
Enhancing TCP to Support Rate-Limited Traffic
Arjuna Sathiaseelan
School of Engineering
University of Aberdeen

Aberdeen, UK
arjuna@erg.abdn.ac.uk

Raffaello Secchi
School of Engineering
University of Aberdeen

Aberdeen, UK
raffaello@erg.abdn.ac.uk

Godred Fairhurst
School of Engineering
University of Aberdeen

Aberdeen, UK
gorry@erg.abdn.ac.uk

ABSTRACT
This paper introduces a new TCP congestion control
mechanism for rate-limited applications that transmit data
in bursts and do not fully utilise their allowed transmission
rate. We propose “new-CWV”, a method that allows a TCP
connection to restart quickly from either an idle or
application-limited period. Simulation results show that this
provides faster convergence to the rate requested by a rate-
limited application, demonstrated by a higher throughput,
and better utilisation of unused capacity compared to
Standard TCP or TCP with Congestion Window
Validation.

Categories and Subject Descriptors
C.2.TCP/IP

Keywords
TCP, Congestion-control, capacity-sharing

1. INTRODUCTION
Many current Internet applications can be characterised as
“rate-limited”. We define a rate-limited application as one
that transmits at a rate not directly controlled by the
transport protocol, but instead dictated by the application.
A rate-limited application may send at a Constant Bit Rate
(CBR), less than limited by the transport, or send with
periods of higher (but limited) rate, separated by periods
with a much lower rate (application-limited periods), or by
periods where no data is sent (idle periods).

Transmission Control Protocol (TCP), RFC 793 was
designed to support a range of applications, but TCP
congestion control [1] been optimised primarily for bulk
transfers. The performance of bulk applications is limited
by the TCP window. Bulk applications are not rate-limited.

Many multimedia applications use the User Datagram
Protocol (UDP) specified in RFC 768. Such applications
can (and often do) transmit at a constant rate, irrespective
of available capacity and although applications may
implement congestion control, they typically do not use a
standard method.

It is commonly perceived that the Additive Increase
Multiplicative Decrease (AIMD) behaviour of TCP is
inappropriate for the strict requirements for timeliness of
interactive applications. This led to initiatives to define
alternate methods such as the TCP Friendly Rate Control
(RFC 5348), although at present this has yet to achieve
wide scale deployment [2]. The recent growth of TCP-
based multimedia applications has reopened the debate on
use of TCP for rate-limited applications (e.g.[3],[4]). Other
rate-limited TCP behaviours include HTTP 1.1 persistent
connections, Google SPDY (which uses persistent
connections to retrieve multiple objects) and HTTP
Adaptive Streaming (HAS).

This paper will focus on such traffic, for which Standard
TCP is not generally well-adapted. One method to provide
acceptable performance over TCP is for the sender to
continue to transmit at the same rate during periods of
silence, known as “padding”. Although this can ensure
acceptable application performance, it can also degrade
network performance and decrease the effectiveness of
TCP congestion control [2][5].

The paper proposes a set of modifications to Standard TCP
to enable effective use of standards-based methods. Our
proposal, new-CWV, freezes the congestion window
(cwnd) during a rate-limited period, enabling the
application to restart with the same cwnd after a rate-
limited period. Hence, the cwnd would neither grow nor
reduce while rate-limited. This allows applications to more
quickly resume transmission. When a new-CWV sender
detects a congestion event during the first RTT of restarting
with a large cwnd, the methods appropriately reduce the
cwnd. This can satisfy the capacity requirements of real-
time applications and at the same time provide congestion
control appropriate for use in the Internet. We suggest this
may encourage more application developers to use
standards-based TCP congestion control.

A similar notion of freezing the cwnd was also proposed in
Freeze-TCP [6], however Freeze-TCP was specifically
proposed to mitigate mobility related disconnections and is
not a suitable solution for variable-rate congestion control.

The remainder of the paper is organized as follows: Section
2 discusses the behaviour of TCP when carrying rate-
limited traffic. Section 3 describes new-CWV. Section 4
analyses the performance of new-CWV over a range of
scenarios. This is followed by the conclusions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSWS’12, December 10, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1780-1/12/12...$15.00.

39

1. RATE-LIMITED TRAFFIC OVER TCP
Standard TCP uses the cwnd to limit the number of
bytes/packets a TCP flow may have in a network path at
any time. The cwnd starts at a value known as the Initial
Window (IW). This is updated by the AIMD algorithm, as
TCP continuously probes for additional capacity. TCP also
maintains a variable, the flight size, w_used, that reflects
the volume of unacknowledged data. This is always less
than cwnd. The algorithm maintains a variable, called the
Slow-Start threshold (ssthresh), which reflects the available
path capacity at the time of the last congestion event.

Experience shows that the AIMD algorithm performs well
for bulk applications such as FTP, where continuous data is
available at the sender, limiting transmission to an average
rate that is of the order of the fair share of the capacity
along the path. Instead this paper focuses on the behaviour
of TCP when carrying rate-limited traffic characterised by
periods of higher (but limited) transmission rate, separated
by periods in which much less (application-limited period),
or no data is sent (idle period). In terms of TCP, these
applications do not consume the entire cwnd.

Standard TCP dictates that when an application is idle for a
period greater than the Retransmission Timeout (RTO), the
cwnd is reset to no more than the Restart Window (RW)
[1]. During an application-limited period, a Standard TCP
sender continues to grow the cwnd for every received
acknowledgement (ACK), allowing the cwnd to reach an
arbitrarily large value. However, when the packet probes
along the transmission path are sent at a lower rate than
permitted by cwnd, the reception of an ACK does not
provide evidence that the network path was able to sustain
the transmission rate reflected by cwnd. The result is an
‘invalid’ cwnd, i.e. cwnd increasingly becomes a poor
estimate of the available path capacity. If an application
with an invalid cwnd were to suddenly increase its
transmission rate, the sender would be allowed to
immediately inject a significant volume of additional traffic
into the network. This could lead to severe congestion. It is
also suggested to be a substantial performance issue for
many rate-limited applications and has been a dis-incentive
for such application designers to consider TCP [7] [8].

TCP Congestion Window Validation (TCP-CWV) [9] was
proposed as an experimental standard by the IETF in RFC
2861. It was seen as a remedy for some of the problems
imposed by TCP carrying a rate-limited application. TCP-
CWV modified the use of cwnd during an idle or
application-limited period: During an idle period greater
than one RTO, cwnd is reduced by a half each time the
connection has been idle for an RTO period. This is
equivalent to exponentially decaying cwnd during the idle
period. TCP-CWV modified the standard congestion
control algorithm during an application-limited period,
when the cwnd had not been fully utilised for a period
larger than an RTO. It recommended that cwnd is reduced
to (cwnd+w_used)/2 for each packet transmission that does

not utilise the full cwnd with an empty transmission buffer
for more than RTO seconds, where w_used is the estimated
used portion of cwnd. This avoids growth of cwnd to a
value larger than the capacity utilised by an application.

Our previous work showed that neither TCP nor TCP-
CWV were suitable for rate-limited applications [8][10].
During an idle period longer than one RTO, Standard TCP
reduced the cwnd to the RW and then slow-started to the
application rate. This approach may be acceptable to the
network, but does not benefit the application. TCP-CWV
mitigates this and benefits the application, allowing it to
send packets faster after idle. However, in the presence of a
long idle period (several RTO periods) TCP-CWV would
reduce the cwnd to the RW and perform similar to Standard
TCP. During an application-limited period, TCP-CWV
performance can be lower than Standard TCP. For an
application-limited period longer than a RTO, Standard
TCP sends more aggressively than TCP-CWV. Standard
TCP benefited application-limited traffic (as shown in Fig.
3), whereas TCP-CWV is more conservative.

It is therefore not clear what to recommend to an
application designer wishing to support rate-limited traffic.
TCP-CWV is of benefit if an application exhibits regular
idleness and the idle period is less than a few RTOs.
Applications exhibiting large idle periods (e.g. tens of
seconds) would get no benefit or loss when using TCP-
CWV compared to Standard TCP. Moreover, the
conservative approach of TCP-CWV during application-
limited periods is a disincentive to rate-limited
applications, resulting in a low initial restart rate. This
explains why TCP-CWV has not attracted more use – it
was inconsistent and the incentives offered did not suit
rate-limited applications with a mixture of idle and
application-limited periods.

3. new-CWV
This section presents new-CWV [11], a set of proposed
modifications to Standard TCP designed to mitigate the
problems imposed by both Standard TCP and TCP-CWV.
We suggest the transport should not try to identify idle
periods, but instead be driven by the actual traffic sustained
by the network path. new-CWV does not therefore
differentiate between idle and application-limited periods.

The new method uses Standard TCP with the SACK option
[12]. It updates TCP by freezing the cwnd during rate-
limited periods. This allows an application to later resume
at the same rate before the application became rate-limited.
The sender uses a new variable pipeACK, the actual
volume of data that was acknowledged by the network per
measured RTT. When this is less than half the cwnd, new-
CWV enters a phase where the transmission rate is no
longer constrained by the cwnd. This is called the non-
validated period (NVP). During this period, the cwnd
neither grows nor reduces. This phase concludes after a
fixed period of time (5 minutes, as explained below) or
when the sender transmits sufficient data so that pipeACK

40

is greater than half cwnd (i.e. it is no longer rate-limited) or
when there is a congestion signal (as detailed below).

One reason for selecting a 5 minute period is that during
the absence of an application-specified user timeout, the
TCP specification defines a default user timeout of 5
minutes i.e. how long transmitted data may remain
unacknowledged before a connection is forcefully closed.
The value of 5 minutes should be seen as a compromise,
sufficient for most applications. For most practical
applications, the performance is not significantly different
to that observed using a non-standard method that does not
reset cwnd after a rate-limited period, but avoids the
undesirable side effects that can result if cwnd is preserved
for an arbitrary period, which was a part of the problem
that TCP-CWV originally attempted to address. [12]
provides more discussions on why we chose a 5 minute
period.

new-CWV assumes that, if a sender is rate-limited (either
idle or application-limited) for more than the NVP, then
cwnd is no longer an acceptable estimate of the path
capacity. It therefore reduces the cwnd to max(1/2*cwnd,
IW). If ssthresh was low compared to cwnd, it also
increases ssthresh to max(ssthresh, 3*cwnd/4). The
decision to update ssthresh is because TCP has successfully
sustained the current rate, even if this is higher than the
previous ssthresh value. Hence, it is safe to increase a
previously reduced ssthresh, allowing more rapid
convergence to the previous cwnd. The weighting three-
fourths is to avoid excessive overshoot, as noted in [13].

There are potential risks in injecting too large a burst of
packets during a restart phase [13]. In this phase, TCP is
not receiving ACKs confirming that packets have left the
network, and could generate sequence of back-to-back
packets that cause significant packet loss at a bottleneck.
This problem may also occur when an application transmits
a large block of data during the NVP, even though a sender
may be rate-limited. A suitable remedy may be to enable
TCP packet pacing, or to limit burst size [11]. Since these
are already deployed TCP mechanisms, various techniques
are analysed in [13], and are not discussed further here.

During the NVP, new-CWV seeks to determine whether
the currently used rate is still safe for the Internet path, i.e.
that the restarting sender did not induce congestion: If the
RTO expires during the NVP, the sender uses the Standard
TCP mechanism. This resets cwnd to RW and new-CWV
exits the NVP. pipeACK should also be reset. If the sender
receives congestion feedback while in the NVP, i.e. it
detects a packet-drop or receives an Explicit Congestion
Notification (ECN), the sender must reduce the cwnd.
These events indicate that it was unsafe to start with the
higher cwnd, and TCP must quickly reduce the rate to
avoid further congestion of the network path.

Following detected congestion, new-CWV attempts to
estimate a new safe cwnd by estimating a fair share of the
path (also known as “the pipe”). It calculates this using

received SACK information, as described [12]. The flight
size, w_used (D) is reduced by the number of packets
detected as lost in the SACK information (R). At the end of
the recovery phase, new-CWV resets the cwnd to half the
present w_used, rather than a half of the stored cwnd.
Although this requires SACK to be enabled, it selects a
cwnd based on the measured path capacity, better reflecting
the fair-share. A similar approach was proposed by TCP
Jump Start [14], as a congestion response after more rapid
opening of a connection.

In the following section, we consider two other alternative
mechanisms to reduce the cwnd following loss during the
NVP: one resets cwnd to the RW. The other uses the
standard Fast Retransmit/Fast Recovery algorithm. We
found that our proposed reduction method where the cwnd
is reduced to half the present w_used (known as (D-R)/2
[14]) is the better behavior.
The introduction of NVP improves the performance of an
application that exhibits frequent rate-limited periods. The
benefit of new-CWV is greater for an application that
would otherwise require padding. By removing the
incentive for padding an application injects less data into
the network, such an application that pauses or reduces its
transmission rate for less than the NVP is not penalised
when it resumes sending data. Resetting ssthresh at
conclusion of NVP allows a more rapid (exponential)
growth towards the previous cwnd should the application
later restart at a higher rate.

4. SIMULATION ANALYSIS
We analysed a range of methods using the network
simulator (ns-2) [15]. We considered a single bottleneck
topology (Fig. 1) with two routers (n1-n2) and two access
nodes (n0-n3). The access nodes were connected to the
routers using a 100 Mb/s link (n1-n2) with a delay selected
for each simulation scenario. The bottleneck path had a
capacity of 100 Mbps and a one-way delay of 100 ms and a
queue size set to the bandwidth-delay product.

The simulations considered rate-limited traffic sources with
a rate of 512 kb/s, similar to medium quality interactive
video [16]. These traffic sources could either be stopped
and started for a period of time (simulating an idle period)
or could have a lower rate (simulating an application-
limited period). All flows randomly started based on a
uniform distribution over a period of 1 s. TCP SACK was
enabled. The Nagle and delayed ACK algorithms were
disabled. The minimum RTO was 1 s.

We first analyze the dynamics of new-CWV to compare its
capacity sharing with TCP and TCP-CWV. Two cases
were considered: the case when a rate-limited application
restarted after being idle for a few seconds, and the case
when it restarted after being application-limited. We also
compared the performance benefits of new-CWV with
several other network characteristics [10].

41

Figure 1. Bottleneck simulation topology

Figures 2 and 3 plot the sequence number dynamics for
Standard TCP, TCP-CWV and new-CWV for a
congestion-free scenario, showing the behaviour with a
rate-limited application. There is improvement using new-
CWV.

 2120

 2130

 2140

 2150

 2160

 2170

 2180

 2190

 2200

 2210

 2220

 28 29 30 31 32 33 34

se
q.

 n
o.

 [B
]

time[s]

Std TCP
TCP-CWV

new-CWV

Figure 2. Idle Scenario: Sequence number dynamics for
a congestion-free path using Standard-TCP, TCP-CWV
and new-CWV.

 2120

 2130

 2140

 2150

 2160

 2170

 2180

 2190

 2200

 2210

 2220

 28 29 30 31 32 33 34

se
q.

 n
o.

 [B
]

time[s]

Std TCP
TCP-CWV

new-CWV

Figure 3. Application-limited Scenario: Sequence
number dynamics for a congestion-free path using
Standard-TCP, TCP-CWV and new-CWV.

A long idle period with TCP-CWV or Standard TCP
triggered Slow-Start to increase cwnd from the RW that
requires several round-trips during which applications
cannot send at their desired rate. In an application-limited
period TCP-CWV reduced cwnd. If the application then

rapidly increased the sending-rate to the previous rate,
TCP-CWV required several round-trips to restore the
transmission rate. In the same conditions, new-CWV did
not reduce cwnd during the rate-limited period (both idle
and application-limited) and could therefore promptly
resume with the sending-rate of the application.

The strategy of preserving cwnd for rate-limited periods
much longer than allowed by Standard TCP is clearly
effective for uncongested scenarios. However, a transient
change in network state while the sender is rate-limited
could result in a significant reduction in the fair rate. For
example, in a wireless network, where there can be sudden
changes following network hand-over, propagation
condition changes. In wired networks, there can be route
changes or the arrival of competing cross-traffic/flash
crowds that reduce the available capacity. When the path
changes, TCP needs to rapidly converge to reflect the new
path characteristics. The following tests seek to evaluate
the impact on network performance following a significant
reduction in path capacity due to a transient condition
while the sender was rate-limited.

A group of 512 kb/s flows were simulated. Each flow
started at a random time uniformly distributed over 1 s.
After 28 s, the flows stopped for 5 s. During this period,
the bottleneck path reduced from 100 Mb/s to 2 Mb/s.
After 5 s, the flows re-started to the original rate, at a time
randomly distributed over a period of 1 s. Simulation
results show the performance achieved by TCP, TCP-CWV
and new-CWV and for an application that used padding.
The protocol aggressiveness was evaluated by measuring
the average arrival rate at the receiver (Figure 4). In the
presence of congestion, the new-CWV variants exhibited
better performance compared to both Standard TCP and
TCP-CWV. Although this behaviour could be thought of as
aggressive, it can be seen that average received rate
achieved by the new-CWV flows was only about 3%
higher than the TCP fair share (Figure 4).

When there was heavy congestion (from 16 flows), the
average receive rate of all the new-CWV flows was less
than or equal to the TCP Fair share (less than 0.1%
difference). The experiment also measured the average
packet drop rate at the bottleneck router over 10 RTTs
(Figure 5). This illustrates a drawback of padding: Padding
during idle periods led to high levels of packet drop under
transient network conditions, even for a small number of
connections sharing the path capacity.

One potential solution would be to reduce the effect of
sending dummy packets to send only one dummy packet
every RTT of idle period. However, this behaviour is
similar to an application-limited behaviour and hence TCP
would increase the cwnd by one segment for every
acknowledged dummy packet. In periods of heavy
congestion, sending even a single dummy packet could
potentially worsen the congestion situation, and anyway

42

yields little information about actual path capacity. A new-
CWV sender reacted to a change in path state while idle
(i.e. within the NVP), by quickly backing-off after the first
round-trip time. This reduced the average drop rate at the
bottleneck router.

Figures 6 and 7 show results for an application-limited
case: The sending rate was lowered from 512 kb/s to 12
kb/s for a 5 second period, during which the network
capacity changed. Standard TCP allowed cwnd to
unnecessarily grow and resulting in many packet drops
during the first few RTTs (Figure 7). TCP-CWV mitigated
this by proactively reducing the cwnd during the
application-limited period, but achieving a throughput that
was conservatively smaller than its fair-share of the path
capacity (Figure 6).

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35

A
ve

ra
ge

 R
ec

ei
ve

d
R

at
e

 a
fte

r
5

se
c

id
le

 p
er

io
d

[k
b/

s]

No. of Flows

Std TCP
TCP CWV

new-CWV:Std TCP
new-CWV:(D-R)/2

new-CWV:RW
TCP Padding

TCP Fairshare

Figure 4. Average received rate for a set of flows after a
5s idle period.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35

D
ro

p
R

at
e

af
te

r
5

se
c

id
le

 p
er

io
d

No. of Flows

Std TCP
TCP CWV

new-CWV:Std TCP
new-CWV:(D-R)/2

new-CWV:RW
TCP with Padding

Figure 5. Bottleneck router packet-drop rate for a set of
flows with a 5s idle period.

new-CWV presents a trade-off between these two
extremes. Maintaining the most recent cwnd, it was able to
offer a higher average receive rate than TCP-CWV (Figure
6) while inducing fewer packet drops than Standard TCP
(Figure 7). These experiments did not reveal a significant
difference in application or network performance between

variants (less than 0.5% for both idle and application-
limited cases).

Standard TCP reduced cwnd to a half after packet loss
when new-CWV used the Standard TCP recovery. When
new-CWV reduced cwnd to the RW, this reduced the
average receiver rate. The best performance was observed
when new-CWV reset cwnd to w_used less the volume of
lost data, resembling the method used by Jump Start (where
the new cwnd labelled “(D-R)/2”). In this case, the average
received rate was similar to that of Standard TCP. We
suggest this shows that it may be safe to switch to a higher
sending rate at restart, providing that the sender also
quickly reduces the rate on detecting congestion.

 0

 50

 100

 150

 200

 250

 10 15 20 25 30 35A
ve

ra
ge

 R
ec

ei
ve

d
R

at
e

 a
fte

r
5

se
c

ap
p-

lim
ite

d
pe

rio
d

[k
b/

s]

No of flows

Std TCP
TCP CWV

new-CWV:Std TCP
new-CWV:(D-R)/2

new-CWV:RW
TCP Fairshare

Figure 6. Average received rate for a set of flows after a
5s application-limited period.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35

D
ro

p
R

at
e

af
te

r
5

se
c

ap
p-

lim
ite

d
pe

rio
d

No of flows

Std TCP
TCP CWV

new-CWV:Std TCP
new-CWV:(D-R)/2

new-CWV:RW

Figure 7. Bottleneck router packet drop rate for a set of
flows after a 5s application-limited period.

These simulated results represent a pathological scenario
when a single transient event led to significant reduction of
bottleneck capacity. The performance in terms of the
application and network are approximately proportional to
such a change. For example, performance of all variants of
new-CWV improved when the bottleneck capacity was
changed to more than 2Mb/s. Results considering a wider
range of scenarios can be found in [10]. There is a

43

drawback when flows use a larger cwnd during transient
conditions, which is also a disadvantage for new-CWV.
These flows can send more than Standard TCP for the first
few RTTs following an idle or application-limited period,
since they restart with a larger cwnd.

Standard TCP was only aggressive during an application-
limited period compared to TCP-CWV (e.g. Figure 6).
TCP-CWV was only aggressive compared to Standard TCP
following an idle period of a few RTTs. However, if a flow
experienced congestion, new-CWV quickly adapted to the
bottleneck capacity, the loss therefore decreased and
stabilised over a time, similar to both TCP and TCP-CWV.
We also examined new-CWV behaviour for a range of path
RTTs and found the "Received rate" was a linear function
of path RTT [10]. However, we also found that reducing to
the RW reduces the average received rate for a longer path
RTT (i.e. > 100ms) and all variants converged for a large
path RTT (e.g. 800 ms) because of retransmission timeout,
which resulted in all variants being reset to the RW.

Although our paper analysed rate-limited traffic,
representing interactive video, we believe that the new-
CWV method offers benefit to a wide range of rate-limited
traffic. This includes applications such as variable-rate
video, and persistent web-based applications, such as
HTTP 1.1, Google SPDY and HTTP Adaptive Streaming.
In summary, our analysis suggests that new-CWV provides
an acceptable congestion response for supporting rate-
limited traffic in the Internet. This method is currently
being proposed for consideration by the IETF [11].

5. CONCLUSION

Past work has shown that both TCP and TCP-CWV where
not suited to rate-limited applications that did not fully
consume the TCP cwnd. Hence there is a need to update
TCP to effectively support rate-limited traffic.

This paper proposes a method called new-CWV that
updates Standard TCP to offer the required performance
improvement. Using the new method, a rate-limited
application experiences a faster response than TCP-CWV,
since it does not reduce the cwnd during rate-limited
periods. new-CWV also adds the concept of a non-
validated period to provide robustness to changes in the
characteristics of the network path. Simulations compared
the response for different methods after rate-limited
periods. new-CWV has the best application performance of
the evaluated methods and provides a faster response to
transient congestion. We also showed that new-CWV is
normally able to recover from the congestion quicker and
by inducing fewer packet drops than Standard TCP would
have when an application used padding during rate-limited
periods. Standardisation of the new method would offer
incentive for application designers to use a standard
congestion-controlled transport for rate-limited traffic,
rather than resorting to non-congestion controlled protocols
or expedient application-layer methods.

6. ACKNOWLEDGEMENTS

Dr. Sathiaseelan was supported by the RCUK Digital
Economy programme to the dot.rural Digital Economy
Hub; award reference: EP/G066051/1. The authors
gratefully acknowledge the analysis and detailed simulation
work performed by Dr Israfil Biswas for his PhD studies.

REFERENCES
[1] M. Allman, V. Paxson, E. Blanton, TCP Congestion Control,

IETF RFC 5681, Sept. 2009.
[2] A. Sathiaseelan, G. Fairhurst, TCP Friendly Rate Control

(TFRC) for Bursty Media Flows, 34(15), Sept. 2011, pp.
1836-1847.

[3] S. Baset, E. Brosh, V. Misra, D. Rubenstein, H. Schulzrinne,
Understanding the behaviour of TCP for real-time CBR
workloads, ACM CoNEXT, Lisbon, Portugal, Dec. 2006.

[4] E. Brosh, S. Baset, D. Rubenstein, H. Schulzrinne, The
Delay-Friendliness of TCP, ACM SIGMETRICS, Annapolis,
MD, USA, Jun. 2008.

[5] E. Kohler, S. Floyd, A. Sathiaseelan, Faster Restart for TCP
Friendly Rate Control (TFRC), IETF Work in Progress
(expired), Jul. 2008.

[6] T. Goff, J. Moronski, D. S. Phatak, and V. Gupta, Freeze-
TCP: a True End-to-end TCP Enhancement Mechanism for
Mobile Environments, IEEE INFOCOM, Tel-Aviv, Israel,
2000, pp. 1537-1545.

[7] S. Hughes, J. Touch, J. Heidemann, Issues in TCP Slow-
Start Restart After Idle, IETF Work in Progress (expired),
Dec. 2001.

[8] I. Biswas, A. Sathiaseelan, R. Secchi, G. Fairhurst, Analysing
TCP for Bursty Traffic, Int'l J. of Comm, Network and
System Sciences, 7(3), July 2010.

[9] M. Handley, J. Padhye, S. Floyd, TCP Congestion Window
Validation, IETF RFC 2861, Jun. 2000.

[10] I.Biswas, Internet congestion control for variable rate TCP
traffic, PhD Thesis, University of Aberdeen, Aberdeen, UK,
2011.

[11] G. Fairhurst, A.Sathiaseelan, “Updating TCP to support
Variable-Rate Traffic”, IETF Work in Progress, Sept. 2012.

[12] E. Blanton, M. Allman, K. Fall, L. Wang, A Conservative
SACK-based Loss Recovery Algorithm for TCP, IETF RFC
3517 Apr. 2003.

[13] M. Allman, E. Blanton, Notes on Burst Mitigation for
Transport Protocols, ACM CCR, 35(2), Apr. 2005.

[14] D. Liu, M. Allman, S. Jiny, L. Wang, Congestion Control
without a Startup Phase, 5th International PFLDnet, Los
Angeles, California, USA, Feb. 2007.

[15] S. McCanne, S. Floyd, Network Simulator,
http://www.isi.edu/nsnam/ns/

[16] S. Floyd, M. Handley, E. Kohler, Problem Statement for the
DCCP, IETF RFC 4336, Mar. 2006.

44

