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Control of protein intake is essential for numerous biological processes as several amino acids cannot be synthesized de
novo, however, its neurobiological substrates are still poorly understood. In the present study, we combined in vivo fiber
photometry with nutrient-conditioned flavor in a rat model of protein appetite to record neuronal activity in the VTA, a cen-
tral brain region for the control of food-related processes. In adult male rats, protein restriction increased preference for
casein (protein) over maltodextrin (carbohydrate). Moreover, protein consumption was associated with a greater VTA
response, relative to carbohydrate. After initial nutrient preference, a switch from a normal balanced diet to protein restric-
tion induced rapid development of protein preference but required extensive exposure to macronutrient solutions to induce
elevated VTA responses to casein. Furthermore, prior protein restriction induced long-lasting food preference and VTA
responses. This study reveals that VTA circuits are involved in protein appetite in times of need, a crucial process for animals
to acquire an adequate amount of protein in their diet.
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Significance Statement

Acquiring insufficient protein in one’s diet has severe consequences for health and ultimately will lead to death. In addition, a
low level of dietary protein has been proposed as a driver of obesity as it can leverage up intake of fat and carbohydrate.
However, much remains unknown about the role of the brain in ensuring adequate intake of protein. Here, we show that in a
state of protein restriction a key node in brain reward circuitry, the VTA, is activated more strongly during consumption of
protein than carbohydrate. Moreover, although rats’ behavior changed to reflect new protein status, patterns of neural activity
were more persistent and only loosely linked to protein status.

Introduction
Ensuring appropriate intake of the three macronutrients (carbo-
hydrate, fat, protein) is a compelling problem for survival of all
animals, including humans. Of the three macronutrients, protein
intake is thought to be the most tightly regulated, as many amino
acids cannot be synthesized de novo (Berthoud et al., 2012).
Concordantly, many species, including invertebrates (Mayntz et
al., 2005) and mammals (Theall et al., 1984), adjust their behav-
ior to ensure adequate intake of dietary protein. In humans,
inadequate protein levels in diet may contribute to obesity, by
leveraging up the amount of calories consumed from fats
and sugar (Simpson and Raubenheimer, 2005; Hall, 2019;
Raubenheimer and Simpson, 2019). Recently, we developed a
rodent model of protein appetite in which animals (rodents)
maintained on a protein-restricted (PR) diet developed a strong
preference for a protein-rich solution, relative to a carbohydrate-
rich solution (Murphy et al., 2018; see also Hill et al., 2019),
indicating that animals can specifically direct feeding and food-
seeking behavior toward protein sources in times of need.
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However, the neural mechanisms by which diets that are low in
protein might shift behavior are not understood.

The VTA and its projections play a central role in food-
seeking behaviors, food preference, and in the motivation to
eat (Ikemoto and Panksepp, 1999; Berridge, 2007; Bromberg-
Martin et al., 2010). VTA neurons are sensitive to numerous
food-related signals, including ingestive and post-ingestive
processes (de Araujo et al., 2008; Domingos et al., 2011;
Beeler et al., 2012; Ferreira et al., 2012; McCutcheon et al.,
2012a; Alhadeff et al., 2019), and peripheral hormones (Di
Chiara and Abizaid, 2009; Mebel et al., 2012; Mietlicki-Baase
et al., 2013, 2014; Cone et al., 2014), allowing the formation
of future food preferences (Sclafani et al., 2011). Despite
abundant data on the involvement of VTA activity in media-
ting responses to fat- or carbohydrate-containing food, the
role of this region in regulation of protein appetite is still
unexplored.

Here, we use in vivo fiber photometry to record the activity of
VTA neurons during consumption of isocaloric protein- and
carbohydrate-containing solutions in an animal model of protein
preference (Murphy et al., 2018; Naneix et al., 2020, 2021). We
find that, in PR animals, protein consumption is associated with
elevated neural activation, relative to carbohydrate consumption.
We then show that, when physiological state is reversed,

behavioral protein preference shifts to reflect the new state more
rapidly than neural activity in the VTA.

Materials and Methods
Subjects. Adult male Sprague Dawley rats (Charles River

Laboratories, n= 15) weighing 250-300 g on arrival were used. Rats were
housed in pairs in individually ventilated cages (46.2� 40.3� 40.4 cm),
in a temperature (216 2°C) and humidity (40%-50%) controlled envi-
ronment with a 12 h light/dark cycle (lights on at 7:00 A.M.) and with
water and food available ab libitum. All testing occurred in the light
phase. Data are not reported for 7 rats because of poor or nonexistent
photometry signal resulting from lack of viral expression, misplacement
of fiber, or poor connection between patch cable and ferrule. Two rats
were removed from the study because of aggressive behavior in the week
following the initial dietary manipulation, which led to them being singly
housed, rather than in pairs. Procedures were performed in accordance
with the Animals (Scientific Procedures) Act 1986 and conducted under
Project License 70/8069/PFACC16E2.

Virus injection and fiber implantation. For fiber photometry record-
ing, rats received a unilateral injection of a GCaMP6s-expressing virus in
the VTA and were implanted with fiber optic cannulas targeting the
injection site (see Fig. 1A). One to two weeks after their arrival, rats were
anesthetized with isoflurane (5% induction, 2%-3% maintenance) and
mounted in a stereotaxic frame (David Kopf Instruments) in a flat skull
position. The scalp was shaved, cleaned with chlorhexidine, and locally
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Figure 1. Experimental procedures and timeline. A, Schematic showing targeting of VTA by GCaMP6s and implantation of optic fiber (left). Top right, Expression of virus in VTA and fiber
track is shown in photomicrograph. Bottom right, Location of expression and fiber placements are shown for all rats. B, Schematic showing experimental timeline (top), fiber photometry setup
(bottom left), and trial structure of preference tests (bottom right). C, Similar changes in body weight increase were seen in PR and NR control rats. Circles represent mean for each day. Error
bars indicate SEM. D, Mild increase in food intake was seen in PR rats, relative to NR rats. Left, Bars indicate mean. Circles represent individual data points (cages). Right, Mean difference as a
bootstrap sampling distribution with mean difference depicted as dot. Ends of vertical bars represent 95% CIs. E, Data from conditioning sessions show that, for both solutions, more was con-
sumed on the second conditioning day than on the first day, but there were no differences between diet groups or solutions. Bars represent mean. Circles represent individual data points
(rats).
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anesthetized with bupivacaine (150ml, s.c.). Rats also received intraperi-
toneal injection of nonsteroidal anti-inflammatory meloxicam (1mg/
kg). Core body temperature, oxygen saturation, and heart rate were
monitored throughout the surgery. A hole was drilled above the VTA at
the following coordinates: AP �5.8 mm, ML 0.7 mm relative to bregma
(Paxinos and Watson, 1998). A 10ml Hamilton syringe placed in a
motorized syringe pump (Harvard Apparatus Pump 11 Elite) was loaded
with the GCaMP6s virus (AAV9.Syn1.GCaMP6s.WPRE.SV40, �1.9 -
� 1013 GC/ml, Penn Vector Core; RRID:Addgene_100843) and was
slowly lowered into VTA (DV �8.1 mm relative to brain surface); 1ml
of virus was delivered over 10min (100 nl/min), and the syringe was left
in place for 5 additional minutes before being slowly removed. An optic
fiber cannula (ThorLabs CFM14L10, 400mm, 0.39NA, 10 mm length)
was implanted at the same coordinates, 0.1 mm above the injection site
(DV �8.0 mm relative to brain surface). The cannula was secured in
place by dental cement (C&B Supabond followed by regular dental
acrylic, Prestige Dental) overlaying four small skull-screws. Rats were
housed in pairs immediately for recovery. Rats were allowed at least
4weeks to recover before the start of behavioral testing to allow ample
time for virus expression.

Diets. All rats were initially maintained on standard laboratory chow
diet (EURodent Diet 5LF2, LabDiet) containing 14% protein. Four
weeks after surgery, 8 of the rats were randomly assigned to the PR diet
condition. For these rats, standard chow was switched to a modified
AIN-93G diet containing 5% protein from casein (#D15100602,
Research Diets) (Murphy et al., 2018). Remaining rats were maintained
under standard laboratory chow diet (non-restricted group [NR]).
Behavioral testing started 1week following protein restriction.

Flavor conditioning and casein preference tests. Animals were trained
in two identical conditioning chambers (30.5� 24.1� 21.0 cm; Med
Associates), each located inside a sound- and light-attenuated aluminum
outer chamber (1200� 700 � 700 cm). Each conditioning chamber was
equipped with a house light located on the left wall, 2 retractable sippers
located on the right wall, and 2 light cues located above each sipper hole.
Each bottle placed on a retractable sipper was connected to a contact
lickometer (Med Associates) used to measure intake of flavored solution.
The house light was turned on at the beginning of each daily session and
turned off at the end of it. Conditioning chamber apparatus was con-
trolled via a computer running Med-PC IV Software Suite (Med
Associates). Sessions were video recorded at either 5 or 10Hz using a
webcam (Microsoft LifeCam) that interfaced with fiber photometry
software.

Initially, all rats were pretrained with 2 bottles containing 0.2% so-
dium saccharin (Sigma Millipore, #S1002). First, rats had continuous
access to both bottles in the chambers until they reached .1000 licks
during the daily 60min session (1-3d). Then, each saccharin bottle was
presented individually in a pseudorandom order (intertrial interval 10-
30 s, mean 20 s) during 45 trials. On each trial, if no licks were made,
then sippers remained available for 30 s. However, once a lick was made,
sippers remained extended for 5 s before retraction (see Fig. 1B). This
protocol trained rats over a small number of sessions to approach and
drink from sippers when available. Coincident with sipper activation,
the cue light located above the sipper hole was turned on and remained
on until the sipper was retracted. Sippers took;2 s from activation until
the rat could reach them to drink. Following saccharin pretraining, dur-
ing the next 4 d, all rats were trained to associate a specific flavored solu-
tion (0.05% cherry or grape Kool-Aid with 0.2% saccharin) with a
different nutrient in daily sessions lasting a maximum of 60min. During
conditioning sessions, only one bottle was available and was presented
during 45 individual trials, as described above. Bottles were filled with ei-
ther protein-containing solution (4% casein sodium salt from bovine
milk, Sigma Millipore, #C8654; 0.21% L-methionine, Sigma Millipore,
#M9625; 0.2% saccharin; 0.05% flavored Kool-Aid) or isocaloric carbo-
hydrate-containing solution (4% maltodextrin, Sigma Millipore,
#419672; 0.2% saccharin; 0.05% flavored Kool-Aid), as previously
described (Murphy et al., 2018). Bottle positions, presentation order, and
flavor-macronutrient associations were counterbalanced between rats.
Bottle position was alternated between days.

Twenty-four hours after the last conditioning session, rats received a
first preference test (Preference test 1). Both casein and maltodextrin-

flavored solutions were available during the test. The test started with 45
trials during which each bottle was presented in pseudorandom order
(forced choice trials; intertrial interval 10–30 s, mean 20 s). These trials
were followed by 20 presentations of the two bottles simultaneously (free
choice trials).

Immediately after Preference test 1, diet conditions were switched
between experimental groups. NR rats were now given protein-restricted
diet (NR ! PR), whereas protein-restricted rats were given standard
chow diet (PR ! NR). Seven days after the diet switch, a second prefer-
ence test was conducted (Preference test 2). This test was followed by 4 d
of additional conditioning sessions, as described above, before a final
preference test (Preference test 3).

Fiber photometry recordings. To assess the activity of VTA neurons
during the consumption of differently flavored macronutrient solutions,
the “bulk” fluorescence signal generated by GCaMP6s expressing cells
was recorded using fiber photometry (see Fig. 1) (Gunaydin et al., 2014;
Lerner et al., 2015). Signal processing and acquisition hardware (RZ5P;
Tucker Davis Technologies) were used to control two light sources: a
470 nm LED (ThorLabs, M470F3) modulated at 211Hz and a 405nm
LED (ThorLabs, M405F1) modulated at 539Hz. A fluorescence mini-
cube (Doric Lenses) combined both wavelengths, which were transmit-
ted through an optical patch cable to the rat’s optic cannula implant.
LED power was set at 30-60mW. Emitted light was delivered through the
same patch cable back to the minicube where it was filtered for GFP
emission wavelength (525nm) and sent to a photoreceiver (#2151
Femtowatt Silicon Photoreceiver, DC-750Hz; Newport). Demodulation
of the two light sources allowed dissociation of calcium-dependent
GCaMP6s signals (470nm) and calcium-independent changes resulting
from autofluorescence and motion artifacts (isosbestic 405 nm wave-
length). All signals were acquired using Synapse Essentials software
(Tucker Davis Technologies). Signals were sampled at 6.1 kHz (before
demodulation) and 1017Hz (after demodulation). Behavioral events
(e.g., licks and sipper presentations) were time stamped by registering
TTLs generated by the Med-PC system. The demodulated signals were
filtered by using FFT to convert each signal from the time domain into
the frequency domain, subtracting the 405 signal from the 470 signal,
and then converting back into the time domain (Konanur et al., 2020).
This corrected signal was expressed as a change in fluorescence, relative
to total fluorescence, and used for all further analyses.

Subsequently, data were divided into discrete trials by alignment
with time stamps representing the first lick in each trial and binning into
100ms bins. z scores were calculated for each trial by taking the mean di-
vided by the SD of a baseline period lasting for 10 s preceding the first
lick in each trial. Area under the curve (AUC) was calculated for the 5 s
following the first lick before the sipper retracted and for the 5 s follow-
ing sipper retraction. Baseline activity for each session was estimated by
calculating the AUC of the epoch at the start of the session before the
first trial began.

Histology. After completion of behavioral testing and recordings, rats
were deeply anesthetized using 5% isoflurane followed by pentobarbital
(50mg/ml) before being transcardially perfused with cold 0.1 M PBS fol-
lowed by 4% PFA solution. Brains were then postfixed overnight in ice
cold 4% PFA before being transferred in 0.1 M PBS solution with 30% su-
crose for at least 48 h at 4°C. Serial coronal sections (40mm thick) were
cut on a freezing microtome and stored in PBS solution containing
0.02% sodium azide. VTA-containing sections were selected to check vi-
rus spread and the position of the fiber track. Free-floating sections were
transferred to 6-well plates filled with PBS. First, sections were rinsed in
0.1 M PBS (3� 5min) before being incubated for 1 h in blocking solution
(3% goat serum, 3% donkey serum, 3% Triton in 0.1 M PBS). Next, sec-
tions were incubated overnight at room temperature with primary anti-
body to detect GCaMP (chicken anti-GFP, A10262, Thermo Fisher
Scientific; RRID:AB_2534023; 1:1000 in blocking solution). After rinses
in 0.1 M PBS (3� 5min), sections were incubated with secondary anti-
body solution (goat anti-chicken IgG AlexaFluor-488 conjugate, A-
11039, Thermo Fisher Scientific; RRID:AB_2534096; 1:250 in 0.1 M PBS)
for 90min at room temperature. Finally, sections were rinsed with 0.1 M

PBS (3� 5min) and mounted in VectorShield Hard Set mounting me-
dium and coverslipped. Images were taken using an epifluorescence
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microscope (Leica Microsystems, DM2500) using 2.5�, 10�, and 20�
objectives and a R6 Retiga CCD camera (QImaging). Fiber position and
virus spread were determined according to neuroanatomical landmarks
(Paxinos andWatson, 1998).

Experimental design and statistical analysis. Behavioral data (lick
time stamps) were extracted from data files and analyzed using custom
Python scripts that measured numbers of licks for each solution and
latencies from sipper extension. Position of rats in the chamber was
determined using DeepLabCut (Mathis et al., 2018; Nath et al., 2019) to
track body parts (nose, ears, base of tail) of rats in every frame across the
preference session.

For statistical analysis of within session behavioral and neural varia-
bles, two-way mixed repeated-measures ANOVA was used with Diet
group as a between-subject variable (e.g., PR vs NR) and Solution as a
within subject variable (casein vs maltodextrin). Choice data were ana-
lyzed by comparing diet groups using an unpaired t test and for prefer-
ence within each diet group using one-sample t tests versus no
preference (0.5). For comparison of behavioral and neural latencies,
these values were pooled for individual trials across all rats. Pearson’s
correlation coefficients were calculated between latency for neural activ-
ity to peak and latency to lick (from sipper extension). Differences for
each type of latency were compared between solutions using Mann–
Whitney U test.

For summary data, across all sessions, two-way mixed repeated-
measures ANOVA was used with Diet as a between-subject variable and
Session as a within-subject variable. To examine neural activity for each
rat individually, AUC of casein trials was compared with AUC of malto-
dextrin trials using an unpaired two-tailed t test. Resulting p values were
used to construct pie charts.

For data from conditioning sessions, three-way mixed repeated-
measures ANOVA was used with Diet group as a between-subject vari-
able (e.g., PR vs NR) and Solution and Session as within subject variables
(casein vs maltodextrin; Session 1 vs Session 2). For body weight, two-
way mixed repeated-measures ANOVA was used with Diet as a
between-subject variable and Day as a within-subject variable, and
planned t tests were used to compare groups on the first and last day.
For food intake, unit of statistic was “cage” as all rats were group housed
and average food intake per rat across all days was compared with t test.

Significant effects and interactions were followed by estimating effect
sizes between subgroups. Effect sizes were determined by comparison to
bootstrapped sampling distributions, which are shown in bottom panels
for each comparison; 5000 bootstrap samples were taken. CIs are bias
corrected and accelerated and are shown on the same plots and reported
in the text. Reported p values are permutation p values resulting from t
tests comparing 5000 reshuffles.

Data and software availability. All data files are available at
Figshare (https://doi.org/10.25392/leicester.data.7636268). These
experiments used a combination of software tools: Python (data
extraction, analysis, and plotting) and R (statistics). Estimation plots
were adapted from dabest v0.3.01 (Ho et al., 2019). All code is avail-
able at Github (https://github.com/mccutcheonlab/PPP_analysis/
releases/tag/v1.0).

Results
VTA neurons were targeted by injecting an AAV encoding the
calcium sensor GCaMP6s (under control of the synapsin pro-
moter), and a fiber optic was implanted above the injection site
to record neural activity in freely moving rats (n=14; Fig. 1A,B).
Three to 4 weeks after surgery, a subset of rats were switched to
low protein diet (5% protein from casein; PR group, n= 8) while
the remaining animals remained on regular chow (14% protein;
NR group, n= 6). Analysis of body weight data for the subse-
quent 2 weeks, before conditioning sessions started, revealed that
PR and NR rats gain weight at a slightly different rate across days
(Fig. 1C; two-way ANOVA, Diet: F(1,13) = 0.09, p=0.767; Day:
F(14,182) = 25.02, p, 0.0001; Diet � Day: F(14,182) = 3.97,
p, 0.0001). However, the difference between diets was minimal

as planned comparisons of PR and NR rats on either the first or
last day did not reveal a difference in body weight between
groups (day 1: t(13) = 0.72, p=0.486 and day 14: t(13) = 0.15,
p= 0.881). Analysis of food intake showed that PR rats exhibited
a mild hyperphagia as has been previously reported (Fig. 1D;
mean difference in food intake between NR and PR rats: 3.77 g
[95% CI 1.28, 6.88], p= 0.042) (Laeger et al., 2014).

Following 5 d of saccharin pretraining, rats received four daily
conditioning sessions in which they had access to distinctly fla-
vored solutions containing either casein (protein) or maltodex-
trin (carbohydrate; one session per day), alternated from day to
day (Fig. 1B). Both groups similarly increased their consumption
throughout conditioning (Fig. 1E; three-way ANOVA, Session:
F(1,13) = 22.308, p, 0.0001) for both casein and maltodextrin (all
F values, 1; all p values. 0.1). Thus, rats in both physiological
states experienced the same exposure to casein and maltodextrin
solutions in advance of the preference test session.

Protein preference is associated with elevated VTA response
to protein over carbohydrate
Following conditioning sessions, we then recorded VTA
responses during a test session (Fig. 1B). Rats first experienced
45 trials in which only one bottle was available at a time (forced
choice trials), similar to conditioning sessions.

Across all forced choice trials, rats exhibited similar licking
behavior for casein and maltodextrin (Fig. 2A; two-way
ANOVA: all F values, 1; all p values. 0.1). However, PR rats
did show shorter latencies to drink for casein than for maltodex-
trin (Fig. 2B; two-way ANOVA, Diet: F(1,13) = 4.83, p= 0.047;
Solution: F(1,13) = 9.52, p= 0.009; Diet � Solution: F(1,13) = 5.83,
p= 0.031; paired mean difference in latency between casein and
maltodextrin for PR rats: �2.48 s [95% CI �3.65, �1.03],
p= 0.011). In addition, PR rats on average spent more time closer
to the casein sipper than the maltodextrin sipper (Fig. 2C,D; two-
way ANOVA, Diet: F(1,12) = 0.20, p= 0.661; Solution: F(1,12) =
0.50, p= 0.492; Diet � Solution: F(1,12) = 5.03, p=0.045; paired
mean difference in distance to casein and maltodextrin sippers in
NR rats:�33.2 mm [95% CI�96.3, 59.5], p= 0.375; paired mean
difference in PR rats: 63.9 mm [95% CI �11.3, 90.1], p= 0.026).
There was no difference in total distance moved between NR
and PR rats (NR: 97.786 13.76 mm; PR: 112.836 9.20; unpaired
t test: t(13) = 0.87, p= 0.400).

Photometry recordings of VTA neurons during consumption
of each solution (Fig. 3A,B) showed that casein and maltodextrin
consumption evoked similar VTA responses in NR rats (paired
mean difference in AUC between casein and maltodextrin in NR
rats: 0.80 [95% CI �0.46, 2.17], p= 0.354). In contrast, although
PR rats licked similarly for both solutions (Fig. 2A), casein con-
sumption is associated with a higher VTA response than for mal-
todextrin (Fig. 3C; two-way ANOVA, Diet: F(1,13) = 0.60,
p= 0.454; Solution: F(1,13) = 20.73, p= 0.0005; Diet � Solution:
F(1,13) = 10.39, p= 0.007; paired mean difference in AUC between
casein and maltodextrin in PR rats: 4.66 [95% CI 3.27, 6.41],
p= 0.0026). No differences were found in neural activity in the
5 s epoch following termination of licking (Fig. 3D; two-way
ANOVA, Diet: F(1,13) = 0.96, p=0.346; Solution: F(1,13) = 1.80,
p= 0.203; Diet � Solution: F(1,13) = 0.05, p=0.824). Moreover,
differences in VTA responses were not attributable to differences
in baseline activity between the two diet conditions (Fig. 3E;
unpaired t test: t(13) = 0.30, p= 0.769).

We examined whether there were differences in how long the
photometry signal took to peak during each trial and whether
this was correlated with the latency to lick (Fig. 4). We found
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Figure 3. Increased neural activity in VTA of PR rats during casein consumption versus maltodextrin. A, Heat maps for a single representative NR rat (left) and PR rat (right) showing normal-
ized fluorescence changes (z-scored) evoked by consumption of casein (top) or maltodextrin (middle) on forced choice trials. Trials are sorted by latency between sipper extension and first lick.
White lines indicate time of sipper extension. Average fluorescence change across all trials is shown with solid line as mean and shaded area is SEM (bottom). B, Group data from forced choice
casein and maltodextrin trials showing z score calculated from fluorescent changes aligned to first lick and averaged across all NR rats (left) and PR rats (right). Solid line indicates mean.
Shaded area represents SEM. C, Greater neural activation to casein consumption than maltodextrin in PR rats, but not NR rats, as shown by AUC (0-5 s following first lick). D, No difference in
neural activation during epoch following termination of licking (AUC, 5-10 s following first lick). C, D, Top panels, Bars indicate mean. Circles represent data from individual rats. Bottom panels,
Mean difference as a bootstrap sampling distribution. Dots represent mean differences. Ends of vertical bars represent 95% CIs. E, No difference in baseline activity between NR and PR rats is
observed. Left, Representative traces showing fiber photometry signal at start of session before first sipper extension. Neural activity is observed but not easily quantifiable as distinct transients.
Right, Baseline neural activity calculated as AUC of this period. E, Bars indicate mean.. Circles represent individual data points (rats).
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that in NR rats there was no difference between casein and mal-
todextrin trials in latency to peak calcium response (Fig. 4A;
from sipper extension; Mann–Whitney U: p=0.743). Moreover,
on a trial-to-trial basis, the latency to peak showed a moderate
but significant correlation with latency to lick for both casein tri-
als (Pearson correlation coefficient: r=0.27, p=0.0014) and mal-
todextrin trials (r=0.20, p=0.020).

In contrast, for PR rats, the latency for the photometry signal
to peak did differ between casein and maltodextrin trials (Fig.
4B; Mann–Whitney U: p, 0.001); furthermore, there was a
highly significant correlation with latency to lick on casein trials
(r=0.45, p, 0.0001), but no correlation for maltodextrin trials
(r=0.11, p= 0.148). These findings for PR rats are likely because

of the neural activation at time of licking
on maltodextrin trials being greatly
reduced for this group of rats.

Following these forced choice trials,
rats were presented with 20 trials in which
both bottles were available at the same
time (free choice trials) to confirm the ex-
istence of protein preference in the PR
group (Murphy et al., 2018; Naneix et al.,
2020). In free choice trials, PR rats signifi-
cantly licked more for casein than for
maltodextrin (Fig. 5A; two-way ANOVA,
Diet: F(1,13) = 5.12, p=0.041; Solution:
F(1,13) = 1.75, p= 0.208; Diet � Solution:
F(1,13) = 14.96, p=0.002; mean paired dif-
ference in licks between casein and malto-
dextrin for PR rats: 442.22 [95% CI
127.33, 587.22], p= 0.006), whereas NR
rats did not (mean paired difference in
licks between casein and maltodextrin for
NR rats: �216.67 [95% CI �464.67,
�16.16], p = 0.121). Consistent with this
result, PR and NR rats exhibited differ-
ential casein preference, as calculated
by the number of times they chose
casein during the free choice trials
(mean difference in choice preference
between NR and PR rats: difference
between groups: 0.49 [95% CI 0.23,
0.66], p = 0.004). As such, NR rats
showed no preference for one solution
over the other (preference for NR rats:
0.37 [95% CI 0.23, 0.52], p = 0.121 vs
50%), but PR rats displayed a strong
preference for casein (Fig. 5B; prefer-
ence for PR rats: 0.85 [95% CI 0.58,
0.95], p = 0.0064 vs 50%).

Preference toward protein develops
with minimal experience in a newly
protein-restricted state
Next, we were interested in what would
happen to behavior and neural activity
when rats’ protein needs changed. First,
we investigated what happened when rats
from the control group were switched to
the PR diet (hereafter, NR ! PR rats).
Importantly, we retested rats at two time
points: 1 week after diets were switched
but before any intervening experience of
the casein and maltodextrin solutions

(Fig. 6A; Preference test 2); and 1 week after this, once rats had
experienced an extra block of conditioning sessions (Fig. 6G;
Preference test 3).

As reported in Preference test 1 (see above), animals licked
similarly for casein and maltodextrin during forced choice
trials in Preference test 2 (Fig. 6B; mean paired difference in
licks between casein and maltodextrin: 3.5 [95% CI �69.5,
36.0], p = 0.817) but slightly increased the licking for casein
in Preference test 3 (Fig. 6H; mean paired difference: 81.50
[95% CI 50.00, 111.17], p, 0.001). Similarly, analysis of
latencies indicated no difference during Preference test 2
(Fig. 6C; mean paired difference in latency between casein
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Figure 4. Correlations between latency to start licking following sipper extension and time for photometry signal to peak
(from sipper extension). A, Main plot represents scatter plot of individual trials pooled across all NR rats with latency to lick
on x axis and time for signal to peak on y axis. Solid line on main plot indicates linear fit of data with a significant correla-
tion, found for both maltodextrin and casein trials (statistics shown on plot). Density plots are shown for each axis above
and to the right, respectively. Dashed lines on density plots indicate median of data, with Mann–Whitney U test showing no
difference for either latency to start licking (U= 9049, p= 0.922) or time to peak (U= 9323, p= 0.743). Black represents
maltodextrin trials. Red represents casein trials. B, Same as in A, but for PR rats with maltodextrin trials (green) and casein
trials (blue). There is a significant correlation for casein trials but not for maltodextrin trials. Comparison of data shows that
both latency to lick (U= 14,095, p, 0.001) and time to peak (U= 16,750, p, 0.001) are different for maltodextrin and
casein trials.

Casein
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Behavior: free choice trials

Figure 5. Protein-restricted rats show a strong preference for protein over carbohydrate that is not seen in control rats. A,
On free choice trials, PR rats licked more for casein than maltodextrin, but there was no difference in licking between the sol-
utions in NR rats. B, When number of choices for each solution were considered, PR rats showed a strong preference for
casein relative to maltodextrin. Bars indicate mean. Circles represent data from individual rats. Bootstrapped sampling distri-
butions are used to show mean paired difference in A (bottom) and difference versus 0.5 in B (right). Dots represent means
of distributions. Ends of vertical bars represent 95% CIs.
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and maltodextrin: �0.07 s [95% CI �0.94, 0.73] p = 0.974)
but showed shorter latencies to drink from the casein sipper
during Preference test 3 (Fig. 6I; mean paired difference:
�2.22 s [95% CI �3.91, �1.23], p = 0.030).

On free choice trials, NR ! PR rats licked more for
casein than maltodextrin during both Preference test 2 (Fig.
6D; mean paired difference in licks between casein and mal-
todextrin: 330.00 [95% CI 176.33, 440.17], p, 0.001) and
Preference test 3 (Fig. 6J; mean paired difference: 623.17
[95% CI 511.17, 689.83], p, 0.001). As expected, this pat-
tern resulted in strong casein preference over maltodextrin
on Preference test 2 (preference: 0.71 [95% CI 0.60, 0.83],
p = 0.030 vs 50%) and Preference test 3 (preference: 0.95
[95% CI 0.83, 0.98], p = 0.030 vs 50%).

The casein preference reported in Preference test 2 and
Preference test 3 in NR! PR rats strongly contrasts with behav-
ior during Preference test 1 (Fig. 5). Interestingly, photometry
recordings during forced choice trials did not show any differ-
ence in VTA responses to casein and maltodextrin in either
Preference test 2 (Fig. 6E,F; mean paired difference in AUC
between casein and maltodextrin: 1.59 [95% CI �0.92, 4.95]
p= 0.381) or Preference test 3 (Fig. 6K,L; mean paired difference:
2.53 [95% CI�1.84, 4.37], p=0.097).

In summary, NR ! PR rats developed a rapid behavioral
preference to protein over carbohydrate that was observed even
before they had gained extensive experience with each solution.
Activity in VTA, however, was slower to change to reflect the
rats’ new physiological state and behavior.
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Figure 6. Changing from control diet to low protein diet leads to changes in behavior toward nutrients. A, Schematic showing experimental timeline for Preference test 2
(before additional conditioning sessions). B, C, On forced choice trials, there was no difference in licks for casein and maltodextrin or in latency to drink from each sipper. D,
On free choice trials, rats licked more for casein than maltodextrin. E, F, As a group, VTA neural activity was similar between casein and maltodextrin trials, but there was a
large amount of variability. G, Schematic showing experimental timeline for Preference test 3 (after additional conditioning sessions). H, I, On forced choice trials, there was
a small increase in licks for casein relative to maltodextrin and latency to drink was shorter on casein trials than maltodextrin trials. J, On free choice trials, rats licked more
for casein than maltodextrin. K, L, VTA neural activity was not different between casein and maltodextrin trials although, as with the previous test, there was a high degree
of variability. Top panels, Bars indicate mean. Circles represent data from individual rats. Bottom panels, Mean difference as a bootstrap sampling distribution. Dots repre-
sent mean differences. Ends of vertical bars represent 95% CIs.
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Protein preference and differences in associated VTA activity
disappear after experience with nutrient solutions in protein
replete state
We also investigated the effect of protein repletion on casein
preference and VTA responses using a similar diet switch design
in rats that were initially protein-restricted and were changed
changed to NR diet (hereafter, PR ! NR rats). Again, rats were
tested 1 week following the diet switch but before being given
additional experience with solutions (Preference test 2; Fig. 7A)
and then, again, after a block of conditioning sessions
(Preference test 3; Fig. 7G).

During forced choice trials, there was no difference in the
number of licks for casein and maltodextrin in Preference test 2
(Fig. 7B; mean paired difference in licks between casein and mal-
todextrin: 34.67 [95% CI �42.44, 100.44], p=0.386) or
Preference test 3 (Fig. 7H; mean paired difference: �25.00 [95%

CI �141.78, 64.33], p= 0.682). The latency to drink from the
casein sipper was still shorter than the latency for maltodextrin
in Preference test 2 (Fig. 7C; mean paired difference in latency
between casein and maltodextrin: �2.11 s [95% CI �2.95,
�1.22], p=0.003), but this difference disappeared in Preference
test 3 after additional conditioning sessions (Fig. 7I; mean paired
difference:�0.24 s [95% CI�0.91, 0.65], p=0.561).

On free choice trials, there was now no significant difference
in the number of licks between casein and maltodextrin during
Preference test 2 (Fig. 7D; mean paired difference in licks
between casein and maltodextrin: 189.22 [95% CI 19.89, 380.44],
p= 0.099), although when number of choices was considered, as
a group, PR ! NR rats still showed a moderate preference for
casein over maltodextrin (preference: 0.68 [95% CI 0.57, 0.79],
p= 0.020 vs 50%). In Preference test 3 after additional condition-
ing sessions, casein preference was completely abolished for both
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Figure 7. Changing from low protein diet to control diet leads to changes in behavior toward nutrients. A, Schematic showing experimental timeline for Preference test 2 (before additional
conditioning sessions). B, C, On forced choice trials, there was no difference in licks for casein and maltodextrin, but latency to drink was shorter on casein trials than on maltodextrin trials. D,
On free choice trials, number of licks was similar for casein and maltodextrin, although rats chose the casein sipper more than the maltodextrin (see Results). E, F, VTA neural activity was ele-
vated on casein trials versus maltodextrin trials. G, Schematic showing experimental timeline for Preference test 3 (after additional conditioning sessions). H, I, On forced choice trials, the num-
ber of licks and latencies were similar for casein and maltodextrin trials. J, On free choice trials, number of licks was similar for casein and maltodextrin. K, L, VTA neural activity was no longer
different between casein and maltodextrin trials. Top panels, Bars indicate mean. Circles represent data from individual rats. Bottom panels, Mean difference as a bootstrap sampling distribu-
tion. Dots represent mean differences. Ends of vertical bars represent 95% CIs.
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licking (Fig. 7J; mean paired difference in
licks between casein and maltodextrin:
�11.78 [95% CI �294.11, 279.67],
p=0.922) and choices (preference: 0.48
[95% CI 0.26, 0.68], p= 0.889 vs 50%).

When VTA neural activity was ana-
lyzed during forced choice trials, we
found that there was still greater VTA
activation on casein trials than maltodex-
trin trials during Preference test 2,
although the effect size was more variable
than on Preference test 1 (Fig. 7E,F; mean
paired difference in AUC between casein
and maltodextrin 3.86 [95% CI 1.54,
8.17], p=0.028). Consistent with the abo-
lition of casein preference reported during
Preference test 3, analysis of VTA neural
activity also now showed no reliable dif-
ference between casein and maltodextrin
in forced choice trials, although there was
a high degree of variability (Fig. 7K,L;
mean paired difference in AUC between
casein and maltodextrin 3.24 [95% CI
0.47, 6.37], p=0.091). Thus, the protein
preference and associated VTA responses
that developed when rats were protein-re-
stricted was markedly reduced once rats
had gained additional experience with the
nutrient solutions in the new protein
replete state.

Behavior and VTA activity become
uncoupled after diet switch
To compare across all sessions for each
group of rats, we examined how protein
preference changed from Preference test 1
to Preference test 3. After the switch from
NR to PR state (NR! PR rats), there was
a clear shift in behavior across the three
sessions as shown by a main effect of
Session (Fig. 8A; one-way repeated-meas-
ures ANOVA: F(2,10) = 27.01, p, 0.0001).
Further comparisons showed that after
diet switch NR ! PR rats’ behavior dif-
fered both before additional conditioning
sessions (mean paired difference in pref-
erence between Preference test 2 and
Preference test 1: 0.34 [95% CI 0.16, 0.52],
p=0.007) and after (mean paired differ-
ence between Preference test 3 and
Preference test 1; 0.58 [95% CI 0.43, 0.73],
p=0.001). However, consistent with our
earlier analysis, VTA responses to casein
and maltodextrin did not significantly
change between the three preference tests
(Fig. 8B; two-way repeated ANOVA:
Session F(2,10) = 0.49, p = 0.625; Solution
(F(1,5) = 5.74, p = 0.06; Session �
Solution F(2,10) = 0.67, p = 0.534).

In contrast, protein repletion (PR! NR rats) induced a grad-
ual decrease in casein preference across the three tests (Fig. 8D;
one-way repeated ANOVA: F(2,16) = 5.99, p=0.011). Between
sessions comparisons showed that casein preference in the

second test session, when rats had not received additional condi-
tioning, was no different to the first test session (mean paired dif-
ference in preference between Preference test 2 and Preference
test 1: �0.17 [95% CI �0.31, 0.09], p=0.119). However, by the
third test session, there was a significant decrease in casein pref-
erence compared with the first session (mean paired difference
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Figure 8. Behavior and VTA activity become uncoupled after diet switch. A, In NR ! PR rats, preference for protein
increases after diet switch in both Preference test 2, without additional conditioning, and in Preference test 3. Bars indicate
mean. Circles represent data from individual rats with mean differences of bootstrapped sampling distributions shown in the
bottom panel versus Preference test 1. B, Neural activity in VTA on casein and maltodextrin trials is not affected by diet
switch. C, Behavioral preference for casein versus maltodextrin (y axis) plotted as a function of difference in neural activation
(z score AUC) associated with consumption of each solution (x axis) in NR! PR rats. Circles connected by black solid lines
represent mean 6 SEM. D, In PR ! NR rats, behavior changes after diet switch but requires additional conditioning ses-
sions for protein preference to shift, relative to Preference test 1. Plotting conventions as in A. E, Neural activity in VTA is con-
sistently elevated on casein trials, relative to maltodextrin trials. F, Preference versus difference in neural activation for PR
! NR rats with plotting conventions as in C. G, Neural activity evoked by consumption of each solution changes as a func-
tion of diet state. Pie charts represent the proportion of rats showing significantly greater activation to maltodextrin (black)
or casein (blue) with nonsignificant shown in gray. Top, For NR rats, there is no difference in neural activity between casein
and maltodextrin on Preference test 1, whereas after diet switch a progressively greater number of rats show a preference
for casein. Bottom, For PR rats, a majority show greater activation to casein than to maltodextrin; and even after switching
to control diet, 4 of 9 rats continue to show greater VTA activation to casein than to maltodextrin.
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in preference between Preference test 3 and Preference test 1:
�0.37 [95% CI �0.60, �0.09], p= 0.018). This shift in casein
preference is associated with a trend toward a decrease in VTA
responses to both casein and maltodextrin through the three ses-
sions (Fig. 8E; two-way repeated-measures ANOVA: Session
F(2,16) = 3.80, p= 0.08; Session � Solution F(2,16) = 0.48,
p=0.624). However, VTA responses to casein remained higher
than responses to maltodextrin (Solution: F(1,8) = 12.77,
p=0.007).

The relationship between casein preference and neural activa-
tion to each solution is summarized in Figure 8C, F. Performing
a simple linear regression between behavior (casein preference)
and photometry (difference in z score between casein and malto-
dextrin trials) yielded weak to moderate correlations for each
group with this relationship being significant for PR ! NR rats
(Pearson’s correlation, r= 0.41, p=0.034; Fig. 6C) but not for NR
! PR rats (r=0.23, p=0.350; Fig. 6F).

Next, we performed multivariate linear regression on these
data including test day as a predictor and found higher b coeffi-
cients associated with behavior than with photometry supporting
our finding that protein preference changed more readily across
the dietary manipulations than did neural activity (b coefficients
for behavior: 2.51 and �1.55 for NR ! PR rats and PR ! NR
rats, respectively; b coefficients for photometry: 0.02 and 0.02
for NR ! PR rats and PR ! NR rats, respectively). In addition,
b coefficients for behavior were oppositely signed in each diet
group reflecting the bidirectional change in behavior.

Finally, to check whether behavior and photometry measure-
ments were more closely related to state of protein deprivation
we recoded data based on each animal’s current dietary state and
reran the regression. Once again, we found that higher b values
were associated with behavior than with photometry (behavior:
1.32 and 0.76 for NR! PR rats and PR! NR rats, respectively;
photometry: �0.01 and 0.01 for NR ! PR rats and PR ! NR
rats, respectively).

These analyses and visual inspection of the data suggested
that changes in VTA responses after diet switch may have been
obscured by interindividual variability in responses. To explore
this further, we chose to look at differences in VTA activity on a
rat-by-rat basis. By comparing activity on individual trials, rather
than the mean of these trials, we calculated for each rat whether
there was significantly greater activation to casein or to malto-
dextrin (Fig. 8G). For NR! PR rats, no rats showed a signifi-
cantly greater activation to either nutrient on Preference
test 1. However, after switching to the PR diet, a progres-
sively greater proportion showed significantly greater acti-
vation to casein (33% for Preference test 2, 66% for
Preference test 3). For PR ! NR rats, results were strikingly
different. On Preference test 1, a majority of rats (56%)
showed significantly greater activation on casein trials than
on maltodextrin trials. After switching to control diet, this
changed little, with a large proportion continuing to show
greater activation on casein than on maltodextrin trials
(44% on both Preference test 2 and Preference test 3).

In summary, protein preference behavior changed strongly
and rapidly in a bidirectional manner in both groups of rats,
whereas shifts in VTA neural activity were not as apparent, espe-
cially in PR! NR rats.

Discussion
Animals prioritize protein intake over the intake of other macro-
nutrients (Morrison and Laeger, 2015). However, the neural

mechanisms underpinning this behavioral process are not well
understood. Here, for the first time, we show that protein restric-
tion changes neural activity in the VTA during the consumption
of protein or carbohydrate to reflect the initial protein prefer-
ence. Furthermore, we also demonstrate that protein prefer-
ence is dependent on current physiological state and can
be induced or abolished according to protein needs.
Interestingly, VTA nutrient-related responses are highly de-
pendent on the animal’s prior experience in protein-re-
stricted or non-restricted state, appearing slower than
behavior to adapt to new physiological status.

Protein appetite is associated with increased VTA activity
Consistent with our earlier studies (Murphy et al., 2018; Naneix
et al., 2020), PR rats developed a strong preference for protein-
containing solution over carbohydrate-containing solution.
Protein preference did not coincide with a general aversion to
the carbohydrate as rats consumed similar amounts of both
casein and maltodextrin during conditioning and forced choice
trials. This differs from responses seen to diets lacking single
amino acids that can lead to development of conditioned taste
aversion for foods with imbalanced amino acid content (Maurin
et al., 2005; Gietzen and Aja, 2012).

VTA neurons play a complex role in the control of food-
related behaviors (Berridge, 2007; Bromberg-Martin et al., 2010;
Brown et al., 2012; Zessen et al., 2012; Root et al., 2020). Previous
studies show that dopamine signaling originating in the VTA is
involved in establishing carbohydrate-based flavor preferences
(Sclafani et al., 2011; de Araujo et al., 2012; McCutcheon, 2015;
Hsu et al., 2018). Here, we show, for the first time, that protein
appetite involves VTA circuits and that VTA activation is modu-
lated by both the macronutrient content of the food and the rats’
protein status during the initial preference test (Fig. 2).
Specifically, VTA responses are greater during consumption of
protein (casein) compared with carbohydrate (maltodextrin)
selectively in PR rats. These differences in VTA activity are
observed during forced choice trials, in which only one solution
is available, but this difference in activity reflects future food
preference in the subsequent free choice trials. Importantly, this
difference is not the result of different behavioral activation as
rats exhibited similar levels of licking. Differences in VTA
responses to the consumption of each nutrient may reflect
reward value and be used to guide food preferences (Berridge,
2007; Roitman et al., 2008; Bromberg-Martin et al., 2010;
McCutcheon et al., 2012b; Salamone and Correa, 2012). In addi-
tion, PR rats exhibited a shorter latency for casein consumption
(Fig. 2), suggesting an increase in incentive properties of this so-
lution (Barbano and Cador, 2005). We previously reported that
protein appetite was associated with increased casein palatability
(Murphy et al., 2018; Naneix et al., 2020).

Using ex vivo voltammetry recordings, we recently showed
that protein restriction increased evoked dopamine release in the
NAc, but not dorsal striatum (Naneix et al., 2021). Similar
changes have been reported with other nutrients (McCutcheon,
2015) and hunger states (Heffner et al., 1980), which may be
used to reinforce and guide food-seeking behaviors toward the
most relevant source of food. While firing of dopamine neurons
does not always reflect terminal release (Sulzer et al., 2016;
Mohebi et al., 2019), this result is consistent with our present in
vivo observation in PR rats. There is now a need to characterize
whether these increased VTA responses also translate into
increased dopamine release in vivo, precisely where this release
occurs in the forebrain, and how dopamine cell bodies or
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terminals may be able to detect dietary amino acids (Karnani et
al., 2011).

VTA responses do not follow changes in initial protein
preference
Changes in protein status after an initial nutrient preference
resulted in different behavioral adaptations depending on the
direction of diet shift. Rats experiencing a new protein deficiency
(NR ! PR; Fig. 4) rapidly shifted their preference toward casein
even without additional conditioning, suggesting that protein
appetite can manifest independently of prior experience with
protein-containing food in a restricted state. Previous studies
have demonstrated that an immediate specific appetite exists for
another essential nutrient, sodium (Krause and Sakai, 2007). As
such, sodium depletion induces immediate and unlearned altera-
tions in how sodium is perceived and how animals respond to
stimuli previously associated with sodium (Robinson and
Berridge, 2013). However, sodium appetite is rapidly terminated
once sodium levels are restored (Krause and Sakai, 2007). Such
fine regulation was not observed with protein intake (PR ! NR;
Fig. 5) as casein preference only decreased in newly protein-
replete (PR ! NR) rats after experiencing additional condition-
ing sessions.

VTA responses to both casein and maltodextrin became
more complex and did not immediately follow changes in pro-
tein preference. Newly PR rats (NR ! PR; Fig. 4) exhibited
delayed changes in VTA responses to casein and maltodextrin
consumption, despite increased preference for protein. Previous
studies have shown that unconditioned VTA dopamine
responses to food or specific nutrients (Cone et al., 2014, 2016)
update immediately, independently of prior experience of the
physiological state (e.g., sodium depletion, hunger). In contrast,
dopamine responses to food- or nutrient-predictive cues require
multiple associations under physiological conditions in which
the food is rewarding (Bassareo and Di Chiara, 1997; Day et al.,
2007; Cone et al., 2016). Thus, our results suggest that VTA ac-
tivity may track the value of the flavor paired with protein rather
than the protein content itself (Sclafani et al., 2011; McCutcheon,
2015).

Protein repletion (PR ! NR; Fig. 5) had a delayed impact on
VTA activity, as rats continued to show elevated VTA responses
to casein despite a progressive decrease of their protein prefer-
ence. These results contrast starkly with those from studies of so-
dium appetite where VTA dopamine responses to conditioned
cues are flexibly expressed in a state-dependent manner once
learned (Cone et al., 2016). Instead, elevated VTA responses to
casein, even after the initial behavioral preference was reversed,
suggest a long-lasting neurobiological impact of protein restric-
tion that may require extended time and prolonged learning to
be reversed.

Methodological considerations
In this study, we used a targeting strategy that was not selective
for dopamine neurons. As such, it is likely that some of the pho-
tometry signal resulted from activity in nondopamine popula-
tions of VTA neurons, including local GABA interneurons and
projecting GABA or glutamate neurons (Dobi et al., 2010;
Morales and Margolis, 2017), although, by number, dopamine
neurons represent the largest proportion of VTA neurons (Nair-
Roberts et al., 2008). In addition, the increases in neural activity
evoked by behavioral events are qualitatively similar to those
others have observed when recording only dopamine neurons
(e.g., with TH::Cre rats) (Parker et al., 2016) or when recording

dopamine release using voltammetry (Phillips et al., 2003). As
other VTA neuronal populations are involved in different aspects
of food-related behaviors (Brown et al., 2012; Zessen et al., 2012;
Morales and Margolis, 2017; Root et al., 2020), future cell-spe-
cific targeting will be required to tease apart responses from these
neuronal subtypes.

This study used only male rats, consistent with our previous
study (Murphy et al., 2018). Protein (and other macronutrient)
requirements differ in male and female rats at adulthood and
through development (Leibowitz et al., 1991); and, in addition,
total food intake changes across the estrus cycle with resulting
effects on the proportion of protein intake (Wurtman and Baum,
1980). Moreover, physiological state influences the activity of
VTA neurons in a sex-dependent manner (Godfrey and
Borgland, 2020). Thus, a better understanding of brain mecha-
nisms underlying protein appetite warrants further investigation
in both males and females.

In conclusion, a key remaining question is how VTA midbrain
circuits detect the nutrient content of food and integrate this with
physiological state to regulate protein homeostasis. Previous work
suggests that the VTA must receive taste information (Hajnal et
al., 2004; Roitman et al., 2008; McCutcheon et al., 2012b). Protein
can be detected via umami receptors expressed on taste buds
(Chaudhari et al., 2009; Liman et al., 2014), but the link between
protein sensing by the tongue and VTA neuronal populations
remains to be explored. VTA circuits are also sensitive to the ca-
loric content of food (de Araujo et al., 2008; Domingos et al., 2011;
Beeler et al., 2012; Ferreira et al., 2012; McCutcheon et al., 2012a),
and this information is relayed to forebrain regions controlling
food-seeking behaviors (Tellez et al., 2016). Whether VTA neu-
rons are sensitive to protein or amino acids directly is not known,
but individual amino acid levels can be detected by hypothalamic,
cortical, and hindbrain regions connected to the VTA (Karnani et
al., 2011; Anthony and Gietzen, 2013; Heeley and Blouet, 2016;
Tsang et al., 2020). Furthermore, recent work showed that fibro-
blast growth factor 21 (FGF21), a hepatic hormone, is released in
response to reduction in dietary protein (Laeger et al., 2014), and
its central action is necessary for development of protein prefer-
ence in mice (Hill et al., 2019).

Given the potential effects of inadequate protein diet in utero
or after birth on neurodevelopmental disorders (Grissom and
Reyes, 2013; Gould et al., 2018) and obesity (Simpson and
Raubenheimer, 2005), our results highlight neurobiological sub-
strates that may underlie protein appetite in normal and patho-
logic conditions.
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