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Abstract

We investigate the association between rate of breast cancer lymph node spread and

grade, estrogen receptor (ER) status, progesteron receptor status, decision tree derived

PAM50 molecular subtype and a polygenic risk score (PRS), using data on 10 950 women

included from two different data sources. Lymph node spread was analyzed using a novel

continuous tumor progression model that adjusts for tumor volume in a biologically moti-

vated way and that incorporates covariates of interest. Grades 2 and 3 tumors, respec-

tively, were associated with 1.63 and 2.17 times faster rates of lymph node spread than

Grade 1 tumors (P < 10�16). ER/PR negative breast cancer was associated with a

1.25/1.19 times faster spread than ER/PR positive breast cancer, respectively (P = .0011

and .0012). Among the molecular subtypes luminal A, luminal B, Her2-enriched and basal-

like, Her2-enriched breast cancer was associated with 1.53 times faster spread than lumi-

nal A cancer (P = .00072). PRS was not associated with the rate of lymph node spread.

Continuous growth models are useful for quantifying associations between lymph node

spread and tumor characteristics. These may be useful for building realistic progression

models for microsimulation studies used to design individualized screening programs.

K E YWORD S

breast cancer, continuous growth model, lymph node metastases, molecular subtype,
polygenic risk score

What's new?

Breast cancer aggressiveness is reflected in the tumour's propensity to spread to the lymph nodes, in

many cases a precursory step of distant metastatic spread. Here, the authors apply a novel continuous

tumour progression model to estimate the rate of lymph node spread during the tumour's preclinical

phase based on grade, oestrogen receptor status, progesterone receptor status, molecular subtype,

and polygenic risk score. Combining two datasets with a total of 10,950 women with invasive breast

cancer, they show that quantifying tumour aggressiveness using continuous growth models may prove

useful in the future era of individualised screening and treatment.

Abbreviations: CAHRES, The Cancer and Hormone Replacement Study; CISNET, The Cancer Intervention and Surveillance Network; ER, estrogen receptor; HER2, human epidermal growth

factor receptor 2; iCOGs, a custom Illumina iSelect genotyping array; PAM50, a 50-gene signature that classifies breast cancer into molecular intrinsic subtypes; PR, progesteron receptor; PRS,

polygenic risk score; ST01-08, a cohort of breast cancer cases from the Stockholm-Gotland regional breast cancer register.
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1 | INTRODUCTION

Breast cancer is a heterogeneous disease. Different subtypes of

breast cancer grow and spread at different rates, and they react differ-

ently to treatment. Recently, there has been an interest in statistically

modeling breast cancer heterogeneity in terms of disease progres-

sion.1,2 Number of lymph node metastases present at diagnosis is

associated with long-term breast cancer prognosis.3,4 It is therefore

clinically relevant to understand breast cancer heterogeneity in terms

of lymph node metastases at diagnosis. The purpose of this article is

to investigate the association between breast cancer tumor character-

istics, including molecular subtype, and rate of lymph node spread.

In 2018, the Cancer Intervention and Surveillance Network

(CISNET), a consortium of research groups from six different universi-

ties, evaluated the contributions of screening and treatment to breast

cancer mortality between 2000 and 2012 by molecular subtype,

based on estrogen receptor (ER) status and human epidermal growth

factor receptor 2 (HER2) status.1 The group estimated that in 2012,

compared to baseline mortality rates, total reduction in mortality rate

from interventions was 49%, ranging from 37% for ER�/HER2�
breast cancer to 58% for ER+/HER2+ breast cancer. The contribu-

tions of screening and treatment differed substantially between

molecular subtypes. Screening was estimated to contribute to 31% of

the total mortality reduction for ER�/HER2� and to 48% of the

reduction for ER+/HER2+ breast cancer. Rueda et al2 investigated

the rate of recurring breast cancer by breast cancer molecular sub-

types. They used a semi-Markov model; molecular information was

based on PAM50 subtypes5 and integrative subtypes. After surgery,

state transition for local recurrence differed across the PAM50 molec-

ular subtypes: Basal-like breast cancer predominantly recurred within

the first 5 years, whereas luminal A breast cancer recurred almost uni-

formly throughout the 20-year study period. Some of these differ-

ences will be due to heterogeneity in rates of breast cancer spread.

Each group in CISNET has developed a breast cancer natural history

model.6 These models are all stage based and include a localized tumor

stage, a regionally spread stage and distant metastatic stage. Of these

approaches, the University of Wisconsin group uses, arguably, the most

sophisticated stage model: a continuous time spread process based on

Shwartz.7 The model assumes that tumor volume follows an exponential

Gompertz function with decelerating doubling time, individually assigned

doubling times, and that the instantaneous rate of lymph node spread at

time t is equal to λ(t) = b1 + b2V(t) + b3V0(t), where V(t) is tumor volume

at time t, V0(t) is the rate of growth at time t, and b1, b2 and b3 are con-

stants. In Isheden et al,8 it was shown that the model of Shwarz suffers

from two weaknesses: firstly, it implies that slow growing tumors have a

higher degree of lymph node spread compared to fast growing tumors,

and, secondly, the model implies either an unrealistically high degree of

lymph node spread for large tumors or an unrealistically low degree of

lymph node spread for small tumors. Based on two independent data

sets, it was shown that lymph node spread following an inhomogeneous

Poisson process with rate λ(t) proportional to the number of times the

tumor cells have divided, D(t), to the power four, and the rate of cell divi-

sion in the tumor D0(t), that is, λ(t) = σD(t)4D0(t), combined with a gamma

distributed random effect for individual spread σ, gives a significantly

better model fit compared to the model of Shwartz,7 and the lymph node

spread model of Hanin and Yakovlev.9 Here, we base our analyzes on

the lymph node metastases modeling approach of Isheden et al8 and a

recent extension of the model to include a covariate effect on the rate of

lymph node spread.10

In this article, we use a natural history lymph node spread regres-

sion model to quantify the rate of lymph node spread based on grade,

ER status, progesteron receptor (PR) status, molecular subtype and

polygenic risk score (PRS).

2 | METHODS

2.1 | Data

We include two independent data sources for our study: the Cancer and

Hormone Replacement Study, CAHRES; and breast cancer cases from

the Stockholm-Gotland regional breast cancer register, here abbreviated

as ST01-08. Ethical approvals were obtained for both data sources.

CAHRES is a case control study, consisting of all Swedish born

women between the ages of 50 and 74, who were diagnosed with inva-

sive breast cancer in Sweden from October 1993 to March 1995. The

study had a participation rate of 84% (n = 3345), and patients were mat-

ched to randomly selected controls from the general population based

on the expected age frequency distribution of the cases. For the purpose

of our study, we use only the cases. Information on tumor size, degree of

lymph node spread, grade, ER status and PR status was collected from

the Swedish Cancer Registry and the Stockholm-Gotland Breast Cancer

Registry. The collection of this data has been described previously by

Rosenberg et al11,12 and Eriksson et al.13 Tumor size was categorized into

millimeter diameter intervals, lymph node involvement categorized

according to number of lymph nodes affected by metastases and grade

categorized as 1, 2 or 3. Tumors were considered ER or PR positive if

they contained at least 0.05 fmol receptor/μg DNA or at least 10 fmol

receptor/mg protein. We excluded women if they did not provide writ-

ten consent, had missing tumor size, missing lymph node status, had a

tumor diameter larger than 80 mm or smaller than 1 mm or had more

than 30 affected lymph nodes at diagnosis. The total number of women

eligible for analysis based on these criteria was 2874, with 1928 having

data on grade, 2082 on ER status and 2039 on PR status.

PRSs for a selection of women in CAHRES were available through an

extension of the original study.14 In this extension, 1500 women were ran-

domly selected, together with all women who had taken hormone replace-

ment therapy (191 cases) and all women with self-reported diabetes

mellitus (110 cases). These women were contacted by mail and those who

consented were given blood sampling kits to be used at their primary

health care facility. From all deceased breast cancer cases, attempts were

made to retrieve archived tissue samples. Blood samples were collected

from 1322 cases and archived tissue was collected for 247 cases (85% of

all selected). DNA was isolated from 3 mL of whole blood and from non-

malignant cells in the paraffin-embedded tissue samples. DNA samples

were genotyped on a custom Illumina iSelect genotyping array (iCOGS).15
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ST01-08 consists of all women diagnosed with invasive breast

cancer in Stockholm from 2001 to 2008. Women were identified

through the Stockholm-Gotland Regional Breast cancer quality regis-

ter, and information was collected on tumor size, lymph node involve-

ment, grade, ER status and PR status.16 Tumor size, lymph node and

grade were categorized in the same way as in CAHRES. ER and PR

status were determined using radioimmunoassay or immunohisto-

chemistry (IHC) with cutoff values of more than 10% positive cells for

IHC and more than 0 fmol/μg DNA for radioimmunoassay assays, and

categorized as negative or positive. We excluded women if they had

missing tumor size, missing lymph node status, a tumor diameter

larger than 80 mm or smaller than 1 mm, or if they had more than

30 affected lymph nodes at diagnosis. This left a total of 8076

women eligible for analysis. Less than 2% of patients had missing

data on tumor size and lymph node involvement. Twenty percent

of patients had missing data for ER and PR status. Grade was

included in the register from 2004, with 7% of patients having

missing data. After exclusions, the final numbers of available

women with data on grade, ER status and PR status were 5227,

6518 and 6385, respectively.

All women in the Stockholm-Gotland Regional Breast Cancer quality

register still alive in 2009, diagnosed with invasive breast cancer between

2001 and 2008, and younger than age 80 at diagnosis were invited to

participate in a study named Libro-1. Invitations were mailed out in 2009,

and 62% (n = 5715) consented to take part in the study. These women

gave blood specimens for genetic analysis. Of these, 5125 were success-

fully genotyped in a large-scale genotyping study on breast cancer risk.17

Five thousand one hundred and twenty-two had enough remaining DNA

for mutation testing using targeted sequencing. For the women in the

Libro-1 study, data on molecular markers were retrieved in 2015 and

2016, from medical and pathology records at treating hospitals. From

these, molecular subtype was assigned based on age at diagnosis, ER, PR,

HER2 and Ki67 status using a random forest algorithm.18 After applying

the exclusion criteria, we were left with 1749 patients with data on

molecular subtype. Our study was carried out with informed consent and

ethical approvals from the Swedish ethical review board.

2.2 | Polygenic risk score

We constructed a PRS based on 158 single-nucleotide polymorphisms

(SNPs) that were genotyped, or that could be imputed based on

neighboring SNPs, in both studies. SNPs were chosen based on publi-

shed studies on breast cancer risk. The PRS was constructed by sum-

ming the number of alleles of each SNP, weighted by per-allele odds

ratios for breast cancer. Per allele odds ratios were taken from publi-

shed studies, for example, Michailidou et al.19 A PRS was thus calcu-

lated for each individual using the formula

PRS¼ β1x1þβ2x2þ…þβnxn, ð1Þ

Where βk is the per-allele log odds ratio for breast cancer associated

with the minor allele for SNP k, xk = 0, 1 or 2 is the number of minor

alleles for the same SNP, and n = 158 is the total number of SNPs.

After exclusions based on tumor and lymph node data, the PRS could

be calculated for 1119 of the available cases in CAHRES, and 4150 of

the available cases in Libro-1/ST01-08.

2.3 | Statistical models

To model the effect of breast cancer characteristics on rate of

lymph node spread, we use a continuous tumor growth model,

which includes a sub-model for lymph node spread. Under our

modeling assumptions, the number of affected lymph nodes can

be expressed as a direct function of current tumor characteris-

tics. The approach was developed by Isheden et al8 and was

recently extended to include covariate effects in the rate of

lymph node spread.10 A detailed description of the modeling

approach is given in the Appendix S1. In short, the model

assumes that tumor growth follows an exponential function with

gamma distributed inverse growth rates, that time to symptom-

atic detection follows a failure time model with rate proportional

to the current tumor volume and that the rate of breast cancer

lymph node spread follows an inhomogeneous Poisson process

with intensity function proportional to the growth rate of the

tumor and the fourth power of number of times the cells in the

tumor has divided. In summary, we assume that tumor cells

spread to the lymph nodes as the primary tumor grows,

according to an inhomogeneous Poisson process with intensity

function given by

λ t, r,s�ð Þ¼ s�D t, rð Þ4D0 t, rð Þ, ð2Þ

Where s* is a gamma distributed random effect, D(t,r) is the number of

times the cells in the tumor has divided and D0(t,r) is the rate of cell

division in the tumor—both at time t, assuming an inverse growth rate

r. In Isheden et al,8 it was shown that these models lead to there

being, at any time point, a negative binomial distribution, for the num-

ber of affected lymph nodes N, such that the probability of n affected

lymph nodes, conditional on current tumor volume V, follows the

functional form

P N¼ njVð Þ¼
Γ γ1þnð Þγ2γ1 log V

V0

� �5
� �n

Γ γ1þnð Þn! log V
V0

� �5
þ γ2

� �γ1þn , ð3Þ

where V0 is the minimal volume of a detectible lymph node metastasis

(here assumed to be 0.5 mm), Γ �ð Þ represents the gamma function,

and γ1 and γ2 are the parameters of the gamma distributed random

effect. The authors further showed10 that the association between a

covariate X and breast cancer lymph node spread can be modeled by

assuming that the rate of lymph node spread in the underlying

dynamic model of spread, during the pre-clinical phase, is amplified

(or decreased) by a factor eβX

1350 ISHEDEN ET AL.



λ t, r,s�,Xð Þ¼ s�eβXD t, rð Þ4D0 t, rð Þ, ð4Þ

where β¼ðβ1,β2,… βnÞ is a vector with the values of the covariate

effects. When combined with the other assumed models, this leads to

a negative binomial distribution, with number of affected lymph nodes

N = n, given tumor volume V = v and covariate X, following

P N¼ njVð Þ¼
Γ γ1þnð Þγ2γ1 eβX log V

V0

� �5
� �n

Γ γ1þnð Þn! eβX log V
V0

� �5
þ γ2

� �γ1þn , ð5Þ

Lymph node spread at diagnosis can also be affected by the tumor

growth rate of the tumor. A faster growing tumor will result in a larger

tumor volume at diagnosis, consequently leading to more lymph node

spread at diagnosis. This can be accounted for by making a regression

of tumor characteristics on the growth rate of the tumor, as was done

in Isheden et al.10 However, this requires screening data that we do

not have for all of our study population. In our study, we therefore

focus on the contribution to the rate of breast cancer lymph node

spread. In the following sections, we use this likelihood to make infer-

ence on the effects of tumor characteristics on rates of breast cancer

lymph node spread using data on tumor characteristics, tumor volume

and number of lymph node metastases at diagnosis.

In addition to describing our approach in the Appendix S1, we

also include a table (Table 1), summarizing the key characteristics/

assumptions of our approach and the data used to make inference.

2.4 | Point estimates and confidence intervals

Point estimates are calculated using maximum likelihood estimation,

where the likelihood is based on the probability of N = n affected

lymph nodes, conditional on the tumor volume V = v and the covari-

ate of interest X = x: pn = P(N = njV = v, X = x). pn is calculated using

Equation (5). 95% confidence intervals are estimated from 2000 boot-

strap replicates using the percentile method.

We model the effect of grade on rate of lymph node spread in

two different ways: firstly by modeling the effect of grade as an ordi-

nal variable, so that the rate of lymph node spread is amplified by the

factor eβg, where β is the log effect and g is the grade; and secondly,

as a discrete variable, so that the rate of lymph node spread is ampli-

fied by the factor eβ2g2þβ3g3 , where Grade 1 is the reference, β2 and β3

correspond to the log effects of Grades 2 and 3, respectively, and g2,

g3 are grade indicator variables. We model the effect of the PRS as a

continuous variable, so that the rate of lymph node spread is amplified

by a factor eβ�PRS, where β is the log effect and PRS is the polygenic

risk score. We model the effect of molecular subtype as a discrete

variable eβ2LumBþβ3HER2þβ4Basal , where luminal A is the reference, β2, β3,

β4 correspond to the log effects, and LumB, HER2, Basal are indicator

variables. The effects of the remaining tumor characteristics are

modeled with the amplification factor eβX, where β is the log effect

and X is the indicator variable of interest.

The rate ratio, that is, the ratio of the rate of lymph node spread

(at all points in time during the cancer's preclinical phase) between

two different tumors with different covariate levels X = x1 and X = x2,

assuming the same tumor volume V, inverse growth rate R and spread

parameter s*, is calculated as

RR¼ λ t, r,s�,x1ð Þ
λ t, r,s�,x2ð Þ¼

s�eβx1D t, rð Þ4D0 t,rð Þ
s�eβx2D t, rð Þ4D0 t,rð Þ

¼ eβ x1�x2ð Þ, ð6Þ

eβ can be interpreted as the rate ratio when we compare two tumors

at covariate levels x1 = 0 and x2 = 1. We calculate P-values using the

log likelihood test statistic from a reduced data set where outliers

have been removed. Simulations performed by the authors have

shown that the likelihood ratio test gives over-inflation of low P-

values when they are estimated based on the full data set. This is cau-

sed by the existence of outliers, which makes asymptotic convergence

slow. To remedy this, we removed outliers for the P-value calcula-

tions. Removal of outliers was done by estimating the model without

any covariates on the full data set, and then removing the

1-percentile of the data with smallest log-likelihood values. In

the combined data set, this corresponds to removing data points with

a log likelihood value smaller than �6.2.

TABLE 1 A summary of the model components, assumptions and
data used

Submodel/assumptions Data/comments

Tumor growth: Primary tumors

are assumed to grow

exponentially, with variability

in growth rates across

tumors, accounted for using a

random effect

Under the modeling assumptions,

size of the primary tumor (at

diagnosis) does not need to be

modeled in order to obtain

estimates of lymph node spread

during the preclinical phase of

the primary tumor

Seeding and detection of lymph

node metastases: During a

tumor's preclinical phase,

lymph node metastatic

seeding occurs as a non-

homogeneous Poisson

process with rate

proportional to the

(unobserved) number of cell

divisions, approximated as a

function of tumor size and

rate of growth of the primary

tumor (additional variability in

rates is accounted for, using a

random effect). Lymph node

metastases grow at the rate

of growth of the primary

tumor and are detectable

once they reach a fixed size

Under the modeling assumptions,

number of affected lymph

nodes at diagnosis of the

primary tumor is a direct

function of tumor size

(independent of growth rate of

the primary tumor) and can

therefore be modeled as a

function of tumor size at

diagnosis, from which rate of

the underlying distribution of

rates of spread to the lymph

nodes during the preclinical

phase of the primary tumor can

be directly estimated. As well as

being modeled with inter-

patient variability (random

effect), systematic variation in

the rate of spread is allowed for

as a function of covariates/

tumor characteristics (eg, grade,

PRS); Equation (5)

Detection of the primary tumor:

No assumptions made

–
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3 | RESULTS

Table 2 shows descriptive data for CAHRES, ST01-08 and the com-

bined data set, indicating the number of women with data on tumor

size, lymph node metastases, grade, ER status, PR status, molecular

subtype and PRS, together with the observed frequency and distribu-

tion of each tumor characteristic and genetic variable.

3.1 | Tumor size, number of affected lymph nodes
and lymph node positivity

We first calculated the fractions of patients with tumor diameters less

than 10, 10 to 19, 20 to 29, and more than 30 mm. In the CAHRES data

set, these fractions were 19%, 45%, 22% and 14%, and in the ST01-08

data set, they were 18%, 46%, 23% and 13%. The percentage (unit) dif-

ference between the two data sets is less than 1% for all four size

categories. In Figure 1, we show histograms of tumor diameters, divided

into 10 mm intervals, for CAHRES and ST01-08. The fractions of

patients with no affected lymph nodes, one affected lymph node, two

affected lymph nodes and three or more affected lymph nodes were

68%, 12%, 6% and 14% in the CAHRES data set and 65%, 15%, 7% and

13% in the ST01-08 data set. In Figure 2, we show histograms of number

of lymph nodes affected, from 0 to 10, for CAHRES and ST01-08. We

next examined the proportion of patients with lymph node positive

breast cancer. This was done for tumor size intervals 1 to 10, 11 to

20, 21 to 30, up to 71 to 80 mm for the CAHRES data, for ST01-08 and

for the combined data. In Figure 3, these proportions are plotted for each

data set as circles, with bootstrapped 95% confidence intervals inter-

secting each circle. Sopik and Norad20 recently presented the distribution

of number of affected lymph nodes using a large number of patients

included in the Surveillance, Epidemiology and End Results (SEER) pro-

gram database. We note that the pattern of association observed in that

large study is very similar to that displayed in Figure 3.

TABLE 2 Number of patients and
descriptive statistics of tumor

characteristics and genetic variables in
CAHRES, SG01-08 and the
combined data

Characteristic CAHRES ST01-08 Combined

Tumor size 2874 8076 10 950

Up to 9 mm 536 (19%) 1431 (18%) 1967 (18%)

10 to 19 mm 1303 (45%) 3706 (46%) 5009 (46%)

20 to 29 mm 644 (22%) 1899 (23%) 2543 (23%)

30 mm or more 391 (14%) 1040 (13%) 1431 (13%)

Number of affected lymph nodes 2874 8076 10 950

No affected lymph nodes 1952 (68%) 5295 (65%) 7247 (66%)

1 affected lymph node 334 (12%) 1201 (15%) 1535 (14%)

2 affected lymph nodes 181 (6%) 547 (6%) 728 (7%)

3 or more affected lymph nodes 405 (14%) 1099 (13%) 1504 (14%)

Grade 1928 5227 7155

Grade 1 299 (15%) 982 (19%) 1281 (18%)

Grade 2 805 (42%) 2662 (51%) 3467 (48%)

Grade 3 824 (43%) 1583 (30%) 2407 (34%)

Estrogen receptor status 2082 6518 8600

ER+ 1628 (78%) 5532 (85%) 7160 (83%)

ER� 454 (22%) 986 (15%) 1440 (17%)

Progesteron receptor status 2039 6385 8424

PR+ 1393 (68%) 4370 (68%) 5763 (68%)

PR� 646 (32%) 2015 (32%) 2661 (32%)

Molecular subtype – 1749 –

Luminal A – 1253 (72%) –

Luminal B – 174 (10%) –

HER2-enriched – 207 (12%) –

Basal-like – 115 (6%) –

Polygenic risk score 1119 4150 5269

Lower quartile 129.1 129.1 129.0

Median 134.4 134.2 134.1

Upper quartile 138.8 139.2 139.1
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3.2 | Association between lymph node spread and
grade, hormone receptor status, molecular subtypes
and PRS

In Table 3, we present point estimates and 95% confidence intervals

from our analyzes of associations between rate of lymph node spread

and grade, hormone receptor status, molecular subtype and PRS.

P-values based on the data sets with outliers removed are presented

in Table 4.

Modeling the association between lymph node spread and grade

on a continuous scale, we estimated rate ratios, with corresponding

95% confidence intervals, when comparing grade 0/1 tumor to grade

1/2 tumors, to be 1.68 (1.41, 2.02), 1.44 (1.23, 1.66) and 1.51 (1.34,

1.69) based on CAHRES, ST01-08 and the combined data, respec-

tively. When outliers were removed, the estimated rate ratios and

corresponding 95% confidence intervals were 1.61 (1.41, 1.87), 1.36

(1.25, 1.47) and 1.43 (1.34, 1.54). The corresponding P-values were all

smaller than 10�10. Modeling the association with the discrete model,
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F IGURE 1 Histograms of tumor diameters divided into 10 mm intervals for CAHRES (left) and ST01-08 (right)
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F IGURE 2 Histograms of number of lymph nodes affected, for CAHRES (left) and ST01-08 (right)
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using Grade 1 as reference, rate ratio and 95% confidence intervals

for Grade 2 tumors were 1.68 (1.11, 2.59), 1.56 (1.07, 2.11) and 1.59

(1.20, 2.06), and the corresponding estimates for Grade 3 tumors

were 2.83 (1.89, 4.42), 2.15 (1.47, 2.94) and 2.32 (1.73, 2.99). These

estimates were similar when outliers were removed, and the

corresponding P-values were all smaller than 10�9. All analyses of

grade were consistent in that increasing grade implied increasing rate

of lymph node spread.

Compared to ER negative breast cancer, ER positive breast cancer

was associated with rate ratios and corresponding 95% confidence

intervals of 0.60 (0.40, 0.84), 0.61 (0.44, 0.81) and 0.61 (0.47, 0.76),

based on CAHRES, ST01-08 and the combined data, respectively.

When outliers were removed, the corresponding estimates were 0.79

(0.64, 0.96), 0.82 (0.72, 0.95) and 0.80 (0.72, 0.90), and the estimated

P-values were 2.2 � 10�2, 3.8 � 10�3 and 1.1 � 10�4. Similarly for

PR positive breast cancer, rate ratios and corresponding 95% confi-

dence intervals were estimated as 0.71 (0.53, 0.91), 0.63 (0.48, 0.77)

and 0.65 (0.52, 0.78), based on CAHRES, ST01-08 and the combined

data, respectively. Corresponding estimates in the data set with out-

liers removed were 0.79 (0.66, 0.94), 0.86 (0.77, 0.95) and 0.84 (0.76,

0.92). The P-values were estimated as 1.1 � 10�2, 3.8 � 10�3 and

1.2 � 10�4. For both the ER positive and ER negative breast cancer

estimates, rate ratios were consistently estimated as negative and sta-

tistically significant at α = .05. In the analysis of molecular subtypes,

HER2-enriched breast cancer was associated with a rate ratio and

corresponding 95% confidence interval of 1.83 (1.05, 4.18), compared

to luminal A breast cancer. When removing outliers, the

corresponding estimate was 1.53 (1.15, 1.99). The P-value for associa-

tion between molecular subtype and rate of lymph node spread, based

on a test with 3 degrees of freedom, was 7.2 � 10�4.

We note that, for both studies, information on grade, ER status

and PR status was not as complete as it was for tumor size and lymph

node status. While distributions of the latter two characteristics were

similar for the two studies, the proportions of high grade and ER�

tumors differed. All statistical analyses based on grade and ER status,

conditions on these characteristics (grade and ER status are included

as covariates), therefore non-random missingness on these character-

istics will not introduce bias in the analyses presented here.

We did not find any convincing evidence that the PRS is associ-

ated with the rate of lymph node spread.

As an illustration of our results, we display graphically the

observed and estimated model-based relationship between lymph

node spread and grade. Under our modeling assumptions, the number

of affected lymph nodes can be expressed as a direct function of cur-

rent tumor characteristics, see Equation (5). In Figure 4, we plot the

expected number of affected lymph nodes as a continuous function

of tumor volume for the different grades, under the model where

grade was treated as an ordinal variable (using β = .41). We note that

the model treating grade on the ordinal scale gave a very similar fit to

the data as the model treating grade as a discrete covariate (P-

value = .45, testing for a difference using a likelihood ratio test).

4 | DISCUSSION

In this article, we have investigated the association between rate of

lymph node spread and tumor characteristics, molecular subtype and

genetic factors, using data from two large and independent observa-

tional studies comprising a total of 10 950 women. The data sets were

largely in concordance in terms of tumor characteristics: tumor size

distributions differed by at most 1% for the four considered tumor

size categories, lymph node spread distributions differed by at most

3%, the percentage PR-positive breast cancers was the same and dis-

tributions of PRS were very similar. They differed most in terms of

grade, with a 13% difference in number of Grade 3 cases, and ER sta-

tus, with a 7% difference in number of ER-positive cases. Both

cohorts were analyzed on a stand-alone basis, and as one big data set,

using a novel continuous growth model that adjusts for tumor volume
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F IGURE 3 Proportion of lymph node positive cases in different tumor size categories (circles) alongside bootstrapped 95% confidence
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in a biologically motivated way. The model assumes that the rate of

lymph node spread follows a continuous time Poisson process, and

that the association with tumor characteristics is through the rate

coefficient. Though our model fits data better than previously

suggested lymph node spread models from the literature,7-9 as well as

Poisson and negative binomial regression techniques,10 our model is

TABLE 3 Estimates and confidence
intervals of breast lymph node spread
(rate ratios) for different tumor
characteristics

Characteristic CAHRES ST01-08 Combined

Outliers included

Grade (continuous) 1.68 (1.41, 2,02) 1.44 (1.23, 1.66) 1.51 (1.34, 1.69)

Grade 1 Ref Ref Ref

Grade 2 1.68 (1.11, 2.59) 1.56 (1.07, 2.11) 1.59 (1.20, 2.06)

Grade 3 2.83 (1.89, 4.42) 2.15 (1.47, 2.94) 2.32 (1.73, 2.99)

Estrogen receptor status

ER+ 0.60 (0.40, 0.84) 0.61 (0.44, 0.81) 0.61 (0.47, 0.76)

ER� Ref Ref Ref

Progesteron receptor status

PR+ 0.71 (0.53, 0.91) 0.63 (0.48, 0.77) 0.65 (0.52, 0.78)

PR� Ref Ref Ref

Molecular subtype

Luminal A – Ref –

Luminal B – 1.34 (0.77, 1.74) –

HER2-enriched – 1.83 (1.05, 4.18) –

Basal-like – 0.70 (0.35, 1.18) –

Polygenic risk scorea 0.99 (0.89, 1.11) 0.95 (0.87, 1.02) 0.96 (0.89, 1.01)

Outliers removed

Grade (continuous) 1.61 (1.41, 1.87) 1.36 (1.25, 1.47) 1.43 (1.34, 1.54)

Grade 1 Ref Ref Ref

Grade 2 1.76 (1.25, 2.59) 1.59 (1.33, 1.91) 1.63 (1.39, 1.91)

Grade 3 2.73 (2.00, 3.89) 1.96 (1.64, 2.35) 2.17 (1.86, 2.57)

Estrogen receptor status

ER+ 0.79 (0.64, 0.96) 0.82 (0.72, 0.95) 0.80 (0.72, 0.90)

ER� Ref Ref Ref

Progesteron receptor status

PR+ 0.79 (0.66, 0.94) 0.86 (0.77, 0.95) 0.84 (0.76, 0.92)

PR� Ref Ref Ref

Molecular subtype

Luminal A – Ref –

Luminal B – 1.31 (0.97, 1.67) –

HER2-enriched – 1.53 (1.15, 1.99) –

Basal-like – 0.70 (0.42, 1.04) –

Polygenic risk scorea 0.98 (0.89, 1.09) 1.01 (0.97, 1.05) 1.00 (0.96, 1.05)

aMedian polygenic risk score compared to lower quartile.

TABLE 4 P-values of association
with rate of lymph node spread,
calculated based on CAHRES, ST01-08
and the combined data

Characteristic CAHRES ST01-08 Combined

Grade (continuous) 2.3 � 10–11 8.0 � 10–13 p < 1 � 10–16

Grade (discrete) 2.0 � 10–10 7.6 � 10–13 p < 1 � 10–16

Estrogen receptor status 2.2 � 10–2 3.8 � 10–3 1.1 � 10–4

Progesteron receptor status 1.1 � 10–2 3.8 � 10–3 1.2 � 10–4

Molecular subtype – 7.2 � 10–4 –

Polygenic risk score 6.9 � 10–1 6.9 � 10–1 8.6 � 10–1
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not likely to fully capture the biological intricacies of the tumor spread

process. For example, we make the simplifying assumption that tumor

characteristics do not change over the tumor growth process. If char-

acteristics do “switch” over time, we would expect that the estimates

for the more benign characteristics are less likely to be affected by

“switching,” than the more malign tumor characteristics (such as

Grade 3), since in these cases, tumors would have mutated from a less

spreading state to a more spreading state, causing an under-

estimation of rate of lymph node spread. In theory, switching could be

accommodated in our (continuous growth) model, but this would

involve a non-trivial extension. In simpler multi-state models, this has

been done in the breast cancer screening data modeling literature for

grade,21 based on a mover-stayer model, which is an extension of the

Markov chain, where the population of tumors is assumed to consist

of two unobserved groups, a stayer group consisting of tumors with a

zero probability of change and a mover group following an ordinary

Markov process.

The strongest evidence of association was found between grade

and rate of lymph node spread. Higher grade breast cancer is gener-

ally less differentiated, more invasive and more proliferative. We

therefore expected higher rates of lymph node spread for higher

grade tumors. In our data, Grade 1 tumor had least lymph node spread

across all tumor sizes; see Figure 4. When modeling the association

between grade and rate of lymph node spread, both the linear and dis-

crete relationships were highly significant. All P-values were less than

5 � 10�10, with the average rate ratio between a grade x tumor and a

grade x + 1 tumor being 1.49. Our estimates are consistent with

Nouh et al and Gann et al22,23 who found statistically significant rela-

tionships between lymph node positivity and grade.

ER and PR positive breast cancers were associated with a reduced

rate of lymph node spread compared to ER and PR negative breast

cancers. Molecular subtype was significantly associated with rate of

lymph node spread. In our model, luminal A was the reference sub-

type. This subtype is generally ER positive and of low grade.

Compared to luminal A, luminal B generally has a higher grade at diag-

nosis. In our study, luminal B was associated with a higher rate of

lymph node spread compared to luminal A breast cancer. The

HER2-enriched subtype was associated with an even higher rate of

lymph node spread than luminal B. Basal-like breast cancer had the

lowest rate of breast cancer lymph node spread. Basal-like breast can-

cer is often triple-negative. These cancers are more likely to forego

spreading to the lymph nodes20 and instead form distant metastases.

The associations that we found for the molecular subtypes are consis-

tent with the results of Liu et al,24 who investigated lymph node posi-

tivity for luminal A, luminal B, HER2-positive and triple-negative

breast cancer.

While Figure 3 partly captures the clinical significance of the rate

ratio estimates (for grade), using our model, with sufficient informa-

tion, it would also be possible to describe clinical significance of the

rate ratio estimates in other, perhaps even more meaningful, ways.

Evaluating time to LN spread would, though, need to incorporate

information on the relationship between growth rate of the primary

tumor and the tumor characteristic (or eg, PRS). We do not have such

information. However, if we did, then we could calculate, for example,

expected times to first affected lymph node, for each tumor charac-

teristic, and we could even study the impact of delayed detection for

tumors with different characteristics. For a description of how the lat-

ter can be done, see Isheden et al.10

Our study of genetic factors and rates of lymph node spread may

suffer from survivorship bias. In Libro-1, blood samples were collected

after 2008, and in CAHRES, they were collected after 1997. Some

women had already died before blood samples were collected, which

means that the association between genetic factors and rate of lymph

node spread in our study may be underestimated. In any case, we

found no significant association between our PRS and rate of lymph

node spread. Using Libro-1 data, Li et al25 did not find a significant

relationship between PRS and lymph node status, or between PRS

and survival. Furthermore, we are not aware of any study that has
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found a significant association between PRS and lymph node status at

diagnosis.

5 | CONCLUSIONS

Survival benefits of screening and treatment vary across different

breast cancer molecular subtypes.1 Some cancers are more aggressive

and some cancers are less aggressive. In part, this is reflected in a

tumors propensity to spread to the lymph nodes, which in many cases

is a precursory step of distant metastatic spread. In our current study,

we have quantified tumor aggressiveness in terms of rate of lymph

node spread based on genetic markers, tumor characteristics and for

different molecular subtypes. Quantifying tumor aggressivity may

prove useful in the future era of individualized treatment and

screening.
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