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Abstract: Mobile edge computing is capable of providing high data processing capabilities while
ensuring low latency constraints of low power wireless networks, such as the industrial internet of
things. However, optimally placing edge servers (providing storage and computation services to user
equipment) is still a challenge. To optimally place mobile edge servers in a wireless network, such
that network latency is minimized and load balancing is performed on edge servers, we propose a
multi-agent reinforcement learning (RL) solution to solve a formulated mobile edge server placement
problem. The RL agents are designed to learn the dynamics of the environment and adapt a joint
action policy resulting in the minimization of network latency and balancing the load on edge servers.
To ensure that the action policy adapted by RL agents maximized the overall network performance
indicators, we propose the sharing of information, such as the latency experienced from each server
and the load of each server to other RL agents in the network. Experiment results are obtained to
analyze the effectiveness of the proposed solution. Although the sharing of information makes the
proposed solution obtain a network-wide maximation of overall network performance at the same
time it makes it susceptible to different kinds of security attacks. To further investigate the security
issues arising from the proposed solution, we provide a detailed analysis of the types of security
attacks possible and their countermeasures.

Keywords: mobile edge computing; mobile edge server placement; multiagent RL; edge security

1. Introduction

Widespread deployments of robotics, assembly and production, automation, ma-
chine intelligence, and virtual reality applications requires high performance comput-
ing resources available close to the point-of-service [1]. Integration of smart services,
such as predictive analysis, and delay-intolerant applications, such as healthcare applica-
tions, in current cellular architecture with limited battery lifetimes and processing power
of edge (mobile and IoT) devices have called for the re-imagination of cloud comput-
ing architecture.

The traditional cloud-centric architecture provides flexibility and significant compu-
tation power. However, the communication and delay sensitive requirements of the IoT
environments place constraints on the centralised cloud—making them less preferable for
a robust service platform. To circumvent delay in the traditional cloud-centric architecture,
several network architectures have been proposed with the idea of bringing the cloud
nearer to user devices [2]. One such architecture is edge computing that provides a virtu-
alized application layer between edge devices and cloud engine in an existing network
infrastructure. Edge computing introduces distributed control systems replacing the single
remote centralized control-centre or cloud allowing the processing of data near the edge of
the network with enhanced scalability.
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Cloudlets, multi-access or mobile edge computing (MEC), and fog computing are
some of the well-known edge computing architectures. In this work, we utilize the MEC
architecture that uses the existing network architecture such as cellular base station or Wi-Fi
access point to provide computational resources and data storage at the edge network [3].
In MEC, the edge network serves as mid-tier between edge (mobile and IoT) devices and
cloud increasing the network’s capability to provide high throughput and offer low latency
to edge devices. However, the costly hardware components and limited budget of network
operators present some practical complications in implementing mobile edge computing
solutions. Due to these constraints, only a limited number of mobile edge servers can be
located in networks. This further makes the placement of a limited number of mobile edge
servers a challenging problem given the performance requirements of a wireless network.
Additionally, finding the optimal placement of mobile edge servers given a large set of
possible placement options further increases the complexity of finding optimal placement
strategy for mobile edge servers.

The large solution space of mobile edge server placement options can be improved
by collocating mobile edge servers with existing cellular network base stations or wireless
network cluster heads [4]. In this work, we follow a similar strategy where mobile edge
servers are placed within an already existing cellular or wireless network infrastructure
disbarring the search space for optimal placement strategy from exploding. Further, the
optimal placement strategy should take into consideration the individual mobile edge
server’s workload, access delay and application specific requirements into consideration.
Various solutions have been proposed in literature to solve the edge servers placement
problem [5-11]. However, most of these solutions apply heuristic algorithms or some
sort of linear or quadratic optimization technique. This has motivated us to propose an
online learning based solution for the mobile edge server placement problem with special
emphasis on possible security threats and its solutions.

In our proposed solution, an RL agent is employed as mobile edge server that learns
the dynamics of the environment and chooses the best placement strategy maximizing the
reward which is dependent on the utility function. The number of RL agents is equal to the
number of edge servers in the network. This demands for information exchange between
the RL agents to maximize network-wide utility. In the proposed work, we implement
hysteretic Q-learning for coordination which is a decentralized multi-agent RL technique
allowing the agents to adopt independent actions by maximizing a common goal. Further,
we analyze the security threats and countermeasures that may arise due to the information
sharing between the edge servers acting as RL agents.

The primary contributions of this work are:

®  The mobile edge server placement is formulated as multi-objective optimization prob-
lem which is then solved using a multi-agent RL approach. The objectives of the
proposed solution include reducing the access delay and balancing edge servers work-
load. Further, experimental results are obtained by applying the proposed solution on
base station dataset provided by Shanghai Telecom to analyze the performance of the
proposed technique;

e We discuss different scenarios in which the proposed architecture’s security can be
breached if the exchanged data between RL agents is altered. Further, we discuss the
counter strategies to tackle with the arising security issues.

The rest of the paper is organized as follows: In Section 2, we discuss the existing
theories on the placement of edge servers. We discuss the preliminaries of RL in Section 3.
In Section 4, we provide an overview of our proposed solution using RL. In Section 5,
we describe network and RL modeling and its implementation. Section 6 explains our
findings for various system configurations and parameters. Section 7 provides details on
the identification of the security issues involved in the exchange of information between
edge servers. Finally, Section 8 concludes our work and suggests future research directions.
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2. Literature Review

The literature review related to mobile edge computing can be divided into two
parts. The first part inherently deals with efficient resource allocation in a MEC network.
Although the second part, which has been trending recently, tackles the mobile edge server
placement problem in a MEC network. It is important to note that the solutions provided
for resource allocation problems consider an arbitrary placement of edge servers. Although
the second part deals with deployment strategies for edge servers such that desired quality
of service is met. To that end, this literature review discusses pioneer works in both of
these parts followed by the contributions of this work.

In literature belonging to efficient resource allocation, the authors have proposed
an online learning based solution for the resource allocation, scheduling or offloading
problems in MEC networks [12-15].

The proposed solutions have studied MEC problems in different aspects ranging
from computation offloading schemes in MEC to mobile edge application placement.
However, they have not explicitly discussed the mobile edge server’s positioning as a
challenging problem. For example, the authors in [13], have proposed a deep RL solution
to allocate computing and network resources adaptively in MEC to reduce the average
service time and balance resource usage under varying MEC environment conditions.
In [12], the authors propose an RL based management framework to manage the resources
at the network edge. They propose a deep Q-learning based algorithm to reduce service
migration in MEC aiming at operation cost reduction. In both these proposed approaches
and others [14,15], RL has been used to propose a solution to resource allocation challenges
in MEC architecture.

On the other hand, the literature belonging to efficient deployment strategies of edge
servers includes solving edge server placement problem using genetic, simulated annealing,
and hill-climbing algorithms [5,6], k-means clustering with quadratic programming [8],
queuing theory and vector quantization technique [16], graph theory [12], cost constrained
multi-objective problem [10], and integer programming [11] to optimally place mobile edge
servers in a wireless network.

In [5], the authors formulate the problem as a constrained multi-objective problem
to balance workloads of mobile edge servers and reduce network access delay. To find
the optimal solution, the authors utilize genetic, simulated annealing, and hill-climbing
algorithms to show the effectiveness of the proposed solution. The authors in [6] use data
mining techniques, such as a non-dominated sorting genetic algorithm to ensure reliability
and low latency in social media services using mobile edge computing.

In [7], the authors present an edge provisioning algorithm that can find the ideal edge
locations and map them to their physical locations in a MEC network. In [8], the authors
make use of k-means algorithms to solve edge placement problems with mixed-integer
quadratic programming. The authors in [9] propose a queuing network based solution to
find the best position for cloudlets in a cloud computing network. In [10], the authors have
proposed an integer programming solution to find the optimal strategy to place mobile
edge servers in smart cities.

The authors in [16] propose an optimal edge server deployment strategy using queu-
ing theory and vector quantization technique, with the aim to minimize the service
providers cost and service completion time. The authors in [17] uses graph theory to
minimize access delay and the number of edge servers in a MEC network. In [18], the
authors develop a two-stage solution to optimally place heterogeneous edge servers in
MEC using game theory concepts to optimize service response time.

Although the edge server deployment problem has recently received traction from
both academia and industry, the proposed solutions assume global information available at
a centralized controller which is responsible for the deployment of edge servers. However,
in a realistic environment the changing network condition, user mobility, and traffic pat-
terns will make such centralized solution not scalable due to the large amount of processing
required at the centralized controller at each transmission time interval. Considering these
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reported lacking, the proposed solution provides a distributed and learning based solution
to mobile edge server placement problem while considering both delay minimization
and edge servers load balancing. To the best of our knowledge, the problem of mobile
edge server placement has not been solved through RL. This work serves as a primer
on distributed placement strategy in MEC in which each edge server on a local set of
observations finds its” optimal placement by exchanging limited set of information with
other edge servers in the network. The information exchange between the edge servers is
an essential part of a distributed edge server placement solution. To that end, this paper
investigates the security concerns in implementing a multi-agent RL solution for mobile
edge server placement problems and its possible counter-measures.

3. Reinforcement Learning

This section briefly discusses the concepts of reinforcement learning (RL) and its
extension to a multi-agent RL.

3.1. One-Agent RL

RL algorithms are built on Markov decision processes (MDP) that allow the agent to
receive a reinforcement signal from the environment steering it towards an optimal action
policy. MDP is defined as (O, A, P, p), where O is the set of observations or states perceived
from the environment, A is the discrete or finite set of actions, P : O x A x p — [0,1] is the
probabilistic state transition function, and p : O x A x O — R is the reward function.

At any time step i, the action a; € A influences the environment state to change from
0; to 0,11 with a transition probability of P(0;,a;,0;11). In return of implemented action, the
agent receives a scalar reward r;;1 € R according to the expression p : i1 = p(0;,a;,0i41).
The overarching target of an RL agent is to adapt an action policy that maximizes the
discounted future expected reward which is given as:

Q™(0,a) = E[Rj|o; = 0,a; = a, 7], 1

where R; = Z]?”:O o ’iyj4+1 is the reward signal, v € [0,1] is the discount factor and Q™ :
O x A — R is the Q-function representing the discounted future expected return for a
state-action pair.

Mathematically, the maximum value for the discounted expected return is character-
ized as Q*(0,4) = max Q™ (o, a), which can be learned and estimated using Q-learning in

the absence of probabilistic state transition and reward functions [19]. It is theoretically
proven that the Q-learning algorithm converges to the optimal solution under certain con-
ditions [19]. The Q-learning algorithms allow a RL agent to iteratively learn the estimates
Q™ based on its interactions with the environment using the formula:

Qiy1(0i,a;) = (1 —a)Q;(0;, ;) + a(ri1 + ’Yrg!'flx Qi(0i+1,4i+1)), ()

where « € [0, 1] defines the learning rate of the Q-learning algorithm.

3.2. Multi-Agent RL

In a multi-agent RL problem, multiple agents using RL algorithms interact or compete
to maximize a well-defined goal. The complexity of multi-agent RL is comparatively more
than a one-agent RL solution since the use of multiple RL agents allow the environment to
be jointly influenced by the actions of all agents which leads to non-dominance of a specific
action policy. Optimal behavior of a multi-agent RL is reached when each agent operates
in the Nash equilibrium which is difficult to visualize in a practical applications [20]. In
the Nash equilibrium, each RL agent assumes the unvarying behavior from other agents
and maximizes its own reward. Due to the complexities involved in implementing Nash
equilibrium in practical applications, we discuss a couple of algorithms that can deal with
multi-agent RL problems.
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3.2.1. Independent Agents

In this method, the RL agent follows a coordination-free strategy with other agents
by assuming each agent’s independence. This is equivalent to implementing one-agent
RL for each agent in the problem without initiating any coordination. The formulation of
multi-agent RL problem as independent agents will simplify the solution but it will also
make the convergence difficult due to the non-stationarity of independent agents [21].

3.2.2. Indirect-Coordinating Agents

In this method, the RL agent follows a coordination strategy with other agents. The
action selection strategy comprises of the joint action of all agents which is made on the
reward feedback received from the environment. Although, the learning is still independent
but a common objective exists between the RL agents which it tries to maximize. We discuss
one such method of indirect-coordination multi-agent RL method which is called hysteretic
RL. In hysteretic RL, the agents take actions independently but the reward function is
shared between all agents given as [22]:

5+ r— Qx(o,ar) 3)

Qx(o,ax) +us, ifs>0

Qi(o,ar) + 06, else 4)

Qk(0, a) {
where learning rates y and ¢ are between 0 and 1, r is the reward based on the feedback
returned by the environment and Q (o, ay) is the Q-value of kth agent. The core idea behind
hysteretic RL is to penalize agents for taking a bad action.

4. Multi-Objective Problem Formulation

A mobile edge server positioning problem can be written as an undirected graph, such
that the location of base stations in existing cellular architecture makes the vertices of the
graph and the base station’s distance to mobile edge servers is represented as edge weights.
A finite set of mobile edge servers S can be collocated with a set of base station B, such that
the number of mobile edge servers will always be less than the number of base stations,
as shown in Figure 1. As discussed in Section 1, the constraint of collocating mobile
edge servers with the existing base station’s location is to reduce the virtually infinite
solution space of optimal mobile edge server positioning. Assuming a straightforward
communication channel between base stations and mobile edge servers, the access delay at
edge devices can be defined as the Euclidean distance (d;) between a mobile edge server
and base station where b € |B|. The workload of a base station (t;) is defined as the
processing of incoming call and flow requests from edge devices.

The desired key performance indicators in MEC are reduced network access delay
and balanced load on mobile edge servers which is why the mobile edge server positioning
problem in this work is devised to improve these key performance indicators while finding
an optimal placement of S mobile edge servers. The goals of the formulated problem are to
(i) reduce the access delay or latency between mobile edge servers and base stations, and
(ii) balance the workload of mobile edge servers. The key assumptions in formulating the
mobile edge server positioning problem considered in this work are:

* A mobile edge server can offload processing and storage requests from more than one
base station;

* A base station can offload processing and storage requests to one or more mobile
edge servers. If a base station is offloading processing and storage requests to more
than one mobile edge server then the workload of incoming mobile call and flow
requests at a base station from edge devices will be shared among connected mobile
edge servers;

* A mobile edge server is hosted and collocated at a location where a base station in an
already existing network infrastructure is present.
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Figure 1. Edge servers placement in mobile edge computing.

The workload of a sth (s € |S|) mobile edge server (Ts(¢)) is made dependent on
the processing and storage requests offloaded from connected base stations, such that
Ts(¢) = Lpe|p| tp, L is the positioning arrangement of mobile edge servers, #;, is the incoming
call and data requests from edge devices to bth base station. It is important to note that in
MEQC, the base station acts as a relay node transferring the incoming call and data requests
from edge devices to mobile edge servers. Similarly, access delay is devised as the sum of
Euclidean distances from a sth mobile edge server to one or more base stations which are
offloading incoming requests processing and storage to sth mobile edge server, such that,
D(f) = Yye|p| dp- Balancing the workload of mobile edge servers ensures that no edge
servers is overloaded with offloading requests while some mobile edge server’s processing
capacity is underutilized. Mathematically, the standard deviation of each mobile edge
server’s workload is used to devise workload balancing metric (W (¢)) in a MEC, such that,

W(e) = std(T, Te) Vi k€S|, ®)

Finally, the cost function of multi-objective constrained optimization problem can be
defined as:

C(6) = W (£) + (1 — B)D' (1), ©6)

where superscript 7 denotes a normalized value of variable z, and B € [0,1] is the weigh-
tage parameter.
Therefore, the formulated mobile edge server positioning problem can be defined as:

1. Find mobile edge server positions such that network access delay is minimized; and,

2. Find the edge connections (x5, Vb € |B|,s € |S]) for which the mobile edge server’s
workload is balanced where xj, is an indicator function whose value is 1 if a base
station is connected to sth mobile edge server otherwise 0 if its not connected to sth
mobile edge server.

Mathematically,
min C({)
¢ €|B|
such that,
IS|

Z Xps < |S| (7)
s=1
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where constraint (7) ensures that a base station offloads processing/storage requests to no
more than S mobile edge servers. The above formulation of mobile edge servers positioning
is a mixed-integer linear program problem that is NP-hard in nature due to the non-linearity
of constraint given in (7) [10]. Therefore, this work proposes to solve the mobile edge
servers positioning problem using multi-agent RL technique.

5. Proposed Solution

Mobile edge computing architecture is beneficial in providing services to a densely
deployed network with low-latency and high-throughput requirements [3]. However, there
are certain limitations attached to the MEC architecture. First, as explained above, the cost
of infrastructure deployment and maintenance is high, therefore, dense deployment of edge
servers is not a cost-effective solution. Second, the service requirement of users changes
with respect to time, therefore, a certain strategy of mobile edge server’s deployment may
be optimal for a specific time while it would be sub-optimal for other times. The varying
requirements of mobile users due to mobility require that the proposed solution should be
able to adapt to the changing scenarios.

One option could be to manually configure the network at different times of the day to
make sure that the edge servers deployment is optimal, however, the associated operator
expenditure costs may not be feasible for an operator. To circumvent that, an online learning
paradigm, such as RL can be effective in dealing with the changing environment conditions.
In RL, the environment is modeled as MDP which allows a RL agent to learn the optimal
action policy by interacting with the environment. In our proposed approach, each mobile
edge server will be working as a RL agent and the environment will be modeled as the
mobile edge computing network with base stations, and user devices. Each RL agent will
be taking actions independently based on the perceived notion of state from observations
and measurements of the environment, however, reward will be computed based on the
network-wide delay and workload observed which would require information exchange,
as shown in Figure 2. The network-wide utility is defined as the average communication
delay and edge server’s workload for all edge servers in the network. The objective of the
proposed work is to find a mobile edge servers positioning strategy, such that it caters to
the needs of data rate requirements of users, as well as it should be able to minimize the
delay and maintain workload balancing between edge servers. In this section, we discuss
the methodologies adopted for environment and RL agent design.

4 - "

Environment

Ik"n. .--"',llI
state /:tinn actic\ state
r o "

— Agentl Agent2 -~

information
exchange =

Figure 2. Multi-agent RL assisted mobile edge computing.
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5.1. Environment Design

To make the proposed environment design realistic, we make use of base station
locations and call and data requests dataset from Shanghai Telecom that include record
of approximately 7 million call and data requests made through 2766 base stations from
9481 edge devices [8,23,24]. Each call and data record is a tuple of request access time by
an device from a base station. Shanghai being a heavily populated city makes it a suitable
dataset to implement a mobile edge server placement solution in an ultra-dense MEC
network. Figure 3 shows the base station distribution in Shanghai, China where each dot is
a location of base station and the color of a dot represent the intensity of incoming call and
data requests from edge devices.

Figure 3. Graphical depiction of base station locations in Shanghai Telecom dataset [8,23,24].

The graphical depiction of base station locations is important to realize that a mobile
edge server placement solution would require the edge servers to move to any of other base
station locations. This means if there are 2766 base stations in the network then a mobile
edge server can move to any of these locations. However, there are two problems associated
with this assumption. First, the number of locations a mobile edge server can move at
each transmission time interval would be dependent on the number of base stations in
the network which would make it not scalable if the number of base stations is too high.
Second, in a realistic world a mobile edge server would be deployed in a movable object,
such as a vehicle, such that limiting the movement of edge servers to only nearby base
station locations.

Considering the above two problems discussed, we transform the distribution of base
stations given in Shaghai Telecom dataset to a contour line. A contour line links the base
station locations with a line joining the two nearest base stations. This transformation of
actual locations of base stations to contour line has following benefits:

*  Base stations nearest to each other connected with a line allowing the mobile edge
servers to move between nearest base station locations in the search of optimal place-
ment strategy;

®  The search space of mobile edge server placement becomes scalable. Even if the
number of base stations are increased in the MEC network, the solution space will
not explode.

In Figure 4a, we show the simulation depiction of base station locations available in
Shanghai Telecom dataset. Note that the dataset assumes base station locations in two-
dimensional space. Figure 4b shows the contour representation of base station locations,
such that each base station is represented a point on a two-dimensional space which
is connected to two nearest base stations. The contour line enables the transformation



Electronics 2021, 10, 2098

90f19

122

1218

12186

1214

y-coordinates

1212

of actual dataset values to so that a mobile edge server can only move between two
adjacent locations.

To quantify workload of a mobile edge server and delay experienced by a user equip-
ment, we make use of records available in Shanghai Telecom dataset. The workload of a
mobile edge server is quantified by summing up the requested call and data rates from
the connected base stations. As a base station offloads its requested computational pro-
cessing to the connected mobile edge server, therefore, summing up these requested rate
is a reasonable assumption [10]. The delay experiences by a user will be proportional to
the distance between base station and mobile edge server locations assuming that user
equipments are present in close vicinity to base stations [10]. Therefore, the edge device
access delay is defined in term of the sum of Euclidean distances from a base station to
mobile edge servers to which incoming call and data requests are offloaded for processing
or storage.

120
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Figure 4. Transformation of base station locations in Shanghai Telecom dataset to contour line. (a) Simulated depiction of

base station locations. (b) Contour line joining nearest base stations.

5.2. RL Agent Design

In this part, we aim to solve the optimization problem formulated in Section 4 for
each mobile edge server using RL (see Algorithm 1). The proposed approach considers a
scenario where each mobile edge server is placed on a movable vehicle that has the ability
to move within the network, as shown in Figure 1. The movement of a moving vehicle is
controlled by the actions of a RL agent that aims to learn the optimal placement strategy by
maximizing the reward. There are three main components involved in the design of RL
agent: action space, state space, and reward.

5.2.1. Action Space

Action space in the proposed work is a set of actions by which the mobile edge server
change its locations. These actions are updated at the end of an epoch which is dependent
on the change in network traffic. In the proposed work, actions are formed to move the
mobile edge server between adjacent locations. Since we have formed a contour line from
actual base station locations restricting a mobile edge server to move to only two possible
neighbor locations. The action space is comprised of a set of three distinct actions by which
a mobile edge server can either move to adjacent location on the right or it can move
to adjacent location on the left or it stays at the same location. These set of actions will
be available for each mobile edge server with the assumption that multiple mobile edge
servers can be positioned in the same mobile edge server location.
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Algorithm 1: Multi-agent RL assisted mobile edge computing.

Input: a, v, 4,0, €

A = {leftright,no change}.

O={D(¢)}.

Initialize |S| Q-tables with random values and set € = 1.

Initialize the locations of edge servers randomly.

while converged or aborted do

For each edge server observe the state (communication delay) of the
environment o.

For each server choose one of the action from its action space according to
arg max, Q(o,a) or randomly with probability €.

calculate network-wide utility according to Equation (8).

update Q-tables according to Equation (4).

linearly decrease &, u, o, and e.

end

5.2.2. State Space

A state in the proposed work is defined by the communication delay between a mobile
edge server and base stations that are offloading call and data requests to a mobile edge
server. The communication delay as discussed in Section 4 is proportional to the Euclidean
distance between a mobile edge server and connected base stations. Delay, as a stand-alone,
will be used to infer the state of the environment. Note that other network features, such
as location information, data request rate, etc., can also be used to infer on the state of the
environment, however, we have made use of a simplified state space model to (i) show the
efficacy of proposed solution and (ii) focus on the security aspects that may arise due to
the proposed solution.

Even with a simplified state space containing only delay metric as state variable, the
number of possible state values can be infinite. For this reason, we quantize the values of
delay between maximum and minimum delay which will vary for different MEC networks.

5.2.3. Reward

A RL agent learns from the feedback returned by the environment in the form of
rewards. In this problem, a reward is a function of cost values, such that:

Re = C(£);_1 — C(6); ®)

The expression in Equation (8) drives the RL agent to take actions, such that the cost
is minimized from the previous epoch t. Note that the cost function is dependent on the
global observations. For example, a mobile edge server must be aware of the workload
and delay of other edge servers in order to compute the cost function. This transforms
the problem into a coordinated multi-agent RL problem in which the reward function is
a function of network-wide metrics. This makes it equivalent to hysteretic RL algorithm
discussed in Section 3 which is used by each mobile edge server to implement RL in
this work.

The state and action spaces are still dependent on the local observations and an agent
take actions independent. The sharing of information between edge servers controls the
behavior of mobile edge server’s placement which, if changed for some reason, would
affect the performance of overall implementation. We discuss further on the type of security
breaches and its counter solutions in Section 7.

6. Results

In this section, we evaluate the performance of multi-agent RL algorithms for mo-
bile edge server positioning problem by experimenting on the Shanghai Telecom'’s base
stations and incoming call and data requests dataset [8,23,24]. The proposed solution is
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implemented in MATLAB. Multiple RL agents take actions independently to find the best
placement strategy, such that the reward returned by the environment is maximized. The
proposed solution performance is measured via the cost function value which drives the
reward function value. The list of simulation and RL hyperparameters used during the
experiments shown in this work are summarized in Table 1. It is important to note that the
optimal number of edge servers in a network depends on a number of factors including
the network operators budget, and user traffic demand. The proposed model selects an
arbitrary number of edge servers (that should be less than the number of base stations),
and finds optimal placement for these edge servers, However, the number of edge servers
can be found by probability theory and control system rules [25].

Table 1. Simulation parameters.

Parameter Description Value

BS number of BSs sampled from the Shanghai Telecom’s dataset 120, 240, 360
ES number of mobile edge servers controlled by RL agents 20, 30, 40

« learning rate 0.35

¢ learning rate for hysteretic 0.30

B weightage of delay over workload in utility function 0.5

0% discount factor 0.9

€ random exploration 0.15

The experimentation presented in this work aim to answer the following questions:

A.  Does the proposed solution generalize across different random initialized values
used in the experimentation?

B.  Is the proposed solution effective in finding the best placement for mobile edge
servers when different number of base stations are present in the network?

C.  Is the proposed solution effective in finding the best placement for mobile edge
servers when the number of mobile edge servers present in the network is varied?

A. Does the proposed solution generalize across different random initialized values
used in the experimentation?

The objective of this experiment is to show the generalizability of the proposed
solution across different initial values of parameters used in the experimentation. The RL
agent’s initial location and other experimentation parameters, such as «, §, and € require
assignment of an initial value which is set to random values. Therefore, using different
seeds for random values will change the initial state of each RL agent. Ideally, the average
final cost for all these experiments should be same. However, the use of distinct random
seeds makes the initial state set for RL exploration strikingly different presenting an entirely
different search space for the RL agents to explore and exploit.

In Figure 5, the cost function values across number of epochs are shown where
each epoch represents the instant at which all RL agents take actions. The plotted cost
function value is the averaged cost function value of each mobile edge server used in the
experimentation. We can observe that for different seed values impacting the initial state
of each agent, the proposed solution is able to minimize the average cost function values.
Another significant observation is the fast convergence of the cost function values for each
seed, shown in Figure 5. These results enable us to claim that even with simplified state
space, the proposed solution without the use of any complex deep learning models is
generalizable for different initial states.
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Figure 5. Number of BS = 120 and Number of ES = 20. (a) Random Seed = 5. (b) Random Seed = 8. (¢) Random Seed = 23.

B. Is the proposed solution effective in finding the best placement for mobile edge
servers when different number of base stations are present in the network?

In Figure 6, the performance of the proposed solution is shown for varying number
of base stations available in the MEC network. Ideally, the change in the number of
base stations in the network should not affect the convergence of the proposed multi-
agent RL assisted edge servers placement. The results in Figure 6 show that for 120 and
240 base stations available in the network, the cost values converge after a number of
epochs. Another significant observation is the increase in cost function value for initial few
epochs when number of base stations are 240. This is mainly because RL agents explore the
environment by choosing random actions dependent on € which is reduced at each epoch.
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C. Is the proposed solution effective in finding the best placement for mobile edge
servers when the number of mobile edge servers present in the network is varied?

In Figure 7, the performance of the proposed solution is shown for varying number
of mobile edge servers. Ideally, varying the number of mobile edge servers in the MEC
network should not affect the convergence of the proposed multi-agent RL assisted edge
servers placement. The results in Figure 7 show that for 20 and 30 mobile edge servers to
be placed in the network, the cost values converge after a number of epochs.

5
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Figure 7. Number of BS = 240 and Random Seed = 8. (a) ES = 20. (b) ES = 30.

In Figure 8, we present the results of a toy example in which 03 base stations are
placed in a network namely A, B, and C. Base stations A and C are placed in the corners
and base station B in the middle. Considering the toy example allows us to evaluate
the performance of proposed solution against a numerical solution. Through numerical
solution, the optimal locations for edge servers are ‘A’ and ‘C” which can be observed that
after a certain number of epochs, both the edge servers converge to its optimal locations.
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Figure 8. Proposed solution comparison with ground truth for a toy example; where three base
stations namely A, B, and C, are placed in a network.

7. Security Perspective

We demonstrate how the reinforcement learning assisted mobile edge server place-
ment can be performed with multi-agent reinforcement learning coordination techniques.
The multi-agent coordination problem may give birth to different security related issues
since the working of a reinforcement learning agent is based on the observations from other
agents, therefore, if the shared information is modified it will affect the working of entire
solution. In the following sections, we present a possible scenario by which security can be
breached and present the proposed countermeasures.

7.1. Scenarios

As discussed in earlier sections, workload is the sum of all the data offloaded from
connected base stations and delay is the sum of the distance from connected base stations.
The agent performs its actions based on the reward function and reward is based on
workload balancing and delay.

From a security perspective, the first scenario case we can consider is the when an
agent itself or man-in-the-middle (MITM) can alter the information contained in the packets
passed between agents. This is done in order to force the agent to change its location to
another base station or stay with the same base station despite a need to workload balancing
and delay minimization.

Figure 9 presents a scenario of security issues present in the work. Let us assume
that the values of workload and delay are increased. This will force the mobile edge
server MES] to move from it current location to a particular location where workload
balancing is needed since the agents will assume that it needs to balance the workload
and delay by migrating to other base stations. In contrast, if an agent itself or MITM alters
the information by decreasing the values of workload and delay, the mobile edge server,
MES2, will assume that everything in the network is fine and it does not need to change its
location to other base stations.

Since the reward function at the agents makes decision based on the information
(workload and delay) received, thus, it will act accordingly. Therefore, in the first scenario,
after the information is altered by the malicious node, the mobile edge server MES1 will
assume that it needs to move to the MES2 location in order to balance the workload.

The second potential security scenario can be a malicious entity compromised an agent
in the network. The attack vector might be different form altering the packet en-route,
but the malicious entity can achieve the same impact as the first scenario. Furthermore, a
malicious entity compromising an agent in the network may go for eavesdropping with the
aim to (a) try to construct a traffic map of the network, (b) build communication patterns



Electronics 2021, 10, 2098 15 of 19

between agents, and (c) read communication packets. In the above listed aims, ‘a” and
‘b’ can help the malicious user to understand the network design and communication
patterns between agents. This can assist the malicious entity to mount a network wide
attack, for example DDoS. The option ‘¢’ allows the malicious entity to read the information
communicated between the agents. This might reveal some sensitive information about
the agents or applications being executed on these agents.

((°) ((')) ((.))

_________ BaseIStation Base Station

N —1

Base Station

Base Station

Agent Workload Delay Agent Workload Delay

Mobile Edge Server PR Mobile Edge Server
MES2 34 10 MES1 MES2 MES1 3 1
o MET— 26—

[mes2, v orkload, Delay

Malicious / MITM [MES1, Workload, Delay]
Mobile Edge Server

Figure 9. Malicious/MITM Agent scenario at a Mobile Edge Server.

The third potential security scenario can be Trojan horse attacks, whether a Trojan
horse is embedded in hardware or software. The objectives of such an attacker can be
similar to the malicious entity in “second potential security scenario”. The attack objective
and impact can also be similar.

The fourth potential security scenario can be insider threat. In this attack, an insider
compromises a single node, a collection of the node or the whole network—dependent
upon the access of the insider and how senior their role is. The attack objective and impact
can be similar to the three scenarios listed before but depending upon the access privilege
the impact on the network can be significant.

We are not considering the lack of knowledge or expertise in an organization or a
genuine human error as a security threat. As this in most cases leads to the vulnerability
that the malicious actors in the above scenarios exploit or the respective impacts.

7.2. Countermeasures

In this section, we explore potential countermeasures to the each of the security
scenarios discussed above.

7.2.1. Countermeasure to First Security Scenario

As discussed earlier, an agent running on the mobile edge server has global informa-
tion of workload and delay of all the agents in the network, whereas, the decision is made
locally based on the information received and used in the reward function by an agent.

These security issues require verifying the identity of an agent before allowing access
to resources in a system. Therefore, an authentication mechanism needs to enable the
identity of an agent to be verified and, thus, to prevent it from faking or masquerading.
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Additionally, data integrity needs to be ensured to prevent data from being altered
or destroyed while being exchanged amongst the agents in an unauthorized manner to
maintain consistency. Hence, a secure protocol should withstand such attacks and offer
authentication and integrity of the exchanged data.

The cryptosystem we aim to achieve is one where the entities communicate over an
insecure network, resulting in both parties needing to provide identity authentication first,
and this then proves to the receiver the integrity of the messages. Peer authentication and
secure data transmission are vital in our system.

Regarding authentication, public key infrastructure (PKI) provides the means of digital
certificate for providing authentication. In our study we assume that all entities have digital
certificates generated by the CA.

To achieve integrity between base station and mobile edge server, one may employ
integrity encryption techniques, such as HMAC. However, before doing this, both entities
should agree first on a secret key. Due to the key distribution problem, key agreement
protocols have emerged where the actual key is not transferred on an untrusted channel.

The proposed protocol is divided into four stages:

1.  Stage 1 Mutual Authentication Phase:
We assume that both parties already registered with CA, trust the same CA, and
possess their own public key, own private key, own implicit certificate, and CA’s
public key. Both entities the base station and mobile edge server perform a handshake
where both parties exchange their digital certificate to verify the authenticity of
each party.

2. Stage 2 Key Agreement:
After authentication is done in both parties, they should agree on a shared master key.
In our protocol, we will use the elliptic curve Diffie Hellman (ECDH) protocol that is
most suitable for constrained environments. The elliptic curve cryptosystems are used
for implementing protocols such as the Diffie-Hellman key exchange scheme [26]

as follows:

A. A particular rational base point P is published in a public domain.

B.  The base station and mobile edge server choose random integers k4 and kp
respectively, which they use as private keys.

C.  The base station computes:

A:kA*PI(XA,]/B) (9)
D.  The mobile edge server computes:
B =kg P = (xp,y5) (10)

and then both entities exchange these values over an insecure network.
E.  Using the information, they received from each other and their private keys,
both entities compute:

and

respectively. This is simply equal to,

which serves as the shared master key that only base station and mobile edge
server possess.

3.  Stage 3 Key Derivation:
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To reduce the computational complexity on both parties, we assume that the mutual
authentication phase is done periodically, only the session secret key is generated
from the shared master key for achieving integrity protection algorithm, such as
message authentication code (MAC) on each session.
The proposed protocol should use the best option for key derivation function (KDF)
that ensures randomness, and we advocate the KDF recommendations in [27], which
takes into consideration randomness through the use of random numbers (Nonce)
and key expansion. Each peer computes the actual session key PK via the chosen key
KDF g, as:

PK = x(Q, Nonce) (14)

4.  Stage 4 Message Exchange:
The exchanged data, such as workload and delay, need to be protected against
unauthorized modification, hence HMAC is used to ensure the integrity.
The base station calculates

D = HMACpg((D(£), W(()) (15)

The base station sends W(¢), D(¢) and D to the mobile edge server.
The mobile edge server uses the agreed derived session key to calculate HMAC of
W(¢) and D(¢) and verifies its integrity with D.

The performance of the above listed protocol depends on multitude of factors includ-
ing: the processor speed, availability of specialized cryto-hardware, and communication
(network speed). However, to provide a reference performance, we setup a test-bed with
each agent node is a Raspberry Pi model B supplied with a Wi-Fi USB dongle TL-WN722N
by TP-LINK.

In all the measurements we made, the nodes were configured in ad-hoc mode. Each
agent is then connected to a server through an Ethernet connection. The server manages
individual agents so as to prepare them for the target scenario and is also in charge
of collecting the measurements. In our reference performance measurement, we only
consider the scenario of two agents setting up a security communication link directly with
each other.

Nevertheless, effective measurement can be done internally on the node initiating the
secure channel, called a client, and it can be done at the level of the network data exchanged
between the agents of the network and captured with a Wi-Fi card set in monitor mode on
the server.

Based on this setup, the stated protocol in this section took 4282 milliseconds (on
average) over 100 executions.

7.2.2. Countermeasure to Second Security Scenario

Compromising an agent is basically system security problem. Potential countermea-
sures to this can be hardening the agent environment, pen-testing it before deployment,
updating it regularly when new vulnerabilities come alive, having strong access control
policies related to the agent configuration, etc.

Another potential solution to this problem can be to have a secure execution environ-
ment in individual agents. The secure execution environment can help protect sensitive
code during its execution and avoid any malicious entities from interfering with it. Even
then, the above listed precautions should be taken.

7.2.3. Countermeasure to Third Security Scenario

Protection against Trojan horse attacks, especially related to Trojan horse in the hard-
ware is dependent on secure and reliable supply chains. An organization can test their
agents to detect whether they have some non-characteristic behavior. Similar actions can
also be taken for the software bases Trojan horse. An effective mechanism can be continu-
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ous monitoring of the agent (hardware and software) behavior to detect any stealth Trojan
that evades the detection pre-deployment.

7.2.4. Countermeasure to Fourth Security Scenario

Insider threat is a significant challenge to overcome in any large network or orga-
nization. A potential countermeasure to such a threat can include limited privilege that
only requires single user approval. All sensitive actions should require multiple users
to approve and deploy the changes. Employee management and making sure that HR
revokes credentials of any employee that is leaving the company. Finally, user network
activities and behavior monitor can help minimize any impact from disgruntle employees.

8. Conclusions and Future Work

Mobile edge computing facilitates in providing data storage and computational re-
sources to mobile and low-power wireless sensor devices. In this work, we have shown a
multi-agent reinforcement learning based solution for the placement of edge services in
a mobile network, such that the network latency is minimized and load on edge servers
is balanced. The experimental evaluation using Shanghai’s Telecom dataset proves that
the proposed solution quickly converges. Further, we provided a detailed analysis of the
type of security attacks possible in the proposed solution concept. We also listed some of
the countermeasures that can be used to deal with the security risks. The effectiveness of
the proposed method even with a simple state-space provides a promise to the proposed
solution. Much future work remains before the proposed solution can be implemented in
the real world, but our findings suggest that this approach has considerable potential. This
work serves as the proof of concept for a secure multi-agent RL implementation for edge
server placement problem. However, to further validate the results of proposed model, we
intend to implement the proposed model in a full-stack emulator such as SIMENA NE5000.

Author Contributions: Conceptualization, M.K.K., S.A.G., RN.A,; investigation, M.K.K,, S.A.G.,
R.N.A.; methodology, M.K.K,, S.A.G., RN.A; resources, S.A.G.; software, M.K.K,, S.A.G., RN.A ;
supervision, S.A.G.; visualization, M.K.K., RN.A.; writing—original draft, M.K.K., 5.A.G., RN.A;
writing—review and editing, RN.A., D.S,; funding acquisition, S.A.G. All authors contributed to the
final version. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by King Khaled University under Grant Agreement No. 6204.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, J; Kim, D,; Lee, J. Zone-based multi-access edge computing scheme for user device mobility management. Appl. Sci.
2019, 9, 2308. [CrossRef]

2. Bilal, K; Khalid, O.; Erbad, A.; Khan, S.U. Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and
micro data centers. Comput. Netw. 2018, 130, 94-120. [CrossRef]

3.  Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on multi-access edge computing for internet of things
realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961-2991. [CrossRef]

4. Lahderanta, T.; Leppénen, T.; Ruha, L.; Lovén, L.; Harjula, E.; Ylianttila, M.; Riekki, J.; Sillanpaa, M.]. Edge server placement with
capacitated location allocation. arXiv 2019, arXiv:1907.07349.

5. Kasi, SK,; Kasi, M.K,; Ali, K.; Raza, M.; Afzal, H.; Lasebae, A.; Naeem, B.; ul Islam, S.; Rodrigues, J.J. Heuristic edge server
placement in Industrial Internet of Things and cellular networks. IEEE Internet Things ]. 2020, 8, 10308-10317. [CrossRef]

6. Xu, X, Shen, B; Yin, X,; Khosravi, M.R.; Wu, H.; Qi, L.; Wan, S. Edge Server Quantification and Placement for Offloading Social
Media Services in Industrial Cognitive IoV. IEEE Trans. Ind. Inform. 2020, 17, 2910-2918 [CrossRef]

7. Yin, H,; Zhang, X.; Liu, H.H.; Luo, Y,; Tian, C.; Zhao, S.; Li, F. Edge provisioning with flexible server placement. IEEE Trans.
Parallel Distrib. Syst. 2016, 28, 1031-1045. [CrossRef]

8. Guo, Y.,; Wang, S.; Zhou, A.; Xu, J.; Yuan, J.; Hsu, C.H. User allocation-aware edge cloud placement in mobile edge computing.
Softw. Pract. Exp. 2019, 50, 489-502. [CrossRef]

9. Jia,M,; Cao, J.; Liang, W. Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks.
IEEE Trans. Cloud Comput. 2015, 5, 725-737. [CrossRef]

10. Wang, S.; Zhao, Y.; Xu, J.; Yuan, J.; Hsu, C.H. Edge server placement in mobile edge computing. ]. Parallel Distrib. Comput.

2019, 127, 160-168. [CrossRef]


http://doi.org/10.3390/app9112308
http://dx.doi.org/10.1016/j.comnet.2017.10.002
http://dx.doi.org/10.1109/COMST.2018.2849509
http://dx.doi.org/10.1109/JIOT.2020.3041805
http://dx.doi.org/10.1109/TII.2020.2987994
http://dx.doi.org/10.1109/TPDS.2016.2604803
http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1109/TCC.2015.2449834
http://dx.doi.org/10.1016/j.jpdc.2018.06.008

Electronics 2021, 10, 2098 19 of 19

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Bouet, M.; Conan, V. Mobile edge computing resources optimization: A geo-clustering approach. IEEE Trans. Netw. Serv. Manag.
2018, 15, 787-796. [CrossRef]

Zeng, D.; Gu, L,; Pan, S.; Caj, J.; Guo, S. Resource Management at the Network Edge: A Deep Reinforcement Learning Approach.
IEEE Netw. 2019, 33, 26-33. [CrossRef]

Wang, J.; Zhao, L.; Liu, J.; Kato, N. Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning
Approach. IEEE Trans. Emerg. Top. Comput. 2019, 6750, 1. [CrossRef]

Huang, L.; Bi, S.; Zhang, Y.J. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge
Computing Networks. IEEE Trans. Mob. Comput. 2019, 1233, 1. [CrossRef]

Zhai, Y.; Bao, T.; Zhu, L.; Shen, M.; Du, X.; Guizani, M. Toward Reinforcement-Learning-Based Service Deployment of 5G Mobile
Edge Computing with Request-Aware Scheduling. IEEE Wirel. Commun. 2020, 27, 84-91. [CrossRef]

Li, B.; Hou, P; Wu, H.; Hou, E. Optimal edge server deployment and allocation strategy in 5G ultra-dense networking
environments. Pervasive Mob. Comput. 2021, 72, 101312. [CrossRef]

Zeng, F; Ren, Y;; Deng, X.; Li, W. Cost-effective edge server placement in wireless metropolitan area networks. Sensors 2019, 19, 32.
[CrossRef]

Cao, K,; Li, L.; Cui, Y.; Wei, T.; Hu, S. Exploring placement of heterogeneous edge servers for response time minimization in
mobile edge-cloud computing. IEEE Trans. Ind. Inform. 2020, 17, 494-503. [CrossRef]

Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279-292. [CrossRef]

Littman, M.L. Value-function reinforcement learning in Markov games. Cogn. Syst. Res. 2001, 2, 55-66. [CrossRef]

Busoniu, L.; Babuska, R.; De Schutter, B. Multi-agent reinforcement learning: A survey. In Proceedings of the 2006 9th
International Conference on Control, Automation, Robotics and Vision, Singapore, 5-8 December 200 ; pp. 1-6.

Matignon, L.; Laurent, G.J.; Le Fort-Piat, N. Hysteretic g-learning: An algorithm for decentralized reinforcement learning in
cooperative multi-agent teams. In Proceedings of the 2007 IEEE/RS] International Conference on Intelligent Robots and Systems,
San Diego, CA, USA, 29 October—2 November 2007; pp. 64-69.

Wang, S.; Guo, Y.; Zhang, N.; Yang, P.; Zhou, A.; Shen, X.S. Delay-aware Microservice Coordination in Mobile Edge Computing;:
A Reinforcement Learning Approach. IEEE Trans. Mob. Comput. 2019, 20, 939-951. [CrossRef]

Xu, J.; Wang, S.; Bhargava, B.K.; Yang, F. A blockchain-enabled trustless crowd-intelligence ecosystem on mobile edge computing.
IEEE Trans. Ind. Inform. 2019, 15, 3538-3547. [CrossRef]

Hajiyev, A. Optimal Choice of Server’s Number and the Various Control Rules for Systems with Moving Servers. In International
Conference on Management Science and Engineering Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 379-399.
Haakegaard, R.; Lang, ]. The Elliptic Curve Diffie-Hellman (Ecdh). 2015. Available online: https:/ /koclab.cs.ucsb.edu/teaching/
ecc/project/2015Projects/Haakegaard+Lang.pdf (accessed on 10 June 2020)

Charan, K.S.; Nakkina, H.V,; Chandavarkar, B.R. Generation of Symmetric Key Using Randomness of Hash Function, In
Proceedings of the 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1-3 July 2020; pp. 1-7.


http://dx.doi.org/10.1109/TNSM.2018.2816263
http://dx.doi.org/10.1109/MNET.2019.1800386
http://dx.doi.org/10.1109/TETC.2019.2902661
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/MWC.001.1900298
http://dx.doi.org/10.1016/j.pmcj.2020.101312
http://dx.doi.org/10.3390/s19010032
http://dx.doi.org/10.1109/TII.2020.2975897
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1016/S1389-0417(01)00015-8
http://dx.doi.org/10.1109/TMC.2019.2957804
http://dx.doi.org/10.1109/TII.2019.2896965
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pdf
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pdf

	Introduction
	Literature Review
	Reinforcement Learning
	One-Agent RL
	Multi-Agent RL
	Independent Agents
	Indirect-Coordinating Agents


	Multi-Objective Problem Formulation
	Proposed Solution
	Environment Design
	RL Agent Design
	Action Space
	State Space
	Reward


	Results
	Security Perspective
	Scenarios
	Countermeasures
	Countermeasure to First Security Scenario
	Countermeasure to Second Security Scenario
	Countermeasure to Third Security Scenario
	Countermeasure to Fourth Security Scenario


	Conclusions and Future Work
	References

