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Development of a multiplex assay to determine the expression
of mitochondrial genes in human skeletal muscle
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following acute exercise underpins longer-term muscle metabolic adaptations. Gene
expression is typically measured using real-time quantitative PCR platforms. However,
interest has developed in the design of multiplex gene expression assays (GeXP)
using the GenomelLab GeXP™ genetic analysis system, which can simultaneously

Fundinginformation quantify gene expression of multiple targets, holding distinct advantages in terms
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of throughput, limiting technical error, cost effectiveness, and quantifying gene co-
expression. This study describes the development of a custom-designed GeXP assay
incorporating the measurement of proposed regulators of mitochondrial biogenesis,
Editedby: Philip Atherton substrate oxidation, and NAD* biosynthetic capacity in human skeletal muscle

[Correction added on 17 June 2021, after and characterises the resting gene expression (overnight fasted and non-exercised)
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signature within a group of young, healthy, recreationally active males. The design
statement has been added.]

of GeXP-based assays provides the capacity to more accurately characterise the
regulation of a targeted group of genes with specific regulatory functions, a potentially
advantageous development for future investigations of the regulation of muscle

metabolism by exercise and/or nutrition.
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1 | INTRODUCTION

quantification in skeletal muscle is critical for ensuring accuracy in data

synthesis.

A central aim of human skeletal muscle physiological research is to
evaluate changes in gene expression in response to external stimuli
such as exercise and nutrition (Craig et al., 2015). The molecular
signalling pathways which are responsive to such stimuli and under-
pin long-term skeletal muscle adaptations are inherently complex
and are not fully characterised (Egan & Zierath, 2013). Mitigating

technical challenges arising from different methods of gene expression

A classic method of evaluating the acute adaptive responses
in muscle is through quantitative PCR (gPCR). This technique is
commonly used in muscle physiology research (Kuang et al., 2018),
although it is not without limitations. Namely, gPCR allows for only
a single gene to be analysed per reaction plate. If one wishes to
determine expression changes in a large quantity of genes, the

resultant number of assays required gives rise to a greater potential
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for inter-assay variation in terms of reaction efficiencies and technical
error (Edwards & Gibbs, 1994). Moreover, in relative quantification,
the traditionally used delta cycle threshold (Cy) method (Livak &
Schmittgen, 2001) relies on running a PCR reaction in a separate
reaction/plate(s) with a selected reference gene(s), though increasingly
these are now run in duplex (Ishii et al., 2007). This again introduces
further technical error compared to multiplex gene expression assays
GeXP, which detects expression of experimental and reference genes
in a single sample. The GeXP genetic analysis system (Genomelab
GeXP™, AB Sciex Pte Ltd., Framingham, MA, USA) is a platform
providing a medium-throughput alternative to other quantification
methods, using multiplexed gene expression analyses (Drew et al.,
2011).

Advantages of GeXP also include the incorporation of multiple
reference genes to increase reliability of results and the conservation
of extracted RNA samples collected during experimental trials (Drew
et al,, 2011; Edwards & Gibbs, 1994), important considerations given
the technical challenges involved with human skeletal muscle sampling
(Hayot et al., 2005). GeXP assays have been previously validated
with macroarray and gPCR experiments, showing comparable gene
expression profiles to these methods (Drew et al., 2011). Advantages
of PCR-based methods in comparison to hybridisation-based methods
such as macroarrays include more reliable quantification of genes
with very low or high abundance in a biological sample. Hybridisation-
based methods depend upon the hybridisation of labelled cDNA to
probe regions on a nylon filter, while gPCR and GeXP analyses both
incorporate PCR amplification using primer assays. Consequently,
the reverse transcription of cDNA for subsequent use in PCR-based
experiments differs markedly from the preparation of labelled cDNA
for hybridisation-based approaches, which can affect downstream
results (Drew et al., 2011). Global gene expression analysis platforms
such as RNA-Seq are demonstrated as robust quantification methods,
but the associated costs and expertise required for these techniques
are notable limitations (Wang et al., 2009; Whitley et al., 2016). Often
genes identified in RNA-seq need further validation by qPCR. GeXP
assays are also established as high throughput methods to rapidly
detect multiple pathogens in clinical settings (Huang et al., 2020;
Wang et al., 2016), and distinguish gene expression signatures which
reflect pathological changes in different tissues (Drew et al., 2014b,
Farquharson et al., 2012), demonstrating their utility for both research
and diagnostic purposes.

Studies which have used array-based quantification of gene
expression typically require greater quantities of RNA for cDNA
synthesis when compared with GeXP (Rundqvist et al, 2019).
Similarly, recommendations for qPCR-based assays suggest using
greater quantities of total RNA compared with GeXP (Bhatnagar
et al, 2012). GeXP enables gene expression quantification using
comparatively small amounts of total RNA, an important consideration
given the technical and practical challenges which are involved in
obtaining large quantities of human skeletal muscle biopsy samples.
This is especially evident for researchers interested in using the
minimally invasive skeletal muscle microbiopsy technique (Hayot

et al., 2005). This technique obtains a lower overall yield of skeletal

New Findings

* What is the central question of this study?
Can a custom-designed multiplex gene expression
assay be used to quantify expression levels of a
targeted group of mitochondrial genes in human
skeletal muscle?

* What is the main finding and its importance?

A custom-designed GeXP multiplex assay

was developed, and the ability to accurately

quantify expression of a targeted set of

mitochondrial genes in human skeletal muscle
was demonstrated. It holds distinct methodological
and practical advantages over other commonly

used quantification methods.

muscle biopsy sample (~20 mg) compared to the more commonly
used Bergstrom and Weil-Blakesley conchotome techniques, which
typically obtain yields in the range of 100-300 mg of muscle tissue
(Baczynska et al., 2016; Kuang et al., 2018). Research studies are
increasingly implementing the microbiopsy technique given the
practical advantages compared with Bergstrom and conchotome
methods. However, since the microbiopsy technique obtains a lower
overall sample yield, identifying high throughput gene quantification
methods which can accurately evaluate the coregulation of genes
while conserving RNA samples is warranted.

Given the technical challenges involved in human muscle biopsy
sampling and subsequent gene expression analyses, the development
of a GeXP assay to assess mitochondrial gene expression in human
skeletal muscle may be advantageous. The aim of this study was
to describe the development of a custom-designed GeXP assay,
termed here the hMitoplex, evaluating mRNA expression levels of
a targeted group of mitochondrial genes in human skeletal muscle
which are proposedly regulated by exercise and nutritional factors.
This report describes the methodology employed for developing the
hMitoplex or other multiplex gene expression assays which may be
developed in future research. In addition, to demonstrate the use of
this assay, this study characterised the resting gene expression (over-
night fasted and non-exercised) signature within a group of young,
healthy, recreationally active males.

2 | METHODS

2.1 | Skeletal muscle biopsies and experimental
procedures

All experimental procedures were approved by the University of

Limerick Faculty of Education and Health Sciences Research Ethics
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1: Microbiopsy of human skeletal muscle

2: RNA extraction, quantification and quality assessment

3: Primer pair design

4: Single and multiplex primer optimisation

5: Perform optimised GeXP multiplex assay

&

6: Data analysis

FIGURE 1 Overview of key steps in GeXP hMitoplex workflow. Skeletal muscle microbiopsy samples are snap-frozen in liquid nitrogen and
stored at —80°C. RNA is extracted and assessed for yield and quality. Primer testing in singleplex and multiplex is performed to compare the level
of agreement between quantification methods, and subsequent optimisation of multiplexed primer pairs is conducted on primer products obtained
in multiplex reactions. Once optimised, final GeXP experiments can be implemented and data analyses performed using the appropriate methods

Committee (2016_18_11_EHS), in accordance with the Declaration of
Helsinki except for registration in a database. All participants provided
written informed consent prior to participation. An overview of the
workflow involved in the development of the hMitoplex is presented
in Figure 1. Skeletal muscle biopsies (mean + SD 19.0 + 3.3 mg) were
obtained from m. vastus lateralis under local anaesthetic (1% lidocaine)
by a medical professional using the microbiopsy technique (Medax Bio-
feather; San Possidonio, MO, ltaly). Participants were recreationally
active (Vo,max < 50 (42.3 + 4.8) ml kg~ min~1) healthy males (n = 37),
aged 18-35 (25.0 + 4.1) years, and non-obese (BMI < 30 (25.5 +
2.2) kg m~2). Biopsies were collected under resting conditions, with
participants having attended the lab following an overnight fast of
>10 h, having refrained from caffeine and alcohol intake for 12 and
24 h, respectively. Participants also refrained from vigorous exercise
for the previous 48 h.

2.2 | Selection of target genes

The first stage of assay development comprised the selection of
target genes with proposed roles in skeletal muscle metabolism,
specifically in terms of regulation of mitochondrial adaptation, sub-
strate oxidation and NAD™ biosynthetic capacity. A summary list of
each target gene and their purported role(s) in the regulation of muscle
metabolism is provided in Table 1. The hMitoplex incorporates 25
gene targets, including seven mediators of mitochondrial adaptation,
five targets with putative roles in regulating substrate oxidation pre-

ferences, four of the sirtuin genes, six proposed regulators of the NAD*

biosynthesis and salvage pathways, together with three potential
reference genes (PPIA, PSMB6 and UBE2D2) and a synthetic reference
messenger RNA transcript (Kan") for measuring relative quantification
of gene expression and reaction efficiencies, respectively. The targets
incorporated in the hMitoplex are shown to be altered in response
to exercise and/or nutritional factors (Granata et al, 2018; Pillon
et al,, 2020; Rundqvist et al., 2019). Sequences used for primer assay
design were downloaded from the National Centre for Biotechnology
Information (NCBI) consensus coding sequences (CCDS) project.
Functional enrichment analysis was performed on hMitoplex target
genes using the Gene Ontology database (Ashburner et al., 2000).
Gene ontology (GO) analysis of hMitoplex genes indicated that
biological processes with the greatest predicted fold enrichment
included regulation of fatty acid oxidation, regulation of cellular
NAD*
mitochondrion organisation, and peptidyl-lysine deacetylation, among

ketone metabolic processes, biosynthetic processes,
others. Molecular functions with predicted enrichment included
NAD* binding, NAD*-dependent protein deacetylase activity,
NAD* ADP-ribosyltransferase activity, small molecule binding and
transcription factor binding. Enriched cellular components included
the mitochondrion, mitochondrial matrix, organelle inner membrane

and mitochondrial respiratory chain complex IV, among others.

2.3 | Primer design

The DNASTAR Lasergene and EditSeq software packages (DNASTAR;

Madison, Wisconsin, USA) were used to identify suitable gene-
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specific primers for reverse transcription and PCR amplification in
accordance with user guidelines for the Genome Lab GeXP system, as
published previously (Drew et al., 2011, 2104a, 2016). Reverse PCR
primers were designed with a 3’ gene-specific sequence and a 5’ end
consisting of a 19-base universal priming sequence. The forward PCR
primers were designed with a 3’ gene-specific sequence and a 5’end
consisting of a different 18-nucleotide universal priming sequence.
Primer sequences were designed using NCBI Primer-BLAST to ensure
specific amplification of the designed PCR fragments. NCBI Nucleotide
BLAST identified if primer sequences had high homology to other
genes detectable in human skeletal muscle. Primers with universal

sequences were purchased from Sigma-Genosys (Haverhill, UK).

2.4 | RNA extractions

Total RNA was extracted from human skeletal muscle samples (19.0
+ 3.3 mg) using an RNeasy Plus Universal Mini Kit following homo-
genisation in QlAzol lysis reagent and a precellys 24 bead-mill homo-
geniser (Bertin Technologies; Montigny-le-Bretonneux, France). To
increase RNA yield, kit instructions were modified by replacing ethanol
with isopropanol to precipitate the RNA (Kuang et al., 2018). A
genomic DNA elimination step was included in the kit to remove
genomic DNA from total RNA. RNA purity was quantified using
a NanoDrop ND-1000 UV-Vis Spectrophotometer (Thermo Fisher
Scientific; Waltham, MA, USA) and the 260: 280 nm absorbance ratio.
The 260: 230 nm absorbance ratio was used to evaluate the degree of
chemical contamination in each RNA sample. RNA quality was assessed
using an Agilent 2100 Bioanalyzer (Agilent Technologies; Santa Clara,
CA, USA). According to the Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE) guidelines (Bustin
et al.,, 2009), information about RNA quality and integrity should be
reported for qPCR experiments. Based on these recommendations,
results for RNA integrity number (8.1 + 0.3) from tapestation analysis,
as well as the A260: 280 (2.0 + 0.3) and A260: 230 ratios (1.0 +
0.4) obtained from Nanodrop analysis indicated that RNA samples
extracted for the purposes of this study were of sufficient quality and
integrity.

2.5 | Primer testing, singleplex and multiplex
optimisation

The hMitoplex was optimised using total RNA (50 ng per reaction)
extracted from human skeletal muscle samples which were mixed to
make a template pool, and the Genome Lab GeXP start Kit (Beckman
Coulter; Brea, CA, USA), according to the manufacturer’s instructions
and as published previously (Drew et al., 2011, 2014a, 2016). Individual
primer pairs were initially tested using a reverse primer mix (500 nM)
incorporating the entire set of primers in conjunction with each
forward primer (200 nM) individually to ensure a single amplicon of
the correct size was generated for each of the designed primer pairs.

In total, one primer pair redesign was required for a single hMitoplex

target (ENHO), while the remaining targets were detectable at the
correct amplicon size. Upon redesign, an amplicon was detected at the
correct nucleotide size using the second ENHO primer pair.

Following generation of singleplex reaction products at the pre-
designed product size for each target, reverse and forward primers
were tested at the same concentration in multiplex to compare the
relative expression levels of each hMitoplex target. A Bland-Altman
plot was made to compare the level of agreement between the
two methods of gene quantification (normalised to the reference
gene UBE2D2) for each individual target (Bland & Altman, 1999).
Normalisation to other reference genes incorporated in the hMitoplex,
PSMB6 and PPIA, was also performed. The NormFinder statistical
program (Andersen et al., 2004) was used to determine the stability
of the reference genes. All three reference genes were deemed stable;
however, NormFinder indicated that UBE2D2 was most stable and it
was therefore selected for normalisation of all data going forward.
Additionally, UBE2D2 has previously been used in multiplex gene
expression assays and demonstrated as stable in human and animal
tissues (Drew et al., 2015, 2016).

Subsequently, optimisation of the hMitoplex incorporating
multiplexed primer pairs was conducted on primer products obtained
in multiplex reactions. Attenuation was then conducted on reverse
primer concentrations according to manufacturer’s instructions to
determine the optimal dilution factor for each gene target to generate
an appropriate dynamic range of signals within a measurable linear
range. Where amplicons of a specific target tested with a 500 nM
reverse primer concentration were detected above the appropriate
dynamic range, a new reverse primer mix was prepared with its
concentration initially reduced to 125 nM and retested. If still above
the appropriate dynamic range, this concentration was decreased by
half upon each retest until this range was reached. This process was
performed for all but three hMitoplex targets. Where amplicons of
a specific target with a 500 nM concentration were not detected in
the appropriate dynamic range, reverse primer concentrations were
doubled to 1000 nM, and if still undetectable tripled to 1500 nM
to detect these targets within the appropriate dynamic range. Final

primer concentrations for hMitoplex profiling are provided in Table 1.

2.6 | Experimental procedures for GeXP hMitoplex
Detailed procedures for GeXP experiments are described here and
in further detail in previous publications (Drew et al., 2011, 2014a,
2016). A master mix of reagents (3 ul DNAse/RNAse-free H,O, 4 ul
reverse transcription buffer 5, 1 ul reverse transcriptase, 5 ul pre-
diluted Kan" RNA) was prepared for reverse-transcription reactions
conducted in 96-well plate format as detailed in the Genome Lab GeXP
Start Kit (Beckman Coulter) instructions, coupled with the attenuated
reverse primer multiplex mix and using 50 ng total RNA per well. An
aliquot (9.3 ul) of each reverse-transcription reaction was transferred
to a new 96-well PCR plate (Abgene, Epsom, UK) and PCR amplified
with the addition of the GeXP Start Kit PCR reaction mix prepared
according to the manufacturer’s instructions (4 ul PCR buffer 5x, 4 ul
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25 mM MgCl, (Thermo-start), 0.7 ul Thermo-start DNA polymerase
(A85022)), coupled with a 200 nM forward primer multiplex mix.
Reverse transcription and PCR amplification steps were performed
using a Bio-Rad T100 Thermal Cycler (Bio-Rad Laboratories; Hercules,
CA, USA) and the respective reaction programme protocols as detailed
inthe GeXP Start Kit instructions. The PCR products were prepared for
fragment analysis using the Beckman Coulter CEQ 8000 GeXP Genetic
Analysis system. An aliquot of this PCR reaction (2 ul) was diluted with
DNase/RNase-free water. This mixture was subsequently added to a
sample loading solution and CEQ DNA Size Standard 400 (Beckman
Coulter) according to the manufacturer’s instructions in a new 96-well
CEQ electrophoresis plate, giving a final dilution of 1:300. Capillary
electrophoresis and fragment separation of amplicons were performed
on the GeXP Genetic Analysis System as previously described (Drew
etal,2011).

2.7 | Electrophoresis analysis

Following capillary electrophoresis and fragment separation of
GeXP amplicons, a size fragment analysis was performed using the
fragment analysis module of the GenomelLab GeXP system software
to generate electropherograms representing the electrophoresed
and separated fragments generated by GeXP eXpress profiling, as
previously described (Drew et al., 2011). Normalised peak area values
against the incorporated reference genes (UBE2D2, PPIA and PSMB6)

were calculated using the GeXP eXpress Analysis software.

2.8 | Statistical analysis

An intraclass correlation coefficient was calculated to determine test-
retest reliability of quantified gene expression between singleplex and
multiplex detection methods. Data for the overall study cohort are
presented as mean + 95% confidence intervals (Cl) unless otherwise
stated.

3 | RESULTS

3.1 | Primer testing

Gene expression of hMitoplex targets was quantified in singleplex
and multiplex analysis, normalised to the reference gene UBE2D2. For
completeness, relative quantification was also performed using the
other two reference genes, PSMB6 and PPIA, in both instances showing
similar results in terms of the overall gene expression profiles and
variance compared with UBE2D2 normalisation. Two targets, ENHO
and TDO2, were detected when measured in singleplex, but not in
multiplex analysis and were excluded from the analysis. Bland-Altman
analyses comparing the level of agreement between each method of
gene expression quantification for individual targets are presented in

Figure 2.
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FIGURE 2 Bland-Altman plot showing 95% limits of agreement
between hMitoplex primers tested in singleplex and multiplex,
normalised to UBE2D2, in human skeletal muscle. Upper and lower
levels of agreement are denoted by the dotted lines in the figure, while
the level of bias is characterised by the continuous line. ENHO and
TDO2 were detected in singleplex near the acceptable lower level of
detection but were not within this range when tested in multiplex
analysis, suggesting that the abundance of these targets is very low in
human skeletal muscle or poor primer performance/interactions.
Since these targets were not within the reliable range of detection in
multiplex analysis, they are not included in the Bland-Altman plot. The
Bland-Altman plot indicated that NRF1 was the only target which was
outside of the 95% limits of agreement (upper limit 0.37; lower limit
—0.31; bias 0.03) when measured in multiplex compared with
singleplex quantification. Test-retest reliability expressed by an
intraclass correlation coefficient for the remaining 23 genes was 0.88
(95% CI:0.74-0.95)

3.2 | hMitoplex gene expression signatures

The hMitoplex gene expression signature in the sample cohort
normalised to each reference gene is presented in Figure 3a-c. The
expression profiles appeared broadly similar when target genes were
normalised to each reference gene. In each instance all genes were
reliably detected except for TDO2 and ENHO, which may indicate that
these genes have comparatively low expression in contrast with the
other genes in this multiplex or that the primer efficiency was affected
in the multiplex compared with singleplex quantification method for
these targets. Since TDO2 and ENHO were not reliably detected in
multiplex analysis the data for these targets are not presented. Inter-
individual variance in gene expression was largest in targets such
as PDK4 (standard deviation 0.21; individual range 0.03-0.87), UCP3
(0.13;0.17-0.69), NAMPT (0.13; 0.18-0.73) and Tfam (0.12; 0.25-0.90),
while variance was smallest in targets including NRF1 (0.02; 0.07-
0.15), SIRT3 (0.04; 0.13-0.28), SIRT4 (0.03; 0.17-0.31), SIRT5 (0.02;
0.07-0.16) and NMNAT3 (0.03; 0.24-0.38).
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FIGURE 3 hMitoplex resting gene expression
signatures in human skeletal muscle normalised to
UBE2D2 (a), PPIA (b) and PSMB6 (c). Data are
presented as means + 95% confidence intervals
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4 | DISCUSSION

Previous studies have reported on the development of custom-
designed multiplex gene expression assays to determine expression
of targeted groups of genes regulating various metabolic processes,
including inflammation, NAD*-dependent deacetylase activity, and
oxidative stress, among others (Drew et al., 2011, 2014a, 2015, 2016;
Gray et al., 2018). Additionally, studies have also validated GeXP assays
for use in pathogen detection in clinical settings (Huang et al., 2020;
Wang et al., 2016), and for characterisation of pathologies in various
tissues (Drew et al., 2014b; Farquharson et al., 2012), highlighting
their potential for use in multiple research settings. To our knowledge,
this is the first study to design a GeXP assay to determine expression
of a targeted set of genes implicated in regulating mitochondrial
biogenesis, substrate metabolism and NAD™ biosynthetic capacity in
human skeletal muscle.

Fragment sizes of hMitoplex targets are calculated and
normalisation to a selected reference gene is then completed. The ratio
of target gene to reference gene peak area is used to quantify relative
gene expression. GeXP assays hold the advantage of incorporating
multiple reference genes, a recommended practice to ensure accurate
quantification of gene expression (Bustin, 2010; Vandesompele et al.,
2002). The overall gene expression profiles observed here were
similar when normalised to each selected reference gene, supporting
the reliability of these results and the rationale for using multiple
reference genes. Additional advantages of GeXP include the reduced
technical error due to quantifying expression levels of target and
reference genes simultaneously in a single experimental sample, more
accurate assessment of gene co-expression, conservation of extracted
RNA samples, as well as savings on time commitments and overall costs
if planning to analyse several target genes (Edwards & Gibbs, 1994).
For example, quantifying the expression of the entire set of genes in
the hMitoplex using qPCR would require a 25-fold greater quantity of
template RNA, along with substantially increased time commitments
and potential for technical error. GeXP assays also hold advantages
over hybridisation-based methods, including the high background
levels in macro/microarrays due to cross-hybridisation (Wang et al.,
2009), and the more limited range of detection due to background
and signal saturation compared to PCR-based techniques, which
affects accuracy of gene quantification of targets with very low or high
abundance (Drew et al.,2011; Wangetal., 2009). While next generation
sequencing methods such as RNA-Seq are shown to provide superior
sensitivity for quantification of global gene expression profiles, these
approaches are not without their limitations in coverage of the whole
transcriptome and remain costly and time consuming, which are
significant limiting factors (Lahens et al., 2014; Sena et al., 2018; Wang
etal., 2009). Moreover the lack of standardisation between sequencing
platforms can affect the reproducibility of experimental results
(Whitley et al., 2016), potentially indicative that in-depth specialist
knowledge is required for these platforms. As such, GeXP-based assays
have use as alternative strategies to quantify gene expression, holding
specific advantages over both hybridisation and sequencing-based

approaches. GeXP may be an especially useful tool for practitioners

using the microbiopsy technique, given the lower overall biopsy sample
yield obtained with this approach.

Bland-Altman analysis which was performed comparing quantified
gene expression profiles in singleplex vs. multiplex indicated that NRF1
was the only target which was outside the 95% limits of agreement.
These data, coupled with findings from intraclass correlation analysis
indicated adequate test-retest reliability between quantification
methods with the exception of NRF1. These overall findings support
the assertion that quantification using GeXP assays is reliable for
detecting gene expression in human skeletal muscle when compared
with standard singleplex quantification. These findings also support
the determination of gene expression in human skeletal muscle
(using as little as 50 ng of extracted RNA per PCR reaction) for
20 mitochondrial genes using the hMitoplex GeXP assay described
here. Given the findings showing that NRF1 expression was outside
of the limits of agreement between multiplex and singleplex detection
methods, careful considerations are necessary when interpreting
the quantification of this gene in the hMitoplex. This may be due
to interaction with other primers and can be assessed further
when a set of treatments are applied across samples. Another
important consideration when contextualising the level of agreement
between these methods is that variation in some of the more
lowly expressed targets may have a greater impact on accuracy of
quantification compared to a similar amount of variation in more
highly expressed targets. However, it is important to note the over-
all high level of agreement between targets detected in singleplex and
multiplex analysis. Previous research has validated GeXP multiplex
assays in comparison with qPCR showing good agreement (Drew
et al., 2011), providing further support for the efficacy of this
technique.

ENHO and TDO2 were not within the lower limits of detection when
tested in multiplex, but were detected near the lower end of the linear
detection range in singleplex. The reasons for these discrepancies in
the quantification of ENHO and TDO2 compared with the remaining
hMitoplex targets are not fully clear. One possible explanation may be
that both targets have low abundance in human skeletal muscle and
are thus not within the lower limits of detection for multiplex testing.
This reasoning is supported by the fact that to our knowledge, though
these genes are implicated in metabolism, no previous studies have
reported on the gene expression of either of these targets in human
skeletal muscle. Research studies have previously reported on the gene
expression quantification of many other hMitoplex targets in human
skeletal muscle in vitro or in vivo (Granata et al., 2018; Pillon et al., 2020;
Rundqyvistetal., 2019). This also outlines a potential limitation of GeXP-
based assays for quantifying expression of very lowly expressed targets
in a specific tissue. In this case the inability to accurately quantify
TDO2 and ENHO in skeletal muscle may point to a narrower range of
detection in multiplex compared with singleplex quantification.

In conclusion, we have described the development of a custom-
designed GeXP multiplex assay and demonstrated the ability
to accurately quantify expression of a targeted set of multiple
mitochondrial genes in a small quantity (5-10 mg) of human skeletal
muscle. This GeXP multiplex is valuable as a tool to generate a
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profile/signature of multiple targets in skeletal muscle tissue, as
demonstrated by the profile of resting mitochondrial gene expression
in a population of young, healthy recreationally active males reported
here. An application of the assay in exercised/nutrient treated samples
is not included here and is a limitation of this study. Other proposed
advantages of GeXP multiplex assays have been outlined in comparison
with other techniques, including reduced technical error due to
quantifying gene expression levels of multiple targets simultaneously,
incorporation of multiple reference genes, conservation of extracted
RNA samples, time efficiency and cost savings. The methodological
challenges encountered in the development of GeXP assays and
how these can be addressed have been outlined in this report.
The hMitoplex described here, may be useful in studies involving
perturbations to human skeletal muscle by establishing a gene

expression signature in response to treatment.
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