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1  | INTRODUC TION

Graphite is a critical commodity because of the very high poten-
tial of graphite and graphene in future technologies, including 
its use in electric vehicles (Gautneb et al., 2019; Helmers, 2015; 
Wang et al., 2018). Exceptional demand has driven a revolution 
in graphite exploration, and the need to understand controls 
on graphite properties (Jara et al., 2019; Scogings, 2015). Most 
graphite resources occur in Precambrian rocks, reflecting the 
high incidence of black shales within the Precambrian (Condie 

et al., 2001) and the metamorphism of organic matter to graphite 
in older rocks.

Prospective graphite deposits have been explored in several 
parts of the North Atlantic region, including Labrador, Canada 
(Saglek Bay), Greenland (Amitsoq, Akuliaruseq), Norway (Skaland) 
and Sweden (Woxna). Each of these deposits was deposited during 
the period 1.8– 2.1 Ga (Bergman, 2018; Meyer & Dean, 1988; 
Palosaari et al., 2016; Thrane & Kalvig, 2019). In the UK, the Lewisian 
of north- west Scotland includes several supracrustal successions 
(Figure 1), most of which contain graphite. Three of the supracrustal 
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Abstract
Graphite deposits may form alternatively by metamorphism of sedimentary rocks 
and from fluids. Both types occur in supracrustal successions within the Lewisian 
Complex of Northwest Scotland, and similarly in Palaeoproterozoic supracrus-
tal rocks across the North Atlantic region in Canada, Greenland and Scandinavia. 
Carbon isotope compositions show that the graphite in Scotland had a mixed origin 
from metamorphism of sedimentary organic matter (schists) and the decarbonation 
of limestones (marbles). Raman spectroscopy shows that most of the graphite in 
Scotland exhibits some structural disorder, unlike the complete order in graphite vein 
ore deposits across the region. Exceptionally, where graphite was precipitated from 
fluid, in albitized rock in Tiree and Scardroy, it is fully ordered. While organic mat-
ter may survive granulite facies metamorphism without being transformed to fully 
ordered graphite, it can yield commercially more valuable ordered graphite when 
mobilized in a fluid.
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successions have been dated at 1.8– 2.1 Ga, like commercial deposits 
elsewhere. However, the graphite occurrences in the Lewisian are 
very poorly documented. We characterize graphite from six succes-
sions, using carbon isotope composition, Raman spectroscopy and 
microscopy, and investigate:

1. Is all the graphite derived from organic matter in shales, or is 
some derived from reduction of carbonate carbon in marbles 
in the supracrustal successions?

2. Is there evidence for mobilization of carbon from beds of carbon- 
rich sediment, i.e. graphite was deposited from a fluid phase 
rather than simply metamorphism of kerogen?

3. Is the carbon all fully ordered graphite, as required in graphite of 
commercial quality (e.g. Palosaari et al., 2020), or is some incom-
pletely ordered?

2  | GEOLOGIC AL SET TING

The Lewisian Complex of Northwestern Scotland consists predomi-
nantly of tonalitic gneisses of Archean age (Friend & Kinny, 1995), 
derived from an igneous protolith. However, there are several out-
liers of supracrustal rocks within the Lewisian, which represent 

Significance

Graphite is an underestimated component of supracrustal 
rocks in the extensively studied Lewisian Complex, and is 
shown to have two distinct origins.

F I G U R E  1   Map of North West 
Scotland, showing distribution of Lewisian 
supracrustal inliers. Graphite occurs in all 
named inliers [Colour figure can be viewed 
at wileyonlinelibrary.com]
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amphibolite or granulite facies metasediments. The larger suprac-
rustal outliers include carbonaceous (graphitic) pelites and schists, 
limestones represented as marbles, sulphide- rich horizons evident 
as rust zones, and non- sulphide iron formations. The combination 
of graphitic sediments, marbles and rust zones occur in each of six 
outliers: Gairloch- Loch Maree, South Harris, Tiree, Iona, Glenelg- 
Loch Duich and Scardroy (Figure 1). The similarities have been in-
ferred as evidence that all are of similar age (Cartwright, 1992; 
Coats et al., 1997; Rock, 1987; Tilley, 1936). The outliers were for-
merly assumed to be in the main Lewisian succession, i.e. Archean 
(Cartwright, 1992; Whitehouse & Russell, 1997). Three of the six 
outliers now have age constraints in the mid- Palaeoproterozoic. The 
Loch Maree Group at Gairloch is dated 1.9– 2.0 Ga, based on Nd crus-
tal ages (O’Nions et al., 1983), minimum ages of detrital zircons (Kerr 
et al., 2016; Whitehouse et al., 1997) and a 1.90 Ga intrusive gneiss 
(Park et al., 2001). The metasediments in South Harris are dated 
1.8– 1.9 Ga, by detrital zircons (Whitehouse & Bridgwater, 2001) 
and associated ~1.9 Ga arc rocks (Mason et al., 2004). Eclogites 
at Glenelg- Loch Duich, whose protoliths were possibly synchro-
nous with metasediments, yield HfTDM ages around 2.0 Ga (Brewer 
et al., 2003; Storey, 2008).

Graphite occurs in the supracrustal rocks in two distinct forms. 
Graphitic pelites and schists represent sedimentary rocks in which 
carbon was deposited as black shales. Graphite also occurs as lami-
nae and nodules within marbles (Figure 2), deposited as limestones. 
In limestones, primary reduced organic matter was less likely, and 
the graphite may instead represent alteration of the limestone, or 
post- depositional introduction of carbon from shales elsewhere in 
the sequence. The graphite shows no relationship with major faults 

or other structures, but at two localities is associated with albitite 
veining.

The graphite in the six successions occurs as:
South Harris: Beds of graphitic schist, coloured silvery due to 

large flake size (< 2mm; Fettes et al., 1992).

F I G U R E  2   Graphite- bearing marble, Gott, Tiree. Laminate 
structure defined by graphitic streaks, moulded around phenocrysts 
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3   Backscattered electron micrographs of graphite 
in marble, Gott, Tiree. (a) Coating of graphite (G), and allanite (Al) 
around anorthite (An) phenocryst in marble (Ca); (b) Laminate 
streak of graphite (G) with intermixed crystals of allanite (Al) in 
marble (Ca); (c) coating of allanite (Al) and graphite (G) around 
phenocryst of muscovite (Mu) with epidote (Ep) and pyrite (Pyr) in 
marble (Ca) [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

(c)
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Gairloch- Loch Maree: Beds of graphitic schist, coloured grey to 
black (Park et al., 2001).

Glenelg- Loch Duich: Beds of graphitic schist, coloured silvery 
where well crystalline (flake size <5 mm), including adjacent to mar-
ble beds, to black where microcrystalline (Storey, 2008).

Scardroy: At least one bed of graphitic schist, and sub- 
millimetre nodules of graphite in marble (Rock, 1987; Sutton & 
Watson, 1951).

Tiree: Beds of graphitic schist, coloured black (section at Vaul) 
and marble containing intermittent laminae of graphite (Gott; 
Westbrook, 1972).

Iona: Beds of graphitic schist (flake size <2 mm) and marble con-
taining laminae and patches of graphite (Bailey et al., 1925).

3  | METHODS

Scanning electron microscopy (SEM) was conducted in the Aberdeen 
Centre for Electron Microscopy, Analysis and Characterisation 
(ACEMAC) facility at the University of Aberdeen using a Carl Zeiss 
GeminiSEM 300 VP Field Emission instrument equipped with an 
Oxford Instruments NanoAnalysis Xmax80 Energy Dispersive 

F I G U R E  4   Raman spectroscopy spectra for graphite in Lewisian supracrustal rocks and in deposits elsewhere in North Atlantic region. All 
samples show well- defined graphite order peak (G) at ~1,590 cm−1. Some samples additionally show minor disorder (D) peak at ~1,350 cm−1. 
Cross- plot of D/G ratio and G peak position emphasizes distinction in samples [Colour figure can be viewed at wileyonlinelibrary.com]
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Spectroscopy (EDS) detector, and AZtec software suite. The operat-
ing voltage was 8 kV for backscattered analysis (Figure 3).

The structural order of the graphitic samples was characterized 
by laser Raman spectroscopy, using a Renishaw inVia reflex Raman 
spectrometer, with a Ar+green laser (wavelength 514.5 nm). The ex-
tended spectra in Figures 4 and 5 were based on four spectra each, 
accumulated over 10 s scan time with 10% laser power. Samples 
from the Lewisian Complex are compared with samples from ac-
tive and prospective graphite ore deposits across the North Atlantic 
region.

Stable carbon isotope analysis was conducted on graphitic sam-
ples digested in 10% HCl overnight to remove trace carbonate. 
Samples were analysed by standard closed- tube combustion method 
by reaction in vacuo with 2 g of wire form CuO at 800℃ overnight. 
Data (Figure 6) are reported in per mil (‰) using the δ notation ver-
sus Vienna Pee Dee Belemnite (V- PDB). Repeat analysis of SUERC’s 
laboratory standard gave δ13C reproducibility around ±0.2 ‰ (1 s). 

Samples from the Lewisian Complex were supplemented by samples 
from elsewhere in the North Atlantic region.

4  | RESULTS

The graphite normally occurs as microscopic crystals (less than 
0.1 mm crystal size), among quartz, feldspar, mica and other grains 
in a schistose fabric. In some cases the graphite crystal size is 
greater, up to 5 mm, conveying a silvery colour to the rock. Graphite 
accounts for organic carbon contents above 1% (Figure 7). In ad-
dition, graphite occurs as partial coatings around phenocrysts, 
especially allanite, in schists and marbles at Gairloch and Tiree 
(Figure 3). The phenocrysts are typical of metamorphism in sedi-
mentary rocks, including albite, anorthite, scapolite, dolomite, apa-
tite, allanite and mica (Cartwright, 1992). Albitization is extensive 
enough to form albitite rock. The metasediments have experienced 
retrograde metamorphism from 11 kbar and 800℃ to greenschist 
facies (Cartwright, 1992; Westbrook, 1972), but this would not 
affect graphite, whose structural order is irreversible (Palosaari 
et al., 2020). At Vaul, Tiree, black graphitic material also occurs in 
quartz veins cutting the black metasediments.

Graphite occurs in marbles at Tiree and Scardroy. At Gott, Tiree, 
marble exhibits intermittent ‘laminae’ of graphite (Figure 2), which 
are associated with phenocrysts that exhibit rotation. Both ‘laminae’ 
and rotation reflect shearing focussed along the marble layers and 
the supracrustal rocks in general (Westbrook, 1972). At Scardroy, 
pellets of graphite about 0.1 mm size occur in the marble, especially 
where the marble is partially replaced by albite. Albitite crystals at 
Gott and Vaul also contain graphite in vuggy cavities up to 1 mm size.

Representative Raman spectra are shown in Figure 4. Some 
spectra show a single G peak for ordered carbon. Several spectra 
additionally show a D peak for disordered carbon. The D peak shows 
variable degrees of development. It is minor in Iona and Scardroy. 
Spectra from graphitic beds at two localities in the Loch Maree 
Group, at Loch Gairloch and Kerrysdale, both exhibit the D peak. A 
range of samples from Tiree (Figure 5) exhibit the D peak to differ-
ent degrees, but in the section at Vaul it is strongly developed, and 
even shows a secondary D2 disorder peak. The G peak positions are 
typical of graphite (Wopenka & Pasteris, 1993).

The carbon isotope compositions of the graphite have a wide 
range, which indicates two distinct compositions. Graphite from 
marble at Tiree and Scardroy has a composition heavier than −10‰, 
while graphite samples from other localities are lighter than −20‰ 
(Table 1).

5  | DISCUSSION

Graphite is not abundant in the Lewisian Complex (Cartwright & 
Barnicoat, 1987), but it is recorded in the supracrustal outliers. A dis-
tinct, Palaeoproterozoic, origin for the supracrustal rocks is implied 
at Gairloch, Glenelg and South Harris, in the range 2.1 to 1.8 Ga. This 

F I G U R E  5   Raman spectroscopy spectra for graphite in Lewisian 
supracrustal rocks from Vaul and Gott, Tiree. All samples show 
well- defined graphite order peak (G) at ~1,590 cm−1. Samples of 
marble and schist, and graphitic vein, but not samples in albitized 
rock, additionally show disorder (D) peak at ~1,350 cm−1 and minor 
disorder (D2) peak as a shoulder on G peak at ~1605 cm−1 [Colour 
figure can be viewed at wileyonlinelibrary.com]
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time interval saw graphitic sediments deposited widely in the North 
Atlantic region, and elsewhere (Condie et al., 2001).

The graphite in schists very probably represents metamor-
phosed organic matter in the original sediments. However, several 
occurrences suggest that some graphite was precipitated from a 
fluid. Vein- hosted graphite at Vaul, Tiree, was clearly a fluid product. 
The graphite that defines a laminar fabric in marble at Gott, Tiree, 
formed during shearing and fluid movement during metamorphism. 
The albitite at Tiree is a replacive and vein- forming rock attributed 
to metamorphism (Cartwright, 1992), and graphite in cavities in the 
albitite must have been deposited from a fluid phase. Similarly, the 
pellets of graphite in albitized marble at Scardroy must also be a fluid 
product. However, all of the graphite, including that deposited from 
a fluid, occurs within the supracrustal packages, so have a common 
origin in the metasediments rather than including a mantle compo-
nent. It would be Graphite I in the petrographic terminology of Dill 
et al. (2019).

The Raman spectra for supracrustal rocks show that the car-
bonaceous material is graphitic rather than kerogenous, based on 

sharply defined peaks and the position of the order peak (Wopenka 
& Pasteris, 1993). The spectra for some samples, lacking a D peak, 
indicate graphite that is fully ordered. However, most samples show 
at least some degree of disorder. The greatest disorder is exhibited 
by the samples from Gairloch and most samples from Tiree. Both 
localities are in amphibolite facies rocks, whereas the other localities 
are in granulite facies rocks (Table 1). The most fully ordered samples 
are from South Harris, Glenelg, Scardroy and the albitized rocks of 
Tiree.

The well- ordered graphite from amphibolite facies albitized 
rocks at Tiree shows that metamorphic grade is not the sole 
control on ordering. Previous research concluded that graphite 
from decarbonation is likely to be fully ordered, while graph-
ite derived from organic matter is less ordered (Pasteris, 1999; 
Wintsch et al., 1981). Nevertheless, the graphite from marble at 
Gott shows disorder (Figure 5). Although there is not a simple 
relationship between ordering and evidence for deposition from 
fluid in the Lewisian Complex, most of the fluid- derived samples 
are well- ordered.

F I G U R E  6   Composition of isotopic 
carbon in samples of graphite in schists 
and marbles in Lewisian supracrustal 
inliers, and in selected localities in North 
Atlantic region (localities recorded in 
Table 1) [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  7   Cross- plot of carbon 
and sulphur contents (wt%) in Lewisian 
schists, showing sulphur enrichments 
relative to modern mean ratio due to 
pyrite formation. Plot after Berner 
(1982) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Graphite in sediments from the 2– 1– 1.8 Ga interval elsewhere, 
from Greenland, Norway, India and Argentina, similarly exhibits 
disorder despite metamorphism to granulite and amphibolite fa-
cies (Lajoinie et al., 2015; Mishra & Bernhardt, 2009; Palosaari 
et al., 2016; Papineau et al., 2009; Rosing- Schow et al., 2017). In 
contrast, graphite veins, concentrated from Palaeoproterozoic sed-
iments so they can be exploited as graphite ore deposits, typically 
show complete ordering. High ordering is evident in the mined and 
prospective deposits in Labrador, Greenland, Norway and Sweden 

(Figure 4). These data, showing high ordering in graphite deposited 
from fluid, are consistent with the data for graphite in Scotland.

The graphite with isotopic composition in the range −20 to 
−30‰ is typical of graphite derived from organic matter. The suc-
cessions containing graphite within this range of compositions, in 
South Harris, Gairloch, Glenelg and Iona, are all schists that were 
probably deposited in low- energy marine environments. With 
two exceptions, the values in schists are more precisely all in the 
range −21 to −25‰, which is typical of other Palaeoproterozoic 

TA B L E  1   Isotopic composition of graphite samples

Inlier Locality Grid ref. Lab number Setting (met. grade) δ13C (‰)

Lewisian Complex

Gairloch Kerrysdale NG 822736 PPG6 Schist (Amphibolite) −24.0

Gairloch Kerrysdale NG 822736 PPG7 Schist (Amphibolite) −24.5

Gairloch Kerrysdale NG 822736 PPG8 Schist (Amphibolite) −24.4

Gairloch Kerrysdale NG 822736 PPG9 Schist (Amphibolite) −24.4

Gairloch Kerrysdale NG 822736 PPG26 Schist (Amphibolite) −23.6

Glenelg Sgiath Bheinn NG 8218 PPG47 Schist (Granulite) −21.0

Glenelg Sgiath Bheinn NG 8218 PPG21 Schist (Granulite) −22.6

Glenelg Sgiath Bheinn NG 8218 PPG22 Schist (Granulite) −22.6

South Harris Rodel Pier NG 047830 PPG13 Schist (Granulite) −24.2

South Harris Rodel Church NG 048832 PPG15 Schist (Granulite) −25.1

South Harris Rodel Church NG 048832 PPG16 Schist (Granulite) −24.9

South Harris Stuaidh NG 043832 PPG10 Schist (Granulite) −24.5

South Harris Stuaidh NG 043832 PPG11 Schist (Granulite) −24.8

South Harris Stuaidh NG 043832 PPG12 Schist (Granulite) −25.0

Tiree Vaul NM 050488 PPG25 Schist (Amphibolite) −17.4

Tiree Gott NM 045456 PPG54 Marble (Amphibolite) −7.5

Tiree Gott NM 045456 PPG55 Marble (Amphibolite) −8.4

Tiree Gott NM 045456 PPG55A Marble (Amphibolite) −6.7

Tiree Gott NM 045456 PPG59 Marble (Amphibolite) −8.9

Tiree Gott NM 045456 PPG66 Albitized gneiss (Amp) −13.2

Tiree Gott NM 045456 PPG69 Marble (Amphibolite) −7.3

Tiree Gott NM 045456 PPG69A Marble (Amphibolite) −5.9

Iona NW Iona NM 263248 PPG1 Schist (Granulite) −23.3

Scardroy Scardroy NH 223523 PPG49 Marble (Granulite) −5.1

Scardroy Scardroy NH 223523 PPG63 Marble (Granulite) −4.0

Scardroy Scardroy NH 223523 PPG 64 Marble (Granulite) +6.2

Country Locality Lab number Setting δ13C (‰)

North Atlantic Region

Canada Saglek Bay, Labrador PPG76 Schist −29.83

Canada Soper River, Kimmirut PPG74 Marble −8.65

Canada Soper River, Kimmirut PPG75 Marble −7.74

Greenland Akuliaruseq PPG80 Schist −15.22

Norway Traelen, Skaland PPG4 Schist −18.7

Sweden Woxna PPG48 Schist −17.7

Finland Skrabbole, Pargas PPG70 Marble −2.60
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graphitic carbon. For example, coeval datasets from Greenland, 
Australia and China schists have mean values of −24.5‰ (n = 11), 
−24.1‰ (n = 11) and −24.2‰ (n = 12) respectively (Rosing- Schow 
et al., 2017; Williams, 2007; Zhong et al., 2019). The distinct com-
position of the graphite in marbles (heavier than −10‰, mostly −4 
to −9‰) is similar to that derived from magmatic carbon dioxide 
(Luque et al., 2012) However, it can be explained by a source of 
carbon dioxide in decarbonation of marbles with a near- zero com-
position. Similar combinations of graphite with light compositions 
in pelites and heavier compositions near marbles, in amphibolite 
and granulite facies, are reported by Weis et al. (1981) and Baker 
(1988). The two exceptions to the tight range of values for the 
schists may represent mixing of organic matter and carbonate 
sources.

Marbles of Palaeoproterozoic age across the northern 
hemisphere are consistently associated with graphite, from 
Baffin Island, Canada (Belley et al., 2017) to West Greenland 
(Garde, 1978), Finland (Lehtinen, 2015), Tajikistan (Sorokina et al., 
2015) and China (Yang et al., 2019). We have measured the car-
bon isotope composition of graphite in marble from Kimmirut, 
Baffin Island, and Pargas, Finland, at −8.1 and −2.6‰ respectively 
(Figure 6). These heavy compositions indicate, like the graphite in 
marble from Scotland, an origin in decarbonation of the marble. 
We note that the Palaeoproterozoic graphitic marbles in Baffin 
Island, Tajikistan and China all host gem quality corundum (ruby 
and sapphire).

A further aspect of Palaeoproterozoic graphite is a consistent oc-
currence in albitite veins, as in Scotland. Examples include deposits 
in Brazil (Sirqueira et al., 2018), Russia (Sorokhtina et al., 2010) and 
India (Mukherjee et al., 2016), which emphasize graphite precipita-
tion from fluids was widespread.

6  | CONCLUSIONS

Graphite occurs in numerous supracrustal successions within the 
Lewisian Complex. Petrographic, isotopic and spectroscopic studies 
show that:

(i) The graphite in schists is derived from sedimentary organic 
matter, while graphite in marbles is derived from decarbonation 
of limestone.

(ii) In addition, there is evidence of graphite deposition from mi-
grated (i.e. fluid) carbon, in cross- cutting veins and cavities.

(iii) Some of the graphite is fully ordered, especially where it was 
deposited from a fluid. However, much of the graphite is not 
completely ordered. Graphite examined from Gairloch and 
Vaul, Tiree, shows disorder, despite metamorphism to amphib-
olite facies.

(iv) Comparison of the data from Scottish graphite with that of ex-
ploitable deposits in the North Atlantic region shows that or-
dered graphite that may be commercially valuable is more likely 
to occur in veins, which should guide exploration.
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