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Abstract: Candida species are part of the normal flora of humans, but once the immune system of the
host is impaired and they escape from commensal niches, they shift from commensal to pathogen
causing candidiasis. Candida albicans remains the primary cause of candidiasis, accounting for about
60% of the global candidiasis burden. The cell wall of C. albicans and related fungal pathogens forms
the interface with the host, gives fungal cells their shape, and also provides protection against stresses.
The cell wall is a dynamic organelle with great adaptive flexibility that allows remodeling, morpho-
genesis, and changes in its components in response to the environment. It is mainly composed of the
inner polysaccharide rich layer (chitin, and 3-glucan) and the outer protein coat (mannoproteins).
The highly glycosylated protein coat mediates interactions between C. albicans cells and their environ-
ment, including reprograming of wall architecture in response to several conditions, such as carbon
source, pH, high temperature, and morphogenesis. The mannoproteins are also associated with C.
albicans adherence, drug resistance, and virulence. Vitally, the mannoproteins contribute to cell wall
construction and especially cell wall remodeling when cells encounter physical and chemical stresses.
This review describes the interconnected cell wall integrity (CWI) and stress-activated pathways (e.g.,
Hogl, Cekl, and Mkcl mediated pathways) that regulates cell wall remodeling and the expression
of some of the mannoproteins in C. albicans and other species. The mannoproteins of the surface
coat is of great importance to pathogen survival, growth, and virulence, thus understanding their
structure and function as well as regulatory mechanisms can pave the way for better management of
candidiasis.
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1. Introduction

Candida albicans is abundantly found in mammals. It often resides on the skin and
mucosal layers of individuals as part of their normal flora. C. albicans causes a range of
infections from superficial to life-threatening and systemic, dependent upon the host’s
immune system [1] C. albicans uses an arsenal of pathogenic mechanisms to subdue or
evade host immune responses [2,3]. The mannosylated surface protein coat is covalently
linked to the skeletal cell wall polysaccharides and plays a vital role in mediating C. albicans
interaction with the host. The proteins are not only important in maintaining cell wall
integrity, masking the polysaccharide rich layer, therefore preventing recognition by dectin-
1, but also contribute to virulence of this pathogen in many ways. They mediate adherence
to host cells and indwelling medical devices, enable invasion of epithelial cells, facilitate
biofilm formation, protect C. albicans against immune attack, coordinate communication
between host cells and C. albicans, and are important in nutrient scavenging including
zinc and iron [3]. Given the important roles of the cell surface proteins at every stage of
C. albicans infection process, research has been focused on expanding our understanding
of their biology and structure as well as their function in the cell wall [4]. This area is,
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however, rapidly expanding as the cell surface proteins have the potential to be a unique
drug/vaccine target [5-7]. Proteomics analysis of purified cell wall material has shown that
the walls contain about 20 different types of covalently bound cell wall proteins (CWPs)
at any time and the protein profiles can change dramatically depending on the growth
conditions [8]. In addition, the presence of particular cell surface proteins morphologically
depends and correlates with either C. albicans yeast or hyphal form [8]. The aim of this
review is to discuss the characteristics and functions of covalently bound CWPs, and
how they are important for fitness and virulence, and enable the fungus to cope with host
infection-induced stress conditions. The review will also discuss the regulatory mechanisms
that control expression of cell wall-related genes and relate what is known in C. albicans
and other Candida species.

2. Function of Cell Wall Proteins

Based on the existing model of the cell wall, it is made up of an inner polysaccharide
rich layer and the outer protein coat [9-11]. A 3-D nanoscalar model of the C. albicans cell
wall has been developed to probe accurate thickness and structure of the cell wall [4,10].
The investigators used an optimized 3-D electron tomogram and computer vision technique
to make accurate measurements of cell wall thickness [4]. The scalar model developed gave
a more refined prediction of the thickness of each cell wall layer and the precise structure
of some of the wall components [4]. The inner layer of the cell wall is composed mainly
of B-glucans (3-1,3-glucan and 3-1,6-glucans), chitin microfibrils, and a small amount of
mannosylated proteins is distributed throughout the inner layer [4]. Chitin (3-1,4-N-acetyl
glucosamine) and (-glucans (3-1,3-glucan) are the main structural polysaccharides of the
cell wall [12]. 3-1,3-glucan forms a three-dimensional network comparable to a flexible
wire spring, which explains the elastic nature of the cell wall and provides the platform for
the attachment of 3-1,6-glucan, CWPs, and chitin [13]. Chitin is covalently cross-linked to
the (3-1,3-glucan network and contributes to the rigidity and physical strength of the fungal
cell wall [12]. The outer coat is made up of glycan fibrils post-translationally attached to
CWPs that are vertically arranged perpendicular to the inner layer [4].

The outer coat of mannoproteins determines cell wall permeability and surface
charge [9]. Restriction of cell wall permeability is due to the densely packed CWPs, the
presence of bulky protein sidechains, and the formation of disulfide bridges between
CWPs [12,14,15]. This feature protects the structural polysaccharides against enzyme
degradation and dectin-1 receptor recognition [15,16]. The use of genomic and proteomic
techniques has advanced our knowledge of the nature and abundance of these surface
proteins. CWPs have a unique structure, they generally contain: an N terminus with a se-
cretory motif and a C terminus [17]. They bear serine/threonine-O-manno-oligosaccharide
and/or asparagine-N-glycan and may contain internal repeats and/or a glycosylphos-
phatidylinositol, GPI anchor attachment sequences [18,19]. The most abundant cell proteins
are the GPI-modified proteins, which receive a GPI anchor during their passage through
the secretory pathway [20-24] and constitute about 88% of the total wall mannosylated
protein classes [25] (Table 1). The second class of CWPs are those with internal repeats,
PIR-CWPs [18,26] (Table 1).
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Table 1. Characteristics of specific Candida albicans surface proteins.

Protein/Family

Features and Functions

Regulation

GPI modified CWPs
Adhesins, invasins
Als family (Als1-7, 9)

Hwpl, Hwp2, Eapl, Ihd1,
and Hyrl

Carbohydrate active
enzymes

1,3-B-Glucan processing
Phrl1-3, Pga4, and Pga5

Chitin-glucan
cross-linkersChr family

Others
Dfg5 and Dcw1

Pga31-like (Pga29-31)

Sod4 and Sod5

Sap9 and Sap10

Pga59

Rbt5, Pgal0, and Pga7

Non-GPI modified CWPs
Pirl

Mp65

N-terminal c. 300-residue Ig domain, bind variety of substrates [27,28]; high
(Als1, Als2), intermediate (Als4, Als9), and low (Als5-7) levels of gene
expression [27,29-31]. Als3 is expressed uniformly all over hyphae [32]. Alsl
and Als3 N terminal sequences are used as vaccine antigen [7]. Als1 and Als3
contribute to biofilm formation, and Als3 functions as an invasin, and as a
ferritin receptor [27,30,31,33].

Hwpl level is induced by oxygen and iron restriction [38]. N terminal is
recognised as substrate for epithelial transglutaminases [39]. Hwp1 facilitates
cell to cell interaction important in biofilm development [33]. N terminal
14-mer peptide and recombinant N terminal fragment are used in vaccine and
diagnostic development, respectively [40,41].

Hwp2 has sequence identity with Hwp1 and can function in adhesion and
invasion; it is also involved in oxidative stress tolerance and protein
aggregation [42,43]. Hwpl, Hwp2, Eap1, and Ihd1 contribute to initial cell
attachment and adhesion maintenance during biofilm formation [44].

N terminal of Hyrl has been used in vaccines and diagnostics

development [5,45].

N terminal glycoside hydrolase (GH) 72 domain; play a role in cell wall
construction (3-1,3-glucan modification); incorporated at acidic pH (Phr2) and
neutral/alkaline pH (Phr1) [45,46]. Pga4 is transcribed independent of pH,
and Phr3 and Pga5 have low expression levels [47]. Pga4 is serum- and host
infection-inducible [48].

N terminal GH16 domain; involved in cell wall organization and integrity;
cross-linking 3-1,3-glucan and chitin; involved in protoplast
regeneration [50,51]. Control cell wall elasticity in osmotic resistance [52].

Putative glycosyltransferase enzyme activity; involved in the incorporation of
GPI anchored proteins into the cell wall [55,56]. Dfg5 and Dcw1 are involved
in hyphal morphogenesis and biofilm formation; Dfg5 is required for growth;
Dcw1 is required for cell wall integrity response; Dfg5 has synthetic lethality
with Dcw1 [56].

Enriched in pathogenic fungi [57]. Pga31 has predicted transmembrane
domain and with Pga30 they have three conserved cysteine residues

(http:/ /www.candidagenome.org/ (accessed on 12 July 2021)). Pga29 and
Pga31 are echinocandin induced; Pga29 is required for normal cell surface
property [58]. Pga31 is induced during protoplast regeneration [59] and may
be involved in cell wall chitin synthesis during remodelling in response to
stress [60].

Superoxide dismutase; contribute to combating oxidative stress by clearing
reactive oxygen species [61].

Yapsin-like proteins are mainly found in the cell membrane (Sap9) and cell

wall (Sap10); required for full cell wall integrity [63].

Cell wall localised [64]; abundant in the cell wall protein coat; mature protein
consists of three cysteine residues and cross-links cell wall proteins through
disulphide bridges [64].

N terminal CFEM domain; cell membrane (Pga7 and Rbt5) localised; loss of
function results in fragile biofilms (Pgal0 and Rbt5) [65,66]; function as haeme
receptors and involved in haeme-iron utilization [67,68]. Rbt5 levels increase
following iron and oxygen restriction [38].

C terminal conserved four cysteine pattern and seven repeats; predicted to
cross-link p-1,3-glucan chains [69]; protein levels increase in hypoxic
conditions [38].

C terminal GH17z domain; present in fibrillar material with putative
transglycosylase activity; potential vaccine candidate [70].

Als proteins are differentially
expressed, ALS1, ALS3, and
HWP1 are under the positive
regulatory control of Berl [34-36].
Tup1 (repressor of filamentation]
and Ahrl are required for full
expression of ALS3 [37].

PHR1 and PHR? are differentially
regulated by extracellular pH [49].

UTR?2 expression is regulated by
calcineurin and Crz1 [53]. CRH11
is subject to caspofungin-induced
Casb regulation [54]

DFG5 has been shown to be
regulated by RIm1 in S. cerevisaie,
but not in C. albicans [54].

PGA31 is upregulated by the Pkc
pathway [60].

Rim101 is required for induction
of SOD5 under certain conditions,
and Efgl is required specifically
for serum-modulated

expression [62].

The proteins have been shown to
be expressed during yeast to
hyphae switch and thus are
regulated by Tup1 [66].
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A 3-D electron tomogram was used to determine the structure of the outer coat of
mannosylated proteins. The scalar architectural model of mannosylated proteins gave a
more precise detail of their structure, location and molecular size including measurements
of their length and branching [4,71]. The cell wall through the outer proteins mediates host
pathogen-interaction. The scalar architectural model may be useful in investigating the
structure—function relationships that support the fungal infection strategy [4,10].

CWPs have both enzymatic and structural functions and their population may differ in
their abundances depending on environmental conditions, developmental stage and phase
of the cell cycle [9]. During cell wall synthesis, the cell wall polysaccharides, chitin and (3-
1,3-glucan are synthesized by enzymes localized in the plasma membrane and are extruded
out to the cell exterior and are then acted upon by wall-localized cell wall remodeling
enzymes [17]. CWPs modify these cell wall polysaccharides and cross-link them, thus
maintaining cell wall integrity [9]. The cross-linking between cell wall macromolecules
extruded into the wall space is catalyzed by carbohydrate active cell wall remodeling
enzymes, hydrolases, transferases, and transglycosidases that are located in the cell wall
space [17,72]. Some of these enzymes include (3-1,3-glucanosyltransferases, e.g., Phr family
(see Table 1), which are a Gas-like family, Bgl2 (GH17), and Crh family representing chitin-
glucanosyltransferases, these are cell wall-localized GPI anchored proteins [17,50,51,73-76].
C. albicans phr1A/A and phr2A /A mutants showed hypersensitivity to cell wall stressors
such as Calcofluor white, CFW [45]. In C. albicans, synthetically lethal GPI-anchored
proteins such as Dfg5 and Dcw1 (glycoside hydrolase (GH) family 76) are required for the
incorporation of mannosylated proteins into the cell wall [55].

Structural surface proteins with no enzymatic activities such as flocculins (e.g., Flo1,
Pga24), agglutinins (e.g., Alsl, Rbtl, Hwpl), or 3-1,3-glucan cross connectors (e.g., Pir1)
that can form a scaffold for the attachment of other wall components, are important for
cell:cell interactions and wall integrity [27,30,31,33,77-81]. Ssr1, a structural protein has
been shown to contribute to normal cell wall architecture [82]. Pga59 is thought to be
associated with the formation of a coat around the cell wall that can restrict cell wall
permeability [64]. CWPs are also associated with virulence, biofilm formation, and coping
with stress in fungi [33,36,61,67,68,83-85]. The following are some examples. The ALS gene
family encodes eight GPI modified cell surface glycoproteins with peptide binding ability
Ig-fold domain at the N terminus [86]. The Ig-fold mediates adhesion to fibronectin and
other specific host proteins [87], and cell to cell aggregation through Als to Als interaction
(Nobile et al., 2008). Heterologous expression of Als proteins in a nonadherent S. cere-
visige strain demonstrated that the Als proteins promote attachment to different surfaces
(Nobile et al., 2008). The als3A/A mutant has reduced virulence in a murine model of
oropharyngeal candidiasis [31]. Hwpl N terminus contains a secretory signal sequence
rich in proline and glutamine that is cross-linked by host transglutaminase to epithelial
cells enabling the attachment of C. albicans to human buccal epithelial cells [39,88,89]. C.
albicans hwplA mutant has reduced ability to bind to human buccal epithelial cells and has
poor translocation from the mouse intestine into the bloodstream, demonstrating a role for
Hwp1 in disseminated candidiasis [31]. Attachment to host cells by C. albicans can also be
due to morphology-independent covalently bound wall proteins, Hyr1, Ecm33, Iff4, and
Eap1, covalently bound wall proteins, Phrl, and cell-surface associated proteases, Sap9
and Sap10 [90,91].

C. albicans can use endocytosis (through interaction of Als3 with host cadherins) or
active penetration to invade the host cell [31]. After C. albicans adhesion to the host cell
surface and hyphal germination and growth, there are hyphal-induced hydrolytic enzymes
that facilitate host cell degradation. They particularly aid active penetration into host cells
and damage tissues [92].

C. albicans expresses ten secreted aspartyl proteinase (Sap) isoenzymes. Each mature
Sap protein contains two aspartic acid residues conserved within the active site and a
conserved cysteine residue that plays a structural role. Sap1-8 are secreted and released to
the environment, whereas Sap9 and Sap10 are cell surface bound [63,93,94]. Sap proteins
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have been linked to the ability of C. albicans to adhere to and damage host tissue as well as
the ability to evade the host immune response [95]. Sap9 and Sap10 have proteolytic activity
on non-basic, basic, and dibasic peptides and have targeted Cht2, Ecm33, Pga4, Ywpl, Als2,
Rhd3, Rbt5, and glucan cross-linked protein, Pirl as substrates. C. albicans sap9A /A and
sapl0A /A mutants demonstrated reduction in cell wall-associated Cht2 activity suggesting
a direct influence of Sap9 and Sap10 activity on Cht2 function and a role in maintaining
cell wall integrity [96].

During C. albicans infection, Als family, and Eap1 adhesin, are involved in the de-
velopment of biofilms, an important virulent attribute. The fungus forms biofilms when
it encounters solid surfaces such as indwelling medical devices, where fungal cells are
encapsulated in a dense extracellular matrix, which sequesters antifungal drugs promoting
drug resistance and persistence in the host [97,98]. Biofilm formation by C. albicans has
been shown to be under the positive regulatory control of the transcription factor, Berl.
Berl regulates the expression of Alsl, Als3, and Hwp1 [34-36]. These proteins in addition
to Als2 are associated with various stages of biofilm formation in C. albicans [28,99].

The cell wall during growth requires continuous remodeling of its macromolecular
network [17]. During cell wall stress, a fungus can also rapidly remodel its wall and
adapt the composition of the new cell wall [52,73,100]. For example, in exposure to cell
damaging antifungal drugs, C. albicans triggers cell wall rescue mechanisms that influence
the expression of wall biosynthetic genes and CWPs [4,60,101]. Rescuing the cell wall
requires stress signals that activate the cell wall integrity (CWI) pathways. Cell surface
proteins that function as mechanosensors primarily are responsible for activating these
CWI pathways. These proteins (Wsc1-3 and Mtl1) act like linear nanosprings that detect
and transmit cell wall damage or stress [102-105] to the downstream receptors in the
signaling pathways. The sensors have an overall similar structure in that they contain in
their sequences: short C terminal cytoplasmic domains, a single transmembrane domain,
and a periplasmic ectodomain that is rich in Ser/Thr residues [106]. The Ser/Thr-rich
regions are highly O-mannosylated, accounting for extension and stiffening of the proteins.
Thus, these polypeptides have been proposed as mechanosensors that act as rigid probes
of the extracellular matrix [106,107]. Functionally, signals are received and transmitted
through the highly O-mannosylated extracellular domains and phosphatidylinositol (PI)-
4,5-bisphosphate, which recruits the N terminal domains of the Rom1/2-guanine nucleotide
exchange factors through the plasma membrane, the sensors stimulate nucleotide exchange
on Rhol [102,105]. The various effectors of Rhol include 3-1,3-glucan synthase, 3-1,3-
glucan synthase activity, and Pkcl-activated MAPK cascade [104].

In summary, CWPs have a wide range of diverse functions that contribute to virulence,
to maintenance of wall structure to ensure cellular integrity remains intact, and to sensing
and transmitting signals from the environment. Many CWPs have been functionally
characterized and their amino acid sequences are known, but only a handful have had
their structures fully elucidated. Structure has a functional implication and understanding
CWP structure can increase our knowledge of their functions, including roles in cell wall
biogenesis.

3. Fungal Cell Wall Remodeling and Signaling Pathways That Are Activated in
Response to Stress

C. albicans has been shown to grow at a high concentration of caspofungin a phe-
nomenon called paradoxical growth. Paradoxical growth, in C. albicans is associated with
induced cell aggregation and an increase in cell volume and cell wall chitin content [108].
In C. auris, however, it only induced an increase in cell wall chitin content [108]. Genes
encoding Fks1 and Fks2 harboring the single nucleotide polymorphisms hot spot regions
have been identified in C. auris [108]. The Fks2 carries the F635Y mutation that confers
intrinsic echinocandin resistance on Candida glabrata [108]. Interestingly, C. auris RNA-seq
data showed that paradoxical growth activates genes encoding cell membrane proteins
and GPI-modified proteins required for cell wall damage response, chitin synthase, and
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MAPKSs such as Mkcl, and Hogl involved in maintaining cell wall integrity [108]. Fungal
pathogens activate a lot of pathways to successfully adapt to caspofugin stress.

Deletion of cell wall biosynthetic pathway genes in fungi often results in increased
susceptibility of the cell wall to wall perturbing agents as well as alterations in chitin and
3-1,3-glucan contents and linkages in the cell wall, synthesis of new wall proteins, and
changes in the crosslinking to alternative wall polysaccharides [109,110]. Inhibition of (3-
1,3-glucan synthesis has been associated with altered crosslinking of chitin to 3-1,6-glucan-
GPI-modified proteins in the cell wall [109]. The amount of chitin— 3-glucan<-GPI-CWP
complexes in the cell wall increased to 40% in wall defective mutants, indicating this is a
repair mechanism protecting the cell wall from degrading enzymes and other stresses [109].
Most cell wall restructuring processes do not involve activation of the signaling pathways.
For example, the carbon-source-induced alteration in osmotic tolerance in C. albicans was
shown to be independent of the CWI pathways, but rather mediated by alterations in the
architecture and biophysical properties of the cell wall [111]. However, during the cell
wall response to most stressors, signals that indicate weaknesses in the wall are received
by the surface sensors and transmitted leading to activation of the corresponding CWI
pathways. In Saccharomyces cerevisiae and C. albicans, signaling pathways are activated in
response to a wide range of stresses such as CFW, harsh temperatures, oxygen starvation,
host immune response during infection and antifungal such as echinocandins, altered
nutrient levels, and carbon source [109,112-114]. Cell wall stress response is mediated
through the protein kinase C, PKC cell integrity mitogen-activated protein (MAP) kinase
cascade, and its downstream transcription factors [112,114,115] (Figure 1). Other MAP
kinase cascades, the high osmolarity glycerol response, HOG, and Candida ERK-like
kinase, Cekl mediated pathways, have also been shown to play a role in the cell wall
reconstruction process [112,116,117] (Figure 1). MAP kinase defective C. albicans mutants
display attenuated virulence in infection models showing that MAP kinase pathways are
also important for virulence [118-120].
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Figure 1. Signaling pathways that regulate cell wall remodeling of S. cerevisiae and C. albicans. The Hog1,
Cek1, and Pkc MAP kinase cascades and the Ca?* /calcineurin signaling pathway control a number of
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cellular processes including cell wall synthesis and maintenance. Upstream membrane sensors of the
MAP kinase cascades include Wsc family, Dfil, Shol, and SIn1, detect signals reporting weakened
cell wall or alterations in the wall, and convey the signal to the downstream components of the
pathway. The PKC pathway plays an important role in response to caspofungin and activates Rhol,
a regulatory sub-unit of 3-1,3-glucan synthase. Rhb1, an Rheb-related GTPase, activate the CWI
MAP kinase Mkcl in response to cell wall stress. An Rhb1 deletion mutant is hypersensitive to
cell wall stress and to rapamycin [121]. Rhol activates protein kinase C, which phosphorylates and
activates Bck1 in the MAP kinase cascade. Bck1 in turn activates the MAP kinase kinases Mkk1/2,
which then phosphorylate Mkcl, which may hypothetically target Rlm1 in C. albicans. Although the
Mkc1-Rlm1 relationship has been shown in S. cerevisiae, there is no evidence in C. albicans that Rlm1
is downstream of the Pkc pathway. A number of transcription factors contribute to the echinocandin
stress response including Cas5 and Ber1 [54]. In C. albicans, Cas5 is activated through an unknown
mechanism involving dephosphorylation by Glc7 phosphatase [122]. Cas5 interacts with Swi4 and
Swib to activate Casb-dependent gene transcription leading to the upregulation of genes involved in
cell biogenesis/integrity and cellular metabolism [122]. Cas5 and Efgl have been shown to interact
in response to caspofungin stress. Efgl regulates the transcriptional response to cell wall damage
by caspofungin [123]. C. albicans efg1A /A mutant is hypersensitive to caspofungin [123,124]. Cas5
and Efgl coregulate the expression of caspofungin-inducible genes. Cekl pathway impinges on cell
wall regulation and has also been implicated in systemic candidiasis [119,125]. C. albicans Dfil, a
homologue of S. cerevisine Mid2/Mtl1 is known to partly activate the MAP kinase Cek1 and confer
tolerance to caspofungin, CR, and CFW [126]. A Dfil deletion mutant is severely affected in invasive
filamentation and virulence in a murine infection model. Msb2 in cooperation with Shol is also
thought to play a role in Cekl activation [127]. It is predicted that the transcription factor, Cphl a
homologue of ScStel2, is downstream of the Cekl mediated pathway [112,119,127]. Cphl is associated
with regulation of filamentation [127]. The RIm1 and Berl transcription factors control the expression
of a number of cell wall-related genes [34,128] with Bcrl playing a dominant role in the regulation
of biofilm formation by controlling expression of several important adhesins. In C. albicans, the
RIm1 activation mechanism is unknown, but once localized in the nucleus, activated Rlm1 leads to
the upregulation of genes involves in cell wall biogenesis/integrity, macromolecular localization,
and organelle localization [129]. Putative RIm1 binding motifs in the promoters of CHS2 and CHS8
contribute to their cell wall stress-activated regulation [10,130,131]. In S. cerevisiae, Pkcl is involved in
targeting Chs3 to the plasma membrane in response to heat shock [129,132]. Significant re-wiring of
signaling pathways is evident in C. albicans, compared to the S. cerevisiae paradigm, for example, the
role of the Skol transcription factor in response to caspofungin is independent of Hogl MAP kinase,
but involves the Psk1 PAK kinase [133] and Rlm1. In C. albicans, Skol regulates the expression of some
genes involved in cell wall biogenesis and remodeling, and osmoadaptation [133]. Skol binding motif
has been identified for regulating Skol-dependent genes. Skol also binds to its motif to promote
self-activation. The calcineurin pathway is activated by calcium that may enter the cells through
membrane-localized channels Cchl and Mid1 or a third minor channel Figl. Alternatively, the
pathway may be activated by calcium released from intracellular stores. Ca?* binds to and activates
calmodulin (Cmd1) that in turn activates the phosphatase calcineurin. The calcineurin is made
up of two sub-units, Cnal and Cnb1. Calcineurin dephosphorylates the transcription factor Crzl,
which moves into the nucleus and induces expression of genes through binding to CDREs (calcium
dependent response elements) within their promoter sequences. Two Crzl DNA binding motifs
have been identified in some genes regulated by Crz1. Adapted from [112,114,126]. CR = Congo red,
CS = caspofungin, CFW calcofluor white, CWM = cell wall matrix, PM = plasma membrane.

There is some redundancy in the regulatory networks responding to echinocandin-
induced cell wall damage where more than one transcription factor controls overlapping
sets of downstream target genes to control changes in the cell wall [54,122,133,134]. Three
transcription factors, Cas5, Skol, and Rlm1 have been implicated in echinocandin-induced
cell wall damage signaling [54,133].

Cas5 has been shown to be involved in cell wall remodeling in C. albicans during cell
growth, morphology, and virulence [54,122,135,136]. C. albicans cas5A /A mutants and in-
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cluding mutants with a missense mutation in Cas5 DNA-binding domain is hypersensitive
to caspofungin and other cell wall stressors such as CFW [54,122]. A cas5A/A deletion
mutant has also been shown to have attenuated virulence in both murine and invertebrate
models of systemic candidiasis [135]. Genome-wide microarray studies showed that Cas5
regulates about 50% of the highly expressed caspofungin-inducible genes, including some
cell wall integrity genes [54]. Studies using RNA polymerase II chromatin immunoprecipi-
tation and sequencing analyses showed that the number of caspofungin-inducible genes is
markedly higher and genes with cell wall-associated functions were markedly overrepre-
sented [122]. Furthermore, Cas5 was found to regulate over 60% of caspofungin-inducible
genes, including those involved in cell wall integrity [122].

Information on the upstream regulation of Cas5 is limited in C. albicans, but available
data suggest that Casb5 is dephosphorylated by phosphatase Glc7 following caspofungin-
induced cell wall damage [122]. The study further showed that upon dephosphorylation
of Cas5, it is activated and interacts with Swi4 and Swi6 to activate the transcription of
Cas5-dependent genes [122]. This leads to the upregulation of genes involved in cell wall
synthesis/integrity and cell metabolism [122].

Cas5 together with Efgl regulate the transcriptional response to cell wall damage
by caspofungin [123]. Efgl is a member of the APSES family of basic helix-loop-helix
transcriptional regulators that is proposed to function downstream of the cAMP /protein
kinase A (PKA) pathway to induce a hyphal transcription program [137,138]. Likewise,
Efgl is important for transcriptional responses to echinocandins and C. albicans efg1A/A
mutant is hypersensitive to caspofungin [124]. Efgl also required for the induction of
CAS5 in response to cell wall damage by caspofungin [125]. Deletion of EFGI in a casbA/A
mutant exacerbates caspofungin hypersensitivity and make caspofugin-resistant C. albicans
sensitive again. The ectopical expression of CAS5 could not salvage the growth defect of C.
albicans efg1A/ A mutant treated with caspofungin [123]. Genome wide transcription profil-
ing of C. albicans cas5A /A and efg1A /A mutants using RNA-Seq showed that Cas5 and Efgl
can coregulate the expression of caspofungin-inducible genes and can also independently
regulate some genes [123]. Using yeast two-hybrid and in vivo immunoprecipitation, Casb
and Efgl were shown to interact and bind to the promoter of some caspofungin-inducible
genes to coordinately activate their expression [123].

Efgl has also been shown to regulate Czfl expression [139,140]. Czfl1, a C. albicans
zinc finger cluster transcription factor, is required for white-opaque switching and filamen-
tation [141]. Efgl and Czf1 interact in a yeast two-hybrid experiment [140] and coordinate
responses to farnesol during quorum sensing and white-opaque thermal dimorphism [142].
In the screen of a library of genetically activated forms of zinc cluster transcription factors,
hyperactive Czfl was found to have a cell wall associated function in C. albicans [143]. Hy-
peractive Czf1 drives the expression of many CWPs with cell wall associated functions that
can induce a physical change in the cell wall architecture and rescue the hypersensitivity of
different CWI partway deletion mutants to cell wall perturbing agents [143]. In addition,
C. albicans czf1A/ A mutant is hypersensitive to caspofungin [143].

Downstream of the Pkc pathway is the transcription factor, Rim1. Rlm1 has been
extensively studied in S. cerevisiae where it is the main transcriptional regulator of the Pkc
CWI pathway [144,145]. However, our understanding of the function of the protein is
limited in C. albicans. C. albicans rlm1A /A mutant is hypersensitive to CFW and Congo
red [54] and analysis of mutant cell wall composition compared to wild type showed
marked reduction in mannan composition and an increase in chitin levels [128]. This sug-
gested that Rlm1 is involved in caspofungin induced CWI signaling. These characteristics
of rlm1A/A in C. albicans have not been observed in S. cerevisiae, showing divergence of
these orthologues [128]. In C. glabrata, which is more closely related to S. cerevisiae than C.
albicans, rim1A /A, mkk1A /A, and bck1A /A mutants are sensitive to caspofungin, but not
to CFW or Congo red [146] and the full influence of this pathway on cell wall regulation
is yet to be studied. Genome-wide microarray studies in C. albicans showed that RIm1
only induced the expression of five genes under basal condition and only two of these



J. Fungi 2021, 7, 739

9 of 23

genes were caspofungin-inducible [54]. Another genome-wide study demonstrated that
RIm1 regulated the expression of 773 genes under basal conditions [128] and some of
the highly upregulated genes have cell wall associated function. These data suggest that
Rlm1 may have a more general regulatory role in controlling cell wall associated gene
during non-stressed physiological activities. Genome-wide ChIP Seq data revealed that
Rlm1-target genes encode proteins that have cell wall-associated function [134]. Rlm1
bound to the upstream intergenic regions of 25 genes and 18 of the genes were highly
caspofungin-inducible [134]. Furthermore, a rIm1A/A mutant attenuated virulence in a
murine model of systemic candidiasis [128].

Orthologues of Pkc pathway are conserved in C. albicans; however, it is not known if
the Mkcl1 directly or indirectly activates RIm1. Genomic, biochemical, and cellular data
suggest circuit rewiring in RIm1 and Skol CWI signaling [134]. Skol function has been
extensively studied in S. cerevisize and shown to be part of the MAP kinase high osmolarity
glycerol, Hog, signaling pathway with a role in osmotic and oxidative stress responses [147].
The Hog pathway in C. albicans is associated with pathogenicity traits and it is involved in
the control of both pathogenic and commensal state programs [148]. Skol function as the
regulator of osmotic stress is conserved in C. albicans and it is phophorylated by the MAP
kinase Hog1 following osmotic shock [133]. However, Skol regulates genes in C. albicans
whose orthologues in S. cerevisiae are not involved in osmotic stress response, therefore
showing circuitry rewiring [149]. Skol function in regulating the oxidative stress response
is also conserved in C. albicans [150].

A skolA/A mutant is hypersensitive to caspofungin, but not to Congo red, CFW, or
SDS [148,150], suggesting Skol may not have such a global role in cell wall architecture
as Rlm1 or Cas5. Microarray and RT-qPCR data demonstrated that Skol regulates 81
caspofungin-inducible genes and 26 of these genes are upregulated by Skol [133]. Several
of the genes regulated by Skol have cell wall-associated function (PGA13 and CRH11), and
cell metabolism functions [133,134].

The upstream regulatory mechanisms controlling Sko1l expression in C. albicans are
more complex than in S. cerevisiae, where the Hog pathway principally regulates Skol
transcriptional activity. Caspofungin-induced Skol activity is independent of Hog pathway
function [133]. RT-qPCR data demonstrated that caspofungin markedly induces SKO1
transcription and this requires the glucose-partitioning PAS kinase, Psk1 [133], but Psk1
does not regulate transcription directly. Microarray data indicate that RIm1 regulates
SKO1 expression under basal conditions [128]. Furthermore, caspofungin-induced SKO1
expression is markedly reduced in rim1A/A mutant but not in cas5A/A mutant. It is
unknown if Pskl binds directly to Rlm1 to regulate its activation of SKO1 expression.
However, a DNA-binding consensus has been identified in the Skol promoter sequence for
regulating Skol inducible genes and also for autoactivation of SKO1 [134].

The Hog pathway has not been well studied in other Candida species. However, in
clinical strains of C. auris, Hogl and Ssk1 have been shown to have variable activities,
which suggested some sort of genetic flexibility with effects on cell wall function and stress
adaptation [151]. A C. auris ssk1A/A hog1A/A mutant had altered tolerance to caspofungin
and amphotericin B, with increased echinocandin susceptibility [151]. The mutant also had
altered cell wall mannan content and altered hyper-resistance to cell wall stressors [151].
Targeting these two signaling components of the Hog pathway may provide options for an
effective combination therapy or enhancement of echinocandin susceptibility.

Phosphotransferase regulator Ypd1 and phosphatase Ptp2 have been identified as the
Skol targets following caspofungin treatment of C. albicans [134]. Both Ypd1 and Ptp2 are
known to inhibit the Hog pathway, indicating that Skol blocks the Hog pathway following
caspofungin treatment [152,153]. There is also cross communication between the Hogl
and Cekl pathways under basal condition [154] and C. albicans hoglA/A mutants have
constitutively higher levels of Cekl phosphorylation [117].

The Cek1 pathway is involved in cell pathogenesis and participate in cell wall con-
struction [155,156]. Cell surface signals that activate the Cekl pathway are transmitted
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by membrane bound sensor: Shol, Msb2, and Opy?2 [154-156], and mediated through
Cphl and Tecl [157,158]. Signals through the sensors trigger stimulus through Cst20 to the
Stel11-Hst7-Cekl MAPK cascade [119]. Deletion of any of these downstream elements as
well as Cphl does not affect filamentation [159]. Cek1 has also been shown to target another
transcription factor, Ace2 to upregulate genes encoding protein O-mannosyltransferases in
response to defective protein N- or O-glycosylation activities [160]. Cell surface proteins are
post-translationally modified to maintain cell wall structure. Genes encoding components
in the Cekl pathway, MSB2, CST20, HST7, CEK1, and ACE2 are Ace2 targets, indicat-
ing Ace2-mediated transcriptional upregulation of pathway genes under N-glycosylation
stress [160].

In C. albicans and most other fungi, cell damage through the inhibition of 3-1,3-glucans
synthesis triggers compensatory chitin synthesis [101,114,161-163]. We have shown that
Pke, Hog, and Ca?* signaling pathways co-ordinately regulate chitin synthesis in response
to cell wall stress [72,110,163]. These pathways regulate CHS gene expression and chitin
synthesis individually and in concert, leading to rearrangement of wall macromolecules in
response to cell wall stresses [110]. A lacZ reporter gene was fused to the putative promoters
of each of the CHS genes of C. albicans to monitor the expression of CHS genes when
treated with cell wall perturbing agents such as CFW and showed that exogenous Ca?*,
which induces the calcineurin pathway, activated all the CHS genes in a Crzl-dependent
manner [110]. Crz1 is the downstream transcription factor in the Ca?* /calcineurin signaling
pathway. Treating C. albicans cells with CFW, which activates the Pkc pathway, results
in a three-fold increase in chitin content [101]. However, hyper-stimulation of CHS gene
expression was observed when Pkc and Ca?* pathways were simultaneously activated,
and this resulted in increased chitin in the cell wall [110]. In S. cerevisiae and C. albicans, the
Pkc and Hog MAP kinase cascades and the Ca* /calcineurin pathway have been shown to
regulate CWPs, such as Sed1, Pst1, Crhl, Cwp1, Ssrl, Ypsl, Pirl, and Pir3, involved in cell
wall remodeling activities [51,134,145,164-167].

The Ca?* /calcineurin signaling pathway is implicated in the activation of cell wall
remodeling processes in response to damage to the cell wall [52,101] (Figure 1). The
proposed model for Crzl regulation in C. albicans is that the influx of Ca?" activates
calcineurin that then dephosphorylates and activates Crz1. The activated Crz1 enters the
nucleus and binds to one or both Crz1 binding motifs in the promoter of target genes
leading to their expression [168]. Crzl has been shown to regulate the expression of
34 genes involved in cell wall biosynthesis in response to calcium stress and 12 of these
genes encode proteins that are covalently bound to the cell wall: CRH11, UTR2, PGAI,
PGA6, PGA13, PGA23, PGA39, PGA52, PGA20, ECM331, PHR2, DFG5 [168]. Microarray
and RNA sequencing data have reveal that Crz1 binds in vitro and in vivo to two identified
motifs (calcineurin dependent response element, CDRE) in the promoter of some of the
target genes [53,168] to induce their expression. The promoter of 79 genes regulated by
Crz1 have two binding motifs for Crz1, while 104 Crzl-regulated genes have only one
motif. Meanwhile, 36 Crzl regulated genes have no discernible Crz1 binding motifs [168].
This suggests that the expression of Crz1 target genes is differentially regulated. It has been
shown that Crz1 binds to two motifs in the promoter region of UTR?2 to induce expression
in response to calcium stress [168].

C. albicans lacking calcineurin is markedly attenuated in virulence in a murine model of
systemic candidiasis and cannot survive in the presence of cell membrane stressors [169-171].
C. albicans lacking Crzl, the major target of calcineurin is partially virulent in a murine
model of systemic candidiasis, indicating the existence of other calcineurin targets that are
important for virulence [168,172,173].

Another determinant of caspofungin sensitivity is the transcription factor, Cup9, which
is required for normal caspofungin tolerance in hyphae alone and activates the expression
of CWPs with cell wall function [174]. C. albicans cup9A /A mutant is hypersensitensive
to caspofungin stress. RNA-seq data from C. albicans cup9A /A mutant with or without
caspofungin demonstrated that Cup9 has a narrow rather than global effect in the cell wall
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damage response and activates proteins such as PGA31 and [FF11 with a known role in
cell wall integrity [174].

Generally, these signaling pathways have not been studied in detail in other Candida
species; however, in C. glabrata, 3 genes: SLT2, YPK2, and YPK1, whose protein products are
involved in cell wall maintenance are associated with in vivo and in vitro echinocandins
tolerance [175]. A C. glabrata strain lacking these three genes was susceptible to caspofungin
treatment in a murine model of gastrointestinal candidiasis [175]. Furthermore, genes
encoding ortholoques of kinases in the cell wall signaling pathway SLT2, MKK1, BEM2, and
SW14 were identified in C. glabrata as well as genes encoding ortholoques of calcineurin
pathway membrane components: CCHI and MID1 [146]. Mutants lacking any of these
genes were hypersensitive to caspofungin [146]. Deletion of genes representing all stages of
CWI pathway from surface sensing to transcription regulation resulted in various degrees
of susceptibility to caspofungin and cell wall degrading enzymes [146]. Although more
studies are required to understand caspofungin-induced cell wall stress responses in other
Candida species, available data suggest similarity in signaling pathways, the response
strategies deployed, and the wall proteins involved in maintaining cell wall integrity.

4. Cell Wall Remodeling in Response to Thermal Stress

The fungal response to heat shock has been well characterized [176-178]. Temperature
stress signals are thought to be sensed by signaling mucins. Signaling mucins are trans-
membrane glycoproteins that receive and transmit surface signals to signaling pathways
(Figure 2). Signaling mucin, Msb2 is known to regulate environmental stress, cell wall
biogenesis, and the Cekl and Pkc pathways in most fungi [178,179]. Msb2 is a global
regulator of temperature stress in C. albicans [113]. Msb2 is required for fungal survival
and hyphae formation at 42 °C. Msb2 also regulates temperature-dependent activation of
genes involved in MAP kinase and unfolded protein response pathways (Figure 2) [113].

Generally, the temperature stress response is controlled by an essential protein, the
heat shock transcription factor, Hsfl, which is phosphorylated upon sudden temperature
rise [180]. Following temperature rise from 30 to 42 °C, Hsf1 is phosphorylated rapidly
within 60 s and upon adaptation, downregulated [181]. Under normal growth conditions,
Hsfl binds as a trimer to heat shock elements (HSEs) in the promoters of target heat
shock protein (HSP) genes [182]. When S. cerevisiae or C. albicans cells experience an acute
heat shock, Hsf1 is hyper-phosphorylated and activated, resulting in the transcriptional
induction of the target HSP genes, thus stimulating cellular adaptation to the thermal
insult [183]. Most heat shock proteins, Hsp, are molecular chaperones that promote client
proteins folding, assembly, or cellular localization. They also often target unfolded or
damaged proteins for degradation [184]. In C. albicans, Hsfl interacts with Hsp such
as Hsp90 under steady-state conditions, and upon thermal shocks, this interaction is
strengthened, suggesting existence of a Hsf1-Hsp90 autoregulatory circuit [177]. Hsp90 is
localized to the nucleus during elevated temperatures. It is possible that the Hsf1-Hsp90
regulon is critical for the maintenance of thermal homeostasis, not merely for adaptation to
acute heat shocks. This suggests that the Hsf1-Hsp90 interaction is important for regulation
of short-term responses to heat shock (Figure 2).



J. Fungi 2021, 7, 739

12 of 23

Heat shock
% Sensor
CWM )
PM

e " X
[HSCE:J | ;AF‘ kinase pathways‘l]
Cleey

Short term | Pratein Cell wall Long term
response | refolding remodelling |adaptation
Thermotolerance

Figure 2. Hsp90 acts as a biological transistor, modulating Hsfl and the MAPKSs transcription
factors in response to thermal fluctuations. Msb2 plays a vital role in thermotolerance in C. albicans.
The protein transmits heat shock signals through unknown mechanisms that induce downstream
targets such as the Pkc pathways in response to high temperatures. Hsfl activation is required for
thermotolerance. The MAP kinase signaling pathways are also required to promote thermotolerance
through remodeling the cell wall [117,185]. Because Hsp90 coordinates much of this activity, Hsf1,
Hog1, Mkcl, and Cek1 are all thought to be Hsp90 client proteins [177,181]. Fluctuations in ambient
temperature affect interactions between Hsp90 and Hsf1, and probably affect Hsp90 interactions
with the MAP kinase transcription factors [181], thus modulating the role of the signaling pathways
and thermal adaptation outcome. Temperature upshifts activate Hsf1, which induces the expression
of protein chaperones (HSPs), including Hsp90, which promotes shorter term thermal adaptation.
It is thought that Hsp90 then down-regulates Hsfl and modulates MAP kinase signaling, to alter
cell wall architecture, which leads to long term thermotolerance in C. albicans. Adapted from [177].
Broken lines indicate unconfirmed regulatory mechanisms.

Cell wall integrity is compromised at elevated temperatures. Temperature affects
cell wall polysaccharide composition and the incorporation levels of covalently anchored
proteins [186]. Yeasts cells are thought to adapt to heat stress in the longer term by
activating the Hog1, Mkcl, and Cekl MAP kinase pathways, which contribute to thermo-
tolerance [177,186] (Figure 2). These MAP kinase pathways, even though they contribute
to thermal adaptation in the longer term through cell wall remodeling, are not essential for
Hsf1 activation. Genetic depletion of Hsp90 affects cell wall remodeling activities, suggest-
ing that Hogl, Mkcl, and Cek1 may be client proteins of Hsp90. Hsp90 is thought to be
able to integrate both the short term and longer-term molecular responses that underpin
thermotolerance [177] (Figure 2).

In S. cerevisiae, MAP kinase pathways have been shown to contribute to thermotol-
erance [132,187], through localization of Chs3 to the plasma membrane in response to
heat shock [129]. Each of these MAP kinase pathways is known to contribute to cell wall
remodeling and mutations that interfere with cell wall synthesis increase sensitivity of
C. albicans to elevated temperatures. For example, the deletion of certain protein manno-
syltransferases of the PMT family, or the inactivation of OCH1 can increase susceptibility
to temperature [188,189]. Furthermore, deletion of SSR1 causes elevated susceptibility to
temperatures [60].

In a study, thermal upshift was shown to cause reduced secretion of chitinases and
have a huge impact on cell wall N mannan composition [190]. Analysis of the cell
wall phospholipomannan moiety revealed reduction in N mannan composition of (3-
1,2-mannose [190]. C. albicans is more susceptible to cell wall stressors when grown at
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42 °C [186]. Coping with this thermal stress leads to increased phosphorylation of Mkcl,
which mediates activation of the CWI pathways. Consequently, the levels of Sap9, the
chitin transglycosylases Crh11 and Utr2, and the cell wall maintenance protein, Ecm33,
increased, and cells reinforce their walls with chitin through increased chitin synthesis and
reduced chitin degradation [186]. Ecm33 is required for growth at high temperatures and
S. cerevisiae and C. albicans ecm33A /A disruptant strains exhibit a temperature sensitive
growth defect [191,192].

The Mkcl, Hogl, and Cek1 signaling pathways and associated cell wall remodeling
mannoproteins have been proposed to promote longer term thermotolerance through the
maintenance of a robust cell wall (Figure 2).

5. Echinocandin-Induced Cell Wall Remodeling in Yeast

[3-1,3-glucan is a hallmark component of most yeast cell walls and is synthesized by
(3-1,3-glucan synthase. The protein has an integral membrane catalytic subunit, Fks [193].
C. albicans has three FKS genes, but the main activity is from the FKSI gene product, Fksl.
Fks1 is essential and found in association with the regulatory subunit, Rhol GTPase [194].
Rhol is required to activate Fksl for (3-1,3-glucan synthesis (Figure 1). Echinocandins
non-competitively inhibit 3-1,3-glucan synthesis by inhibiting the catalytic function of
Fksl, leading to a weak cell wall [195]. Echinocandins are fungicidal against Candida species
and resistance to the drug has been predominantly associated with point mutations in the
FKS1 gene. However, most yeast have been shown to withstand caspofungin treatment,
becoming more tolerant to the drug both in vivo and in vitro by inducing the upregulation
of chitin synthesis, the second wall structural polysaccharide [162,163].

Chitin is synthesized by chitin synthase enzymes and C. albicans has four chitin
synthase proteins comprising of Chs1, Chs2, Chs3, and Chs§. Elevated cell wall chitin is a
cell wall rescue mechanism shown to be orchestrated by the CWI pathways [101,110,196].
Pkc, Hog, and Ca?* signaling pathways have been shown to control the expression of CHS2
and CHS8 through binding motifs in their promoter sequences [131]. Hyper-stimulation of
CHS gene expression was observed when the three signaling pathways were activated at
the same time and this leads to elevated cell wall chitin content [110]. Cell wall mutants
with higher basal chitin contents are also less susceptible to caspofungin [60,197]. Chitin
synthase proteins can also synthesize alternative septa that restore C. albicans capacity to
bud during cell wall stress [198].

Genome wide studies have been carried out to study the response of fungal cells to
echinocandin drugs treatment and to identify genes whose upregulation is required for
adaptive growth in the presence of sub-MIC concentrations of echinocandins. DNA mi-
croarrays studies identified genes that are activated in S. cerevisiae and C. albicans when they
are challenged with sub-MIC concentrations of caspofungin [54]. The induced genes in-
clude those genes that are typically upregulated following the activation of the Pkc pathway.
In C. albicans and S. cerevisiae, some of the Pkc pathway signature genes: CRH11/CRH]1,
ECM331/PST1, DFG5, encode GPI anchored cell surface proteins that have been implicated
in cell wall biogenesis or repair [51,55,199-202]. Pga31, a predicted GPI anchored wall
protein, is upregulated during caspofungin stress, and pga31A /A mutants have thinner cell
walls, reduced chitin content, and are hypersensitive to caspofungin [60]. Cas5 regulates
the expression of some CWPs in response to caspofungin, including Crh11, Ecm331, Pgal3,
and Pga23 [54]. Pgal3 plays a role in cell wall architecture [203] and may be required for
cell wall repair.

The phosphorylated form of the Pkc pathway component Mkc1/SIt2 and phospho-
rylated form of Cekl have been detected in S. cerevisiae and C. albicans [155] following
caspofungin challenge. Furthermore, C. albicans mkc1A/A mutant is hypersensitive to
caspofungin [101]. This suggests that the Pkc pathway is a major signaling pathway for
triggering cell wall macromolecule rearrangement in response to caspofungin stress in S.
cerevisiae and C. albicans [101,196].
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6. Cell Wall Remodeling and Protein Abundance

In an analysis of the cell wall proteome of C. albicans growing on minimal medium
without stress using liquid chromatography-mass spectrometry, LC-MS revealed 21 cova-
lently bound CWPs. Out of the 21 CWPs identified, 19 had predicted GPI anchor sequence
with cell wall associated function [204]. In other studies, the proteomics technique was used
to study the impact of carbon source on the C. albicans cell wall proteome and secretome
when cells were grown in minimal medium containing 2% glucose, lactate, or glucose plus
lactate [73,205]. The results revealed higher amounts of predicted GPI anchored CWPs
with functions in cell wall biogenesis/integrity in the secretomes and proteomes. Major
differences were seen in the profiles of secreted and CWPs in lactate and glucose-grown C.
albicans cells. Many of the differences suggested that specific cellular processes associated
with the cell surface such as cell wall remodeling, adherence, and biofilm formation, may
be affected by the change in carbon source [73]. The secretome and proteome of lactate
grown cells had increased levels of proteins involved in the remodeling of 3-glucan [73].
Lactate grown cells were more adherent, and consequently, more virulent in in vivo models
of systemic candidiasis and vaginitis, and display increased resistance to caspofungin as
well as other stressors [111]. Lactate signaling regulates glucan masking and modulates
the immune response [206]. Furthermore, elevated stress resistance did not correlate with
increased activation of the CWI pathways, thus the observed phenotypes may be due to the
alteration in the architecture as well as the biochemical and biophysical properties of the
cell wall [111]. However, Hogl or Mkc1 signaling pathways mediate expression of CWPs
that promote cell wall elasticity required for adaptation to hyperosmotic stress [52]. Interest-
ingly, alterations in the cell wall in response to different media or carbon sources have been
shown to involve changes in the molecular weight of mannoproteins [207]. Mannoproteins
from C. albicans cultivated on blood or serum have increased molecular weight, when
compared with mannoproteins from cells grown on YPD at 30 and 37 °C [207].

A microarray study using DAY185 C. albicans strain with or without caspofungin
treatment identified 216 caspofungin-inducible genes with an expression change of at least
two-fold following 1-h caspofungin treatment [54]. A core set of 34 caspofungin stress
inducible genes included genes that are known to be involved in cell wall remodeling such
as PGA13, CRH11, and PHR1 [54]. In addition, C. albicans grown in vagina-simulative
medium, aerated with a gas mixture reflecting the gas composition in the vaginal envi-
ronment had five CWPs [Als3, Hwpl, Sim1, Tos1, Utr2) in the wall that were absent in
the YPD grown control [38]. However, O, restriction led to higher levels of the non-GPI
protein Pirl, 3-1,3-glucan cross-linking protein, and of the GPI anchor protein, Hwp1, an
adhesion protein [38].

Environmental pH has also been shown to greatly alter the fungal cell wall proteome.
Klis lab used a system that mimics mucosal surfaces to investigate the influence of host
pH on C. albicans cell wall proteome [208]. At pH 4.0, yeast cells and pseudohyphae were
predominantly seen while at pH 7.0, hyphal growth was mainly seen. Relative quantitation
of 1’N-labelled CWPs using ESI-FT-MS revealed the identity of 21 covalently linked CWPs,
most of which are GPI anchored, excluding Tos1, Mp65, and Pirl. At pH 7.0, Als1, Als3,
Hyrl, Phrl, Rbtl, Sod5, and Tos1 were identified, while only the transglycosidase, Phr2
was found at pH 4.0. Furthermore, at pH 4.0, 12 out of the 21 CWPs were overexpressed,
whereas at pH 7.0, 9 proteins were overexpressed. The proteome of the C. albicans cell wall
is constantly reshuffled to enable cells to adapt to prevailing environmental conditions.
The consequences of not adapting to that changing environment is cell death. This is
why the cell wall, and its components, are attractive targets for developing more effective
diagnostics and therapeutics.

7. Perspective

The covalently bound CWPs in the protein coat are indispensable for the survival
of C. albicans in the environment and during infection. They also play a major role in the
development of biofilms and are regulated by signaling pathways that help remodel the cell
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wall during stress. However, our knowledge of their structure, which may influence their
function regarding structure-function relation is limited and our understanding of their
exact function in many cases is still poor. This calls for a continued functional analysis of
fungal CWPs. The regulatory mechanisms associated with the construction of the cell wall
protein coat are not well understood. The precise mechanism of coupling these proteins to
cell wall and their method of interaction with wall polysaccharide and other proteins in
the cell wall, which may affect their localization and hence their function, are still not clear.
Understanding the function and regulatory mechanisms of these CWPs will ultimately
inform our knowledge of fungal pathogenesis and host-pathogen interactions.

CWPs have carbohydrate-binding motifs and may thus be involved in cell wall
synthesis and remodeling, in biofilm formation, or even in the interaction with host cell
receptors or other environmental signals. Most importantly, our knowledge of the exact
roles CWPs play in CWI pathways, their downstream signaling activities, and the extent of
their involvement in the cross interactions between the pathways during cell wall stress
is relatively unexploited. The cell wall proteome can change significantly in response to
specific environmental stress, including during infection. The fungal cell wall proteome
changes associated with infection conditions need more extensive studies, as the cell
wall in vivo is likely to be very different to the wall generated under laboratory growth
conditions. Finally, the relative and absolute quantitation of CWPs under host-related
conditions and an extensive understanding of their exact structure and functions will be
vital in identifying the most suitable diagnostic, therapeutic, and vaccine candidates.
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