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Abstract: Currently, greenhouses are widely applied for plant growth, and environmental parameters
can also be controlled in the modern greenhouse to guarantee the maximum crop yield. In order
to optimally control greenhouses’ environmental parameters, one indispensable requirement is
to accurately predict crop yields based on given environmental parameter settings. In addition,
crop yield forecasting in greenhouses plays an important role in greenhouse farming planning and
management, which allows cultivators and farmers to utilize the yield prediction results to make
knowledgeable management and financial decisions. It is thus important to accurately predict the
crop yield in a greenhouse considering the benefits that can be brought by accurate greenhouse
crop yield prediction. In this work, we have developed a new greenhouse crop yield prediction
technique, by combining two state-of-the-arts networks for temporal sequence processing—temporal
convolutional network (TCN) and recurrent neural network (RNN). Comprehensive evaluations of
the proposed algorithm have been made on multiple datasets obtained from multiple real greenhouse
sites for tomato growing. Based on a statistical analysis of the root mean square errors (RMSEs)
between the predicted and actual crop yields, it is shown that the proposed approach achieves more
accurate yield prediction performance than both traditional machine learning methods and other
classical deep neural networks. Moreover, the experimental study also shows that the historical yield
information is the most important factor for accurately predicting future crop yields.

Keywords: deep learning; temporal convolutional network (TCN); recurrent neural network (RNN);
crop yield prediction; greenhouse

1. Introduction

Compared with field growing, currently, greenhouse growing is preferred by many
crop growers. Growing crops in the greenhouse can extend their growing season, protect
crops against temperature and weather changes and thus provide a safe growing environ-
ment. Moreover, environmental parameters (e.g., humidity, temperature radiation, carbon
dioxide, etc. [1,2] can also be controlled in the modern greenhouse to guarantee crops grow
at the most appropriate environmental conditions.

Crop yield forecasting in greenhouses plays an important role in farming planning
and management in greenhouses, and optimally controlling environmental parameters
guarantees the maximum crop yield. Cultivators and farmers can utilize yield prediction in
greenhouses to make knowledgeable management and financial decisions. However, it is
an extremely challenging task. There are many factors that have an influence on crop yield
in a greenhouse, such as radiations, carbon dioxide concentrations, temperature, quality of
crop seeds, soil quality and fertilization, and disease occurrences (as shown in [3–5]). It is
not straightforward to construct an explicit model to reflect the relationship between such
a variety of factors and crop yield.
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In this work, we propose a deep neural network-based greenhouse crop yield predic-
tion method, by combining two state-of-the-art networks for temporal sequence processing:
recurrent neural network (RNN) and temporal convolutional network (TCN). The pro-
posed deep neural network is developed for predicting future crop yields in a greenhouse
based on a sequence of historical greenhouse input parameters (e.g., temperature, humidity,
carbon dioxide, radiation) as well as yield information. According to the experimental
evaluations of multiple datasets collected from multiple greenhouses in different time
periods, it is shown that the RNN+TCN-based deep learning approach achieves more
accurate yield prediction results with smaller root mean square errors (RMSEs), compared
with both classical machine learning and other popular deep learning-based counterparts.

2. Literature Works

Although there is much research related to crop yield prediction for the farming
field, a relatively small amount of works focus on greenhouse crop yield forecasting.
Approaches that have been developed for greenhouse crop yield forecasting are divided
into two main categories: the explanatory biophysical model-based approach and the data
driven/machine learning model-based approach.

Explanatory biophysical model-based approach: Based on a series of ordinary differ-
ential equations (ODEs) reflecting a dynamic process, the explanatory model describes the
relationship between some environmental factors and crop growth or morphological devel-
opment. Different biophysical models have been applied for crop growth modelling which
can thus be used for yield forecasting, based on greenhouse environmental parameters.

The Tomgro model is proposed by Jones et al. in [6], which models the tomato growth
and fruit yield with respect to dynamically changing temperature, solar radiation, and CO2
concentration inside a greenhouse. A more complex Tomsim biophysical model is proposed
in [7], which contains multiple sub-modules developed for modelling different aspects
(i.e., photosynthesis, dry matter production, truss appearance rate, fruit growth period
and dry matter partitioning, etc.) related to tomato growth. A crop yield model that
describes the effects of greenhouse climate on yield based on ODEs was described and
validated in [4]. This yield model was validated for four temperature regimes. Results
demonstrated that the tomato yield was simulated accurately for both near-optimal and
non-optimal temperature conditions in the Netherlands and southern Spain, respectively,
with varying light and CO2 concentrations. An integrated Yield Prediction Model [8],
which is an integration of Tomgro model [6] and Vanthoor model [4], is applied to predict
the crop yield in greenhouses based on controllable greenhouse environmental parameters.
Different biophysical models, including Vanthoor model [4], Tomsim model [7], Green-
house Technology applications (GTa) model, the model proposed in [9] and their combined
version were compared in [10]. The experimental studies show that the combined model
can outperform original models with smaller root mean square errors (RMSEs) for yield
prediction. The biophysical models proposed in [11,12] describe effects of electrical con-
ductivity, nitrogen, phosphorus, potassium, and light quality on dry matter yield and
photosynthesis of greenhouse tomatoes and cucumbers, respectively.

The explanatory model is practical to reflect the actual growth process of crops, which
is bio-physically meaningful and explainable. However, the aforementioned explanatory
models suffer from the following two main limitations:

(i) There are many intrinsic model parameters associated with a biophysical model and
the performance of an explanatory model is highly sensitive to its model parameters
(as shown in [13]). Moreover, the model parameter setting suitable for predicting
greenhouse crop yield in one region may not be workable for other regions [13].

(ii) In addition, most biophysical models are also not universal and restricted to model the
growth for a specific type of plant. For example, the Tomgro model [6] and Tomsim
model [7] can only be used to model/predict the growth/yield of tomatoes.

Due to the limitations of the explanatory biophysical model-based approaches, in this
work, we refer to another category of approach–machine learning model-based approach
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for greenhouse crop yield prediction. More details of the machine learning model-based
approach are introduced as follows.

Machine learning model-based approach: Data driven/machine learning technique-
based approaches have also been applied for greenhouse crop yield forecasting in many
studies, which treat the crop yield output as a very complex and nonlinear function of the
greenhouse environmental variables and historical crop yield information. In particular,
linear and polynomial regression models are used in [14] for strawberry growth and fruit
yield using environmental data such as average daily air temperature (ADAT), relative
humidity (RH), soil moisture content (SMC), and so on. However, an assumption of
a linear or polynomial relationship between the crop yield and environmental factors
is not always valid. Partial least squares regression (PLSR) has been applied in [15],
for modelling the yield of snap bean based on the data collected from hyperspectral sensing.
Neural networks have also been widely applied for greenhouse crop yield prediction.
For example, an artificial neural network (ANN) has been applied in [16], for weekly
crop yield prediction. While in [17], ANN has been applied to predict the pepper fruit
yield based on factors such as fruit water content, days to flowering initiation, and so
on. An Evolving Fuzzy Neural Network (EFuNN) was proposed in [18] for automatic
tomato yield prediction, given different environmental variables inside the greenhouse,
namely, temperature, CO2, vapour pressure deficit (VPD), and radiation, as well as past
yield. A Dynamic Artificial Neural Network (DANN) [19] was implemented to predict
tomato yields, based on a series of predictors such as CO2 fixation, transpiration, solar
radiation as well as past yield. The findings show that the most important environmental
variable for yield prediction was CO2 fixation, and the least important was transpiration.
Although ANN-based approaches have been widely applied for greenhouse crop yield
prediction tasks as in [16–19], their performance is highly sensitive to different choices of
network architectures and network hyper-parameters settings. Furthermore, there is a
lack of studies on optimally designing network architecture and tuning network hyper-
parameters for the greenhouse crop yield prediction.

The aforementioned works focus on using classical machine learning approaches
for greenhouse crop yield prediction. Given a certain amount of training data, classical
machine learning models (such as linear/polynomial regression models, artificial neural
network model, etc.) are constructed to predict greenhouse crop yields based on certain
factors (such as environmental and past yield information). However, these works suffer
from limitations due to the adoptions of simple and ‘shallow’ classical machine learning
models, for example:

(i) Features extracted from data for building the classical machine learning models may
not be optimal and most representative, thus deteriorating the performance for yield
prediction (as shown by our experiment, in most cases, the classical machine learning
models perform worse than the deep learning-based ones).

(ii) The classical machine learning models cannot effectively handle data with either high
volume or high complexity.

Deep learning is a very popular machine learning technique and it has been suc-
cessfully applied in a variety of applications (e.g., image classification, computer vision,
natural language processing, etc.) [20]. Recently, deep learning technology has also been
applied for crop yield prediction in the outdoor environment. For example, in [21], a recur-
rent neural network deep learning algorithm over the Q-Learning reinforcement learning
algorithm is used to predict the crop yield. The results show that the proposed model
outperforms the existing models with high accuracy for crop yield prediction. CNN and
LSTM are combined in [22] for both end-of-season and in-season county-level soybean
yield prediction, based on the remote sensing data in the outdoor environment. Compared
with the outdoor application scenarios, there are very few works related to the applications
of the deep learning approach for indoor greenhouse crop yield prediction. Some related
works can be found in [5,23], from which the researchers have adopted the recurrent
neural network (RNN) model with long-short temporal memory (LSTM) units for tomato
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and ficus yield prediction. Furthermore, it can be seen from the evaluation results that
the deep learning-based approaches adopted in [5,23] outperform traditional machine
learning algorithms, with more accurate prediction results and lower root mean square
errors (RMSEs).

3. Methodology

In this work, a novel deep neural network (DNN)-based methodology is proposed,
to predict the future crop yield based on historical yields and greenhouse environmental
parameters (e.g., CO2 concentration, temperature, humidity, radiation, etc.) information.
The proposed method is based on the hierarchical integration of the recurrent neural
network (RNN) and temporal convolutional network (TCN), which are both the current
state-of-the-art DNN architectures for temporal sequence processing. Furthermore, a dia-
gram illustrating the proposed methodology is shown in Figure 1, from which we can see
that the proposed methodology contains four main parts: normalization part, recurrent
neural network part, temporal convolutional network part and the final fully connected
layer part. Different parts will be introduced in the next few sections.

Figure 1. Proposed DNN architecture.
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3.1. Input Data Normalization

A temporal sequence of data containing both historical yield and environmental
information is exploited to predict the future crop yield after a certain period. As shown in
Figure 1, a temporal sequence with the length N denoted as xt−N , . . . , xt is taken as the
network input. The xt in the temporal sequence is a vector containing the following factors
recorded at the time instance t: recorded yield information (g/m2), CO2 concentration
(ppm) in the greenhouse, greenhouse temperature (◦C), humidity deficit (g/kg), relative
humidity (percentage) and radiation (W/mw).

Before being fed into the network, firstly, normalization is applied to the data to
normalize each factor (e.g., historical yield, CO2 concentration, temperature, radiation, etc.)
to a range between [0, 1] by the following equation:

x̂i
t =

xi
t − xi

min
xi

max − xi
min

(1)

where xi
t represents the i-th factor at the time step t. xi

min and xi
max represent the correspond-

ing maximum and minimum values for the related factor. After applying Equation (1),
each factor is normalized to a range between 0 and 1.

3.2. Recurrent Neural Network

The normalized temporal data sequence is then fed into a recurrent neural network.
As in [20], RNN has been widely applied for processing sequence data. It can both capture
temporal dependencies between data samples in a sequence and extract the most represen-
tative features for that sequence to perform a variety of tasks (e.g., sequence classification,
temporal data predictions, etc.). In our work, the RNN is firstly applied to extract represen-
tative features from input normalized temporal sequence data for further processing.

The traditional RNN exists problems of both gradient vanishing and gradient ex-
plosion [20], which limits its applications especially on processing long sequential data.
Currently, the most popular way to overcome limitations of the traditional RNN is to adopt
a new architecture with incorporating long short-term memory (LSTM) units, known as
LSTM–RNN [24]. As shown in Figure 1, the LSTM–RNN consists of multiple LSTM units,
which are shown in Figure 1. Furthermore, there are a series of arithmetic operations
associated with a LSTM unit, which are detailed as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (2)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f )

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo)

ht = ottanh(ct)

where xt, ot and ht represent the LSTM input, LSTM output and LSTM state associated with
the data sample at time instance t. ct is the LSTM cell value representing encoded historical
information obtained from previous data samples before t. σ(·) and tanh(·) represent
sigmoid and tanh functions. Other parameters represent weights and bias.

Given the normalized input temporal sequence as shown in Figure 1, representa-
tive features are extracted by the LSTM–RNN network as its states [..., ht−1, ht, ht+1, ...],
which are then fed into the next component of temporal convolutional network (TCN) for
further processing.

3.3. Temporal Convolutional Network

The temporal convolutional network (TCN) component used in this work, as proposed
in [25], applies a hierarchy of temporal convolutions across its input sequence, thus effec-
tively extracting its representative features from different temporal scales. As in Figure 1,
the dilated TCN component consists of multiple residual blocks while each residual block
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consists of multiple dilated causal convolution layers. Dilated causal temporal convolution
operations are performed in the dilated convolution layers. In particular, the t-th output in
the l-th layer and j-th block (denoted as Sj,l

t ) is calculated from the previous layer by the
following operations:

Sj,l
t = f (w1Sj,l−1

t−s + w2Sj,l−1
t + b) (3)

where f (·) represents the activation function (such as Relu as shown in Figure 1), w1 and
w2 represent weights and b is the bias value. During the training procedure of the dilated
convolution layers, weight normalization [26] can be performed on the dilated convolution
layer’s weights, to help speed up the convergence of the related weights training algorithms.
Moreover, a certain percentage of weights of the dilated convolution layers can be dropped
out during the training, for improving the generalization performance.

An additional 1D convolution operation is performed within each residual block,
to adjust the dimension of the residual block input to be the same as that of the dilated
casual convolution layer output to add them together. The output results obtained from
one residual block are fed as the input of the next block and the final output is obtained
from the last residual block. The final output of the last residual block from the TCN is then
flattened and fed into a fully connected (FC) layer to output the final yield prediction result.

3.4. Fully Connected Layer

The output of the TCN part is flattened and fed into a vector, which is then fed into
a fully connected layer for the final yield prediction, as shown in Figure 1. In particular,
the fully connected layer has one output with a Relu activation function.

In a summary, the proposed work investigates the combination of two state-of-the-
arts deep neural networks for temporal sequence processing: LSTM–RNN and TCN,
for greenhouse crop yield prediction. Based on an input temporal sequence containing both
historical yields and environmental parameters information during a certain period, firstly,
an LSTM–RNN is applied for pre-processing the original input to extract representative
feature sequences, which are then further processed by a sequential of residual blocks in
the TCN to generate the final features used for the future yield prediction. Compared with
other deep learning methodology for greenhouse crop yield prediction by solely exploiting
the LSTM–RNN as in [5], in our work, an additional TCN layer is added on the top of the
LSTM–RNN layer, to better exploit the LSTM–RNN output and extract more representative
features for a more accurate crop yield prediction. As validated from the experimental
studies, the combination of RNN and TCN achieves better performance than exploiting
solely RNN [5] or TCN for the greenhouse crop yield prediction.

4. Experimental Studies

The experimental studies of the proposed DNN based crop yield prediction approach
are presented in this section.

4.1. Datasets Descriptions

Three datasets are collected from a tomato-growing site in Newcastle, UK, which
contain recorded environmental parameters and crop yield information in different green-
houses during different time periods. The details of these datasets are described in the
following Table 1:
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Table 1. Datasets descriptions.

Dataset 1 Dataset 2 Dataset 3

Location Greenhouse 1 Greenhouse 2 Greenhouse 2

Time period 2018 2017 2018

Information included

yield information (g/m2)

CO2 concentration (mmp)

temperature (◦C)

humidity deficit (g/kg)

relative humidity (percentage)

radiation (W/m2)

As an illustration, the daily recorded environmental parameters (CO2 concentration,
temperature, humidity deficit, relative humidity, and radiation) for all three datasets are
shown in Figure 2. In addition, the descriptive statistical analysis on environmental pa-
rameters for different datasets is summarized in Table 2. We can see that for Dataset 2,
the descriptive statistics (min, max median, and mean values) of recorded CO2 concen-
tration values are comparatively lower than those in the other two datasets, while the
descriptive statistics of the other environmental parameters for these three datasets are
quite consistent. Figure 3 shows the recorded accumulated tomato yield information during
a one year period associated with three datasets. Furthermore, we can see that the recorded
accumulated dry fruit weights follow similar patterns (due to the fact that they are from
one grower at one particular site).

4.2. Experimental Design

Based on the temporal recordings of environment and yield information for every
dataset, the sliding window method (with step 1) is applied to generate data samples,
which contain recorded environmental parameters and yield information during one week
as well as the associated future crop yield after one week. These generated data samples
are exploited to train/test a network, for predicting the crop yield after one week given
the collected environmental and yield information during the last week. Generated data
samples are split into training and testing datasets with a proportion of 70% versus 30%.
The training dataset is applied to train the network, which is then tested against another
testing dataset for evaluating the performance of the trained network. Adam’s method
in [27] is applied for network training to minimize the mean square error (MSE) loss defined
as below:

LMSE =
1

Ntrain
ΣN

i=1‖ytrain
i − ŷtrain

i ‖2 (4)

where Ntrain is the train sample size while ytrain
i and ŷtrain

i represent the ground truth and
predicted yield values in the training dataset, respectively.

Furthermore, we use the root mean square error (RMSE) as defined below to evaluate
the network performance on a testing dataset

RMSE =

√
1
N

ΣN
i=1‖ytest

i − ŷtest
i ‖2 (5)

where Ntest is the sample size in the test dataset while ytest
i and ŷtest

i represent the ground
truth and predicted test sample values, respectively.
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Figure 2. Daily recorded CO2 concentration (mmp), temperature (◦C), humidity deficit (g/kg), relative humidity (percentage)
and radiation (W/m2) associated with dataset 1 (left column), dataset 2 (middle column) and dataset 3 (right column).
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Table 2. Descriptive statistics of greenhouse environmental parameters associated with differ-
ent datasets.

Dataset 1 Dataset 2 Dataset 3

CO2 (mmp)

Min 535.97 370.94 478.05

Max 1634.10 967.40 1691.43

Median 793.95 629.97 769.79

Mean 785.95 624.19 770.37

Standard deviation 152.52 129.58 175.61

Temperature (◦C)

Min 4.73 3.68 4.72

Max 23.73 23.89 23.69

Median 18.30 18.46 18.31

Mean 17.25 17.01 17.18

Standard deviation 3.97 4.25 3.94

Humidity deficit (g/kg)

Min 0.33 0.13 0

Max 6.70 7.27 6.08

Median 2.27 2.78 2.58

Mean 2.91 2.91 2.65

Standard deviation 1.40 1.29 1.33

Relative humidity (%)

Min 63.04 65.31 65.09

Max 96.24 98.50 100

Median 83.87 83.22 84.73

Mean 82.49 82.19 83.99

Standard deviation 6.57 5.88 6.72

Radiation (W/m2)

Min 0.59 0.58 0.59

Max 82.91 83.02 82.91

Median 42.81 43.41 42.81

Mean 42.17 42.19 42.17

Standard deviation 19.37 18.92 19.37

Figure 3. Accumulated tomato fruit yield (g/m2) recorded associate with dataset 1 (left), dataset 2
(middle) and dataset 3 (right).
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4.3. Network Performance

For evaluating the proposed deep neural network’s performance for the greenhouse
crop yield prediction, firstly, we need to identify the optimal network architecture. As men-
tioned in the previous section, our developed DNN is combined with two components:
LSTM–RNN and TCN. The LSTM–RNN component consists of multiple LSTM units while
the TCN component contains residual blocks containing three dilated convolutional layers.
Each convolutional layer contains multiple convolutional filters with kernel size 2 and
dilated rate 1 in [25]. Firstly, we have evaluated different network architectures with differ-
ent LSTM units and convolutional filter numbers. Especially, each network architecture is
trained/tested based on the training/testing split of data samples associated with every
dataset multiple times, while the mean and standard deviation of obtained multiple RMSEs
are calculated. The calculated means and standard deviations of RMSEs associated with
different network architectures for all three datasets, as well as average ones (calculated as
the average of the RMSE means and standard deviations obtained from three datasets) are
summarized in Table 3. From Table 3, we can see that overall, adding more LSTM units
can achieve better results with obtained smaller RMSEs (by comparing the average RMSEs
for LN = 50 and those for LN = 250). However, there is no obvious relationship between
the network performance and the filter number (FN). From the table, we can see that the
optimal performance is obtained with an LSTM number 200 and filter number 250, with the
smallest average mean RMSE being obtained (bolded in the table).

Table 3. Obtained mean and standard deviation of RMSEs with different LSTM unit numbers (LN)
and convolutional filter numbers (FN) for three datasets.

FN

LN 50 100 200 250

Dataset 1

50 16.20 ± 5.25 8.24 ± 0.78 13.84 ± 0.72 10.82 ± 0.80

100 16.51 ± 0.87 11.45 ± 0.64 9.62 ± 0.04 9.96 ± 1.78

200 19.57 ± 2.80 18.54 ± 1.57 16.30 ± 1.56 11.11 ± 0.13

250 10.48 ± 0.64 16.99 ± 0.22 10.45 ± 0.94 9.98 ± 0.27

Dataset 2

50 8.91 ± 1.78 9.01 ± 0.73 7.16 ± 0.50 7.26 ± 1.21

100 11.81 ± 1.22 8.47 ± 0.52 8.81 ± 1.85 8.23 ± 0.27

200 10.62 ± 1.58 7.07 ± 1.90 7.96 ± 0.25 6.33 ± 1.48

250 11.62 ± 0.02 8.78 ± 0.12 6.76 ± 0.45 7.95 ± 0.44

Dataset 3

50 11.96 ± 2.29 8.54 ± 0.71 8.21 ± 0.99 8.02 ± 0.20

100 11.08 ± 4.61 8.58 ± 1.40 8.18 ± 0.44 8.88 ± 0.53

200 8.85 ± 1.52 7.41 ± 1.48 8.67 ± 1.15 8.77 ± 1.20

250 9.35 ± 1.57 7.46 ± 1.78 7.40 ± 1.88 10.06 ± 0.99

Average

50 12.36 ± 3.11 8.60 ± 0.74 9.74 ± 0.74 8.70 ± 0.74

100 13.13 ± 2.27 9.50 ± 0.85 8.87 ± 0.78 9.02 ± 0.85

200 13.01 ± 1.97 11.01 ± 1.65 10.98 ± 1.00 8.74 ± 0.94

250 10.48 ± 0.74 11.08 ± 0.71 8.20 ± 1.09 9.33 ± 0.57
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Moreover, we have also tested whether adding more LSTM layers or Residual blocks
can further improve the performance, with the results being summarized in Table 4.
From Table 4, we can see that adding more LSTM layers in LSTM–RNN or residual blocks
in TCN deteriorates the performance for the majority of cases (only with a very marginal
reduction in mean RMSE for dataset 2 by adding one LSTM layer). From this table, we
can see that adding more LSTM layers or residual blocks does not gain extra benefits due
to over-fitting.

Table 4. Mean and standard deviation of RMSEs for different LSTM layers and residual block
numbers on different datasets.

Block Number
Layer Number 1 2

Dataset 1
1 10.45 ± 0.94 10.93 ± 2.73

2 22.52 ± 10.08 15.58 ± 8.27

Dataset 2
1 6.76 ± 0.45 6.50 ± 0.45

2 9.18 ± 1.60 7.12 ± 0.18

Dataset 3
1 7.40 ± 1.88 13.41 ± 2.09

2 9.95 ± 0.72 16.85 ± 3.11
The smallest mean RMSE is marked bold.

Based on the above evaluations, we have determined that the network architecture
used in this study be with one LSTM layer and one TCN block. While the number of filters
in the TCN block is chosen as 250 and that of the LSTM units is chosen as 200. Figure 4
shows the evolution of MSE losses with respect to training epoch for training our network
model with the aforementioned architecture based on three training datasets. As the epoch
increases, we can see that the MSE losses successfully converge to 0 for all the scenarios,
while the convergence rate is fastest with the largest learning rate (when lr = 0.001).
Figure 5 shows the comparison of ground truth accumulated yields and predicted ones
by our trained network during different time periods. We can intuitively observe that
the predicted tomato fruit yield values almost coincide with the ground truth ones for all
three scenarios.

Moreover, we have evaluated the importance of each factor for future yield prediction.
In particular, at one time, we have excluded a factor as the network input and then
trained/tested the network model on three datasets multiple times. The obtained averaged
RMSE mean and standard deviation values are calculated and summarized in Table 5. We
can obviously find out that the obtained error by excluding the historical yield information
is much larger than those obtained by excluding other factors. Based on the results in
Table 5, we can conclude that the historical yield information plays the most important role
in the future yield prediction.
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Figure 4. The evolution of MSE losses with training epoches with respect to Dataset 1 (a) Dataset 2
(b) Dataset 3 (c).
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Figure 5. Ground truth tomato fruit yield values and predicted ones for testing datasets associated
with Dataset 1 (a) Dataset 2 (b) Dataset 3 (c).
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Table 5. Statistical metrics (mean and standard deviation) of RMSEs (g/m2) by excluding certain
input factors.

Excluding CO2 Concentration 11.88 ± 2.01

Excluding temperature 12.45 ± 0.87

Excluding HD 14.17 ± 2.98

Excluding RH 14.98 ± 3.88

Excluding radiation 12.84 ± 4.55

Excluding historical yield information 831.54 ± 73.02

4.4. Comparison Studies

We have compared our developed DNN method with other methods, including both
traditional machine learning-based methods (linear regression (LR), random forest (RF),
support vector regression (SVR), decision tree (DT), gradient boosting regression (GBR),
multi-layers artificial neural network (MLANN)) as well as other deep learning-based ones
(single/multiple layer(s) LSTM–RNN [5], LSTM–RNN with attention mechanism [23] and
TCN with single/multiple residual blocks). The comparison results are summarized in
Table 6. From Table 6, we can see the majority of deep learning-based models (multiple
layers LSTM–RNN, LSTM–RNN with attention, TCN with multiple blocks, and ours)
outperform classical machine learning models with smaller mean RMSEs for all three
datasets, which shows the advantages of the adopting of the deep learning for the green-
house crop yield prediction. Furthermore, among the deep learning models, the proposed
model in this work achieves the best performance with the smallest mean RMSEs for all
three datasets.

Table 6. Statistical metrics (mean and standard deviation) of RMSEs (g/m2) obtained by different
methodologies for three datasets.

Dataset 1 Dataset 2 Dataset 3

Classical models

LR 23.77 ± 0 21.20 ± 0 17.88 ± 0

RF 28.84 ± 1.02 27.69 ± 0.56 26.47 ± 1.44

SVR 55.10 ± 0 46.62 ± 0 49.12 ± 0

DT 28.93 ± 1.33 28.93 ± 1.96 27.03 ± 2.64

GBR 28.93 ± 0.65 27.07 ± 0.52 23.98 ± 0.44

MLANN 95.81 ± 43.33 60.27 ± 19.03 47.01 ± 13.37

DL models

LSTM–RNN (single layer) [5] 25.34 ± 5.62 13.12 ± 4.31 15.65 ± 4.01

LSTM–RNN (multiple layers) [5] 14.16 ± 0.86 10.08 ± 0.84 12.38 ± 0.58

LSTM–RNN with attention [23] 20.18 ± 1.87 13.20 ± 2.67 13.60 ± 1.50

TCN 51.67 ± 29.87 30.79 ± 8.24 26.20 ± 7.54

TCN (multiple blocks) 16.96 ± 0.76 14.12 ± 3.06 11.41 ± 5.61

Ours 10.45 ± 0.94 6.76 ± 0.45 7.40 ± 1.88

The smallest mean RMSE for each dataset is marked bold.

5. Conclusions

In this work, we have proposed a new methodology for greenhouse crop yield pre-
diction, by integrating two state-of-the-arts DNN network architectures used for tempo-
ral sequence processing: RNN and TCN. Given an input temporal sequence containing
historical yield and environmental information, firstly, an LSTM—RNN is applied for
pre-processing the original inputs to extract representative features, which are then further
processed by a sequential of residual blocks of the TCN module. The features finally
extracted from the TCN are then fed into a fully connected network for future crop yield
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prediction. Comprehensive evaluations through statistical analysis of obtained RMSEs for
multiple datasets have shown that:

(i) The proposed approach can be applied for accurate greenhouse crop yield prediction,
based on both historical environmental and yield information.

(ii) The proposed approach can achieve much more accurate prediction than other coun-
terparts of both traditional machine learning and deep learning methods.

Furthermore, it is also shown in the experimental study that the historical yield
information is the most important factor for accurately predicting future crop yields.

With respect to future work, to further validate the general effectiveness of the pro-
posed model, we will evaluate it on more datasets collected from different growers on
different sites. Moreover, we will also test the model’s performance on yield prediction
for different types of popular greenhouse crops. More advanced network architecture will
also be considered, for example, the LSTM encoder–decoder component as in [23] will be
considered to be incorporated into the current model to build up a more advanced network
architecture. Finally, we will also investigate the combination of the developed machine
learning-based model with a biophysical model to achieve more accurate/robust crop yield
prediction based on a multi-model framework.
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