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Abstract: This paper reports an analytical study conducted to investigate the behaviour of tracers
undergoing creeping flow between two parallel plates in porous media. A new coupled model for
the characterisation of fluid flow and transport of tracers at pore scale is formulated. Precisely, a
weak-form solution of radial transport of tracers under convection–diffusion-dominated flow is
established using hypergeometric functions. The velocity field associated with the radial transport
is informed by the solution of the Stokes equations. Channel thickness as a function of velocities,
maximum Reynolds number of each thickness as a function of maximum velocities and concentration
profile for different drift and dispersion coefficients are computed and analysed. Analysis of the
simulation results reveals that the dispersion coefficient appears to be a significant factor controlling
the concentration distribution of the tracer at pore scale. Further analysis shows that the drift
coefficient appears to influence tracer concentration distribution but only after a prolonged period.
This indicates that even at pore scale, tracer drift characteristics can provide useful information about
the flow and transport properties of individual pores in porous media.

Keywords: pore scale; tracers; drift; convection and diffusion

1. Introduction

A thorough understanding of transport processes is significant for various applica-
tions in engineering, natural resources (for example waste management [1]) groundwater
remediation [2] and porous media during tracer injection experiments in a core samples [3].
Tracer testing has become a highly vital tool in geothermal research, resource management
and development. It is used for reinjection research and management, general hydrolog-
ical studies of subsurface flow and flow rate measurement in pipeline [4]. It acts as the
source of information for porous media characterisation, hydrocarbon recovery process
and geothermal engineering [5].

Tracers are used to determine preferred flow direction, pore connectivity, flow velocity,
dispersivity, heterogeneity of oil and gas reservoirs and residual oil saturation [6,7]. To
enhance flow characterisation in porous media, an improved study of tracer transport
at pore scale is important because pore-space geometry and topology are the key factors
that influence flow and transport phenomena. Therefore, solute transport is significantly
impacted by pore-scale heterogeneity found in natural porous media [8].

However, direct observation of pore-scale processes are not possible in the field
scale [9]. Transport of tracers in porous media involves complex physical phenomena
such as drift which often occur on widely varying scales for instance from a pore level
to field level. Further, studies have shown that porous media in which transport takes
place are heterogeneous and disordered on a microscopic scale, higher additional mixing
is required by order of magnitude than the spreading due to pure molecular diffusion.
Such an increase in the spreading of an initially narrow tracer pulse is due to mechanical
dispersion.
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Tracers introduced into a solvent, for example, water flowing through a porous
system, will be exposed to dispersion in both longitudinal and transverse direction due to
thermal, Fickian diffusion or drift due to variation of flow velocities within the pores [10].
Linear drift is a phenomenon experienced in subsurface flow and transport processes.
It originates as a result of aquifer movement during production/injection in a distant
reservoir with which there exist hydraulic connectivity and several factors. This drift of
tracer particles in a liquid occurred at a pore scale due to microscopic variation of the fluid
flow field [11]. Advancement in reservoir modelling which incorporates tracer partitioning
between different phases and drift effect due to production as well as adsorption to grain
surface requires adequate knowledge of tracer transport at pore scale [12].

Mass spreading of non-reactive tracers can be described by a combination of molecular
diffusion, hydrodynamic dispersion and heterogeneous advection [13]. The hydrodynamic
dispersion is usually quantified by the sum of the molecular diffusion and advection com-
ponents. Many models have been developed to describe the space anomalous behaviour of
dispersion coefficients (for example flow through rivulet [14], random capillaries [15]). Al
Mukahal et al., 2017 provide a description of long-time Taylor–Aris dispersion of solute by
using multiple scales to arrive at the expression of effective diffusivity. However, problems
associated with Taylor dispersion in a capillary tube are momentous, i.e possibility of
micro-macro duality and their interrelationship among scales manifest [16].

Taylor–Aris further examined a case where after a prolonged period, the concentration
of solutes follows regular Gaussian distribution. To date, the majority of these studies
have focused primarily on investigating flow and transport phenomena at Darcy’s scale.
Attention to a pore-scale investigation of flow and transport of solute under the influence
of linear drift is yet to be reported in the literature.

Pore-Scale Radial Diffusion Models with Drift

Dispersion of solutes i.e tracers has wide applications in many fields of study (such
as, for example, petroleum engineering, ecological studies and hydrology) and has been a
huge subject of theoretical and experimental research.

Figure 1 shows a schematic representation of a chemical tracer injection/extraction
test in a porous media system. The drift effect fully manifested due to the microscopic
variation of the fluid flow field at a later time during the extraction stage (Figure 1f) [16].

Figure 1. A schematic representation of a chemical tracer in a porous media illustrating (a) the
injection of tracer, (b) the reaction between the injected tracer and the injected water bank, (c) the
extraction stage without the influence of drift and (d–f) shows the same process of tracer injec-
tion/extraction process displayed in (a–c), however, drift effect fully revealed during the extraction
stage in (f).



Mathematics 2021, 9, 2509 3 of 36

However, a continuing challenge in mathematical and computational modelling is how
to capture these mechanisms accurately and to handle them to relevant scales properly [17].
The mechanisms controlling the spreading differ in their behaviour and therefore require
detailed nano-scale flow characterisation for accurate and reliable predictions of transport
to be made.

To describe flow at pore scale, i.e smaller physical scales where pore and solid space are
resolved separately, flow and transport are simulated using more detailed description such
as Hagen–Poiseulle or Stokes flow [18]. The most basic approach to computing the spatio-
temporal evolution of the concentration of tracers is provided by the advection–diffusion
equation. The advection–diffusion equation is a standard approach based on Ficks law and
the conservation of mass. It assumes Fickian processes and uses hydrodynamic dispersion
coefficient in which the effect of solute mixing and spreading are embedded together [3]. It
also uses an average linear velocity for a representative elementary volume and assuming
perfectly mixed conditions within a representative elementary volume. However, at the
pore scale when the velocity field is not fully sampled, incomplete mixing and spreading
may exist at early times [8].

Recently, there has been increased interest in problems that involve moving interfaces
at the pore scale [19]. These are problems that are characterised by sharp local gradients and
mixing-controlled reactions. A large number of recent studies have explored these issues
using pore-scale simulators, in which the geometry of pores-spaces and solid material is
explicitly considered and processes are defined at the sub-pore [20]. Tsang and Neretnieks
studied the flow and transport of solute through channels. They summarised channelling
observations, concepts, and modelling of flow and transport in fractures and networks
where preferential flow paths (channelling) take place [21].

Despite the numerous studies of flow and transport of tracers through geological
porous media, our understanding still faces a significant challenge. One of the challenges
is the observation of drift phenomena at a Darcy or field scale [5,16]. The signatures of
drift phenomena affect tracer concentration distribution at field scale as reported in the
literature [22]. Analytical model solutions that describe and predict tracer transports at
field scale have been obtained in cases where tracer adsorption, non-uniform convection,
and variable dispersion manifest [23].

Recently, investigations on closed-form solutions of radial transport of tracer in porous
media at field scale have been reported in the literature (e.g., Akanji and Falade [16]).
Analytical solutions at field scale have been obtained where variable dispersion coefficient
and velocity are solved using Green’s function method (GFM) [24] and in steady-state flow
field in a horizontal aquifer caused by a constant rate injection from a well, including the
mechanical dispersion and molecular diffusion terms in addition to the retardation and
first-order attenuation under a Robin-type boundary condition at the well [25].

Akanji and Falade [16] studied the effect of drift on radial transport of tracers in porous
media. We discussed the influence of linear drift and show that drift affects concentration
profile for a typical system with non-homogeneous porosity distribution. Falade and
Brigham [23] carried out a similar study where they used inverse Laplace transformation
to solve radial transport equations in real-time-space.

Despite the recent advances in solving advection–diffusion equations both analytically
and numerically, there is yet to be attention on the investigation of drift phenomena at
the pore scale. All the previous studies mentioned above have focused on cases where
convective velocity and hydrodynamic dispersion function were assumed to be constant,
meaning the solute molecules i.e tracers are kinematically and dynamically indistinguish-
able from mobile phase molecules. However, it is important to note that this assumption
is not appropriate for pore-scale flow and transport in porous media. Hence, the need
for variable radial dispersion in nonuniform flows under the influence of drift is crucial
for accurate description of pore-scale flow and transport Phenomena. To date, an exact
solution or closed-form solution to the transport equation at pore scale has not been estab-
lished for cases where hydrodynamic dispersion is radially distributed, and linear drift
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predominates. An investigation of drift phenomena at pore scale on fluid flow behaviour
in porous media under the influence of linear drift is therefore presented in this work. The
drift-velocity is encapsulated into the poiseuille flow velocity field. We establish and solve
a novel pore-scale convection–dispersion equation and hydrodynamic dispersion function
using the velocity obtained from Equation (1) as shown in Equations (4) and (5). This is
the novelty of the work. The resulting radial transport equation is then cast in the form of
the Whittaker equation using some set of transformation relations and change of variables.
Concentration distribution around the source of the tracer or injected particles is computed
from a weak-form numerical solution and used to analyse pore-scale tracer concentration
behaviour in tracer injection/extraction experiment in a core sample during enhanced oil
recovery processes where the influence of drift may obstruct the fluid flow path.

2. Pore-Scale Fluid Flow and Transport of Tracer Model

We consider the partial differential equations governing the flow of an incompressible
Newtonian fluid at the pore scale (Akanji and Chidamoio [26,27]) thus:

ρ
∂v
∂t

+ ρv · ∇(v) = −∇p + µ∇2v (1)

where the variables µ, ρ,∇P and v are the viscosity, fluid density, reduced pressure gradient
and fluid velocity vector respectively. The analytical solution to the Stokes equation is
obtained for velocity fields as described in Appendix A.

To study the spatial, radial, and temporal non-uniformity of tracer-mixing flowing in a
channel due to velocity variation of tracers flowing in a mobile phase water, time-dependent
tracer concentration distribution is computed by solving the convection–diffusion equa-
tion expressed in terms of resident concentration in radial coordinates as (Akanji and
Falade [16]):

1
r

∂

∂r

(
rφD

∂C
∂r

)
− 1

r
∂

∂r
(rφvC)− γ(kr + s)C =

∂φC
∂t

(2)

in Equation (2), D is the hydrodynamic dispersion function, v is the convective velocity
at radial position r, C is the concentration of tracers, φ is the porosity of the system and
γ(kr + s) is the source or sink term that accounts for phenomena such as tracer adsorption,
physical loss or addition of tracer particles and reactions of tracer particles with the mobile
fluid phase.

The convective velocity v (m/s) in Equation (2) is decomposed into a drift velocity vd
superimposed on a radial flow of injected tracer of strenght qi(m3/s).

A steady-state flow with a parabolic profile at every location in the channel is assumed.
It implies that the transient acceleration term in Equation (1) goes to zero. The pressure
gradient is only in the x-direction (unidirectional) and the plates are motionless. It is also
assumed that the velocity vector and the velocity gradient tensor are off-diagonal, implying
that the dot product is zero (i.e the second term in Equation (1) goes to zero), we also
applied no-slip boundary conditions, since velocity is zero at the lower plate (i.e y = −h) of
the channel. At the upper plate (i.e. y = +h), the velocity is zero as well, hence the velocity
can be written as:

v =
1

2µ

dp
dx

(h− y)y (3)

This is a Poiseuille flow velocity, also called creeping flow velocity or weak inertial flow
velocity (near zero Reynolds number) in a porous media. In Equation (3), dp

dx , represents the
average pressure gradient in the direction of the flow, µ represents the dynamic viscosity
of the fluid, h is the channel thickness and v is the poiseuille fluid velocity. However,
when the flow of tracer is motivated by linear drift, The convective flow velocity equals the
poiseuille velocity which comprises linear drift and radial velocity components. Therefore
Equation (3) represents the convective velocity that is incorporated into the transport
equation. Drazin et al. 2006 [28] presented a classification and exact solutions to the Navier–
Stokes equations for plane Poiseuille flow through some non-circular cross-sections.
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Pore-Scale Convection–Diffusion Equation

In this section, we present only the key equations relevant to pore-scale convection–
diffusion and Taylor–Aris dispersion of solute undergoing creeping flow. Our interest
is studying the influence of drift at creeping flow upon small scale transport. Thus, we
simplified Equation (2) by substituting the Poiseulle velocity of Equation (3) into it. This
yields the dimensionless form of the general pore-scale convection–diffusion equation in
Laplace space as (see Appendix B for the derivation of the transport equation under the
influence of linear drift):

d2ψ

dr2
D
+

[
k2

4
(
krD + βp

)2 −
p2(hy− y2)r2

D

16µ2
(
krD + βp

)2 −
Φ(kr + s)rD(

krD + βp
) ]ψ = 0. (4)

where the variables are defined as:

D(h) = Dm + Do

[
p

2µ

(
hy− y2

)
+

α

r

]
(5)

D(hD) = Dm + vpDo

(
ω +

1
rD

)
, (6)

γ = φ

(
Sm + kl(1− Sm)

Sm

)
(7)

Here, ψ is a variable which is a function of (rD), rD is the dimensionless pore radius, k
is Whittaker function, h is the channel thickness, y is the vertical distance from centre of
the channel to top/bottom parallel plates shown in Figure 2, Φ is the Chromatographic
response function, s is a Laplace transform parameter and 2 h is the distance between
the parallel plates. The hydrodynamic dispersion D(h) in Equations (5) and (6) includes
contribution from molecular diffusion and mechanical mixing. Further, the quadratic terms
in pressure and pore size in Equations (4) and (5) make the solution non-trivial when
compared to the Darcy-scale version. Parameter Do is the shear mixing constant in (m) and
Sm is the saturation of the mobile fluid phase.

Figure 2. A schematic diagram of Poiseuille profile for a 2D channel flow system. In 3D, a surface
plane is considered.

3. Mathematical Formulation of Pore-Scale Radial Transport Equation with
Linear Drifts

To develop the radial transport equation where linear drift effect can be investigated,
the following transformation relations are defined: η = krD + β, rD = (η − β) 1

k and
dη

drD
= k⇒ dη = kdrD ⇒ dη

drD
= drD.

However, applying the transformation to Equation (4) gives a pore-scale convection–
diffusion equation which can be expressed in the form of the Whittaker equation as:

d2ψ

dZ2 +

−1
4
+

k
Z
+

(
1
4 − µ2

)
Z2

ψ = 0 (8)
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Equation (8) is a Kummers differential equation whose solution is known. Detailed transfor-
mation and simplification of Equation (4) into the Whittaker 8 can be found in Appendix C.

Where:

µ2 =
p2β2(hy− y2)

16µ2k4 (9)

µ =
pβ
√

hy− y2

4µk2 (10)

and:

k =
p2β
(
hy− y2)

16µ2k4 f (s)
+

βφ(kr + s)
2 f (s)

(11)

f (s) =
1
k

√
p2(hy− y2)

16µ2k2 +
φ(kr + s)

k
(12)

ξ = 2(krD + β) f (s) (13)

ξ = 2η f (s) (14)

3.1. Formulation of Linear Drift

For this investigation, linear drift is applied as a velocity field vd because it is coordinate-
independent, carrying velocity magnitude that acts on every point within the porous
system.

The tracers are carried along with the fluid in the channel while spreading due to
diffusion. Consequently, the convective velocity of the fluid due to transport at pore scale is
described by the Poiseuille velocity calculated from Equation (3) above which decomposes
into drift velocity and a radial velocity part of an injected tracer of strength qi around the
drift velocity. The convective fluid velocity in the channel system is therefore given by:

v = vd + vp, (15)

where, v = p
2µ

(
hy− y2), vp = α

rp
, and α =

( qi
2πhθ

)
.

Therefore, redefining the following variables from Equation (5) as: k = Dm + βp ,

v =
(

vdcosθ
α

)
, βp = αDo which are described as effective dispersion constant, vorticity of

the tracer particles in motion and parameter related to velocity along x-direction.

3.2. Pore-Scale Analytical Solution of Radial Transport Equation with Linear Drift

A detailed solution of the general Whittaker equation can be found in Akanji and
Falade [16]. Here, we present the pore-scale analytical solution of the radial transport
equation where linear drift component is accounted for. Tracer concentration can now be
written as:

C =ξ
µ−

p(hy−y2)
4µk2 (

2
√

a
) 1

2+
p(hy−y2)β

4µk2

e
p(hy−y2)

4µ2k
− ξ

2 U
(

1
2
+ µ− k, 1 + 2µ, ξ

) (16)

However, constant of separation
(
ω2) by recasting the general advection–dispersion

equation for the flow of tracers with embedded velocity from Navier–Stokes under the
influence of linear drift as:

Do

(
β

x
+ d
)

Cxx−
(

p
2µ

(
hy− y2

))( β

x
+ d
)

Cx + Do
λ

Y
Cyy

−
(

p
2µ

(
hy− y2

))λ

Y
Cy − RKC = RCt

(17)
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where, the linear drift ratio is written as d = vd
v . The linear drift ratio, d is coordinate

independent, therefore, its magnitude can be used as either y-axis or, in the case of a 3D
system z-axis.

Substituting C(x, y, s) = Xp(x)Yp(y, s) into Equation (17) and dividing through by
X(x)Y(y, s) and rearranging gives:

Do

(
β

x
+ d
)

X
′′ −

(
p

2µ

(
hy− y2

))( β

x
+ d
)

X
′

+ ω2X(x) = 0
(18)

Do
λ

y
Y
′′ −

(
p

2µ

(
hy− y2

))λ

y
Y
′ −
(

Rs + Rk + ω2
)

Y(y, s) = 0 (19)

The component in Equation (18) above is time independent, while Equation (19) is
time dependent and expressed in Laplace space with Laplace parameters. Considering
the following transformation parameters: β = rpcos2θ, λ = vprpsin2θ, xp = rpcosθ and
yp = rpsinθ.

Equations (18) and (19) can also be written as:

Do(cosθ + d)X
′′ −

( p
2

(
hy− y2

))
(cosθ + d)X

′
+ ω2X

(
xp
)
= 0 (20)

L−1

[
Do
(
vysinθ

)
Y
′′−
(

p
2µ

(
hy− y2

))(
vpsinθ

)
Y
′−

(
Rs + Rk + ω2

)
Y
(
yp, s

)]
= 0

(21)

Equation (20) is time independent, while Equation (21) is time dependent and ex-
pressed in Laplace space with Laplace parameter. However, Equation (17) is governed by
the following boundary conditions:

C(x, y, t = 0) = Ci(x, y) f or x = y = R (22)

C(x = ±∞, y, t) = 0 f or y = R, t > 0 (23)

C(x, y = ±∞, t) = 0 f or x = R, t > 0 (24)

C
(
xp, yp, t

)
= Co f or t > 0 (25)

Considering the river-like nature of linear drift, radial flow as well as convection
in every direction, the transformation from the polar ( radial) coordinate to Cartesian
coordinates is given as xp = rpcosθ and yp = rpsinθ. However, for instantaneous injection,
the concentration C

(
xp, y, t

)
= Co of the tracer in the pore is known during the tracer test

study; therefore, the solution for t > 0 can be obtained by solving Equation (17) within
the porous system. Several numerical inversion scheme are available for solving Equation
(21) such as Euler inversion [29,30], Gaver–Steehfest algorithm [31,32] or Talbot inversion
algorithm [33]. The Euler inversion algorithm was used for the numerical inverse Laplace
operation in the numerical code used in this work. Flow velocity of the system is an
important parameter. The flow of tracers within a carrier fluid depends on the velocity
of the system and is modelled by considering a creeping flow in a heterogeneous system.
Anisotropic porosity distribution was developed using the random probability density
function (PDF) allowing for non-uniform velocity to be calculated. Typical normalised
channel thickness as a function of velocities for various ranges of scales is shown in Figure 3
with different channel heights and Reynolds numbers.
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Figure 3. Normalised channel thickness profile as a function of velocities computed in a spatially heterogeneous
porous system.

4. Analysis of Results

Eleven channel thicknesses are selected to study the tracer–plate interaction effect on
velocity profile. The displacement pressure gradient and viscosity are set to be 500 kg/s2

and 0.000464 kg/ms. To illustrate the effect of linear drift on the tracer propagation profile
at pore scale, flow in parallel plate of dimension 5.0× 10−6m−1.3× 10−4m was considered.
Flow velocities in different directions as determined from the solution of Equation (3)
as a function of channel thickness are computed. The maximum velocity patterns as
a function of channel thickness were analysed based on Reynolds number in order to
compare different flow regimes.

A graphical representation of the solution of Equation (3) for the parallel plate is
shown in Figure 3. Good agreement is obtained in comparison with the asymptotic results
of motion of particles between two parallel plane walls in low Reynold number Poiseuille
flow [24]. Figure 3 immediately reveals the parabolic nature of the velocity fields of all the
channels. The flow velocities with which the tracers enters the channel is not identical with
the exit velocity of the channel. A more detailed description of the velocity field can be
obtained by using 3D profiles of the velocity field in a single channel.

Figure 3 shows the normalised channel thickness profile as a function of velocities
computed in a spatially heterogeneous porous system. The velocity profiles indicate the
magnitudes of velocity from fast flow, intermediate and slow flow. However, maximum
velocity for each channel can be seen at the centre of Figure 3. In most of the previous
investigations of flow and transport of tracers in porous media, Stokes velocity was not
considered because of the difficulties imposed when solving analytically, coupled stokes
velocity with advection–dispersion equation.

To investigate the effects of flow regime on the transport behaviour of tracers in
porous media, the simulation was conducted under creeping, transition, and non-creeping
flow regimes as shown in Figure 4. Velocity plots of the simulation data describing the
maximum velocities of the selected channel thickness of the parallel plates versus Reynolds
number are presented in Figure 4 indicating the existence of the three flow regimes. At
higher Reynolds numbers, the trend of the velocity are similar to those obtained at a lower
Reynolds numbers, entrance effects of tracers slightly appear at Reynolds number below
0.2 which is shown in Figure 4.
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Figure 4. Maximum Reynolds (Remax) number as a function of maximum velocities (Umax).

However, for higher Reynolds numbers, a significant difference in magnitude of
maximum velocity is observed. A well developed creeping flow regimes is established at
0 < Re < 1, transitional flow regime at Re = 1 and non-creeping flow regime at Re > 1.
A set of 11 points were placed to uniformly cover each channel, at each point, the values
of velocities were obtained but maximum velocity at each point were shown in Figure 4.
The Reynolds number defines the flow regime and represents a ratio of inertial forces to
viscous forces thus:

Re =
ρvh
µ

, (26)

where, ρ is the fluid density in kg/m3, v is the Poiseuille velocity in m/s, µ is the dynamic
viscosity in kg/ms and h is the thickness of the channel in m. It can be seen from Figure 4
that, under the same flow condition, a higher Reynold number is observed for channel
samples with higher velocities. Hence, the pressure gradient across the sample plate with a
higher Reynolds number is more sensitive to the change of the flow condition. Therefore,
flow greater than Reynolds number 1 (i.e., Re > 1) is above the creeping flow regime
which is beyond the scope of this investigation. Sensitivity analysis was carried out on the
developed solution by testing and evaluating the error limit associated with the separation
of variable parameter (ω2) for different angle θ. Simulation studies involved one hundred

(100) values of ω2 as defined by h = ω2β[
p

2µ (hy−y2)
]
d2

ranging from 0.01ω2
1 corresponding to

a value of ω2 = 1.3446× 10−23 to ω2
100 corresponding to a value of ω2 = 1.8627× 10−17-

with an incremental value of 0.01×ω2
100. The minimum error corresponds to the value of

separation variable ω2 = 1.3446× 10−23 as shown in Figure 5 and 6.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. (a–f). X-parameter
(
Xp
)

as a function of angle (θ) at a thickness of h = 1.7× 10−5m, time
t = 10d and varying separation constant

(
ω2) . For each channel thickness shown in Figure 3, eleven

(11) symmetric velocity data points are generated, and each data point used in the computation of
X-parameter

(
Xp
)

profiles. Due to the symmetric nature of the velocity profiles, only half-wing of
the plane; consisting of six (6) data points, is presented here. The data for the other half-wing is
presented in Appendix F.

The concentration profiles in all plots in Figures 5 and 6 grow with increasing values
of ω2. Additionally, at θ = 90◦ and 270◦ degrees the impact of drift begins. With the
commencement of drift, the concentration profile shortens as can be seen to have drifted to
90◦, and 270◦ respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a–f). Y- parameter
(
Yp
)

as a function of angle (θ) at a thickness of h = 1.7× 10−5 m, time
t = 10d and varying separation constant

(
ω2) . For each channel thickness shown in Figure 3, eleven

(11) symmetric velocity data points are generated, and each data point used in the computation of
Y-parameter

(
Yp
)

profiles. Due to the symmetric nature of the velocity profiles, only half-wing of
the plane; consisting of six (6) data points, is presented here. The data for the other half-wing is
presented in Appendix F.

Further investigation on the impact of drift parameter at pore scale on separation
constant,

(
Xp
)
,
(
Yp
)

and angle θ , a simulation run was carried out at time interval of t
= 10 d. The results is presented in Figure 7. Figure 7 also presents the combined three-
dimensional plots of all the plots in Figure 5a–f and the remaining data points of the
other half-wing of Appendix F. Such peaks of Figure 6 would not be expected in a normal
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dispersion processes such as diffusion, mechanical mixing etc. But, as discussed in the
literature such anomalous behaviour may be due to variation of flow velocity field inside
the channel which subsequently leads to drift of tracer particles. This observation is key to
understanding of drift phenomena at pore scale. By examining Figure 7 carefully, it is seen
that the velocity profile increases from small data points to large data points. An analysis
of Figure 7 reveals the general features of the tracer concentration distributions flowing in
a heterogeneous porous media.

Figure 7. 3D plot of X-parameter
(
Xp
)

as a function of the separation constant
(
ω2) and angle (θ) at

t = 10 d.

All the data points in Figure 7 are pointing towards the upstream direction of
(
ω2).

Usually, in isotropic and homogeneous systems, where there is no linear drift or natural
convection, the concentration of tracer ordinarily follows a cyclic pattern in nature. In this
work, a system with variable porosity distribution was modelled and the corresponding
Poiseuille velocity profile was used in the computation of the drift ratio. The tracer
propagation profile is expected to follow a natural pattern resolved by the interaction of
forces associated with the system’s variables, such as the tracer injection rate.

In order to examine the effect of the drift magnitude on the tracer concentration profile
at pore scale, three (3) values of the drift ratio d = 0.006, 0.03 and 0.2 were evaluated for
variable dispersion coefficients of Do = 0.001389, 0.002778 and 0.004167 m2/s and at three
selected time duration t of (t = 10, 50 and 70).

At time t = 10 days, the concentration shows a similar trend with exception of the
contour plots at the left. i.e., plots (a, d and g). Previous studies did not take into account
the effect of drift at the boundary. However, it is evident from contour plots a, d and g of
Figure 8 that drift has manifest at the boundary which could be due to physical interaction
between the channel and the fluid flowing through the channel. In general, 3D plots of all
the contour plots distribution at time t = 10, 50 and 70 days can be seen in Appendix G
which shows a good agreement with the tracer concentration having undergone large or
field scale investigation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Contour plots of tracer concentration distribution within the porous media with linear drift ratio d = 0.006, 0.03
and 0.2 at 10 days.

In order to find an appropriate mechanisms in predicting the tracer behaviour, we
increase the observation time of the simulation to 50 days, drift effect was found to slightly
affect the tracer concentration shown in contour plots 9. The drift effect may be as a result
of velocity difference where by tracer particles drifts away from a regions of high diffusivity.
3D plots of concentration distribution of the contour plots of Figure 9 at time 50 days can
be found in Appendix G.3 Figure A5.

Further investigation of drift phenomena was undertaken at time t = 70 days for
d = 0.006, 0.03 and 0.2 and a variable dispersion coefficients of Do = 0.001389, 0.002778 and
0.004167 m2/s. The aim is to see if increase/decrease in dispersion coefficient will change
the tracer distribution behaviour with time, it was found that drift effect appears more in
the region of high diffusivity as shown in Figure 10. The results show that the effect of drift
on concentration distribution appears at a later time for a variable dispersion coefficient.

This result is compared to tracer concentration distribution in porous media of Akanji
and Falade (2019) for field scale investigation shown in Figure 11, indicating that drift
effect become significant at a later time during flow and transport at pore scale.

This analysis shows that drift ratio effect manifested fully on the concentration distri-
bution over time. However, as time increases from 10 to 70 days, the drift effect gradually
manifests; suggesting that drift effect may arise over time. Thus, it is evident that concen-
tration drifts away from the source with time [34].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Contour plots of tracer concentration distribution within the porous media with linear drift ratio d = 0.006, 0.03
and 0.2 at 50 days.

(a) (b) (c)

(d) (e) (f)

Figure 10. Cont.
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(g) (h) (i)

Figure 10. Contour plots of tracer concentration distribution within the porous media with linear drift ratio d = 0.006, 0.03
and 0.2 at 70 days.

Two comparisons involving (1) computation of tracer concentration at Darcy’s scale
from Akanji and Falade (2019) and (2) computation of tracer concentration distribution at
pore scale were carried out. As expected, the pattern of the tracer concentration distribution
in this work is in good agreement with Akanji and Falade 2019 as shown in Figure 11.
From Figure 11, the scale of b, d and f are of a small magnitude of 10−6, this justifies that
even at pore scale, tracer-drift characteristics can provide information about concentration
distribution of tracers during flow and transport in porous media.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. Concentration distribution of tracers at Darcy’s scale within the porous media in (a,c,e) Akanji and Falade
2019 [16] while (b,d,f) shows the result obtained from this pore-scale computation approach of concentration distribution
within the porous media with linear drift ratio d = 0.2 and time interval t = 10 d, 50 d, and 70 d.

5. Conclusions

A novel method for investigating the effect of linear drift at pore scale is presented
in this study. The solution processes involve incorporating the analytical solution to the
Stokes equation (Poiseuille velocity) into the generalised convection–dispersion equation
for the flow of tracers under the influence of linear drift. Despite the extensive research in
this field, both numerically and analytically, no general solution is known for equations
describing the tracer flow and transport at the pore-scale where the influence of drift
manifests. Conclusions based on the research findings can be summarised as follows:

• An analytical solution to the radial transport of tracers in porous media under the
influence of linear drift and radial convection at pore scale was developed. The
introduction of Poiseuille velocity into the convection–dispersion equation makes it
possible to investigate the drift phenomena at the pore-scale.

• The analysis we present in this work is consistent with the idea proposed by Akanji
and Falade, 2019. However, this work extends it by incorporating the analytical
solution to the Stokes equation. The solution to the resulting equation was used to
describe the observed behaviour of the fluid over a full range of creeping flow regimes
or Poiseuille velocities.

• Variation of dispersion coefficients from the solution was found to affect the concen-
tration distribution even at low Reynolds number region.

• Linear drift effect at low creeping flow regime was found to affect tracer concentration
distribution at a later time.

• Stokes flow approximation has been invoked and consequently the analysis of the
results is valid in the limits of small Reynolds numbers of <1. However, the behaviour
of the flow is likely to change for higher values of Reynolds number. The drift effect
is then evaluated at a creeping flow regime. An increase in the flow velocity at the
centre of the channel/porous media is noticed in all the cases from a creeping flow
regime to a non-creeping flow regime.

• The influence of linear drift on the concentration profile was evaluated in all the direc-
tions for a system with non-homogeneous porosity distribution and variable velocity
profiles. Analysis of the results shows that the effect of linear drift on concentration
profile depends on system heterogeneity and increases at later times.

• Flow velocities and concentration distribution data sets collected in this study proved
to be essential and valuable for the development and testing of pore-scale numerical
transport model under the influence of drift.

• This study can be used to identify the main transport path of tracers during enhanced
oil recovery studies in porous media.
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Appendix A. Derivation of the Analytical Solution to the Navier–Stokes Equation

ρ
∂v
∂t

+ ρv · ∇(v) = −∇p + µ∇2v (A1)

Applying the following assumptions:

• Steady state, the transient acceleration term i.e
(

ρ ∂v
∂t

)
= 0

• Unidirectional, pressure gradient is only in the X-direction and the plates are motion-
less.

• Velocity vector and the velocity gradient tensor are off-diagonal; therefore, the dot
product is zero. Hence Equation (A1) reduces to:

dp
dx

= µ
∂2v
∂y2 (A2)

From Equation (A2), dp
dx , means the pressure gradient is only in the x-direction and

is uniform. i.e., it is constant. Also µ ∂2v
∂y2 means there is a velocity vector that only has an

x-component and gradient in the y-direction. Integrating Equation (A2) with respect to y
we obtain:

1
2µ

dp
dx

y2 = v + c1y + c (A3)

v =
1

2µ

dp
dx

y2 − c1y− c2 (A4)

Applying the following boundary conditions:and y = h, v = 0. From the first
boundary conditions,⇒ c2 = 0 . From Equation (A4). therefore Equation (A4) reduces to:

v =
1

2µ

dp
dx

y2 − c1y (A5)

Applying the second boundary condition, Equation (A5) becomes:

0 =
1

2µ

dp
dx

y2 − c1y (A6)

Therefore:
c1 =

1
2µ

dp
dx

h (A7)

Substitute for c1 and c2 into Equation (A4) to obtain:

v =
1

2µ

dp
dx

[h− y]y (A8)
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Appendix B. Derivation of the Transport Flow Equation with Linear Drift

The Transport Equation (2) can be expanded by considering a steady-state condition
thus:

1
r

{
D

dC
dr

+ rD
′ dC

dr
+ rD

d2C
dr2

}
− 1

r

{
vC + rv

′
C

+ rv
dC
dr

}
− γ

φ
(kr + s)C = 0

(A9)

But γ
φ = Φ is the chromatographic response function which measures the quality of

separation of tracers from solvent during flow and transport.

⇒ d2C
dr2 +

(
D
′ − v
D

+
1
r

)
dC
dr
−
{

rv
′
+ v

Dr
+

Φ(kr + s)
D

}
C = 0 (A10)

where all variables are defined in the main text. Let:

C = ψexp

{
−1

2

∫ (D
′ − v
D

+
1
r

)
dr

}
(A11)

Then:

dC
dr

=
dψ

dr
.e

[
− 1

2

(
D
′
−v

D + 1
r

)]
−
[

1
2

(
D
′ − v
D

+
1
r

)]
ψe

[
− 1

2

(
D
′
−v

D + 1
r

)]
(A12)

and:
d2C
dr2 =

d
dr

{
dψ

dr
.e

[
− 1

2

(
D
′
−v

D + 1
r

)]

−
[

1
2

(
D
′ − v
D

+
1
r

)]
ψe

[
− 1

2

(
D
′
−v

D + 1
r

)]} (A13)

=
d2ψ

dr2 .e

[
− 1

2

(
D
′
−v

D + 1
r

)]
−
[

1
2

(
D
′ − v
D

+
1
r

)]
dψ

dr
.

e

[
− 1

2

(
D
′
−v

D + 1
r

)]
−
[

1
2

(
D
′ − v
D

+
1
r

)]
ψ.e

[
− 1

2

(
D
′
−v

D + 1
r

)]

−
[

1
2

(
D
′ − v
D

+
1
r

)]
dψ

dr
.e

[
− 1

2

(
D
′
−v

D + 1
r

)]

+

1
4

(
D
′ − v
D

+
1
r

)2
ψe

[
− 1

2

(
D
′−v
D + 1

r

)]
(A14)

d2C
dr2 =

d2ψ

dr2 −
(

D
′ − v
D

+
1
r

)
dψ

dr
−

1
2

(
D
′ − v
D

+
1
r

)
− 1

4

(
D
′ − v
D

+
1
r

)2
ψ


e

[
− 1

2

(
D
′
−v

D + 1
r

)] (A15)

Let:
d2C
dr2 +

(
D
′ − v
D

+
1
r

)
= I (A16)
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With the first order differential component dC
dr defined by Equation (A12), then:

I =
d2ψ

dr2 .e

[
− 1

2

(
D
′
−v

D + 1
r

)]

−
(

D
′ − v
D

+
1
r

)
dψ

dr
.e

[
− 1

2

(
D
′
−v

D + 1
r

)]

−

1
2

(
D
′ − v
D

+
1
r

)
− 1

4

(
D
′ − v
D

+
1
r

)2
ψe

[
− 1

2

(
D
′
−v

D + 1
r

)]

+

(
D
′ − v
D

+
1
r

)e

[
− 1

2

(
D
′
−v

D + 1
r

)]
dψ

dr
− 1

2

(
D
′ − v
D

+
1
r

)
ψ

e

[
− 1

2

(
D
′
−v

D + 1
r

)]
(A17)

Substituting Equations (A11) and (A17) in (A9) and rearranging gives:

d2ψ

dr2 −
{

1
2

(
D
′ − v
D

+
1
r

)
+

(
D
′ − v
D

+
1
r

)2

+

(
rv
′
+ v

Dr
+

Φ(kr + s)
D

)}
ψ = 0

(A18)

Expressing the effective fluid velocity v in dimensionless form:

p
2µ

(
hy− y2

)
= vd +

α

r
(A19)

D(r) = k +
βp

r
(A20)

= k + βpr−1 (A21)

D
′
(r) = −βpr−2 = −

βp

r2 (A22)

Thus:

D
′
(r)− v = −

βp

r2 −
p

2µ

[
hy− y2

]
(A23)

D
′ − v

D′(r)
=

−βpr
r2
(
kr + βp

) − p
2µ

(
hy− y2)r(

kr + βp
) (A24)

=
−βp

r
(
kr + βp

) − p
[
hy− y2]r

2µ
(
kr + βp

) (A25)

Let:

I ≡
−βp

r
(
kr + βp

) =
A
r
+

B
kr + βp

(A26)

then:
− βp = A

(
kr + βp

)
+ Br (A27)

r = 0⇒ −βp = Aβp + 0⇒ A = −1 (A28)

B = −βp + k + βp = k (A29)

so that:

I ≡
−βp

r
(
kr + βp

) =
k

kr + βp
− 1

r
(A30)



Mathematics 2021, 9, 2509 20 of 36

Therefore:
D
′
(r)− v
D(r)

=
k

kr + βp
− 1

r
−

p
[
hy− y2]r

2µ
(
kr + βp

) (A31)

(
D
′
(r)− v
D(r)

+
1
r

)
=

k
kr + βp

−
p
(
hy− y2)r

2µ
(
kr + βp

) (A32)

(
D
′
(r)− v
D(r)

+
1
r

)′
=

−k2(
kr + βp

)2 −
p
(
hy− y2)

2µ
(
kr + βp

) + pk
(
hy− y2)r

2µ
(
kr + βp

)2 (A33)

=

[
pk
(
hy− y2)r− 2µk2]
2µ
(
kr + βp

)2 −
p
(
hy− y2)

2µ
(
kr + βp

) (A34)

rv
′
+ v

Dr
=

0 + p
2µ

[
hy− y2](

kr + βp
) (A35)

=
p
(
hy− y2)

2µ
(
kr + βp

) (A36)

Therefore, Equation (A18) becomes:

d2ψ

dr2 −
{

1
2

[
pk
(
hy− y2)r− 2µk2

2µ
(
kr + βp

)2 −
p
(
hy− y2)

2µ
(
kr + βp

)]

+
1
4

[
k

kr + βp
−

p
(
hy− y2)

2µ
(
kr + βp

)]2

+

[
p
(
hy− y2)

2µ
(
kr + βp

) + Φ(kr + s)(
kr + βp

)]}ψ = 0

(A37)

⇒ d2ψ

dr2 −
{

pk
(
hy− y2)r− 2µk2

4µ
(
kr + βp

)2 −
p
(
hy− y2)

2µ
(
kr + βp

)}ψ

−

 k2(
kr + βp

) + p2
(

hy− y
2
)2

r2

16µ2
(
kr + βp

)2 +
kp
(
hy− y2)r

4µ
(
kr + βp

)2

ψ

−
{

p
(
hy− y2)+ 2µΦ(kr + s)r

2µ
(
kr + βp

) }
ψ = 0

(A38)

=
d2ψ

dr2 −
pk
(
hy− y2)r

4µ
(
kr + βp

)2 ψ +
k2

2
(
kr + βp

)2 ψ +
p
(
hy− y2)

2µ
(
kr + βp

)ψ

− k2

4
(
kr + βp

)2 ψ−
p2(hy− y2)2r2

16µ2
(
kr + βp

)2 ψ +
pk
(
hy− y2)r

4µ
(
kr + βp

)2 ψ

−
p
(
hy− y2)

2µ
(
kr + βp

)ψ− Φ(kr + s)
kr + βp

ψ = 0

(A39)

An expression of the form:

d2ψ

dr2 +

[
1
4

k2(
kr + βp

)2 −
p2(hy− y2)r2

16µ2
(
kr + βp

)2 −
Φ(kr + s)r

kr + βp

]
ψ = 0 (A40)
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is therefore obtained for the general pore-scale convection–diffusion equation in Laplace
space. And it can be written in dimensionless form as:

d2ψ

dr2
D
+

[
1
4

k2(
krD + βp

)2 −
p2(hy− y2)2r2

D

16µ2
(
krD + βp

)2

−Φ(kr + s)rD(
krD + βp

) ]ψ = 0

(A41)

Recall that:
η = krD + β (A42)

rD = (η − β)
1
k
⇒ drD

dη
=

1
k

(A43)

drD
dη

= k⇒ drD =
1
k

η (A44)

d2ψ

dr2
D

=
d

drD

(
dψ

drD

)
=

d
1
k dη

(
dψ
1
k dη

)

=
1
1
k2

d
dη

(
dψ

dη

)
= k2 d2ψ

dη2

(A45)

⇒ k2 d2ψ

dη2 +

{[
1
4

k2

η2 −
p2(hy− y2)2

(η − β)2 1
k2

16µ2η2

−
Φ(kr + s)(η − β) 1

k
η

]}
ψ = 0

(A46)

= k2 d2ψ

dη2 +

{
k2

4η2 −
p2(hy− y2)(η − β)2

16µ2k2η2

−φ(kr + s)
k

+
Φ(kr + s)β

kη

}
ψ = 0

(A47)

Appendix C. Transformation and Simplification of Pore-Scale Convection–Diffusion
Equation to the General Whittaker Equation

However, applying the transformation of Section 3 to Equation (4) gives:

⇒ k2 d2ψ

dη2 +

{
k2

4η2 −
p2(hy− y2)2

(η − β) 1
k2

16µ2η2

−
Φ(kr + s)(η − β) 1

k
η

}
ψ = 0

(A48)

Simplifying Equation (A48) above:

k2 d2ψ

dη2 +

{
k2

4η2 −
p2(hy− y2)(η2 − 2ηβ + β2)

16µ2k2η2

− Φ(kr + s)
kη

(η − β)

}
ψ = 0

(A49)



Mathematics 2021, 9, 2509 22 of 36

= k2 d2ψ

dη2 +

{
k2

4η2 −
p2(hy− y2)

16µ2k2

(
1− 2β

η

+
β2

η2

)
− Φ(kr + s)

k

(
1− β

η

)}
ψ = 0

(A50)

d2ψ

dη2 +

{
1

4η2−
p2(hy− y2)

16µ2k4

−
(

1− 2β

η
+

β2

η2

)
− Φ(kr + s)

k3

(
1− β

η

)}
ψ = 0

(A51)

d2ψ

dη2 +

{
1

4η2−
p2(hy− y2)

16µ2k4

−
(

1− 2β

η
+

β2

η2

)
− Φ(kr + s)

k3

(
1− β

η

)}
ψ = 0

(A52)

Further, simplification of Equation (A52) gives:

⇒ d2ψ

dη2 +

{[
1
4
−

p2β2(hy− y2)
16µ2k4

]
1
η2

}

+

{[
p2(hy− y2)β

8µ2k4 + βφ(kr + s)

]
1
η

}
ψ

−
{[

p2(hy− y2)
16µ2k2 +

Φ(kr + s)
k

]
1
k2

}
ψ = 0

(A53)

Equation (A53) can be written in the form of Whittaker equation by changing some
variables defined as:

ξ = 2η
√

a (A54)

where:

a =
1
k2

(
p2(hy− y2)

16µ2k2 +
Φ(kr + s)

k

)
(A55)

= f (s)2 (A56)

Then:
ds
dη

= 2 f (s)⇒ ds = 2 f (s)dη ⇒ ds
d f (s)

= dη (A57)

dψ

dη
=

dψ

ds
.
ds
dη

= 2 f (s)
dψ

ds
(A58)

and
d2ψ

dη2 =
d

dη

(
dψ

dη

)
=

d
dξ

2 f (s)

 dψ
dξ

2 f (s)

 (A59)

=
1
1

4 f (s)2
d2ψ

dξ2 (A60)
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Substituting Equations (A58) and (A60) into Equation (A53) gives:

4 f (s)2 d2ψ

dξ2 +

{[
1
4
−

p2β2(hy− y2)
16µ2k4

]
4 f (s)2

ξ2

+

[
p2(hy− y2)β

8µ2k4 + βΦ(kr + s)

]
2 f (s)

ξ
− f (s)2

}
ψ = 0

(A61)

⇒ d2ψ

dξ2 +

{[
1
4
−

p2β2(hy− y2)
16µ2k4

]
1
ξ2

+

[
p2(hy− y2)β

8µ2k4 + βΦ(kr + s)

]
1

2 f (s)ξ
− 1

4

}
ψ = 0

(A62)

Hence Equation (A62) can now be written as:

⇒ d2ψ

dξ2 +

{[
1
4
−

p2β2(hy− y2)
16µ2k4

]
1
ξ2

+

[
p2(hy− y2)β
16µ2k4 f (s)

+
βΦ(kr + s)

2 f (s)

]
1
ξ
− 1

4

}
ψ = 0

(A63)

Equation (A63) is the equation that is written in the form of Whittaker Equation (8) in
Section 3 of the main text.

Appendix D. Analytical Solution of Tracer Concentration and Its Weak-Form Solution

Detailed solution of the general whittaker equation can be found in Akanji and
Falade [16]. Tracer concentration can now be written as:

C(η(r), s) = ψe
− 1

2
∫( k

kr+βw
−

p(hy−y2)
2µ

r
(kr+βw)

)
dr

(A64)

The solution to Equations (A62)–(A64) can therefore be expressed as:

ψ(ξ) = e−
ξ
2 ξ

1
2+µU

(
1
2
+ µ− k, 1 + 2µ, ξ

)
(A65)

However, the concentration C is defined in terms of ψ as:

C = ψe

{
1
2
∫ ( D

′
−v

D + 1
rD

)
drD

}
(A66)

or:

C = ψe
1
2
∫( k

krD+βw
−

p(hy−y2)rD
2µ(krD+βw)

)
drD

(A67)

C = ψ(krD + β)
− 1

2
p(hy−y2)β

4µk2 e
p(hy−y2)

4µk2 (A68)
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C =(krD + β)
− 1

2
p(hy−y2)β

4µk2 e
p(hy−y2)

4µk2

e−
ξ
2 ξ

1
2+µU

(
1
2
+ µ− k, 1 + 2µ, ξ

) (A69)

so that:

C =η
− 1

2
p(hy−y2)β

4µk2 e
p(hy−y2)

4µ2k e−η
√

a(
2η
√

a
) 1

2+µU
(

1
2
+ µ− k, 1 + 2µ, ξ

) (A70)

C =η

(
− 1

2−
p(hy−y2)

4µk2 +( 1
2+µ)

)(
2η
√

a
) 1

2+µ

e
p(hy−y2)

4µ2k
−η
√

a
U
(

1
2
+ µ− k, 1 + 2µ, ξ

) (A71)

C =η
µ−

p(hy−y2)
4µ2k

(
2η
√

a
) 1

2+µe
p(hy−y2)

4µ2k
−η
√

a

U
(

1
2
+ µ− k, 1 + 2µ, 2η

(√
a
)) (A72)

or:

C =

(
ξ

2
√

a

)− 1
2−

p(hy−y2)β

4µk2
e

p(hy−y2)
4µ2k e−

ξ
2

ξ
1
2+µU

(
1
2
+ µ− k, 1 + 2µ, ξ

) (A73)

C =ξ

(
− 1

2−
p(hy−y2)β

4µk2

)
+( 1

2+µ)(
2
√

a
) 1

2+
p(hy−y2)β

4µk2

e
p(hy−y2)

4µ2k
− ξ

2 U
(

1
2
+ µ− k, 1 + 2µ, ξ

) (A74)

C =ξ
µ−

p(hy−y2)
4µk2 (

2
√

a
) 1

2+
p(hy−y2)β

4µk2

e
p(hy−y2)

4µ2k
− ξ

2 U
(

1
2
+ µ− k, 1 + 2µ, ξ

) (A75)

where a is given as:

a =
1
k2

(
p2(hy−y2)

16µ2k2 +
Φ(kr + s)

k

)
(A76)

=
1

16µ2k4

(
p2
(

hy− y2
)
+ 16µ2kΦ(kr + s)

)
(A77)

and:
ξ =

(
2
√

a
)
η (A78)

ξ =
(
2
√

a
)
(krD + β) (A79)

ξ =
1

2µk2

√
p2(hy− y2) + 16µ2kΦ(kr + s)(krD + β) (A80)

ξrD =
1

2µk2

√
p2(hy− y2) + 16µ2kΦ(kr + s)(kr + β) (A81)
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Having developed the transport equation for flow of tracers at pore scale, the weak-
form solution of Equation (17) is now presented in Laplace space by adopting the separation
of variables with X-parameter (Xp) and Y-parameter (Yp), thus:

C(x, y, s) = Xp(x)Yp(y, s) (A82)

The X-parameter (Xp) can be expressed as:

Xp(x) = τU
(

1
2
+ µ− k, 1 + 2µ, σξXp

)
e−

1
2 (

1
σ−1)ξXp (A83)

where the components and arguments of the Tricomi Kummer function U (a, b, x) are
defined thus:

ξXp =

 β
[

p
2µ

(
hy− y2)]
Dod

+

[
p

2µ

(
hy− y2)]
Do

x

 (A84)

σ =

√√√√1− 4ω2Do[
p

2µ (hy− y2)
]
d

(A85)

h =
ω2β[

p
2µ (hy− y2)

]
d2

(A86)

and Y-parameter (Yp):

Yp(y, s) =
(

1
3

ξ
1
2+µ

Yp

)
e

[
p

2µ (hy−y2)
]

y

2Do[
I− 1

3

(
2
3

Lξ
3
2+µ

Yp

)
+ I+ 1

3

(
2
3

Lξ
3
2+µ

YP

)] (A87)

ξYp =

1
4


[

p
2µ

(
hy− y2)]
Do

2

+
Rs + Rk + ω2

Doλ
Y

 (A88)

I is modified Bessel functions of the first kind and decays to zero rapidly with the
concentration distribution of the Y (y,s) component in the negative half, depicting the
positive half.

Appendix E. Analytical Solution—Dimensionless Representation and Inverse Laplace
Transform

In dimensionless radial length rD, C(η(r), s) can be written as:

C(η(r), s) = ψ
− 1

2
∫( k

krD+β−
p(hy−y2)rD
2µ(krD+β)

)
drD

(A89)

= ψe
− 1

2
∫( k

η−
p(hy−y2)

2µη − (η−β)
k

)
dη
k

(A90)

= ψe
− 1

2
∫( 1

η +
p(hy−y2)β

2µk2η
−

p(hy−y2)
2µk2

)
dη

(A91)

= ψe
− 1

2

[(
1+

p(hy−y2)
2µk2

)
lnη−

p(hy−y2)η

2µk2

]
(A92)

= ψelnη

− 1
2

1+
p(hy−y2)

2µk2


.e

p(hy−y2)
4µk2 η

(A93)
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ψ(ξ, s) = e−
1
2 ξ

1
2+µU

(
1
2
+ µ− k, 1 + 2µ, ξ

)
(A94)

A(s) = 2
1
2

[
1+

p(hy−y2)
2µk2

]
ξ

1
2

[
1+

p(hy−y2)
2µk2

]
− 1

2−µ

( f (s))
1
2

[
1+

p(hy−y2)
2µk2

]
(A95)

ξ = 2η f (s)⇒ η =
ξ

2 f (s)
(A96)

therefore:

C(ξ, s) = ψ(2 f (s))
− 1

2

(
1+

p(hy−y2)
2µk2

)
e

p(hy−y2)
4µk2 − ξ

2 f (s) (A97)

C(ξ, s) = ψξ
− 1

2

(
1+

p(hy−y2)
2µk2

)
2

1
2

(
1+

p(hy−y2)
2µk2

)
( f (s))

1
2

(
1+

p(hy−y2)
2µk2

)
e

(
p(hy−y2)

8µk2

)
− ξ

f (s)
(A98)

ψ = C(ξ, s)ξ
1
2

(
1+

p(hy−y2)
2µk2

)
2
− 1

2

(
1+

p(hy−y2)
2µk2

)
( f (s))

− 1
2

(
1+

p(hy−y2)
2µk2

)
e
−
(

p(hy−y2)
8µk2

)
− ξ

f (s)
(A99)

= B(s)e−
ξ
2 ξ

1
2+µU

(
1
2
+ µ− k, 1 + 2µ, ξ

)
(A100)

B(s) =
C(ξ, s)ξ

1
2

(
1+

p(hy−y2)
2µk2

)
2
− 1

2

(
1+

p(hy−y2)
2µk2

)
( f (s))

− 1
2

(
1+

p(hy−y2)
2µk2

)
e

(
p(hy−y2)

8µk2

)
− ξ

f (s)

e−
ξ
2 ξ

1
2+µU

(
1
2 + µ− k, 1 + 2µ, ξ

) (A101)

Let: U
(

1
2 + µ− k, 1 + 2µ, ξ

)
= R

B(s) =
C(ξ, s)

2
1
2

(
1+

p(hy−y2)
2µk2

)
ξ
− 1

2

(
1+

p(hy−y2)
2µk2

)
+ 1

2+µ
( f (s))

1
2

(
1+

p(hy−y2)
2µk2

)
e

p(hy−y2)
8µk2 − ξ

f (s)−
ξ
2 R

(A102)

B(s) =
C(ξ, s)

2
1
2

(
1+

p(hy−y2)
2µk2

)
ξ

µ− p(hy−y2)
2µk2 ( f (s))

1
2

(
1+

p(hy−y2)
2µk2

)
e
− ξ

2

[
1− p(hy−y2)

4µk2 − ξ
f (s)

]
R

(A103)

Now:

C(ξ, s) = ψξ
− 1

2

(
1+

p(hy−y2)
2µk2

)
2

1
2

(
1+

p(hy−y2)
2µk2

)

( f (s))
1
2

(
1+

p(hy−y2)
2µk2

)
e

p(hy−y2)
8µk2 − ξ

f (s)

(A104)

C(ξ, s) = e−
ξ
2 ξ

1
2+µU

(
1
2
+ µ− k, 1 + 2µ, ξ

)
ξ
− 1

2

(
1+

p(hy−y2)
2µk2

)
2

1
2

(
1+

p(hy−y2)
2µk2

)

( f (s))
1
2

(
1+

p(hy−y2)
2µk2

)
e

p(hy−y2)
8µk2 − ξ

f (s)

(A105)

C(ξ, s) = 2
1
2

(
1+

p(hy−y2)
2µk2

)
ξ

µ−
p(hy−y2)

4µk2 ( f (s))
1
2

(
1+

p(hy−y2)
2µk2

)
e

[
p(hy−y2)

4µk2 − 1
f (s)

]
ξ
2

R (A106)
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dC(ξ, s)
dξ

=

(
µ−

p
(
hy− y2)
4µk2

)
2

1
2

(
1+

p(hy−y2)
2µk2

)
ξ

µ−
p(hy−y2)

4µk2 ( f (s))
1
2

(
1+

p(hy−y2)
4µk2

)
e

[
p(hy−y2)
4µk2 f (s)

−1

]
ξ
2

R

+

(
p
(
hy− y2)

8µk2 f (s)
− 1

2

)
2

1
2

(
1+

p(hy−y2)
2µk2

)
ξ

µ−
p(hy−y2)

4µk2 ( f (s))
1
2

(
1+

p(hy−y2)
4µk2

)
e

[
p(hy−y2)
4µk2 f (s)

−1

]
ξ
2

R

−
(

1
2
+ µ− k

)
2

1
2

(
1+

p(hy−y2)
2µk2

)
ξ

µ−
p(hy−y2)

4µk2 ( f (s))
1
2

(
1+

p(hy−y2)
4µk2

)
e

[
p(hy−y2)
4µk2 f (s)

−1

]
ξ
2

R

(A107)

However, U
(

1
2 + µ− k, 1 + 2µ, ξ

)
= R is used from Equations (A102)–(A107) to avoid

equation breakthrough.

= 2
1
2

(
1+

p(hy−y2)
2µk2

)
ξ

µ−
p(hy−y2)

4µk2 ( f (s))
1
2

(
1+

p(hy−y2)
4µk2

)
e

[
p(hy−y2)
4µk2 f (s)

−1

]
ξ
2
U
(

1
2
+ µ− k, 1 + 2µ, ξ

)

[

µ−
p
(
hy− y2)
4µk2

]
ξ−1 +

(
p
(
hy− y2)

8µk2 f (s)
− 1

2

)
−
(

1
2
+ µ− k

)U
′
(

1
2 + µ− k, 1 + 2µ, ξ

)
U
(

1
2 + µ− k, 1 + 2µ, ξ

)


(A108)

= 2
1
2

(
1+

p(hy−y2)
2µk2

)
ξ

µ−
p(hy−y2)

4µk2 ( f (s))
1
2

(
1+

p(hy−y2)
4µk2

)
e

[
p(hy−y2)
4µk2 f (s)

−1

]
ξ
2
U
(

1
2
+ µ− k, 1 + 2µ, ξ

)

[

µ−
p
(
hy− y2)
4µk2

]
ξ−1 +

(
p
(
hy− y2)

8µk2 f (s)
− 1

2

)
−
(

1
2
+ µ− k

)U
′
(

1
2 + µ− k, 1 + 2µ, ξ

)
U
(

1
2 + µ− k, 1 + 2µ, ξ

)


(A109)

dC(ξ, s)
dξ

=

{[
µξ−1 −

p
(
hy− y2)
4µk2 ξ−1 +

p
(
hy− y2)

8µk2 f (s)
− 1

2

]

−

(1
2
+ µ− k

)U
′
(

1
2 + µ− k, 1 + 2µ, ξ

)
U
(

1
2 + µ− k, 1 + 2µ, ξ

)
}C(ξ, s)

(A110)

However:
η = krD + β⇒ ξ

2 f (s)
= krD + β (A111)

⇒ ds
2 f (s)

= kdrD ⇒ ds = 2k f (s)drD (A112)

Thus:
dC(ξ, s)

2k f (s)drD
=

{
1
ξ

[
µ−

p
(
hy− y2)
4µk2

]
− 1

2

[
1−

p
(
hy− y2)

8µk2 f (s)

]

−
(

1
2
+ µ− k

)U
′
(

1
2 + µ− k, 1 + 2µ, ξ

)
U
(

1
2 + µ− k, 1 + 2µ, ξ

) }C(ξ, s)

(A113)

⇒ dC(ξ, s)
drD

=

{
1
ξ

[
µ−

p
(
hy− y2)
4µk2

]
− 1

2

[
1−

p
(
hy− y2)

8µk2 f (s)

]

−
(

1
2
+ µ− k

)U
′
(

1
2 + µ− k, 1 + 2µ, ξ

)
U
(

1
2 + µ− k, 1 + 2µ, ξ

) }C(ξ, s)

(A114)
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but:
U
′
(

1
2 + µ− k, 1 + 2µ, ξ

)
U
(

1
2 + µ− k, 1 + 2µ, ξ

) =
1
ξ
=

1
2η f (s)

(A115)

dC(ξ, s)
drD

= 2k f (s)

{
1
ξ

[
µ−

p
(
hy− y2)
4µk2

]

−1
2

[
1−

p
(
hy− y2)

8µk2 f (s)

]
−
(

1
2
+ µ− k

)
1
ξ

}
C(ξ, s)

(A116)

1
f (s)

dC(ξ, s)
drD

= 2k

{
1
ξ

[
µ−

p
(
hy− y2)
4µk2

]

−1
2

[
1−

p
(
hy− y2)

8µk2 f (s)

]
−
(

1
2
+ µ− k

)
1
ξ

}
C(ξ, s)

(A117)

1
f (s)

dC(ξ, s)
drD

= 2k

{
1
ξ

[
k− 1

2
−

p
(
hy− y2)
4µk2

]

−1
2
+

p
(
hy− y2)

16µk2 f (s)

}
C(ξ, s)

(A118)

1
f (s)

dC(ξ, s)
drD

= k

{
1
ξ

[
2k− 1−

p
(
hy− y2)
2µk2

]

−1 +
p
(
hy− y2)

8µk2 f (s)

}
C(ξ, s)

(A119)

1
f (s)

dC(ξ, s)
drD

= k

{
1

η f (s)

[
k− 1

2
−

p
(
hy− y2)
4µk2

]

−1 +
p
(
hy− y2)

8µk2 f (s)

}
C(ξ, s)

(A120)

However:

k =
p2β
(
hy− y2)

16µk4 f (s)
+

βΦ(kr + s)
2 f (s)

(A121)

Therefore:

1
f (s)

dC(ξ, s)
dη

=

{
1

2η f (s)

[
p2β
(
hy− y2)

16µk4 f (s)
+

βΦ(kr + s)
2 f (s)

−1
2
−

p
(
hy− y2)
4µk2

]
− 1

2
+

p
(
hy− y2)

16µk2 f (s)

}
C(ξ, s)

(A122)

1
f (s)

dC(ξ, s)
dη

= −1
2

C(ξ, s) +

{ p(hy−y2)
16µk2 − 1

4η −
p(hy−y2)

8µηk2

f (s)

+

p2β(hy−y2)
32ηµ2k4 + βΦ(kr+s)

4η

( f (s))2

}
C(ξ, s)

(A123)
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1
2

C(ξ, s) = − 1
f (s)

dC(ξ, s)
dη

+

{ p(hy−y2)
16µk2 − 1

4η −
p(hy−y2)

8µηk2

f (s)

+

p2β(hy−y2)
32ηµ2k4 + βΦ(kr+s)

4η

( f (s))2

}
C(ξ, s)

(A124)

1
2k

C(ξ, s) = − 1
k f (s)

dC(ξ, s)
dη

−
{ p(hy−y2)

16µk2 − 1
4η −

p(hy−y2)
8µηk2

k f (s)

+

p2β(hy−y2)
32ηµ2k3 + kβΦ(kr+s)

4η

k2( f (s))2

}
C(ξ, s)

(A125)

but:

k f (s) = k
√

a = k.
1
k

√
p2(hy− y2)

16µ2k2 +
Φ(kr + s)

k
(A126)

=

√
p2(hy− y2)

16µ2k2 +
Φ(kr + s)

k
(A127)

k f (s) =
√

ϕ

k

√√√√( p2(hy−y2)

16µϕk
+ kr

)
+ s (A128)

The inverse Laplace transform of (s)−1 is:

L−1

 1[√
ϕ
k

√(
p2(hy−y2)

16µϕk + kr

)
+ s

]
 =

e
−
(

p2(hy−y2)
16µ2 ϕk

+kr

)
t√

ϕ
k πt

(A129)

Similarly, the inverse Laplace transform of f (s)−2 is:

L−1


1[√

ϕ
k

√(
p2(hy−y2)

16µϕk + kr

)
+ s

]2

 =
e
−
(

p2(hy−y2)
16µ2 ϕk

+kr

)
t

ϕ
k

(A130)

Evaluating the inverse Laplace transform of the general solution as:

1
2k

C(ξ, s) = −
√

k
ϕ

∫ t

0

dC(ξ, τ)

dη

e
−
(

p2(hy−y2)
16µ2 ϕk

+kr

)
(t−τ)

π(t− τ)

dτ

−
√

k
ϕ

(
p
(
hy− y2)
16µk4 − 1

4η
−

p
(
hy− y2)
8µηk2

) ∫ t

0
C(ξ, τ)

e
−

 p
2(hy−y2)

16µ2 ϕk
+kr

(t−τ)

√
π(t− τ)

dτ

−
(

p2β
(
hy− y2)

32ηµ2ϕk2 +
k2βφ(kr + s)

4ϕη

) ∫ t

0
C(ξ, τ)e

−

 p
2(hy−y2)

16µ2 ϕk
+kr

(t−τ)

dτ

(A131)
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f (s) =
1
k

√
p2(hy− y2)

16µ2k2 +
Φ(kr + s)

k
(A132)

f (s) =
1

(Dm + βw)

√
p2(hy− y2)

16µ2(Dm + βw)
2 +

Φ(kr + s)
(Dm + βw)

(A133)

Equations (10) and (11) becomes:

µ =
pβ
√

hy− y2

4µk2 (A134)

pvpDo
√

hy−y2

4µ(Dm + Dovd)
2 =

pvpDo
(
hy− y2)

4µD2
m

(
1 + Dovd

Dm

)2 (A135)

k =
p2β
(
hy− y2)

16µ2k4 f (s)
+

βΦ(kr + s)
2 f (s)

(A136)

=
p2vpDo

(
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Appendix F. Symmetrical X-Parameter
(
Xp
)

and Y-Parameter
(
Yp
)

as a Function of
Angle (θ) at a Thickness of h = 1.7 × 10−5 m, time t = 10 Days and Varying
Separation Constant

(
ω2)

(a) (b)

Figure A1. Cont.
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(c) (d)

(e)

Figure A1. X-parameter (Xp) as a function of angle (θ) for channel thickness h = 1.7 × 10−5 m, time t = 10 d and
varying separation constant (ω2). These results correspond to the second half-wing of those presented in Figure 5.
(a) v7 = 3.7846× 10−5 m/s, (b) v8 = 3.4602× 10−5 m/s (c) v9 = 2.9196× 10−5 m/s (d) v10 = 2.1627× 10−5 m/s and (e)
v11 = 1.1895× 10−5 m/s.

(a) (b)

Figure A2. Cont.
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(c) (d)

(e)

Figure A2. Y-parameter ( Yp ) as a function of angle (θ) for channel thickness h = 1.7× 10−5 m,
time t = 10 d and varying separation constant (ω2). These results correspond to the second half-
wing of those presented in Figure 6. (a) v7 = 3.7846× 10−5 m/s, (b) v8 = 3.4602× 10−5 m/s (c)
v9 = 2.9196× 10−5 m/s (d) v10 = 2.1627× 10−5 m/s and (e) v11 = 1.1895× 10−5 m/s.

Appendix G. Concentration Distribution within the Porous Media with Linear Drift
Ratio d = 0.006, 0.03 and 0.2 at Three Selected Time Intervals (t = 10, 50 and 70 Days)
and a Variable Dispersion Coefficient of Do = 0.001389, 0.002778 and 0.004167 m2/s

Appendix G.1. 10 Days

(a) (b) (c)

Figure A3. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure A3. Concentration distribution within the porous media with variable linear drift ratio and dispersion coefficients
correspond to (a) d = 0.2, D=0.001389 (b) d = 0.2, D = 0.002778 (c) d = 0.2, D = 0.004167 (d) d = 0.03, D = 0.001389 (e) d = 0.03,
D = 0.002778 (f) d = 0.03, D = 0.004167 (g) d = 0.06, D = 0.001389 (h) d = 0.06, D = 0.002778 (i) d = 0.06, D = 0.004167 at a
period of 10 days.

Appendix G.2. t = 50 Days

(a) (b) (c)

(d) (e) (f)

Figure A4. Cont.
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(g) (h) (i)

Figure A4. Concentration distribution within the porous media with variable linear drift ratio and dispersion coefficients
correspond to (a) d = 0.2, D=0.001389 (b) d = 0.2, D = 0.002778 (c) d = 0.2, D = 0.004167 (d) d = 0.03, D = 0.001389 (e) d = 0.03,
D=0.002778 (f) d = 0.03, D = 0.004167 (g) d = 0.06, D = 0.001389 (h) d = 0.06, D = 0.002778 (i) d = 0.06, D = 0.004167 at a
period of 50 days.

Appendix G.3. t = 70 Days

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A5. Concentration distribution within the porous media with variable linear drift ratio and dispersion coefficients
correspond to (a) d = 0.2, D = 0.001389 (b) d = 0.2, D = 0.002778 (c) d = 0.2, D = 0.004167 (d) d = 0.03, D = 0.001389 (e)
d = 0.03, D = 0.002778 (f) d = 0.03, D = 0.004167 (g) d = 0.06, D = 0.001389 (h) d = 0.06, D = 0.002778 (i) d = 0.06, D = 0.004167
at a period of 70 days.
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