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Abstract
We investigate the geometry of word metrics on fundamental groups of manifolds associated
with the generating sets consisting of elements represented by closed geodesics. We ask
whether the diameter of such a metric is finite or infinite. The first answer we interpret as an
abundance of closed geodesics, while the second one as their scarcity. We discuss examples
for both cases.

Mathematics Subject Classification 20F65 · 53C22

1 Introduction

It is a classical observation due to John Milnor [12] and Albert Schwarz [13] that the word
metric on the fundamental group of a closed manifold carries information about the Rie-
mannian metric of the universal cover (the metrics are quasi-isometric). In this approach
the word metric on the fundamental group is associated with a finite generating set. In the
present paper we explore the word metrics on the fundamental group associated with geo-
metrically meaningful generating sets. Specifically, we consider generating sets consisting
of closed local geodesics. We then ask the most basic question as to whether the diameter of
such a word metric is finite or infinite. The first answer is interpreted as abundance of closed
geodesics while the second as their scarcity. We present examples for both cases.
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1.1 Statement of the results

Let (M, d) be a complete Riemannian manifold and let Cx denote the set of closed local
geodesics based at x ∈ M . Let �x ⊆ π1(M, x) denote the subgroup of the fundamental
group generated by elements represented by closed local geodesics. We are interested in the
word norm on �x associated with the set S of the elements represented by closed geodesics.
We call it the closed geodesic norm. We apply methods of geometric group theory to prove
the following results.

Theorem 1.2 Let (M, d) be a closed Riemannian manifold of negative curvature admitting
a geodesic symmetry through x ∈ M. If �x is nonabelian then the diameter of the closed
geodesic norm is infinite.

The situation changes if the manifold is only non-positively curved. A rich source of
examples is provided by locally symmetric spaces M = �\G/K , where G is a semisimple
Lie group, K ⊂ G a maximal compact subgroup and � ⊂ G a lattice. The natural metric on
M is non-positively curved and we have the following result.

Theorem 1.3 Let (M, d) be a complete Riemannianmanifold of nonpositive curvature admit-
ting a geodesic symmetry through x ∈ M. Ifπ1(M, x) is isomorphic to a finite index subgroup
in an irreducible S-arithmetic Chevalley group of rank at least 2 then the diameter of the
closed geodesic norm on �x is finite.

Our proof of Theorem 1.3 amounts to showing that the closed geodesic norm is bounded
above by a conjugation invariant norm and then we use the fact that such norms have finite
diameter on S-arithmetic Chevalley groups [7,8]. It would be interesting for find a direct
geometric argument which would prove a more general statement.

Conjecture 1.4 Let M = �\G/K be a locally symmetric space of rank at least 2. If the lattice
� is invariant under the Cartan involution then the diameter of the closed geodesic norm is
finite.

An equivalent form of the above conjecture is that the diameter of the word norm on �

associatedwith the generating set consisting of elements invariant under theCartan involution
is finite. More generally, it is not known whether conjugation invariant norms on lattices in
Lie groups of rank at least 2 have finite diameter. A piece of evidence that their diameter may
be finite comes from the fact that such lattices do not admit unbounded quasimorphisms. The
above Conjecture 1.4 is a much weaker statement in this direction.

1.5 A comment on counting closed geodesics

Classically, counting closed geodesics is done in the form of estimates of the number of
geodesics of a given length [1]. Here, we propose a different way of counting. Namely,
by measuring how big the subgroup of the fundamental group generated by closed local
geodesics is and whether it has finite or infinite diameter with respect to the closed geodesic
norm. Finite diameter of the closed geodesic norm is interpreted as abundance of closed local
geodesics and infinite diameter as their scarcity. For example, on a flat torus every element
of the fundamental group is represented by a closed local geodesic so �x = π1(Tn, x) and
the norm has diameter one. On the other hand, on a hyperbolic punctured torus, we have that
�x = π1(T2 \ {0}) = F2 for a suitably chosen basepoint and the closed geodesic norm is
equivalent to the palindromic length on the free group; see Example 1.7 for details.
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1.6 Examples

Example 1.7 (Hyperbolic punctured torus) Let (M, d) be the hyperbolic punctured torus
viewed as a quotient of an ideal hyperbolic square. Let the basepoint be represented by the
centre of the square. Then the generators of the fundamental group are represented by closed
geodesics (drawn in blue in Fig. 1). The central symmetry of the square defines a geodesic
symmetry I : M → M such that it acts on the fundamental groupπ1(M, x) = F2 = 〈a, b〉 by
inverting generators. It follows that closed local geodesics represent palindromes in the free
group F2. Indeed, I (w(a, b)) = w(a−1, b−1) is equal tow(a, b)−1 if and only if the reduced
word w(a, b) is a palindrome. Thus the closed geodesic norm is equal to the palindromic
length on F2 and this is known to have infinite diameter [2], [3, Example 6.7]. ♦
Example 1.8 (Hyperbolic closed surface I) Let � be a closed hyperbolic surface of genus g
obtained as a quotient of a regular hyperbolic 4g-gon inwhich the opposite sides are identified
andwith its centre representing the basepoint. As in the case of the punctured torus the central
symmetry defines a geodesic symmetrywhich is the hyperelliptic involution. Also in this case
�x = π1(�, x). It follows from Theorem 1.2 that the diameter of the closed geodesic norm
is infinite. ♦
Example 1.9 (Hyperbolic closed surface II) Let � be a closed hyperbolic surface of genus 2
obtained as a quotient of a regular hyperbolic octagon with identifications which yield the
following presentation of the fundamental group

π1(�, x) = 〈a, b, c, d | [a, b][c, d] = 1〉 .

As before the basepoint is represented by the centre of the octagon and its central symmetry
descends to a geodesic symmetry I of �. Observe, that the homomorphism induced by I on
the first homology is defined by I∗[a] = [c] and I∗[b] = [d]. Thus the subspace of H1(�;R)

consisting of elements such that I∗(z) = −z is 2-dimensional generated by [a] − [c] and
[b] − [d]. In particular, the subgroup �x ⊆ π1(�, x) is infinite and of infinite index. It is
not difficult to see that is also nonabelian. Thus it follows from Theorem 1.2 that the closed
geodesic norm on �x has infinite diameter. ♦
Example 1.10 (Closed hyperbolic 3-manifold) Let D ⊆ H3 be a right-angled regular hyper-
bolic dodecahedron and letW ⊂ Iso(H3) be the right-angled Coxeter group of isometries of
the hyperbolic space generated by the reflections in the faces of D. Let � be the kernel of
the homomorphismW → (Z/2Z)6 which sends reflections through the opposite faces to the

Fig. 1 Punctured torus
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same generator. Then M = H3/� is a closed hyperbolic manifold glued from 26 dodecahe-
dra. Thus � = π1(M, x). Moreover, the geodesic symmetry I : H3 → H3 at the centre of
the dodecahedron x ∈ D descends to a geodesic symmetry of M . To see this observe that if
s ∈ W is a generator then I s I = s′, where s′ ∈ W is the reflection in the face of D opposite
to the face of reflection s. This means that the conjugation by I preserves W and, moreover,
I ss′ I = s′s = (ss′)−1. Since conjugates of the six elements ss′ by elements of W generate
� we obtain that the conjugation by I preserves � and that �x = π1(M, x). It follows from
Theorem 1.2 that the closed geodesic norm in π1(M, x) has infinite diameter. ♦
Example 1.11 Chinburg and Reid [6] proved that there are infinitely many noncomensurable
examples of closed hyperbolic 3-manifolds in which all closed geodesics are simple. Let M
be such a manifold. It follows that M cannot admit a geodesic symmetry through a point
x ∈ M contained in a closed geodesic. For if I : M → M was a geodesic symmetry through
a point x ∈ γ , where γ is a geodesic segment with endpoints at x then γ ∗ I (γ ) would be a
closed geodesic with a self-intersection at x .

Furthermore, Jones and Reid [9] proved later that if two closed geodesics in M intersect
then they are perpendicular. They moreover, proved that M has points at which at least two
closed geodesic intersect. Let x ∈ M be such a point. It follows that at most three closed
geodesics can intersect at x for dimensional reasons and hence the group �x is finitely
generated. ♦
Example 1.12 (Locally symmetric space of higher rank) Let G be a non-compact semisimple
Lie group, K ⊂ G its maximal compact subgroup and � ⊂ G a lattice. If I : G → G is a
Cartan involution preserving the lattice (setwise) then it descends to a geodesic symmetry of
the locally symmetric space �\G/K .

Let � ⊆ SL(n,Z) be a finite index subgroup so that the locally symmetric space M =
�\SL(n,R)/SO(n) is a manifold. The geodesic symmetry is given by the inverse-transpose
and hence the closed geodesics represent symmetric matrices of �. If n = 2 then the space
is hyperbolic and the closed geodesic norm has infinite diameter. If n > 2 then SL(n,Z)

is an arithmetic Chevalley group of rank at least 2 and it follows from Theorem 1.3 that
the diameter of the closed geodesic norm is finite. Observe that in this case the group �x is
infinite. ♦

2 Definitions and supporting results

2.1 Geodesics

We use terminology from [4]. Let (M, d) be a metric space and let x, y ∈ M . A map
γ : [a, b] → M is called a geodesic from x to y if d(γ (s), γ (t)) = |s − t | for every
s, t ∈ [a, b] and γ (a) = x and γ (b) = y. The image of such γ is called a geodesic segment.
A local geodesic is a map γ : [a, b] → M such that for every c ∈ [a, b] there exists an ε > 0
such that d(γ (s), γ (t)) = |s − t | for every s, t ∈ [c − ε, c + ε]. A metric space (M, d)

is called a geodesic metric space if every two points of M can be joined by a geodesic. A
complete connected Riemannian manifold is a geodesic metric space.

Let (S1, g) denote a circle with the standardmetric of total length 2π . A (locally) isometric
embedding c : S1 → M is called a closed (local) geodesic. If γ : [a, b] → M is a path then
its reverse γ : [a, b] → M is defined by γ (t) = γ (a+b− t). We define similarly the reverse
of a loop γ : S1 → M . A geodesic symmetry I : M → M at x ∈ M is an isometry such that
(I ◦ γ )(t) = γ (−t) = γ (t) for every geodesic γ : [−a, a] → M such that γ (0) = x .
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Lemma 2.2 ([4, Theorem 4.13, Chapter II.4]) Let (M, d) be a complete, non-positively
curved Riemannian manifold with a basepoint x ∈ M. Then every element g ∈ π1(M, x) is
represented by a unique local geodesic γ : [0, a] → M.

Lemma 2.3 ([10, Theorem 3.8.14]) If (M, d) is closed Riemannian manifold of negative
curvature then every free homotopy class of loops is represented by a unique closed local
geodesic. In particular, each conjugacy class in π1(M, x) is represented by a unique closed
local geodesic.

2.4 Quasimorphisms and norms on groups

Let G be a group. A function ψ : G → R is called a quasimorphism if there exists D ≥ 0
such that

|ψ(g) − ψ(gh) + ψ(h)| ≤ D,

for every g, h ∈ G. The smallest number D with the above property is called the defect of
ψ . If ψ(gn) = nψ(g) for every n ∈ Z and every g ∈ G then ψ is called homogeneous; see
[5] for background on quasimorphisms.

A function ν : G → R such that for all g, h ∈ G:

• ν(g) ≥ 0,
• ν(g) = 0 if and only if g = 1,
• ν(gh) ≤ ν(g) + ν(h)

is called a norm on a group G. If in addition ν(hgh−1) = ν(g) then ν is called conjugation
invariant. The supremum ν(G) = sup{ν(g) | g ∈ G} is called the diameter of ν or the
diameter of G with respect to ν. If ν(G) = ∞ then ν is called unbounded.

The number τ(g) = limn→∞ ν(gn)
n is called the translation length of g with respect to the

norm ν. If a group G contains an element with positive translation length with respect to the
norm ν then ν is called stably unbounded.

Example 2.5 Let �∞ be an infinite symmetric group. That is, a group of finitely supported
bijections of a countably infinite set. The cardinality of the support defines a conjugation
invariant norm of infinite diameter in which every element has translation length equal to
zero. ♦

3 Proofs

Let (M, d) be a complete Riemannian manifold. Let I : M → M be a geodesic symme-
try through x ∈ M . By an abuse of notation we denote the induced automorphism of the
fundamental group by I : π1(M, x) → π1(M, x). Define the following two subsets of the
fundamental group of M :

S = {
g ∈ π1(M, x) | I (g) = g−1}

C = {g ∈ π1(M, x) | g = [c], c ∈ Cx } .

Recall that Cx denotes the set of all closed local geodesics through x ∈ M .

Lemma 3.1 If every element of π1(M, x) has a unique geodesic representative then S = C.
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Proof If c is a closed local geodesic through x , then c̄ and I (c) have a common initial segment.
Thus, by the uniqueness of extension of geodesics, c̄ = I (c) and I [c] = [c]−1. This proves
that C ⊆ S.

Let γ be a local geodesic representing s ∈ S. Since I (s) = s−1 is, on the one hand,
represented by a geodesic segment I ◦γ and, on the other hand, by a local geodesic γ , we get
that I ◦ γ = γ due to the uniqueness of geodesic representatives. This implies that γ ∈ Cx

and hence s ∈ C . ��
Remark 3.2 Observe that it is important here that M is a manifold. More precisely, that a
geodesic is uniquely determined by its initial segment. For example, the graph presented on
Fig. 2 admits a geodesic symmetry through x but its closed geodesics going around one of
the squares are not preserved setwise.

Lemma 3.3 If every element of π1(M, x) has a unique local geodesic representative then the
subgroup �x ⊆ π1(M, x) is normal.

Proof According to Lemma 3.1 the subgroup �x is generated by the set S. Let s ∈ S and let
g ∈ π1(M, x). Then

gsg−1 = gs Ix
(
g−1) · Ix (g)g−1,

which means that the conjugate of an element s ∈ S is a product of two elements from S. ��
Corollary 3.4 If every element ofπ1(M, x)has a unique local geodesic representative then the
closed geodesic norm on�x is dominated by a norm invariant with respect to the conjugation
action of π1(M, x).

Proof Let S = ⋃
g∈π1(M,x) gSg

−1. Since S is invariant under conjugations by elements of
π1(M, x) the associated word norm is invariant under the conjugation action by π1(M, x).

Let ‖g‖S = n. This means that g = sg11 · · · sgnn , where si ∈ S and gi ∈ π1(M, x). It
follows from Lemma 3.3 that

‖g‖S = ‖sg11 · · · sgnn ‖S ≤ 2n = 2‖g‖S .
��

Proof of Theorem 1.3 If �x is a finite group then there is nothing to prove. So assume that
�x is infinite. Since it is normal in π1(M, x), it is of finite index, according to [11, (5.3)
Proposition, p.324]. If follows from [7,8] that every conjugation invariant norm on a finite
index subgroup of an S-arithmetic Chevalley group of rank at least 2 has finite diameter and
hence the statement follows from Corollary 3.4. ��

x

Fig. 2 Warning example
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Proof of Theorem 1.2 Let α ∈ �1(M) be a differential 1-form and let ψα : π1(M, x) → R
be defined by

ψα(g) =
∫

γ

α,

where γ is a closed local geodesic representing the conjugacy class of g. The map ψα is a
homogeneous quasi-morphism, see [5, Example 2.3.1].

If α is such that I ∗(α) = α then ψα vanishes on S. Indeed,

ψα(s) =
∫

c
α =

∫

I◦c
α

=
∫

c
I ∗(α) = −

∫

c
α = −ψα(s),

which implies that ψα(s) = 0.
Let s1, s2 ∈ S be two noncommuting elements. Then

I [s1, s2] = [I (s1) , I (s2)] =
[
s−1
1 , s−1

2

]

is conjugate to [s1, s2]. Let γ be a closed local geodesic representing the conjugacy class of
[s1, s2]. It follows that I ◦ γ = γ (up to reparametrisation by a shift).

Let β be a 1-form supported in a small ball such that
∫
γ

β > 0, where γ is as above. Let
α = β + I ∗(β). Then

ψα[s1, s2] =
∫

γ

α =
∫

γ

β + I ∗(β)

=
∫

γ

β +
∫

I◦γ

β = 2
∫

γ

β > 0.

We thus constructed a nontrivial homogeneous quasimorphism which vanishes on the
generating set S. A standard computation shows that it is Lipschitz with respect to the word
norm associated with S:

|ψα(g)| = |ψα (s1 · · · sn) | ≤
n∑

i=1

|ψα(si )| + ‖g‖SD = D‖g‖S .

where D is the defect of ψα . We finally obtain that

0 < n|ψα ([s1, s2]) | = |ψα

(
[s1, s2]

n) | ≤ D‖[s1, s2]n‖S
which shows that the translation length of [s1, s2] is positive and hence the closed geodesic
norm on �x is stably unbounded. In particular, it has infinite diameter. ��

Corollary 3.5 Let (M, d) be as in Theorem 1.2. Let s1, s2 ∈ S be noncommuting elements
represented by closed local geodesics. Then their commutator [s1, s2] has positive translation
length with respect to the closed geodesic norm. ��
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