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ABSTRACT 
This paper introduces a new TCP congestion control 
mechanism for rate-limited applications that transmit data 
in bursts and do not fully utilise their allowed transmission 
rate. We propose “new-CWV”, a method that allows a TCP 
connection to restart quickly from either an idle or 
application-limited period. Simulation results show that this 
provides faster convergence to the rate requested by a rate-
limited application, demonstrated by a higher throughput, 
and better utilisation of unused capacity compared to 
Standard TCP or TCP with Congestion Window 
Validation.  

Categories and Subject Descriptors 
C.2.TCP/IP 

Keywords 
TCP, Congestion-control, capacity-sharing 

1. INTRODUCTION 
Many current Internet applications can be characterised as 
“rate-limited”. We define a rate-limited application as one 
that transmits at a rate not directly controlled by the 
transport protocol, but instead dictated by the application. 
A rate-limited application may send at a Constant  Bit Rate 
(CBR), less than limited by the transport, or send with 
periods of higher (but limited) rate, separated by periods 
with a much lower rate (application-limited periods), or by 
periods where no data is sent (idle periods). 

Transmission Control Protocol (TCP), RFC 793 was 
designed to support a range of applications, but TCP 
congestion control [1] been optimised primarily for bulk 
transfers. The performance of bulk applications is limited 
by the TCP window. Bulk applications are not rate-limited. 

Many multimedia applications use the User Datagram 
Protocol (UDP) specified in RFC 768. Such applications 
can (and often do) transmit at a constant rate, irrespective 
of available capacity and although applications may 
implement congestion control, they typically do not use a 
standard method. 

It is commonly perceived that the Additive Increase 
Multiplicative Decrease (AIMD) behaviour of TCP is 
inappropriate for the strict requirements for timeliness of 
interactive applications. This led to initiatives to define 
alternate methods such as the TCP Friendly Rate Control 
(RFC 5348),  although at present this has yet to achieve 
wide scale deployment [2]. The recent growth of TCP-
based multimedia applications has reopened the debate on 
use of TCP for rate-limited applications (e.g.[3],[4]). Other 
rate-limited TCP behaviours include HTTP 1.1 persistent 
connections, Google SPDY (which uses persistent 
connections to retrieve multiple objects) and HTTP 
Adaptive Streaming (HAS).  

This paper will focus on such traffic, for which Standard 
TCP is not generally well-adapted. One method to provide 
acceptable performance over TCP is for the sender to 
continue to transmit at the same rate during periods of 
silence, known as “padding”. Although this can ensure 
acceptable application performance, it can also degrade 
network performance and decrease the effectiveness of 
TCP congestion control [2][5]. 

The paper proposes a set of modifications to Standard TCP 
to enable effective use of standards-based methods. Our 
proposal, new-CWV, freezes the congestion window 
(cwnd) during a rate-limited period, enabling the 
application to restart with the same cwnd after a rate-
limited period. Hence, the cwnd would neither grow nor 
reduce while rate-limited. This allows applications to more 
quickly resume transmission. When a new-CWV sender 
detects a congestion event during the first RTT of restarting 
with a large cwnd, the methods appropriately reduce the 
cwnd.  This can satisfy the capacity requirements of real-
time applications and at the same time provide congestion 
control appropriate for use in the Internet. We suggest this 
may encourage more application developers to use 
standards-based TCP congestion control.  

A similar notion of freezing the cwnd was also proposed in 
Freeze-TCP [6], however Freeze-TCP was specifically 
proposed to mitigate mobility related disconnections and is 
not a suitable solution for variable-rate congestion control. 

The remainder of the paper is organized as follows: Section 
2 discusses the behaviour of TCP when carrying rate-
limited traffic. Section 3 describes new-CWV. Section 4 
analyses the performance of new-CWV over a range of 
scenarios. This is followed by the conclusions. 
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1. RATE-LIMITED TRAFFIC OVER TCP 
Standard TCP uses the cwnd to limit the number of 
bytes/packets a TCP flow may have in a network path at 
any time. The cwnd starts at a value known as the Initial 
Window (IW). This is updated by the AIMD algorithm, as 
TCP continuously probes for additional capacity. TCP also 
maintains a variable, the flight size, w_used, that reflects 
the volume of unacknowledged data. This is always less 
than cwnd. The algorithm maintains a variable, called the 
Slow-Start threshold (ssthresh), which reflects the available 
path capacity at the time of the last congestion event.  

Experience shows that the AIMD algorithm performs well 
for bulk applications such as FTP, where continuous data is 
available at the sender, limiting transmission to an average 
rate that is of the order of the fair share of the capacity 
along the path. Instead this paper focuses on the behaviour 
of TCP when carrying rate-limited traffic characterised by 
periods of higher (but limited) transmission rate, separated 
by periods in which much less (application-limited period), 
or no data is sent (idle period). In terms of TCP, these 
applications do not consume the entire cwnd.  

Standard TCP dictates that when an application is idle for a 
period greater than the Retransmission Timeout (RTO), the 
cwnd is reset to no more than the Restart Window (RW) 
[1]. During an application-limited period, a Standard TCP 
sender continues to grow the cwnd for every received 
acknowledgement (ACK), allowing the cwnd to reach an 
arbitrarily large value. However, when the packet probes 
along the transmission path are sent at a lower rate than 
permitted by cwnd, the reception of an ACK does not 
provide evidence that the network path was able to sustain 
the transmission rate reflected by cwnd. The result is an 
‘invalid’ cwnd, i.e. cwnd increasingly becomes a poor 
estimate of the available path capacity. If an application 
with an invalid cwnd were to suddenly increase its 
transmission rate, the sender would be allowed to 
immediately inject a significant volume of additional traffic 
into the network. This could lead to severe congestion. It is 
also suggested to be a substantial performance issue for 
many rate-limited applications and has been a dis-incentive 
for such application designers to consider TCP [7] [8]. 

TCP Congestion Window Validation (TCP-CWV) [9] was 
proposed as an experimental standard by the IETF in RFC 
2861. It was seen as a remedy for some of the problems 
imposed by TCP carrying a rate-limited application. TCP-
CWV modified the use of cwnd during an idle or 
application-limited period: During an idle period greater 
than one RTO, cwnd is reduced by a half each time the 
connection has been idle for an RTO period. This is 
equivalent to exponentially decaying cwnd during the idle 
period. TCP-CWV modified the standard congestion 
control algorithm during an application-limited period, 
when the cwnd had not been fully utilised for a period 
larger than an RTO. It recommended that cwnd is reduced 
to (cwnd+w_used)/2 for each packet transmission that does 

not utilise the full cwnd with an empty transmission buffer 
for more than RTO seconds, where w_used is the estimated 
used portion of cwnd. This avoids growth of cwnd to a 
value larger than the capacity utilised by an application.  

Our previous work showed that neither TCP nor TCP-
CWV were suitable for rate-limited applications [8][10]. 
During an idle period longer than one RTO, Standard TCP 
reduced the cwnd to the RW and then slow-started to the 
application rate. This approach may be acceptable to the 
network, but does not benefit the application. TCP-CWV 
mitigates this and benefits the application, allowing it to 
send packets faster after idle. However, in the presence of a 
long idle period (several RTO periods) TCP-CWV would 
reduce the cwnd to the RW and perform similar to Standard 
TCP. During an application-limited period, TCP-CWV 
performance can be lower than Standard TCP. For an 
application-limited period longer than a RTO, Standard 
TCP sends more aggressively than TCP-CWV. Standard 
TCP benefited application-limited traffic (as shown in Fig. 
3), whereas TCP-CWV is more conservative. 

It is therefore not clear what to recommend to an 
application designer wishing to support rate-limited traffic. 
TCP-CWV is of benefit if an application exhibits regular 
idleness and the idle period is less than a few RTOs. 
Applications exhibiting large idle periods (e.g. tens of 
seconds) would get no benefit or loss when using TCP-
CWV compared to Standard TCP. Moreover, the 
conservative approach of TCP-CWV during application-
limited periods is a disincentive to rate-limited 
applications, resulting in a low initial restart rate. This 
explains why TCP-CWV has not attracted more use – it 
was inconsistent and the incentives offered did not suit 
rate-limited applications with a mixture of idle and 
application-limited periods. 

3. new-CWV 
This section presents new-CWV [11], a set of proposed 
modifications to Standard TCP designed to mitigate the 
problems imposed by both Standard TCP and TCP-CWV. 
We suggest the transport should not try to identify idle 
periods, but instead be driven by the actual traffic sustained 
by the network path. new-CWV does not therefore 
differentiate between idle and application-limited periods.  

The new method uses Standard TCP with the SACK option 
[12]. It updates TCP by freezing the cwnd during rate-
limited periods. This allows an application to later resume 
at the same rate before the application became rate-limited. 
The sender uses a new variable pipeACK, the actual 
volume of data that was acknowledged by the network per 
measured RTT. When this is less than half the cwnd, new-
CWV enters a phase where the transmission rate is no 
longer constrained by the cwnd. This is called the non-
validated period (NVP). During this period, the cwnd 
neither grows nor reduces. This phase concludes after a 
fixed period of time (5 minutes, as explained below) or 
when the sender transmits sufficient data so that pipeACK 

40



is greater than half cwnd (i.e. it is no longer rate-limited) or 
when there is a congestion signal (as detailed below).  

One reason for selecting a 5 minute period is that during 
the absence of an application-specified user timeout, the 
TCP specification defines a default user timeout of 5 
minutes i.e. how long transmitted data may remain 
unacknowledged before a connection is forcefully closed. 
The value of 5 minutes should be seen as a compromise, 
sufficient for most applications. For most practical 
applications, the performance is not significantly different 
to that observed using a non-standard method that does not 
reset cwnd after a rate-limited period, but avoids the 
undesirable side effects that can result if cwnd is preserved 
for an arbitrary period, which was a part of the problem 
that TCP-CWV originally attempted to address. [12] 
provides more discussions on why we chose a 5 minute 
period.  

new-CWV assumes that, if a sender is rate-limited  (either 
idle or application-limited) for more than the NVP, then  
cwnd is no longer an acceptable estimate of the path 
capacity. It therefore reduces the cwnd to max(1/2*cwnd, 
IW). If ssthresh was low compared to cwnd, it also 
increases ssthresh to max(ssthresh, 3*cwnd/4). The 
decision to update ssthresh is because TCP has successfully 
sustained the current rate, even if this is higher than the 
previous ssthresh value. Hence, it is safe to increase a 
previously reduced ssthresh, allowing more rapid 
convergence to the previous cwnd. The weighting three-
fourths is to avoid excessive overshoot, as noted in [13]. 

There are potential risks in injecting too large a burst of 
packets during a restart phase [13]. In this phase, TCP is 
not receiving ACKs confirming that packets have left the 
network, and could generate sequence of back-to-back 
packets that cause significant packet loss at a bottleneck. 
This problem may also occur when an application transmits 
a large block of data during the NVP, even though a sender 
may be rate-limited. A suitable remedy may be to enable 
TCP packet pacing, or to limit burst size [11]. Since these 
are already deployed TCP mechanisms, various techniques 
are analysed in [13], and are not discussed further here. 

During the NVP, new-CWV seeks to determine whether 
the currently used rate is still safe for the Internet path, i.e. 
that the restarting sender did not induce congestion: If the 
RTO expires during the NVP, the sender uses the Standard 
TCP mechanism. This resets cwnd to RW and new-CWV 
exits the NVP. pipeACK should also be reset. If the sender 
receives congestion feedback while in the NVP, i.e. it 
detects a packet-drop or receives an Explicit Congestion 
Notification (ECN), the sender must reduce the cwnd. 
These events indicate that it was unsafe to start with the 
higher cwnd, and TCP must quickly reduce the rate to 
avoid further congestion of the network path. 

Following detected congestion, new-CWV attempts to 
estimate a new safe cwnd  by estimating a  fair share of the 
path (also known as “the pipe”). It calculates this using 

received  SACK information, as described [12]. The flight 
size, w_used (D) is reduced by the number of packets 
detected as lost in the SACK information (R). At the end of 
the recovery phase, new-CWV resets the cwnd to half the 
present w_used, rather than a half of the stored cwnd. 
Although this requires SACK to be enabled, it selects a 
cwnd based on the measured path capacity, better reflecting 
the fair-share. A similar approach was proposed by TCP 
Jump Start [14], as a congestion response after more rapid 
opening of a connection.  

In the following section, we consider two other alternative 
mechanisms to reduce the cwnd following loss during the 
NVP: one resets cwnd to the RW. The other uses the 
standard Fast Retransmit/Fast Recovery algorithm. We 
found that our proposed reduction method where the cwnd 
is reduced to half the present w_used (known as (D-R)/2 
[14]) is the better behavior. 
The introduction of NVP improves the performance of an 
application that exhibits frequent rate-limited periods. The 
benefit of new-CWV is greater for an application that 
would otherwise require padding. By removing the 
incentive for padding an application injects less data into 
the network, such an application that pauses or reduces its 
transmission rate for less than the NVP is not penalised 
when it resumes sending data. Resetting ssthresh at 
conclusion of NVP allows a more rapid (exponential) 
growth towards the previous cwnd should the application 
later restart at a higher rate. 

4. SIMULATION ANALYSIS 
We analysed a range of methods using the network 
simulator (ns-2) [15]. We considered a single bottleneck 
topology (Fig. 1) with two routers (n1-n2) and two access 
nodes (n0-n3). The access nodes were connected to the 
routers using a 100 Mb/s link (n1-n2) with a delay selected 
for each simulation scenario. The bottleneck path had a 
capacity of 100 Mbps and a one-way delay of 100 ms and a 
queue size set to the bandwidth-delay product.  

The simulations considered rate-limited traffic sources with 
a rate of 512 kb/s, similar to medium quality interactive 
video [16]. These traffic sources could either be stopped 
and started for a period of time (simulating an idle period) 
or could have a lower rate (simulating an application-
limited period). All flows randomly started based on a 
uniform distribution over a period of 1 s. TCP SACK was 
enabled. The Nagle and delayed ACK algorithms were 
disabled. The minimum RTO was 1 s. 

We first analyze the dynamics of new-CWV to compare its 
capacity sharing with TCP and TCP-CWV. Two cases 
were considered: the case when a rate-limited application 
restarted after being idle for a few seconds, and the case 
when it restarted after being application-limited. We also 
compared the performance benefits of new-CWV with 
several other network characteristics [10]. 
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Figure 1. Bottleneck simulation topology 

Figures 2 and 3 plot the sequence number dynamics for 
Standard TCP, TCP-CWV and new-CWV for a 
congestion-free scenario, showing the behaviour with a 
rate-limited application. There is improvement using new-
CWV.  
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Figure 2. Idle Scenario: Sequence number dynamics for 
a congestion-free path using Standard-TCP, TCP-CWV 
and new-CWV. 
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Figure 3. Application-limited Scenario: Sequence 
number dynamics for a congestion-free path using 
Standard-TCP, TCP-CWV and new-CWV.  

A long idle period with TCP-CWV or Standard TCP 
triggered Slow-Start to increase cwnd from the RW that 
requires several round-trips during which applications 
cannot send at their desired rate. In an application-limited 
period TCP-CWV reduced cwnd. If the application then 

rapidly increased the sending-rate to the previous rate, 
TCP-CWV required several round-trips to restore the 
transmission rate. In the same conditions, new-CWV did 
not reduce cwnd during the rate-limited period (both idle 
and application-limited) and could therefore promptly 
resume with the sending-rate of the application.  

The strategy of preserving cwnd for rate-limited periods 
much longer than allowed by Standard TCP is clearly 
effective for uncongested scenarios. However, a transient 
change in network state while the sender is rate-limited 
could result in a significant reduction in the fair rate. For 
example, in a wireless network, where there can be sudden 
changes following network hand-over, propagation 
condition changes. In wired networks, there can be route 
changes or the arrival of competing cross-traffic/flash 
crowds that reduce the available capacity. When the path 
changes, TCP needs to rapidly converge to reflect the new 
path characteristics. The following tests seek to evaluate 
the impact on network performance following a significant 
reduction in path capacity due to a transient condition 
while the sender was rate-limited. 

A group of 512 kb/s flows were simulated. Each flow 
started at a random time uniformly distributed over 1 s. 
After 28 s, the flows stopped for 5 s. During this period, 
the bottleneck path reduced from 100 Mb/s to 2 Mb/s. 
After 5 s, the flows re-started to the original rate, at a time 
randomly distributed over a period of 1 s. Simulation 
results show the performance achieved by TCP, TCP-CWV 
and new-CWV and for an application that used padding. 
The protocol aggressiveness was evaluated by measuring 
the average arrival rate at the receiver (Figure 4). In the 
presence of congestion, the new-CWV variants exhibited 
better performance compared to both Standard TCP and 
TCP-CWV. Although this behaviour could be thought of as 
aggressive, it can be seen that average received rate 
achieved by the new-CWV flows was only about 3% 
higher than the TCP fair share (Figure 4).  

When there was heavy congestion (from 16 flows), the 
average receive rate of all the new-CWV flows was less 
than or equal to the TCP Fair share (less than 0.1% 
difference). The experiment also measured the average 
packet drop rate at the bottleneck router over 10 RTTs 
(Figure 5). This illustrates a drawback of padding: Padding 
during idle periods led to high levels of packet drop under 
transient network conditions, even for a small number of 
connections sharing the path capacity.  

One potential solution would be to reduce the effect of 
sending dummy packets to send only one dummy packet 
every RTT of idle period. However, this behaviour is 
similar to an application-limited behaviour and hence TCP 
would increase the cwnd by one segment for every 
acknowledged dummy packet. In periods of heavy 
congestion, sending even a single dummy packet could 
potentially worsen the congestion situation, and anyway 
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yields little information about actual path capacity.  A new-
CWV sender reacted to a change in path state while idle 
(i.e. within the NVP), by quickly backing-off after the first 
round-trip time. This reduced the average drop rate at the 
bottleneck router. 

Figures 6 and 7 show results for an application-limited 
case: The sending rate was lowered from 512 kb/s to 12 
kb/s for a 5 second period, during which the network 
capacity changed. Standard TCP allowed cwnd to 
unnecessarily grow and resulting in many packet drops 
during the first few RTTs (Figure 7). TCP-CWV mitigated 
this by proactively reducing the cwnd during the 
application-limited period, but achieving a throughput that 
was conservatively smaller than its fair-share of the path 
capacity (Figure 6).  
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Figure 4. Average received rate for a set of flows after a 
5s idle period. 
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Figure 5. Bottleneck router packet-drop rate for a set of 
flows with a 5s idle period.  

new-CWV presents a trade-off between these two 
extremes. Maintaining the most recent cwnd, it was able to 
offer a higher average receive rate than TCP-CWV (Figure 
6) while inducing fewer packet drops than Standard TCP 
(Figure 7). These experiments did not reveal a significant 
difference in application or network performance between 

variants (less than 0.5% for both idle and application-
limited cases). 

Standard TCP reduced cwnd to a half after packet loss 
when new-CWV used the Standard TCP recovery. When 
new-CWV reduced cwnd to the RW, this reduced the 
average receiver rate. The best performance was observed 
when new-CWV reset cwnd to w_used less the volume of 
lost data, resembling the method used by Jump Start (where 
the new cwnd labelled “(D-R)/2”). In this case, the average 
received rate was similar to that of Standard TCP. We 
suggest this shows that it may be safe to switch to a higher 
sending rate at restart, providing that the sender also 
quickly reduces the rate on detecting congestion.  
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Figure 6. Average received rate for a set of flows after a 
5s application-limited period. 
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Figure 7. Bottleneck router packet drop rate for a set of 
flows after a 5s application-limited period. 

These simulated results represent a pathological scenario 
when a single transient event led to significant reduction of 
bottleneck capacity. The performance in terms of the 
application and network are approximately proportional to 
such a change. For example, performance of all variants of 
new-CWV improved when the bottleneck capacity was 
changed to more than 2Mb/s. Results considering a wider 
range of scenarios can be found in [10]. There is a 
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drawback when flows use a larger cwnd during transient 
conditions, which is also a disadvantage for new-CWV. 
These flows can send more than Standard TCP for the first 
few RTTs following an idle or application-limited period, 
since they restart with a larger cwnd.  

Standard TCP was only aggressive during an application-
limited period compared to TCP-CWV (e.g. Figure 6).  
TCP-CWV was only aggressive compared to Standard TCP 
following an idle period of a few RTTs. However, if a flow 
experienced congestion, new-CWV quickly adapted to the 
bottleneck capacity, the loss therefore decreased and 
stabilised over a time, similar to both TCP and TCP-CWV. 
We also examined new-CWV behaviour for a range of path 
RTTs and found the "Received rate" was a linear function 
of path RTT [10]. However, we also found that reducing to 
the RW reduces the average received rate for a longer path 
RTT (i.e. > 100ms) and all variants converged for a large 
path RTT (e.g. 800 ms) because of retransmission timeout, 
which resulted in all variants being reset to the RW. 

Although our paper analysed rate-limited traffic, 
representing interactive video, we believe that the new-
CWV method offers benefit to a wide range of rate-limited 
traffic. This includes applications such as variable-rate 
video, and persistent web-based applications, such as 
HTTP 1.1, Google SPDY and HTTP Adaptive Streaming. 
In summary, our analysis suggests that new-CWV provides 
an acceptable congestion response for supporting rate-
limited traffic in the Internet. This method is currently 
being proposed for consideration by the IETF [11]. 

5. CONCLUSION 

Past work has shown that both TCP and TCP-CWV where 
not suited to rate-limited applications that did not fully 
consume the TCP cwnd. Hence there is a need to update 
TCP to effectively support rate-limited traffic.  

This paper proposes a method called new-CWV that 
updates Standard TCP to offer the required performance 
improvement. Using the new method, a rate-limited 
application experiences a faster response than TCP-CWV, 
since it does not reduce the cwnd during rate-limited 
periods. new-CWV also adds the concept of a non-
validated period to provide robustness to changes in the 
characteristics of the network path. Simulations compared 
the response for different methods after rate-limited 
periods. new-CWV has the best application performance of 
the evaluated methods and provides a faster response to 
transient congestion. We also showed that new-CWV is 
normally able to recover from the congestion quicker and 
by inducing fewer packet drops than Standard TCP would 
have when an application used padding during rate-limited 
periods. Standardisation of the new method would offer 
incentive for application designers to use a standard 
congestion-controlled transport for rate-limited traffic, 
rather than resorting to non-congestion controlled protocols 
or expedient application-layer methods. 
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