27, 647-659.
49 50 51	964	Zhao, Fang, Alves, Tiago M, Wu, Shiguo, Li, Wei, Huuse, Mads, Mi, Lijun, Sun,
52 53 54	965	Qiliang and Ma, Benjun 2016. Prolonged post-rift magmatism on highly
55 56 57	966	extended crust of divergent continental margins (Baiyun Sag, South China Sea).
57 58 59	967	Earth and Planetary Science Letters 445, pp. 79-91.
60		

2
2
2
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
24
34
35
36
37
38
39
40
 ∕/1
11 12
42
43
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
50
59
00

968	doi:10.1016/j.epsl.2016.04.001.
969	Zhao, Fang, Alves, Tiago M., Xia, Shaohong, Li, Wei, Wang, Lei, Mi, Lijun, Wu,
970	Shiguo, Cao, Jinghe and Fan, Chaoyan 2020. Along-strike segmentation of the
971	South China Sea margin imposed by inherited pre-rift basement structures. Earth
972	and Planetary Science Letters 530, 115862. doi: 10.1016/j.epsl.2019.115862.
973	Zhao, Q.H., Jian, Z.M., Wang, J.L., Cheng, X.R., Huang, B.Q., Xu, J., Zhou, Z., Fang,
974	D.Y., Wang, P.X., 2001. Neogene oxygen isotopic stratigraphy, ODP Site 1148,
975	northern South China Sea. Science in China (Series D) 44, 934-542.
976	Zhou, D., Ru, K., Chen, H. Z., 1995. Kinematics of Cenozoic extension on the South
977	China Sea continental margin and its implications for the tectonic evolution of
978	the region. Tectonophysics 251, 161-177.
979	Zhu, W. L., Huang, B. J., Mi, L. J., Wilins, R. W. T., Fu, N., Xiao, X. M., 2009.
980	Geochemistry, origin, and deep-water exploration potential of natural gases in
981	the Pearl River Mouth and Qiongdongnan basins, South China Sea. American
982	Association of Petroleum Geologists Bulletin 93, 741-761.
983	