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Although normally commensals in humans, Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata, and
Candida krusei are capable of causing opportunistic infections in individuals with altered physiological and/or immunological
responses. These fungal species are linked with a variety of infections, including oral, vaginal, gastrointestinal, and systemic
infections, with C. albicans the major cause of infection. To assess the ability of different Candida species and strains to cause
infection and disease requires the use of experimental infection models. This paper discusses the mucosal and systemic models
of infection available to assay Candida virulence and gives examples of some of the knowledge that has been gained to date from
these models.

1. Candida and Man

1.1. Carriage of Candida Species. In healthy individuals
Candida species are harmless members of the normal
gastrointestinal (GI), oral, and vaginal microbial flora. It
is assumed that everyone carries Candida in their GI tract
(reviewed in [1]), with C. albicans the species most frequently
identified in faecal sampling, representing 40–70% of isolates
[2–4]. Other isolates are usually identified as C. parapsilosis,
C. glabrata, C. tropicalis, or C. krusei [2–4].

In comparison to GI carriage, oral carriage is observed
in only ∼40% of healthy individuals, with considerable
variation found between studies (reviewed in [1]). Higher
carriage levels are generally associated with diabetes, cancer,
HIV, or denture use (reviewed in [1]). Again, the majority of
isolates (∼80%) are identified as C. albicans, with C. glabrata
or C. parapsilosis making up the remainder [5–9].

Vaginal carriage occurs in an even smaller proportion of
the healthy population, with only ∼20% of healthy women
found to have vaginal Candida carriage [10–13]. C. albicans is
again the most commonly identified species, with C. glabrata
the only other species usually found [10, 12, 14–17].

Therefore, C. albicans is the major species found as a
commensal in healthy individuals, with four other species,
C. tropicalis, C. parapsilosis, C. glabrata, and C. krusei, also
found.

1.2. Candida and Disease. Candida species, however, have
an alternative lifestyle, causing opportunistic infection in
hosts with altered physiological or immune response. The
infections caused by Candida species range from self-
limiting, superficial mucosal lesions (commonly referred
to as thrush), chronic and/or recurrent mucosal, skin,
and nail infections, through to life-threatening invasive or
disseminated infection [1, 18–21].

In humans, the most common infections caused by
Candida species are superficial infections of the mucosa,
skin, and nails [20–24]. Pseudomembranous oral thrush is
common in babies and in the elderly, but is also found in
HIV-positive individuals and cancer patients (reviewed in
[1, 25]). Denture stomatitis is also a significant infection,
occurring in approximately 60% of denture wearers [26, 27].
In oral candidiasis most infections are caused by C. albicans
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(58%), with the remainder caused by C. parapsilosis, C.
tropicalis, C. glabrata, and C. krusei [28, 29].

Vaginal candidiasis, or thrush, another form of superfi-
cial infection, affects approximately 75% of women of child-
bearing age [30, 31]. C. albicans is most commonly isolated,
with C. glabrata also found, but at a lower frequency [17,
30, 32–35], reflecting the species normally carried in the
vulvovaginal area.

An additional form of candidiasis involving the mucous
membranes, as well as the skin and nails, is chronic muco-
cutaneous candidiasis. Unlike other forms of candidiasis,
there is evidence that this condition can be inherited or is
associated with thymoma, with almost every infection caused
by C. albicans [20–24, 36].

The most serious infections caused by Candida species,
however, are invasive or disseminated infections. Candida
species cause ∼11% of all bloodstream infections and
20% of those occurring in the ICU population [37–39].
However, in comparison to bacterial infections occurring
in the same patient population, these infections are much
more serious as mortality rates remain high (∼45%) [1,
40]. This is due, in part, to diagnostic difficulties and
limited antifungal therapies. Invasive infections occur in
those patients who are already seriously ill, with major
risk factors including admission to ICU, surgery (especially
abdominal surgery), and neutropenia (reviewed in [1]).
The five Candida species commonly isolated from the
human GI tract are also responsible for 90% of invasive
Candida infections [1, 41]. Geographical variations in the
epidemiology of these infections do occur, with C. tropicalis
the most common cause of invasive Candida infection in
both India and Singapore [42–44]. In addition, in patients
with haematological malignancies and in young children and
babies, there is increased incidence of C. tropicalis and C.
parapsilosis [45–49].

Patients with invasive Candida infection usually present
with clinical symptoms similar to those associated with
invasive bacterial infection and can eventually develop sepsis
[50]. From autopsy reports, it is evident that the lungs and
the kidneys are the organs most commonly affected, with
fungal lesions also found in the heart, liver, and spleen [51–
55]. Infection most likely originates from the GI tract, as
the majority of invasive infections show GI involvement
(oesophagus, stomach, and intestines) [51, 53] and Candida
isolates from the bloodstream are identical, or closely related,
to isolates from nonsterile sites of the same patient [56].

Increasing numbers of patients suffering immunosup-
pression and undergoing invasive treatments, for example,
for cancers and organ transplants, mean that there is an ever-
increasing population at risk of invasive fungal infection.
With a medical need for the development of new and more
efficient diagnostics and therapies for fungal infection, we
need a better understanding of Candida pathogenesis, that
is, how do the major Candida species cause opportunistic
infections?

2. Experimental Models of Candida Infection

Experimental infection models allow disease development to
be followed from the moment that fungal cells are introduced
into the host. To be a good model, a model should be
reproducible, relatively easy to set up, and should reproduce
the major clinical symptoms seen in the human disease. It
is also an added advantage if the model is cost effective.
Models which satisfy these conditions allow further in-depth
investigation of Candida virulence to be carried out and,
subsequently, allow inferences about Candida virulence in
human disease to be made.

Although a great deal of preliminary research on viru-
lence can be carried out by laboratory experiment, infection
modelling requires the involvement of a host organism. It
is only in a whole organism that the complex host-fungus
interactions that determine whether or not disease will occur
can be investigated. Although larger animals have been used
to study Candida infections, for example, macaques [57, 58],
piglets [59], rabbits [60–62], and guinea pigs [63, 64], the
majority of Candida virulence studies use rodent infection
models. This is due to economic factors, ease of handling,
and the availability of genetically modified mouse strains,
which allow human genetic conditions to be mimicked.

In this paper, experimental animal models that have
been developed for Candida virulence assays are discussed.
It should be noted that the majority of models focus on C.
albicans as this is the major species associated with human
Candida infections.

2.1. Mucosal Infection Models. To model Candida oral and
vaginal infections, mucosal models have been developed
mainly in rats and mice. The procedures used in rats and
mice are generally similar. However, the larger animal has
the added advantage that denture-associated fungal biofilms
formation can also be studied in a host [65]. Establishment of
infection at mucosal sites generally requires treatment with
immunosuppressive agents, oestrogen, or antibiotics prior to
infection, or the use of germ-free animals [66–68]. However,
the nude (Foxn1nu) mouse model of oral infection allows
infection to be established without any immunosuppression
or other pretreatment [69]. Greater detail can be found in
more extensive reviews of these infection models [67, 68, 70,
71].

In order to assess virulence in mice using the oral
infection model, mice are routinely pretreated with corti-
costeroids and Candida cells are administered into the oral
cavity of anaesthetised animals either by applying a Candida-
soaked cotton bud under the tongue or by applying the
inoculum directly onto the teeth, gums, and oral cavity
[67, 70, 72]. Virulence in this model is usually determined
by fungal organ burden and histopathology.

Both rat and mouse models have been used to compare
the virulence of C. albicans mutant strains and also clinical
isolates [73–77]. Using these models, C. albicans mutant
strains which are unable to switch between the yeast and
hyphal growth forms were found to be unable to cause
oral infection, demonstrating a requirement for yeast-hypha
switching in oral infection [75]. In addition, protein kinase
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Ck2 was also shown to be required for oropharyngeal C.
albicans infections [77].

Mouse and rat models have also been developed to
assay Candida virulence in vaginal infection. In these
models the rodents are maintained in oestrus in order to
maintain colonisation and infection, which probably mimics
pregnancy-associated candidiasis [78–81]. In rats, this gener-
ally involves surgery to remove the ovaries, with subsequent
administration of oestrogen [81]. Recently, however, a new
rat model has been developed, similar to the mouse model,
where oestrus is maintained merely through administration
of oestrogen [82], which will increase the ease of setting up
the infection model. Immunosuppression of the host can also
prolong colonisation by Candida species [83]. These models
allow us to examine single vaginitis episodes; however, a
satisfactory model of recurrent, chronic vaginitis is not yet
available.

The virulence of C. albicans clinical isolates has been
compared in rodent vaginitis models, demonstrating that
isolates have varying capacities to cause disease [84, 85]. This
model has also been used to assess virulence of genetically
modified C. albicans mutants [85–87].

In addition to assessing C. albicans virulence, this model
can be used to examine virulence of other Candida species.
As C. glabrata is also associated with human vaginal infec-
tion, researchers have used the rat vaginitis model to evaluate
the virulence of a C. glabrata petite mutant, discovering than
the mutant was more virulent that the parental strain [88].
In addition, C. parapsilosis isolates have also been assessed
for their ability to cause vaginal infection in the rat model
[80]. In this study only a single isolate, recently obtained
from a woman with active vaginal infection, was capable of
initiating infection [80].

A major development in Candida virulence testing at
mucosal surfaces occurred recently with the development of
a concurrent oral and vaginal infection model by Rahman
et al. [72]. This mouse model allows both oral and vaginal
infections to be initiated in the same host, greatly reducing
the numbers of animals required for these virulence assays.
A comparison of the virulence of three different C. albicans
isolates in this model clearly demonstrated that C. albicans
isolates were not equally virulent, with obvious differences in
their ability to initiate mucosal infections [72].

2.2. Invasive Infection Models. Mouse models of invasive
fungal infection have been the most popular methods to
assess Candida virulence up until the present day, although
assays have also been carried out in rabbits, guinea pigs,
and rats also used in some studies. There are two major
models of Candida invasive infection, the intravenous (IV)
challenge model and the gastrointestinal (GI) colonisation
with subsequent dissemination model. These models were
recently reviewed [89].

2.2.1. Intravenous Challenge Model. The mouse IV challenge
model has been used to study Candida virulence since the
1960s and is both well characterised and reproducible [90–
92]. Candida cells are injected directly into the lateral tail

vein, bypassing any requirement of the fungus to cross
epithelial and endothelial barriers to gain entry into the
bloodstream. In this mouse model, which is similar to
human invasive infection occurring with catheter involve-
ment, fungal cells are found in all organs, but disease
progresses only in the kidneys and brain, which depends
upon inoculum level and mouse strain [91–93]. Sepsis
develops as invasive disease progresses, which eventually
leads to the death of the mouse [92, 94, 95].

In these models of Candida invasive infection, virulence
is determined by monitoring survival of infected mice and/or
by quantifying fungal organ burdens at predetermined times
after infection. Drug treatments can also be administered
to the host to allow host conditions to be mimicked, for
example, immunosuppression [88, 96–110] or diabetes [99],
with greater Candida virulence in both of these treatments.

Using immunocompetent mice, the IV challenge model
has been used to compare the virulence of different Candida
species [97–99, 107, 111–114]. C. albicans is clearly the most
virulent species [97, 98, 111, 112, 114], followed closely by C.
tropicalis [97, 98, 111, 112, 114]. In contrast, C. krusei and C.
parapsilosis were unable to kill the infected animals, even at
high inoculum levels, and fungi were eventually cleared from
the host [98, 111, 114].

In immunosuppressed mice, C. tropicalis showed greater
virulence, with disease progressing in the kidneys, rather
than infection being controlled which occurs in immuno-
competent mice [96, 98, 99, 107, 115]. C. parapsilosis and
C. krusei remained unable to initiate progressive infections,
even with addition of immunosuppressive treatments [98,
107], although administration of a very high inoculum
potentially allows some C. parapsilosis isolates to initiate
disease [108, 110].

Within each Candida species, clinical isolates were found
to show considerable virulence differences in the IV challenge
model. This was true for C. albicans [97, 107, 116, 117], C.
tropicalis [97, 99, 112, 115, 118], and C. parapsilosis [108,
119], with some isolates unable to initiate invasive infections.
This raises questions as to whether virulence results found
for a single strain or isolate are representative of the entire
species. This could be of particular importance for C. albicans
studies where the vast majority of gene disruption studies
have been carried out in a single strain, SC5314, background.

Numerous studies have evaluated C. tropicalis clinical
isolate virulence differences; however, there are very few
studies published on the virulence of genetically modified
C. tropicalis strains. One study which has been published
was able to demonstrate that a secreted acid protease was
required for full virulence of C. tropicalis in immunocom-
petent mice [120]. In contrast to C. tropicalis, vast numbers
of studies have been published on the virulence of C. albicans
mutants, with over 200 genes identified as contributing to the
C. albicans virulence in this model (reviewed in [89]).

C. glabrata behaves very differently from the other
Candida species in the mouse model of invasive infection.
Although C. glabrata is maintained, or tolerated, at high
levels in the kidneys of immunocompetent mice, the mice
did not die and there was little inflammation associated with
the fungal cells [113, 114]. Immunosuppression appears to
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increase virulence of C. glabrata in terms of higher fungal
organ burdens, but mouse survival is only increased in some
C. glabrata infections [100, 103–106]. However, because
immunosuppression may allow invasive disease to develop in
C. glabrata-infected mice, these treatments have been added
to an infection model used in some studies to compare the
virulence of genetically modified C. glabrata, with fungal
burdens used as the virulence estimate [88, 101, 102, 105].
The immunosuppressed mouse infection model has demon-
strated the importance of hypertonic stress responses, the
cell wall integrity pathway, and nitrogen starvation responses
in C. glabrata virulence [103, 104, 106]. In addition, this
model has identified a petite mutant, strains expressing
hyperactive alleles of the transcription factor gene PDR1 and
the ace2 null mutant as being more virulent than their parent
strains [88, 105, 121]. However, it should be noted that the
hypervirulent phenotype of the C. glabrata ace2 null was
completely lost in immunocompetent mice [122]. In other
virulence experiments in immunocompetent mice, where
virulence was determined from fungal organ burdens at day
7 after infection, researchers were able to demonstrate that
the cell wall integrity pathway [123, 124] and oxidative stress
response [125], as well as the transcription factor Pdr1p and
some of the genes that it regulates [101, 121], contribute to
C. glabrata virulence.

2.2.2. Gastrointestinal Colonisation and Dissemination Model.
Gastrointestinal models can either be set up in neonatal
or adult mice. Intragastric infection of neonatal mice leads
to persistent colonisation, without any requirement for
pretreatment of the mice. However, to obtain colonisation of
adult mice, the natural mouse gastrointestinal flora must first
be removed by treatment with broad spectrum antibiotics.
Adult mice can either be infected by gavage (intragastrically)
or orally via their chow or drinking water. Subsequent
treatment of Candida colonised mice with immunosuppres-
sants and/or drugs which damage the gut wall allow fungal
dissemination to occur (reviewed in [70, 126]).

In the gastrointestinal models fungal colonisation is
highest in the stomach, caecum, and small intestine [107,
127–129], reflecting some of the clinical findings seen in
human invasive infection. During the model, persistent
colonisation is routinely monitored by noninvasive faecal
fungal counts, and after dissemination Candida cells can
be cultured from the liver, kidneys, and spleen [128–130].
However, differences may be seen between mouse strains
[131].

This murine model is believed to be a more accurate
reflection of the events occurring in the human patient, with
broad spectrum antibiotics allowing fungal overgrowth and
later invasive therapies causing mucosal damage. Mucosal
damage then allows Candida to enter the bloodstream and
disseminate to the internal organs. In the mouse, similar
to human patients, there is increased animal-to-animal
variation compared to the intravenous challenge model,
requiring higher numbers of animals per group to obtain
statistically significant results [128–130].

Comparison of Candida species virulence in this model
demonstrated that C. parapsilosis had lower virulence com-
pared to C. albicans and C. tropicalis, as there was little
evidence of dissemination from the gut [107, 132]. How-
ever, C. parapsilosis was successful in establishing persistent
colonisation of the GI tract [107]. In separate studies, C.
tropicalis appeared to be more virulent than C. albicans in
the gastrointestinal model, with greater dissemination to
the internal organs [133, 134] and higher mortality rates
[97, 134]. However, given the levels of variation observed in
other models for the virulence of strains of different Candida
species, further isolates will require to be assayed before a
definitive conclusion on the relative virulence of the two
species can be made.

To date, only a limited number of C. albicans mutant
strains have been tested in the gastrointestinal colonisation
and dissemination infection model, with only 6 mutants
identified so far as contributing to virulence [89, 135].
However, this model has demonstrated that a constitutively
filamentous C. albicans mutant was unable to disseminate,
suggesting that the ability to switch between morphological
forms may be more important for dissemination [136].

C. glabrata also behaved differently from the other
four major Candida species in this model, being unable
to colonise the oesophageal tissue in the neonatal mouse
gastrointestinal colonisation and dissemination model [137].
Again, there was little host inflammatory response to C.
glabrata [137], suggesting that C. glabrata virulence mech-
anisms may be quite different from those of the other species
studied.

3. Beyond the Genome: Challenges of Candida
Virulence Testing in the Postgenomic Era

The genome sequences of C. albicans, C. glabrata, C.
tropicalis, and C. parapsilosis are now available [138, 139],
encouraging the creation of large-scale mutant libraries. The
challenge comes, however, when these large libraries are to
be screened for genes involved in fungal virulence, with
logistical, financial, and ethical issues to be considered.

In library screening programmes carried out to date
different virulence testing strategies have been taken. Noble
et al. [140] used signature-tagged mutagenesis to allow pools
of mutants to be assayed in small numbers of animals,
significantly reducing the animal numbers required for
testing. By contrast, in order to screen a library of 177 C.
albicans strains for altered virulence, Becker et al. [141]
assayed each strain in 15 mice. From these two examples
it is clear that traditional testing methods can lead to
large numbers of mice being required to assay virulence.
However, researchers have recently begun to address the
issues of virulence testing large numbers of Candida strains
by developing a range of minihosts, which are mainly based
on invertebrate hosts.

Minihosts may not initially appear relevant to the human
disease, but these hosts do possess an innate immune system
and this is known to be critical in the development of
Candida infections [142]. However, many of the minihosts



International Journal of Microbiology 5

do not possess an adaptive immune system, which may limit
their usefulness. In addition, the majority of invertebrate
models have the disadvantage that they must be kept at
temperatures below normal human body temperature, with
the exception of Galleria which can be incubated at 37◦C.
Potentially, incubation at lower temperatures may induce
physiological changes in the fungus, affecting host-fungus
interactions during disease development.

3.1. Wax Moth and Silk Worm Larval Models. The first
minihost model developed for Candida virulence testing was
the Galleria mellonella (wax moth) larval model [143]. In this
model fungi are injected into larvae, via a proleg, and survival
is monitored over a short time period. The model is relatively
cheap and has the added advantage that large numbers of
larvae can be infected with each mutant strain, increasing the
statistical power of the assay. The Galleria model has been
successfully used to model C. albicans virulence, with results
roughly similar to those found in mouse infection models
[143–146]. A similar model has also been developed using
the silk worm (Bombyx mori) [147, 148]. Both C. albicans
and C. tropicalis are capable of killing silk worm larvae within
two days [148], and C. albicans virulence differences were
shown to correlate with results previously found in a mouse
model [147].

3.2. Drosophila melanogaster. The fruit fly, Drosophila
melanogaster, has also been used to assay Candida virulence
[149–152]. The susceptibility of wild-type D. melanogaster
continues to be debated; however, both Toll- and Spätzle-
deficient fruit flies are susceptible to infection by Candida
species when fungi are injected directly into the thorax [149–
151]. Again, D. melanogaster models also have the advantage
that large numbers of flies (>30 flies) can be infected with
each Candida strain, increasing the statistical power of the
assay.

In fruit flies, C. albicans was shown to be more virulent
than other Candida species, confirming the results found in
mammalian models (see above; [149]). In addition, virulence
results for C. albicans clinical isolates and mutants were
broadly similar to those found in the mouse systemic model
[149–151]. However, differences do occur. In the fruit fly,
CO2 sensing is important for virulence, but this was not the
case in the mouse IV challenge model [153]. This model has
already been successfully used to screen a C. albicans mutant
library, identifying Cas5, a transcription factor involved in
cell wall integrity, as being required for full virulence [154].

In addition to the systemic D. melanogaster infection
model, a new gastrointestinal infection model has also been
developed recently, which should provide new options for
virulence screening in a gastrointestinal model [152].

3.3. Caenorhabditis elegans. In addition to fly and larval
models, the nematode Caenorhabditis elegans has also been
evaluated as an infection model for assaying Candida
virulence [155]. This model is particularly suited to high-
throughput screening, as the Candida cells are fed to the

nematodes in their food and assays are carried out in multi-
well plates. This model has also been used successfully to
screen a C. albicans transcription factor mutant library,
allowing identification of transcription factor genes involved
in hypha formation [155].

3.4. A Vertebrate Minihost: Zebrafish (Danio rerio). Zebrafish
are the first vertebrate minihost model developed for vir-
ulence testing of Candida. This organism has the added
advantage of having both innate and adaptive immune
systems [156], and methods are also available to allow fish
gene expression to be manipulated to mimic human genetic
conditions [157].

The first virulence assay developed in zebrafish involved
intraperitoneal injection of C. albicans into 7-month-old
zebrafish [158]. In this model, similar to mouse models,
progressive infection depends upon dose and is associ-
ated with increased proinflammatory gene expression. This
model also allows increased group sizes, with group sizes
of 20 fish being used to date. Using this model, researchers
demonstrated that a clinical isolate with reduced virulence in
a mouse model also showed reduced virulence in this model
[158]. In addition, a C. albicans mutant (efg1/cph1) known
to have attenuated virulence due to filamentation defects
also had reduced virulence in this model [159, 160]. Of
greater interest was the finding that, although these mutants
were unable to form filaments in vitro, they clearly formed
filaments when growing within fish. This model also allows
interactions between zebrafish immune cells and Candida
cells to be imaged, which will be made even easier in the
future with the development of the new transparent adult
(casper) zebrafish [161].

A second zebrafish infection model has also been
described, where each fish larva (36 h after fertilization) is
infected directly into the hindbrain ventricle with approxi-
mately 10 fungal cells [162]. In this model the C. albicans
efg1/cph1 mutant again demonstrated attenuated virulence,
similar to results found in the mouse IV challenge model
[162].

There are, however, disadvantages to the zebrafish infec-
tion models. One of the major drawbacks of this model, in
common with the majority of other minihosts, is that the fish
need to be kept at 28-29◦C, which does not allow accurate
mimicking of human infection.

4. Assaying Virulence in Experimental
Models: Final Considerations

There are some important points to remember when eval-
uating Candida virulence in experimental infections. The
first concerns the Candida species of interest. Although
C. albicans, C. tropicalis, C. glabrata, and C. krusei are all
associated with human carriage and infection, they are not
natural mouse commensals or pathogens [163]. As such,
there may be different interactions occurring between the
fungus and the two different host species. This is of particular
relevance when considering C. glabrata and its inability to
initiate disseminated infection in the IV challenge models,
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especially when we know that C. glabrata can cause lethal
infections in severely ill humans [164].

The second point to consider is that, although the
immune systems of mice and men are similar, there are
differences that could affect how the host and fungus interact
[165–168]. Of particular relevance to Candida infections are
differences in proportions of neutrophils and lymphocytes
in the blood, complement receptor expression, and T-cell
differentiation, to name but a few (reviewed in [168]). In
addition, different mouse strains show differing susceptibil-
ity to infection, which could potentially alter virulence results
[93, 169–172].

The third point to consider is which model should be
used to evaluate Candida virulence. Some C. albicans isolates
exhibit virulence differences depending upon the infection
model being used [72, 134, 173]. A good example is the
C. albicans genome sequenced strain SC5314. In the IV
challenge model, SC5314 is one of the most virulent C.
albicans isolates, causing lethal infection in a relatively short
time [92, 116]; however, in a vaginal infection model, SC5314
is a very poor coloniser of the vaginal mucosa [72]. In
addition, a nongerminative C. albicans strain [173] and a
ura3 minus C. albicans strain [174], both of which were
attenuated in systemic infection models [173, 175–177],
successfully established mucosal infections [173, 174].

Only careful consideration of the above points will allow
the Candida researcher to select the appropriate experimen-
tal Candida infection model to answer a particular research
question. These models remain essential for increasing our
understanding of fungal pathogenesis since both fungal
attributes and host responses are known to contribute to the
development of clinical disease.

Acknowledgment

The author would like to apologise to those whose work
could not be included in this review due to lack of space.

References

[1] D. M. MacCallum, “Candida infections and modelling
disease,” in Pathogenic Yeasts, The Yeast Handbook, H. R.
Ashbee and E. Bignell, Eds., pp. 41–67, Springer, 2010.

[2] M. E. Bougnoux, D. Diogo, N. François et al., “Multilo-
cus sequence typing reveals intrafamilial transmission and
microevolutions of Candida albicans isolates from the human
digestive tract,” Journal of Clinical Microbiology, vol. 44, no. 5,
pp. 1810–1820, 2006.

[3] S. Kusne, D. Tobin, A. W. Pasculle, D. H. Van Thiel, M. Ho,
and T. E. Starzl, “Candida carriage in the alimentary tract of
liver transplant candidates,” Transplantation, vol. 57, no. 3,
pp. 398–402, 1994.

[4] P. D. Scanlan and J. R. Marchesi, “Micro-eukaryotic diversity
of the human distal gut microbiota: qualitative assessment
using culture-dependent and -independent analysis of fae-
ces,” ISME Journal, vol. 2, no. 12, pp. 1183–1193, 2008.

[5] M. Belazi, A. Velegraki, A. Fleva et al., “Candidal overgrowth
in diabetic patients: potential predisposing factors,” Mycoses,
vol. 48, no. 3, pp. 192–196, 2005.

[6] H. Ben-Aryeh, E. Blumfield, R. Szargel, D. Laufer, and I.

Berdicevsky, “Oral Candida carriage and blood group antigen
secretor status,” Mycoses, vol. 38, no. 9-10, pp. 355–358, 1995.

[7] G. Campisi, G. Pizzo, M. E. Milici, S. Mancuso, and V.
Margiotta, “Candidal carriage in the oral cavity of human
immunodeficiency virus-infected subjects,” Oral Surgery,
Oral Medicine, Oral Pathology, Oral Radiology, and Endodon-
tics, vol. 93, no. 3, pp. 281–286, 2002.

[8] S. Thaweboon, B. Thaweboon, T. Srithavaj, and S.
Choonharuangdej, “Oral colonization of Candida species in
patients receiving radiotherapy in the head and neck area,”
Quintessence International, vol. 39, no. 2, pp. e52–57, 2008.

[9] J. Wang, T. Ohshima, U. Yasunari et al., “The carriage of
Candida species on the dorsal surface of the tongue: the
correlation with the dental, periodontal and prosthetic status
in elderly subjects,” Gerodontology, vol. 23, no. 3, pp. 157–
163, 2006.

[10] M. Dan, R. Segal, V. Marder, and A. Leibovitz, “Candida
colonization of the vagina in elderly residents of a long-term-
care hospital,” European Journal of Clinical Microbiology and
Infectious Diseases, vol. 25, no. 6, pp. 394–396, 2006.

[11] I. W. Fong, “The rectal carriage of yeast in patients with
vaginal candidiasis,” Clinical and Investigative Medicine, vol.
17, no. 5, pp. 426–431, 1994.

[12] M. V. Pirotta and S. M. Garland, “Genital Candida species
detected in samples from women in Melbourne, Australia,
before and after treatment with antibiotics,” Journal of
Clinical Microbiology, vol. 44, no. 9, pp. 3213–3217, 2006.

[13] E. Rylander, A. L. Berglund, C. Krassny, and B. Petrini,
“Vulvovaginal Candida in a young sexually active population:
prevalence and association with oro-genital sex and frequent
pain at intercourse,” Sexually Transmitted Infections, vol. 80,
no. 1, pp. 54–57, 2004.

[14] E. M. de Leon, S. J. Jacober, J. D. Sobel, and B. Foxman,
“Prevalence and risk factors for vaginal Candida colonization
in women with type 1 and type 2 diabetes,” BMC Infectious
Diseases, vol. 2, article 1, 2002.

[15] A. Beltrame, A. Matteelli, A. C. C. Carvalho et al., “Vaginal
colonization with Candida spp. in human immunodeficiency
virus - Infected women: a cohort study,” International Journal
of STD and AIDS, vol. 17, no. 4, pp. 260–266, 2006.

[16] O. Grigoriou, S. Baka, E. Makrakis, D. Hassiakos, G.
Kapparos, and E. Kouskouni, “Prevalence of clinical vaginal
candidiasis in a university hospital and possible risk factors,”
European Journal of Obstetrics Gynecology and Reproductive
Biology, vol. 126, no. 1, pp. 121–125, 2006.

[17] A. Paulitsch, W. Weger, G. Ginter-Hanselmayer, E. Marth,
and W. Buzina, “A 5-year (2000–2004) epidemiological
survey of Candida and non-Candida yeast species causing
vulvovaginal candidiasis in Graz, Austria,” Mycoses, vol. 49,
no. 6, pp. 471–475, 2006.

[18] F. C. Odds, Candida and Candidosis, Bailliere Tindall,
London, UK, 1988.

[19] B. Havlickova, V. A. Czaika, and M. Friedrich, “Epidemio-
logical trends in skin mycoses worldwide,” Mycoses, vol. 51,
supplement 4, pp. 2–15, 2008.

[20] C. H. Kirkpatrick and H. R. Hill, “Chronic mucocutaneous
candidiasis,” Pediatric Infectious Disease Journal, vol. 20, no.
2, pp. 197–206, 2001.

[21] C. H. Kirkpatrick, “Chronic mucocutaneous candidiasis,”
European Journal of Clinical Microbiology and Infectious
Diseases, vol. 8, no. 5, pp. 448–456, 1989.

[22] A. Puel, C. Picard, S. Cypowyj, D. Lilic, L. Abel, and J. L.
Casanova, “Inborn errors of mucocutaneous immunity to
Candida albicans in humans: a role for IL-17 cytokines?”



International Journal of Microbiology 7

Current Opinion in Immunology, vol. 22, no. 4, pp. 467–474,
2010.

[23] K. Kisand, D. Lilic, J. L. Casanova, P. Peterson, A. Meager,
and N. Willcox, “Mucocutaneous candidiasis and autoimmu-
nity against cytokines in APECED and thymoma patients:
clinical and pathogenetic implications,” European Journal of
Immunology, vol. 41, no. 6, pp. 1517–1527, 2011.

[24] A. Puel, S. Cypowyj, J. Bustamante et al., “Chronic muco-
cutaneous candidiasis in humans with inborn errors of
interleukin-17 immunity,” Science, vol. 332, no. 6025, pp. 65–
68, 2011.

[25] M. D. Richardson and D. W. Warnock, “Superficial candido-
sis,” in Fungal Infection: Diagnosis and Management, pp. 78–
93, Blackwell Science, London, UK, 1997.

[26] T. Daniluk, G. Tokajuk, W. Stokowska et al., “Occurrence
rate of oral Candida albicans in denture wearer patients,”
Advances in Medical Sciences, vol. 51, pp. 77–80, 2006.

[27] M. H. Figueiral, A. Azul, E. Pinto, P. A. Fonseca, F. M. Branco,
and C. Scully, “Denture-related stomatitis: identification
of aetiological and predisposing factors—a large cohort,”
Journal of Oral Rehabilitation, vol. 34, no. 6, pp. 448–455,
2007.

[28] J. P. Lyon, S. C. da Costa, V. M. G. Totti, M. F. V. Munhoz, and
M. A. De Resende, “Predisposing conditions for Candida spp.
carriage in the oral cavity of denture wearers and individuals
with natural teeth,” Canadian Journal of Microbiology, vol. 52,
no. 5, pp. 462–467, 2006.
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