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Artificial intelligence (AI) and machine learning, a subset of AI,
are increasingly used in medicine. AI excels at performing well-
defined tasks, such as image recognition; for example, classifying
skin biopsy lesions, determining diabetic retinopathy severity,
and detecting brain tumors. This article provides an overview of
the use of AI in medicine and particularly in respiratory
medicine, where it is used to evaluate lung cancer images,
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omputed tomography
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eep neural network

FDA- F
ood and Drug Administration
context of heterogeneous conditions such as asthma and
chronic obstructive pulmonary disease where diagnostic
criteria overlap, how AI use fits into everyday clinical prac-
tice, and how issues of patient safety should be addressed. AI
has a clear role in providing support for doctors in the
clinical workplace, but its relatively recent introduction
means that confidence in its use still has to be fully estab-
lished. Overall, AI is expected to play a key role in aiding
clinicians in the diagnosis and management of respiratory
diseases in the future, and it will be exciting to see the ben-
efits that arise for patients and doctors from its use in
everyday clinical practice. � 2021 The Authors. Published
by Elsevier Inc. on behalf of the American Academy of Al-
lergy, Asthma & Immunology. This is an open access article
under the CC BY license (http://creativecommons.org/
licenses/by/4.0/). (J Allergy Clin Immunol Pract
2021;9:2255-61)

Key words: Asthma; Artificial intelligence; COPD; Diagnosis;
Machine learning; Respiratory disease
INTRODUCTION

The terms artificial intelligence (AI), machine learning, and
deep learning are often used interchangeably but are actually
hierarchical. AI is the overarching concept and is the simulation
of human intelligence by computer systems (ie, the use of a
computer to model intelligent behavior with minimal human
intervention); it covers tasks such as reasoning, learning, language
processing, and the display of knowledge or information.

Machine learning is a subset of AI in which the goal is for the
computer to learn a task automatically and improve from experience
without being explicitly programmed. Machine learning encom-
passes a group of AI methods by which computers can identify
patterns and relationships between data and outcomes of interest.
There are 2 main types of machine learning, supervised and unsu-
pervised: in supervised learning, the computer infers a function on
the basis of data using guidance (the data are “labeled”); in unsu-
pervised learning, the computer discovers a pattern without any
guidance. Traditionally, statistical methods such as calculus and
regression modeling have been used to establish a mathematical
equation that identifies and characterizes the interactions and pat-
terns between different variables, but thesemethods can be limited if
the volume of data is large and includes complex interrelationships.
With machine learning, computers can analyze large volumes of
data to establish complex, nonlinear relationships that cannot easily
be expressed in the form of an equation, enabling greater accuracy in
the outcome. Machine learning also enables the analysis of types of
data that were previously not amenable to computational analysis,
such as imaging and auditory data. One underappreciated aspect of
traditional machine learning approaches is the impact that feature
engineering, the transformation or combination of different data
points into new information, can have on the final classification
accuracy.1

Deep learning is a subset of machine learning that has gained
popularity recently with the rapid increase in the amount of data
available to researchers. Rather than relying on a researcher’s
intuition and experience to select and engineer features, these
methods allow the algorithm to automatically discover the specific
features and transformations required for the task in the raw data.2

Deep learning is currently being used to make major advances
in image3,4 and speech recognition,5-7 to predict the activity of
potential drug molecules,8 and to predict the effects of non-
coding DNA mutations on gene expression and disease.9,10 It is
anticipated that deep learning will have continued success in the
future because it often requires very little “hands-on” engineer-
ing, and it is able to take advantage of increases in computer
processing power and the amount of data becoming available.

This article provides an overviewof some of the key developments
in the use of AI inmedicine and particularly in respiratorymedicine,
where it is used to evaluate lung cancer images and diagnose fibrotic
lung disease. There is also discussion on the development ofAI to aid
the interpretation of pulmonary function tests and the diagnosis of a
range of obstructive and restrictive lung diseases.
USE OF AI IN MEDICINE

The accelerating creation of vast amounts of health care data
will fundamentally change the nature of medical care. The
patient-doctor relationship will be the cornerstone of the delivery
of care to many patients, and the relationship will be enriched by
additional insights from machine learning.11 Machine learning is
useful because it allows important relationships between dispa-
rate pieces of data to be inferred from the data, rather than
requiring explicit human definition. At the most basic level, a
machine learningebased approach may lead to a more accurate
diagnosis by being able to consider a wider range of information
than a physician. However, taken further, by making the patterns
with the data more apparent, it allows improved understanding
of the disease (“Big Data”). From a scientific/medical research
perspective, machine learning is also likely to play a role in aiding
clinicians to deliver care to patients.12

Classification is one area that is ideal for machine learning; these
include medical image recognition where the input is a digital
photograph and the output is binary (“normal” or “disease”). For
example, following initial training of an AI system in the classifi-
cation of suspicious skin lesions as either benign or malignant with
input from dermatologists, AI has demonstrated superior sensi-
tivity and specificity compared with dermatologists when classi-
fying previously unseen photographs of biopsy-validated lesions.13

One benefit of the use of AI for the analysis of medical tests
such as imaging is that it facilitates evaluation of tests carried out
in geographically remote or underserved locations; this can result
in accurate and timely diagnosis, and, if needed, the individual can
be directed to expert care at an earlier stage of disease, which could
potentially transform outcome. For example, in many
tuberculosis-prevalent countries, there is a lack of radiological
expertise at remote centers.14 However, using AI, radiographs
remotely uploaded from these centers can be interpreted by a
single central system—a recent study involving such a system re-
ported that AI (which had been pretrained using active pulmonary
tuberculosis images confirmed by a cardiothoracic radiologist)
correctly diagnosed active pulmonary tuberculosis with a
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sensitivity of 97.3% (sensitivity ¼ true positive/[true positive þ
false negative]) and specificity of 100% (specificity ¼ true nega-
tive/[true negative þ false negative]).15 Moreover, assuming the
amount of imaging performed in medicine continues to increase
more quickly than the pool of qualified radiologists, AI will have
an increasingly important role in image interpretation.

In 2018, the US Food and Drug Administration (FDA)
approved a medical device that uses AI to detect greater than a
mild level of the eye disease diabetic retinopathy in adults who
have diabetes.16 When doing this, the FDA evaluated the results
from a clinical study of retinal images obtained from 900 patients
with diabetes at 10 primary care sites. The AI algorithm analyzed
images of eyes taken using a retinal camera in the offices of
primary care physicians and provided the doctors with a binary
output—1 of 2 results: (1) “more than mild diabetic retinopathy
detected: refer to an eye care professional” or (2) “negative for
more than mild diabetic retinopathy; rescreen in 12 months.”
The AI software correctly identified (accuracy ¼ correct diag-
nosis/total number of cases) the presence of more than mild
diabetic retinopathy in 87.4% of cases and correctly identified
those patients who did not have more than mild diabetic reti-
nopathy in 89.5% of cases. This device provides a screening
decision point without the need for a specialist to interpret the
image or results, which makes it usable by health care providers
who may not normally be involved in eye care, and means pa-
tients do not have to wait to be referred to specialists for an initial
decision regarding diagnosis and severity.

In addition, in 2018, the FDA approved a clinical decision
supporting software that analyzes computed tomography (CT)
images of the brain for indicators associated with a stroke and
notifies a neurovascular specialist if a suspected large-vessel
blockage has been identified.17 The algorithm automatically
notifies the specialist at the same time as the first-line health care
provider is conducting a standard review of the images; this in-
volves the specialist earlier in the process than the usual standard
of care in which patients wait for a radiologist to review the CT
images and then notify a neurovascular specialist. Thus, patients
receive optimal treatment sooner for a condition for which a
positive outcome is very time dependent.

The effective use of AI in image analysis was highlighted
recently in China where an AI algorithm to detect brain tumors
based on imaging correctly diagnosed 87% of 225 cases in 15
minutes, whereas a team of 15 doctors correctly diagnosed 66%
of the 225 cases based on the same images in 30 minutes.18

Although health systems have developed sophisticated mecha-
nisms to ensure the safe delivery of pharmaceutical agents to
patients,11 the wide applicability of machine learning will require
a similarly sophisticated structure of regulatory oversight, legal
frameworks, and local practices to ensure the safe development,
use, and monitoring of AI systems.11,19,20 Moreover, the use of
AI will require scalable computing platforms to handle the large
amounts of data associated with the use of these models.

What is clear from all the above examples is that the role of AI
is in providing support for doctors in the clinical workplace, not
as a replacement for them. The relatively recent introduction of
the use of AI in medical diagnosis means that patients’ trust in its
use and output still has to be fully established. Hence, it is
important that patients perceive that doctors lead consultations
involving outputs using AI.

When errors do occur with AI, they mostly result from issues
that arise during the learning step, usually poor quality training
data or an irrelevant evaluation metric.21 Hence, it is essential to
ensure that the data set expresses the complete range of data and
the real associations between them, that it does not contain
misclassified examples, and does not present any bias that could
lead the AI to learn false assumptions.22 Other sources of error
include the use of an inappropriate AI model for the learning
process and stopping learning too early in the process.22 Clini-
cians, AI researchers, as well as developers of AI applications and
devices should work together to accelerate progress and to limit
adverse consequences of applying AI in health care.23 Rigorous
translation pipelines will be needed to support their work. This
technology can optimize human intelligence to improve decision
making and operational processes. Physicians need to actively
engage to adapt their practice and to shape the technology.23
USE OF AI IN RESPIRATORY MEDICINE
AI has been used in a tool that evaluates CT scans of the chest

for lung cancer; here, the AI algorithm recognizes patterns in
both temporal and spatial changes, as well as changes in nodule
and nonnodule features, to predict 3-year lung cancer risk and
accurately guide clinical management in a longitudinal screening
program.24

In fibrotic lung disease, high-resolution CT plays a central role
in the diagnosis of the disease, so when high-resolution CT ap-
pearances are those of usual interstitial pneumonia, a diagnosis of
idiopathic pulmonary fibrosis can be made without surgical lung
biopsy.25 Using a deep learning algorithm for automated classi-
fication of fibrotic lung disease on high-resolution CT according
to criteria specified in 2 international diagnostic guideline
statements (American Thoracic Society, European Respiratory
Society, Japanese Respiratory Society, and Latin American
Thoracic Society guidelines for the diagnosis and management of
idiopathic pulmonary fibrosis, and the Fleischner Society diag-
nostic criteria for idiopathic pulmonary fibrosis), the algorithm
took 2.31 seconds to evaluate 150 individual cases with an ac-
curacy of 73.3%; the median accuracy of the thoracic radiologists
for the same cases was 70.7%.26 The algorithm provided prog-
nostic discrimination between usual interstitial pneumonia and
nonusual interstitial pneumonia diagnoses (hazard ratio, 2.88;
95% CI, 1.79-4.61; P < .0001) that was comparable with the
majority opinion of the thoracic radiologists (hazard ratio, 2.74;
95% CI, 1.67-4.48; P < .0001).26 The authors concluded that
high-resolution CT evaluation by a deep learning algorithm
might provide low-cost, reproducible, almost instantaneous
classification of fibrotic lung disease with human-level accuracy,
and that these methods could be of benefit to centers at which
thoracic imaging expertise is scarce.

Deep neural networks (DNNs) are a form of AI with multiple
layers between the input and output layers; these layers are used
to progressively extract higher-level features from the raw input.
The application of DNNs to respiratory disease diagnosis espe-
cially in chest radiographs and CT scans has resulted in a step
change in diagnostic accuracy compared with qualitative features
such as tumor spiculation and quantitative features such as shape
and texture derived using image analysis software.27 The
advantage of DNNs is that they derive features directly from the
data, resulting in greater accuracy than with hand-crafted qual-
itative or quantitative analyses. DNNs can be trained to recog-
nize specific pathologies on chest radiographs including
tuberculosis,28-30 malignant pulmonary nodules,31 congestive
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FIGURE 1. Performance of pulmonologists in comparison with the AI software for allocation to each disease category. A, Sensitivity (ie,
true positive/[true positive þ false negative]) shows how many relevant subjects (from a specific group) were correctly identified. B,
Positive predictive value (ie, true positive/[true positive þ false positive]) shows how many labeled subjects rightly belonged to the
specific group. Data from Topalovic et al.55
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cardiac failure,32 and pneumothorax.33 Hwang et al34 developed
a DNN that could recognize lung cancer, tuberculosis, pneu-
monia, and pneumothorax on chest radiographs as well as pro-
vide visual localization of the abnormality. A chest radiograph
triage system developed by Yates et al,35 using a binary classifi-
cation of “normal” or “abnormal,” had a final model accuracy of
94.6% in the test data set. Lu et al36 developed a DNN that
accurately predicted all-cause mortality over a follow-up period of
12 years on the basis of a single plain chest radiograph, even after
adjusting for radiologists’ diagnostic findings and standard risk
factors for mortality. Ardila et al37 trained a DNN to predict the
risk of lung cancer on the basis of current and previous chest CT
scans using cases from the National Lung Cancer Screening
Trial; the DNN achieved an area under the curve of 0.944 for
predicting biopsy-proven cancer in the test data set, and the
accuracy of the DNN was higher than that of 6 board-certified
radiologists when only the current CT scan was available and
was equivalent to that of the radiologists when both current and
previous CT scans were available for review.
AI IN THE DIAGNOSIS OF ASTHMA AND CHRONIC

OBSTRUCTIVE PULMONARY DISEASE
The diagnosis of respiratory conditions such as asthma and

chronic obstructive pulmonary disease (COPD) relies on much
more than image analysis; it involves taking a patient’s history, a
physical examination together with pulmonary function tests (to
some level) and possibly imaging (X-rays, CT scans, bronchoscopy).
Although respiratory physicians are able to interpret variations in
pulmonary function tests and analyze images, it is possible that AI
might be able to play a role in supporting physicians, in particular



TABLE I. FDA approvals for AI-based algorithms in medicine

Date AI-based algorithm

September 2014 Detection of atrial fibrillation (AliveCor)

March 2016 Diagnosis and treatment of ADHD (ObCheck)

July 2016 Determining insulin dosage (InPen)

October 2016 Ultrasound image diagnosis (Lumify)

November 2016 Quantification of blood glucose level (One Drop
Blood Glucose)

January 2017 Memory assessment for the elderly (Cantab
Mobile)

Cardiac MRI analysis (Arterys)

March 2017 Diagnosis of sleep disorders (EnsoSleep)

May 2017 Analysis of thyroid nodules (AmCAD-US)

July 2017 Cancer detection (QuantX)
Arrhythmia screening (Cardiologs)

November 2017 Detecting arrhythmias (Lepu Medical)

December 2017 Medical imaging platform (Subtle Medical)
Detecting arrhythmias (BioFlux)

January 2018 Echocardiogram analysis (Bay Labs)

February 2018 Stroke detection on CT (Viz.ai)
Liver and lung cancer diagnosis on CT and MRI

(Arterys Inc)
Wearable for detecting seizures (Empatica)
Autism diagnosis app (Cognoa)

March 2018 Predicting blood glucose changes (Medtronic)

Aprril 2018 Detection of diabetic retinopathy (Idx)
MRI brain interpretation (Icometrix)

May 2018 X-ray wrist fracture diagnosis (Imagen)
Transcranial Doppler probe positioning

(NeuralBot)
Motion capture for the elderly (MindMotionGO)

June 2018 Managing type I diabetes (DreaMed)
Blood glucose monitoring system (POGO)

July 2018 Coronary artery calcification algorithm (Zebra
Medical Vision)

Quantification of liver iron concentration
(FerriSmart)

August 2018 Breast density via mammography (iCAD)
Triage and diagnosis of time-sensitive patients

(Aidoc)
Detection of atrial fibrillation (PhysiQ Heart

Rhythm Module)

September 2018 Detection of atrial fibrillation (Apple)
Identifying visual tracking impairment (RightEye

Vision System)

November 2018 Acute intracranial hemorrhage triage algorithm
(MaxQ)

Decision support for mammograms (ScreenPoint
Medical)

December 2018 Detection and diagnosis of suspicious lesions
(ProFound AI)

Adjuvant treatment for substance abuse disorder
(ReSET-O)

January 2019 ECG feature of the Study Watch (Verly)

March 2019 Clinical grading in pathology (Paige.AI)
Breast cancer detection in mammograms

(CureMetrix)

May 2019 Six-lead smartphone ECG (AliveCor)
Chest X-ray analysis (Zebra Medical Vision)
Identifying pulmonary embolism (Aidoc)

(continued)

TABLE I. (Continued)

Date AI-based algorithm

June 2019 Decision support in breast cancer (Canon
Medical)

July 2019 CT noise reduction (Koios Medical)

ADHD, Attention deficit/hyperactivity disorder; ECG, electrocardiogram; MRI,
magnetic resonance imaging.
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nonrespiratory physicians and primary care physicians with limited
experience with regard to obstructive lung diseases.

Airflow limitation is common to both asthma and COPD, but
the definitions of asthma and COPD are not mutually exclusive.
Furthermore, both asthma and COPD are known to be hetero-
geneous, and their prognosis and management strategies
differ.38,39 A crucial step in the optimal management of airway
diseases is to make a reliable diagnosis. By definition, COPD is
characterized by an absence of fully reversible airflow limitation,
but this is also seen in many patients with long-standing
asthma.38,39 In addition, even in secondary care clinics it can be
difficult to distinguish between the 2 conditions in various patient
groups, and especially in smokers older than 40 years.40,41

Access to, or training in the use of, spirometry is often limited
in primary care, making it more challenging to diagnose asthma
and COPD, and also to differentiate between the 2 diseases.
Underdiagnosis of asthma in primary care has been reported in
20% to 73% of cases, whereas overdiagnosis has been reported in
30% to 61% of cases.42 Similarly for COPD, underdiagnosis and
overdiagnosis have been reported in approximately 70%27 and
30% to 62% of cases,38-41,43-46 respectively.

Underdiagnosis of asthma can lead to impaired quality of life,
increased number of general practitioner visits, absence from
school or work, and increased hospitalizations compared with
those with diagnosed asthma, and failure to prescribe appropriate
medication(s)31; indeed, failure to prescribe inhaled corticoste-
roids in asthma (with or without a codiagnosis of COPD) is
associated with an increased risk of asthma hospitalizations and
death.47-51 In contrast, overdiagnosis of asthma can lead to
inadequate treatment of the actual problem, nonindicated
medication use, exposure of patients to potential adverse effects
from medications unlikely to provide clinical benefit, and cost of
medication without the potential benefit.42,52

Although inhaled corticosteroids are the cornerstone of ther-
apy for asthma, this is not the case in COPD. Hence, incorrect
diagnosis or overdiagnosis of COPD, if high-dose inhaled cor-
ticosteroids are prescribed, can result in exposure of patients to
potential adverse effects,53,54 which include local adverse events
such as pharyngitis, dysphonia, reflex cough, bronchospasm, and
oropharyngeal candidiasis, and systemic adverse events such as
suppressed hypothalamic-pituitary-adrenal axis function, reduced
bone mineral density, skin thinning and bruising, increased risk
of infection (pneumonia and tuberculous and nontuberculous
mycobacteria), and increased diabetes risk.

The challenges in diagnosing asthma and COPD, and the
potential complications associated with not treating or mis-
treating the disease, highlight the importance of evaluating any
novel aid to diagnosis, including the use of AI algorithms.

For a broader range of respiratory diagnoses, a recent study
explored the accuracy and interrater variability of pulmonologists
when interpreting full pulmonary function tests compared with
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AI-based software that had been previously developed and vali-
dated using more than 1430 historical patient cases.55 Overall,
120 pulmonologists from 16 European hospitals and AI software
evaluated 50 cases on the basis of full pulmonary function tests
and limited clinical information (smoking history, cough,
sputum, dyspnea). The cases included a range of obstructive and
restrictive lung diseases, pulmonary vascular diseases, and healthy
patients, with the criterion standard diagnosis provided by an
expert panel of 3 pulmonologists on the basis of full pulmonary
function tests (with interpretative strategies for pulmonary
function tests from the American Thoracic Society/European
Respiratory Society task force to define a correct lung function
pattern56), full history, plus any additional necessary tests.
Although the pulmonologists correctly classified the pulmonary
function test pattern as obstructive, restrictive, or normal in
74.4% � 5.9% of cases (range, 56%-88%), their accuracy was
much lower when assigning the case to 1 of 8 possible diagnostic
categories. Here, the pulmonologists made correct diagnoses in
only 44.6% � 8.7% of cases (range, 24%-62%). The AI-based
software perfectly matched the pulmonary function test pattern
interpretations (100%) and assigned a correct diagnosis in 82%
of all cases (difference P < .0001 for both measures).55

In the study, both the sensitivity and positive predictive value
of the AI-based algorithm were superior to pulmonologist-based
diagnostic category allocation in each of the 8 disease groups
evaluated (Figure 1).

The authors explained that AI achieved this goal by taking
complete input data of a large number of known disease cases, with
known magnitudes and patterns between all input data, and
mapping them into a high-dimensional space; once presented with
the data of a new patient, AImapped these data into the same high-
dimensional space and categorized the patient. The authors
concluded that the interpretation of pulmonary function tests by
pulmonologists led to marked variations and errors, whereas the
AI-based software provided interpretations that were more accu-
rate (and consistent) and could serve as a powerful decision support
tool to improve clinical practice.55 However, it has been noted
elsewhere that the true clinicians’ performance might have been
underestimated because they received limited clinical informa-
tion.57 Irrespective of whether the clinicians’ performance was
underestimated, this study showed that AI has a potential role in
respiratory medicine that is beyond that of image analysis.
Furthermore, diagnosis is one of the areas of respiratory research in
which clinicians and researchers in the primary care field feel there
is a great need for urgent solutions.58 A recurring finding from a
prioritization exercise performed by the International Primary
Care Respiratory Group was the need for “simple tools” (eg,
questionnaires) that enable disease diagnosis and assessment in
community settings.58
CONCLUSIONS

These findings suggest that AI/machine learning offers an
innovative approach to develop diagnostic algorithms that have
the potential to aid diagnosis and differentiation of—among
other conditions/diseases—respiratory diseases. AI-based algo-
rithms are able to evaluate multiple issues at the same time,
whereas persons tend to be more linear in associations, which
explains the increased speed/efficiency associated with AI.
Indeed, the US FDA has approved a number of AI-based algo-
rithms in medicine (Table I).59
However, good performance metrics are dependent on the
data available for the machine training, and are impacted by
deficiencies in the database used to create the “rules”; these
metrics do not guarantee a positive clinical impact, and
algorithms must be validated through prospective trials in clinical
settings. Although the development and validation of AI
algorithms require large volumes of well-structured data, the
algorithms must then be able to work with variable levels of data
quality. It is also important that clinicians review the learned data
logic to make sure it makes sense in the situation of incomplete
health record data to train the model, and that they review how
AI can function in the context of heterogeneous conditions such
as asthma and COPD where diagnostic criteria overlap.

Although there has been an increasing use of AI in asthma
research,60 with encouraging results in small-scale studies in areas
such as the interpretation of pulmonary function tests, breath
analysis, and lung sound analysis, larger studies are needed to
validate current findings and to boost its adoption by the medical
community.61 It will also be important to consider how the use
of AI fits into clinical workflow (ie, everyday practice), and how
issues of patient safety and physician liability should be
addressed. Overall, AI is likely to play a key role in aiding cli-
nicians in the diagnosis and differentiation of respiratory diseases
in the future,62 and it will be exciting to see the benefits that arise
for the patients and doctors from its use in everyday clinical
practice.
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