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Highlights

• We show Markowitz optimisation may fail even with well-behaved data

• We show this Markowitz optimisation may fail even if we deal with estima-
tion risk

• We find subsets of assets that are not distinguishable in mean or in variance

• We use these homogeneous subsets to create more robust optimisation meth-
ods

• We compare our method with naive Markowitz and bootstrap aggregation
methods
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Abstract

Markowitz optimisation is well known to work poorly in practice, but it has not
been clear why this happens. We show both theoretically and empirically that
Markowitz optimisation is likely to fail badly, even with normally-distributed data,
with no time series or correlation effects, and even with shrinkage estimators to
reduce estimation risk. A core problem is that very often we cannot confidently
distinguish between the mean returns of most assets. We develop a method, based
on a sequentially rejective test procedure, to help remedy this problem by identi-
fying subsets of assets indistinguishable in mean or variance. We test our method
against naive Markowitz and compare it to other methods, including bootstrap ag-
gregation, proposed to remedy the poor practical performance of Markowitz opti-
misation. We use out-of-sample and bootstrap tests on data from several market
indices and hedge funds. We find our method is more robust than naive Markowitz
and outperforms equally weighted portfolios but bootstrap aggregation works, as
expected, better when we cannot distinguish among means. We also find evidence
that covariance shrinkage improves performance.
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1. Introduction

It well known that Markowitz (1952) optimisation does not work well in prac-
tice. This is known as the ‘Markowitz optimisation enigma’ (Michaud, 1989).
Many of the thousands of studies on Markowitz optimisation (Zhang et al., 2018)
suggest reasons for this enigma, such as skewness, kurtosis, time-series effects,
estimation error and estimation risk, and inappropriate optimisation problems, all
of which undeniably have an effect. We show, first, that all that is required for
Markowitz optimisation to fail, often spectacularly, is that we cannot distinguish
with confidence between means or variances. Second, we develop methods (i)
to identify when we can and cannot distinguish means and variances, and (ii) to
modify Markowitz optimisation to work better with this information.

The following example should make this less abstract. Suppose we have just
two assets. Standard Markowitz optimisation, with or without shrinkage (Sec-
tion 1.1), assumes the difference between their sample means is known and fixed.
In reality, the best we can do is estimate a distribution for it. If we are not confi-
dent that the means are different we should expect a minimum-variance portfolio
to be at least as good as a Markowitz one. Similarly, if we are not confident the
variances are different, assuming they are equal is unlikely to make Markowitz
optimisation worse.

We generalise this idea. We develop a sequentially rejective multiple test pro-
cedure (Shaffer, 1986; Lamb and Tee, 2012) to identify subsets of assets that we
are not confident differ in mean or variance. We call these homogeneous subsets.
When comparing assets we use bootstrap methods so that we need not assume
normal data. And we modify Markowitz optimisation to avoid distinguishing be-
tween means and variances within the homogeneous subsets.

The modified methods are simple. They use Markowitz assets when we can
distinguish assets and variance minimisation or equally-weighted portfolio (ewp
for short) when we cannot. This makes them insensitive to chance misestima-
tion of means and variances. They can be combined with bootstrap aggregation
(Frahm, 2015; Michaud and Michaud, 2007) or with robust optimisation methods
(Fliege and Werner, 2014; Xidonas et al., 2020). We anticipate that they can also
be combined with time-series methods and with shrinkage estimators, though both
will need some further development.

1.1. Background

If we knew the means and covariance matrix of a set of asset returns exactly,
Markowitz optimisation would select an optimal portfolio. But we never know
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them exactly. So we must plug in estimates for them (Kan et al., 2007). Plug-in
estimates work well in techniques such as regression and factor analysis. So it
is natural to expect them to work for Markowitz optimisation too and attribute
failure to complicating issues such as time-series effects, estimation risk and non-
normality. We show failure is likely even in the absence of such issues.

Time-series effects are a complicating issue that can bias our estimates of
means and variances. We remove them in Section 2 so that we can demonstrate
the Markowitz optimisation enigma is due to inaccuracy rather than bias. And
we ignore them in Sections 3 and 4 so that we can develop methods to deal with
inaccuracy.

Inaccuracy in estimates is another complicating factor. We separate this in-
accuracy into estimation error and estimation risk, though they are sometimes
treated as if they were the same. Estimation error is uncertainty in estimates that,
on average, are correct. Estimation risk is the expected value of the loss func-
tion (usually a mean-squared difference) between a population statistic such as
the mean and an estimate of that statistic. Sample statistics do not minimise es-
timation risk when we apply them to a vector of as few as n = 3 assets (Stein,
1955). Estimation risk, increases with n and is worse when the range of statistics
(e.g. means) is small. We wish to eliminate estimation risk, because it will lead
to less than optimal portfolios. There are several ways to reduce estimation risk
(Herold and Maurer, 2006). We use the shrinkage estimators for the mean (Jorion,
1986) and covariance matrix (Ledoit and Wolf, 2017), because they are the best
developed. Another possibility is to restrict portfolio weights (Herold and Maurer,
2006). This is a cruder heuristic, and it may work well because it also reduces the
effects of inaccuracy. The most extreme version of this heuristic is the ewp. It
works surprisingly well in practice and we use it for comparison.

Non-normality is a complicating issue that affects accuracy. There are meth-
ods to handle skewness and kurtosis (Harvey et al., 2010; Kolm et al., 2014),
coskewness and cokurtosis (Cerrato et al., 2017). Typically they modify the
mean–variance framework. We do not. More complex frameworks may mask
the causes of the Markowitz optimisation enigma: we show the enigma persists
even in normal data. Nonetheless, non-normality affects how accurately we know
the mean and variance of a portfolio and we seek ways to deal with it.

Inaccuracy in plug-in estimates creates two issues. First, we optimise over
the data rather than the true means and covariance matrix. Section 2 shows that
optimisation may be very sensitive to this misestimation. Second, even if we
know the true means and covariances and have normal data, different portfolios
(convex combinations of assets) differ widely in how accurately we may predict
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their future means and variances. Then fuzzy or robust optimisation (Zhang et al.,
2018) and the recent method of Meade et al. (2021) may help. We focus on the
first problem and note both that what we do may reduce the second and that what
we do may be combined with methods to deal with the second.

We note also an interesting method to deal with uncertainty in the mean and
covariance estimates: the bootstrap aggregation method of Michaud and Michaud
(2007, 1998). This method has limited theoretical justification. The problem is
this. Even if bootstrap resampling accurately represents the range of possible true
values of the means and covariance matrix, that does not guarantee that the resam-
pled optimal portfolios accurately represent the range of future optimal portfolios
or that their average is the best one. Frahm (2015) summarises well empirical
studies showing mixed evidence for the performance of this method, but shows,
under some weak assumptions, it will on average do no worse than the portfolio
selection strategy to which it is applied. So we can, in principle, apply it to the
methods we introduce and hope for further improvement. We test this.

2. Why estimation alone causes Markowitz portfolio selection to fail

We now demonstrate that there are circumstances where Markowitz optimi-
sation must fail badly, even when there are no complicating factors such as non-
normal data or time-series effects and when we use shrinkage estimators. We do
this by considering the Markowitz-optimal solutions we should expect to find in
cases where we know the true optimal solutions. Usually we assume here inde-
pendently distributed assets with identical variances, because it is only then that
we can easily derive results without simulation. We consider more realistic as-
sumptions in Section 3.3, and Section 4 shows that assuming the means are close
or identical is not very unrealistic, and that often variances are also close to iden-
tical.

Section 2.1 explains estimation risk and shrinkage estimators. Then Sec-
tion 2.2 introduces the models we investigate. While the first model is unusual, it
is the one we can use for analytic results in Scetion 2.3. The second model allows
us to investigate, more plausibly, what happens when we try to minimise variance.
Then Sections 2.4 and 2.5 use simulation to explore how Markowitz optimisation
fails with and without shrinkage estimators.
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2.1. Estimation risk and shrinkage estimators

Suppose we estimate a multivariate statistic θ = (θ1, . . . , θn) by a finite-sample
estimator θ̂ = (θ̂1, . . . , θ̂n). We can define estimation risk by a risk function, usually

R(θ, θ̂) =

n∑

i=1

E
[(
θi − θ̂i

)2
]
.

Ideally we want R(θ, θ̂) = 0, in which case θ̂ is said to be admissible. But it has
long been known (Stein, 1955; Fourdrinier et al., 2018) that even the sample mean
is not admissible for n ≥ 3. No estimator is known to be admissible in general and
the best we can usually do is to reduce estimation risk as much as we can.

We distinguish estimation risk from estimation error, which is the error that
arises because finite-sample estimators are not perfectly accurate. An admissible
estimator will still have estimation error and estimation risk can be thought of as
a multivariate form of bias. The problem with the usual definition of bias,

b(θ, θ̂) = E
[
θ − θ̂

]
=

(
b(θ1, θ̂1), . . . , b(θn, θ̂n)

)
,

is that it ignores the very real possibility that data from which θi is estimated might
also contain information about θ j.

To reduce estimation risk we use the following estimator (Jorion, 1985, 1986)
for the (vector) mean of n assets observed over T periods:

µJ =
ϕ

ϕ + T
µ01 +

T
ϕ + T

µ̂, (1)

where µ̂ is the vector of sample mean returns, µ0 is the mean of µ̂ and 1 is a vector
of ones of length n. The parameter ϕ is estimated as

ϕ =
n + 2

(µ̂ − µ01)>Σ̃−1(µ̂ − µ01)
,

where Σ̃ is an estimate of the covariance matrix of the asset returns, which esti-
mates the minimum-variance portfolio.

Notice that equation (1) is a weighted sum of the mean of sample means (left)
and the sample mean (right). Thus it shrinks the sample mean estimate towards
the mean of sample means, but does not make two means identical unless φ =

0, which is unlikely. In general, standard estimators tend to underestimate the
smallest, and overestimate the largest, statistic, and so estimators that reduce this
misestimation are often called shrinkage estimators.

6

                  



Jorion (1986) uses the sample covariance matrix Σ̂ to estimate Σ̃. The justi-
fication for this choice is that the sample covariance matrix is more stable than
the sample mean vectors (Merton, 1980). However, high-dimensional covariance
matrices can be singular or inversion may enhance estimation error. So we also
estimate Σ̃ using the linear and nonlinear shrinkage estimators of Ledoit and Wolf
(2004) and Ledoit and Wolf (2017).

The linear shrinkage estimator shrinks the sample covariance matrix towards
the identity matrix. Ledoit and Wolf (2004) give the details, which are easy to
implement in R. The nonlinear estimator works by shrinking the estimates of the
sample covariance eigenvalues. The method, outlined in Ledoit and Wolf (2017),
is complex, but is implemented in the nlshrink R package.

Notice that estimation risk affects not just mean and variance, but any statistic
we might wish to estimate, including those used to generate the box and ellipsoidal
uncertainties used in robust optimisation (Fliege and Werner, 2014; Xidonas et al.,
2020). So while robust optimisation deals well with estimation error, we still need
to reduce estimation risk to use it more effectively. This creates two problems.
First, good shrinkage estimators are only known for a few statistics such as mean
and variance. Second, no current shrinkage estimators make population statistic
estimates identical when it may be best to assume that they are identical—see
Section 2.3.

2.2. Markowitz optimisation problems

We consider a range of Markowitz optimisation problems. Suppose we have
assets a = (a1, . . . , an)>. Write µ̂ for the sample mean return, a vector of length
n, and write Σ̂ for the n × n sample covariance matrix. Then we wish to choose a
vector w = (w1, . . . ,wn)> of portfolio weights: that is, wi is the proportion invested
in ai and w>a is the portfolio or virtual asset. We assume we neither leave some
amount uninvested nor use short-selling. So

w>1 = 1 and w ≥ 0, (2)

where 1 is the vector of length n all of whose entries are 1.
We consider the following general Markowitz optimisation problem.

max
w

µ̂>w − Rw>Σ̂w, subject to constraints (2), (3)

where R ≥ 0, the coefficient of risk tolerance determines our attitude to risk.
Choosing R = 0 and R = 10000, we get the portfolio selection strategies max
and min, which seek to maximise return or minimise risk. We also consider two
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other Markowitz optimisation problems. The first, which we call min-c, seeks the
lowest variance portfolio with a minimum required return b:

min
w

w>Σ̂w, subject to µ̂>w ≥ b and constraints (2). (4)

The second, which we call max-c, seeks the highest mean portfolio with a maxi-
mum variance b:

max
w

µ̂>w subject to w>Σ̂w ≤ b and constraints (2). (5)

Setting wi = 1/n for i = 1, . . . , n gives an equally-weighted portfolio, sat-
isfying constraints (2). The ewp is a popular asset allocation strategy (Benartzi
and Thaler, 2001) often used as a benchmark to compare other strategies (Hwang
et al., 2018; DeMiguel et al., 2009).

2.3. Theoretical considerations

We now consider some of cases where we can show why and how badly
Markowitz optimisation should fail. We assume here that we have independent
normally distributed assets with variance σ2 = 4 observed over T = 100 time
periods.

Suppose first that the n assets have identical mean return. We choose a value
µ = 2, because that makes it easier to show some effects in Figure 1 (left). But
the value does not affect the analysis. Then, writing Xk for the random variable
describing the mean return of the kth asset, we have Xk ∼ N(µ, σ2/T ). And any
reasonable Markowitz optimisation should give the same solution: an ewp with
mean return µ and variance σ2/n2.

Suppose we try to maximise mean with no constraint on variance other than
that it is minimum subject to mean being maximised. Since σ2/T > 0, P(X j =

Xk) = 0 ( j, k = 1, . . . , n, j , k). So, with probability 1 we will choose a port-
folio with exactly one asset. The expected value of the observed variance of this
portfolio will be σ2. And we can estimate the expected value of the mean of this
portfolio using order statistics.

An order statistic (David, 2008) X(k) (k = 1, . . . , n) is the kth smallest of a
set of n observations from the same distribution. And it is well known that if the
distribution function is F then

E
[
Xk

]
= k

(
n
k

) ∫ 1

0
F−1(u)uk−1(1 − u)n−k du. (6)
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In practice, this integral usually needs to be evaluated numerically and we do so
using the qag method of the gnu Scientific Library (Galassi et al., 2009). The
expected value of the mean of the portfolio is E[Xn] and we show this value as
the solid line in Figure 1 (left) for increasing values of n. The dotted line shows
the true mean return of 2. We may conclude that if optimisation is dominated by
mean maximisation, we should expect a portfolio with few assets and substantially
overestimated future returns for that portfolio.

We can use equation (6) to estimate the expected value kth smallest observed
asset standard deviation S k, because the asset variances have sampling distribution
σ2/(T − 1) χ2

T−1. We plot S (1) and S (n) as dashed lines on Figure 1 (left) to show
how the range of standard deviations increases with n. However, the optimal
solution of a minimum variance portfolio depends on the whole covariance matrix.
Although we know this follows a Wishart distribution (Eaton, 2007), we do not
know of a way to use this to calculate the expected value of the minimum variance
portfolio for n > 2. (For n = 2 we can use formulae given by (Nadarajah and Kotz,
2008)). We can, however, reasonably conclude that optimisation based on sample
data will choose unequal weights, give a portfolio that does not minimise variance
and underestimate the true minimum variance of σ2/n.
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Figure 1 Charts showing effects of using sample rather than true statistics

We have assumed so far all assets have the same mean return. In practice, they
may be similar but are identical with probability 0. So we may reasonably ask how
well Markowitz optimisation will do if the means are different. We can generalise
equation (6) to answer this, though will only elaborate on the estimate of X(n),
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because that is what gets chosen in mean maximisation. Suppose the means are
given by a vector µ = (µ1, . . . , µn) and the distributions of the asset returns by
F1, . . . , Fk. Then

F(n) (x; µ) = P
(
Xn < x; µ

)
=

n∏

j=1

F j(x; µ j).

We differentiate this to get the density function

f(n) (x; µ) =

n∑

i=1

fi(x; µi)
n∏

j=1

δi jF j(x; µ j),

where fi(x; µi) is the density of the mean of the ith asset and δi j is the Kronecker
delta. Then

E
[
X(n)

]
=

∫ ∞

−∞

n∑

i=1

fi(x; µi)
n∏

j=1

δi jF j(x; µ j) dx.

As before, this integral must be evaluated numerically when the Xk are normally
distributed. Figure 1 (right) shows for n = 20 (dashed) and n = 50 (solid) that
the amount that X(n) overestimates the µn when when µ1 ≤ · · · ≤ µn are equally
spaced with the horizontal axis showing the difference between consecutive values
of µk. The dashed lines are at 1 and 2 standard deviations. Unless the means are
more dispersed than we usually see in practice, we expect mean maximisation
to noticeably overestimate the expected mean return with some risk of not even
choosing the asset with true maximum return.

We note three consequences of these observations. First, the bias in the esti-
mate of the optimum mean is an increasing function of n. Second, since shrinkage
estimators for the mean such as equation (1) do not shrink to a global mean, they
will not change the optimal portfolio but should reduce the bias in the estimated
portfolio mean. Third, Section 4.1 shows that it is common not to be able to dis-
tinguish mean asset returns. Then max should do little better than choose a single
asset randomly and the method of Michaud and Michaud (2007) should choose a
portfolio very close to the ewp.

We might hope to consider the min or min-c strategies in a similar way. How-
ever, we do not even know how to solve them numerically. So we now consider
simulation.
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2.4. Simulation with equal means and variances

We continue considering the case of n independently distributed assets, each
with distribution N(µ, σ2), for which the max, min and min-c strategies should all
give the same solution as ewp. To use simulation, we must choose values for n
and the number of time periods T to sample over, besides those of µ and σ2. We
choose T = 300 because that is typical of the number of months for which we can
get real data. We simulate two cases, n = 20 and n = 50, so that we can see the
likely effects of increasing the number of assets used for optimisation. We choose
µ = 1 and σ2 = 4 and note that the optimal coefficients are independent of this
choice. We do not test the min-c strategy here, because it only makes sense when
the means are different. For every strategy the (true) optimal portfolio has mean 1
and standard deviation 0.447 (n = 20) or 0.283 (n = 50).

We choose T = 300 and σ2 = 4 because these are of the order of magnitude of
the parameters available in real data, such as in Section 4. Notice that we do not
immediately need T = 300, because we could simulate samples from N(µ, σ2/T ).
But we need T > 1 for bootstrap aggregation at then end of this subsection and to
generate and simulate the effects of homogeneous subsets in Section 3.

We simulate returns for n assets and record the optimal portfolio weights given
by the max and min Markowitz strategies applied to the simulated data. We then
compute the population and sample (from simulated data) portfolio mean and
portfolio standard deviation given the optimal portfolio weights from each strategy
and also given the ewp portfolio weights.

Table 1 Summary results for simulated data

n = 20 n = 50
ewp max min ewp max min

µ 1 1 1 1 1 1
x 1 1.215 0.998 1 1.259 0.998
σ 0.447 2 0.461 0.283 2 0.308
s 0.447 1.989 0.429 0.283 2 0.259

Table 1 summarises the average over 100 simulations of the population port-
folio mean µ, sample portfolio mean x, population portfolio standard deviation σ,
and sample portfolio standard deviation s.

Markowitz optimisation fails in every case, even with normal data and no time
series effects. The max strategy sample mean overestimates the true mean. The
min strategy sample standard deviations underestimate the true minimum standard
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deviations, and their optimal portfolios would on average have standard deviation
noticeably higher than the known minimum. The results also get worse as we go
from n = 20 to n = 50.
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Figure 2 Average sorted min portfolio weights for simulated data

In every case max gives a portfolio with exactly one asset, as Section 2.3 pre-
dicts. Figure 2 shows the average sorted portfolio weights for min. The horizon-
tal lines shows the weights we should get if Markowitz found the optimal (ewp)
solutions. Clearly what we should get and what we do get are very different:
Markowitz fails to diversify enough when we have maximised the opportunity for
diversification.

We note briefly how a bootstrap aggregation method, like that of Michaud and
Michaud (2007), performs on the simulated data. We expect it to perform better
than Markowitz optimisation, because the data satisfies the assumptions of Frahm
(2015). We use the bootstrap data generating process of Lamb and Tee (2012),
which we can summarise as follows. We let rti be the return of asset i in time
period t ∈ {1, . . . ,T } and for some τ ≤ T we write Rin for the τ × n matrix with
(t, i)th entry rti. Then we generate B replications of Rin as follows.

for b = 1, . . . , B:
for t = 1, . . . , τ:

select u(t, b) uniformly at random from {1, . . . , τ}
let Rin

b be the τ × n matrix whose (t, i)th entry is ru(t,b),i

We use B = 2000 (a common choice) bootstrap replications. We use τ = T here
and report the We use the same data generating process later, both when generating
homogeneous subsets in Section 3.1 and for bootstrap tests in 4.3, where Rin is in-
sample data and we set τ = T/2. performance of the average of the average of the
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B vectors of portfolio weights. We summarise the results in Table 2. The bootstrap
aggregation method performs markedly better. We also find the portfolio weights
are much closer to ewp.

Table 2 Summary results for simulated data: bootstrap aggregation

n = 20 n = 50
ewp max min ewp max min

x 1 1.003 1.002 1 1.005 1.005
s 0.447 0.438 0.434 0.283 0.298 0.295

Notice that we sample τ rows of Rin randomly with replacement to get each
Rin

b so that we preserve the correlation between assets. This is not necessary here,
but it is helpful later, when we use the same data generating process to generate
homogeneous subsets in Section 3.1 and for bootstrap tests in 4.3. There we set
τ = T/2 so that Rin is the matrix of returns of an in-sample subset of the data. We
do not consider here correlation of returns time, but note that can be done using,
for example, the maximum-entropy bootstrap method of Vinod (2004).

2.5. Simulation with shrinkage estimators

Sections 2.3 and 2.4 show that we cannot attribute the failure of Markowitz
optimisation to non-normality or time series effects. But both real data and sim-
ulated data are subject to estimation risk (Jorion, 1986). Section 2.3 indicates
that shrinkage estimators (Jorion, 1986; Ledoit and Wolf, 2004, 2017) will not
change the portfolio the max strategy selects but may reduce the bias in the port-
folio mean. We now investigate how much these shrinkage estimators improve
portfolio selection.

We simulate data exactly as in Section 2.4 to test the effect of shrinkage esti-
mators. We test either without shrinkage estimators for the mean or with Jorion
(1986) mean shrinkage (J). And we test three possibilities for the covariance ma-
trix: the sample covariance (Σ̂), or the linear (LW) or nonlinear (NL) shrinkage
covariance matrices of Ledoit and Wolf.

Table 3 summarises the results of the tests. Each row summarises the result
of 100 tests with different random numbers. The first two columns shows the
number of assets simulated and the optimisation strategy. As in section 2.4 we
omit min-c, because all assets have (true) mean 1. The remaining columns show
the shrinkage estimators used, the average sample portfolio mean and standard
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Table 3 Summary simulation results with shrinkage estimators

n Strategy Shrinkage x s m wmin wmax

ewp 1.000 0.447 20 0.05 0.05

max J, NL 1.211 3.929 1.03 0 0.99

20 J, Σ̂ 1.002 0.434 19.99 0.026 0.075
min J, LW 0.998 0.446 20 0.049 0.051

J, NL 1 0.447 20 0.048 0.052
ewp 1 0.283 50 0.02 0.02

max J, NL 1.260 1.985 1.02 0 0.993

50 J, Σ̂ 1.005 0.257 43.16 0.001 0.04
min J, LW 0.998 0.283 50 0.02 0.02

J, NL 0.996 0.283 50 0.02 0.02

deviation, the average number of assets with non-negligible portfolio weights (m),
and the average smallest (wmin) and largest (wmax) portfolio weights.

For max we omit the cases where we use Σ̂ or LW: their results are negligibly
different from NL, as we expect. Table 1 shows the case where we use a sample
mean instead of J. It is striking that mean shrinkage produces no improvement in
the max strategy.

For min we omit the cases where we tested the sample mean instead of J.
Again, as expected, the results are negligibly different. Also as expected, the
combination J, Σ̂ gives very similar results to those of Table 1 and Figure 2. How-
ever, the results for the combinations J, LW and J, NL are remarkably similar and
very close to the true optimal ewp. At least in this case shrinkage has little effect
on mean maximisation but is very effective in variance minimisation.

The rows labelled ideal, naive and J, NL of Table 6 show results comparable
to those of Table 3, further supporting our observation that variance shrinkage is
more effective than mean shrinkage.

3. How we might deal with the failure of Markowitz optimisation in practice

3.1. Homogeneous subsets

Multiple comparison procedures (Holm, 1979) help us identify homogeneous
subsets. If we have a single comparison (e.g. between two assets) we can use a
hypothesis test and test the null hypothesis that the assets are identical in some
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statistic at a preselected significance level α. Suppose that we wish to make mul-
tiple comparisons with hypothesis tests H1, . . . ,Hm (usually we have m =

(
n
2

)
). We

can write H0 for the null hypothesis that all of H1, . . . ,Hm are true. Then we wish
to estimate the probability α of rejecting at least one of H1, . . . ,Hm at significance
level α′ given that H0 is true. We wish to choose α, the familywise signicance
level and estimate αt, the experimentwise significance level. We can use either the
well-known Bonferroni (left) correction or the Šidák (1967) (right) equation with
t = m:

αt ≈ α/t ≈ 1 − (1 − α)1/t. (7)

The Bonferroni correction gives slightly smaller values of αt.
So far we have shown how to make one comparison. Suppose p1, . . . , pn are

the p-values of H1, . . . ,Hn at significance level α′. Then, using the order-statistic
notation of Section 2.3, we write p1, . . . , pn in increasing order as p(1), . . . , p(n)

with H(i) the null hypothesis matching p(i). Our comparison is to reject H0 (and
so H(1)) if p(1) > αt. But we wish to identify all the hypotheses we can reject at
familywise significance level α. We can do this using the procedure of Shaffer
(1986), which provides proofs and further details.

Suppose we have already rejected H(1), . . . ,H(k−1). Initially we put t = m,
because we could suppose all of H1, . . . ,Hm were true. But once we reject some
of them, not all the remaining hyotheses may be true. For example, if we are
comparing the means µ1, µ2 and µ3 of three assets and reject the hypothesis that
µ1 = µ2, then we may have either µ1 = µ3 or µ2 = µ3 but not both. Shaffer
(1986) deals with this by setting t = t(k) (k > 1) to be the maximum number
of null hypotheses that may be true given that k − 1 are false and shows how to
calculate t(k). If t(k) = 0 there are no further possible null hypotheses. Otherwise
we keep rejecting null hypotheses while p(k) < αt(k). This gives us the multiple
comparisons.

We go from multiple comparisons to homogeneous subsets by defining a strict
partial order ≺ over the set θ1, . . . , θn of statistics we are comparing. This order
must satisfy (i) θi ⊀ θi (asymmetry), (ii) if θi ≺ θ j then θ j ⊀ θi (irreflexivity) and
(iii) if θi ≺ θk and θk ≺ θ j then θi ≺ θk (transitivity). We define ≺ by θi ≺ θ j if
either θi < θ j and we have rejected the hypothesis that θi = θ j or θi ≺ θ j is implied
by transitivity. We need the transitivity rule because we have not proved that it
is not necessary and we conjecture that it is, in principle, necessary and suggest
that this might be proved as a straightforward generalisation of Arrow’s paradox
Arrow (1950). In practice we have not needed the transitivity rule.
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Once we have defined ≺ we define θi ∼ θ j if neither θi ≺ θ j nor θ j ≺ θi: that is
if we have not rejected the null hypothesis that θi = θ j either explicitly or through
transitivity. An antichain is a subset A of {1, . . . , n} such that θi ∼ θ j for all i, j ∈ A.
And a subset of {1, . . . , n} is homogeneous in θ if it is a maximal antichain: that is
if it is an antichain and not a proper subset of any other antichain.

E

D

C

B

A

Figure 3 Hasse diagram showing choice of homogeneous subsets

Notice that the definition of homogeneous subsets guarantees that every asset
must be in a homogeneous subset (we always have θi ∼ θi), but not that it be in
only one. That is, the homogeneous subsets do not necessarily partition the set of
assets. Figure 3 illustrates how an asset can be in more than one homogeneous
subset. It shows a Hasse diagram over a set of assets A–E: if θi ≺ θ j (i, j ∈
{A, B,C,D, E}) then i is lower than j in the diagram and there is a path from i to j.
The homogeneous subsets are {A}, {B,C}, {D,C} and {E}. These do not partition
the assets because C is contained in two of them.

The method we develop in Section 3.2 needs homogeneous subsets that par-
tition the set of assets. In the example, we can obtain a partition by choosing
to put C into only one homogeneous subset. This gives two possible solutions:
{A}, {B,C}, {D}, {E} and {A}, {B}, {C,D}, {E}. In general we obtain a partition of
the set of assets into homogeneous subsets by repeatedly adding adding to the
partial order a relation θi ≺ θ j (and any that follow by transitivity) with smallest
p-value satisfying (i)–(iii) of the following proposition.

Proposition 1. Suppose we have homogeneous subsets that do not partition the
set {1, . . . , n}. Then there exits i, j, k ∈ {1, . . . , n} such that (i) θi ∼ θ j, (ii) θi ∼ θk

and (iii) either θ j ≺ θk or θk ≺ θ j.

Proof. Choose I maximal such that I = A ∩ B for some pair A and B of distinct
homogeneous subsets. Then I , ∅, because the homogeneous subsets do not
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partition {1, . . . , n}, and θi ∼ θi′ for i, i′ ∈ I. Since A and B are distinct maximal
antichains, there exist j ∈ A \ B and k ∈ B \ A. Since I ⊂ A, θ j ∼ θi for i ∈ I; and
since I ⊂ B, θk ∼ θi for i ∈ I: that is, (i) and (ii) hold. If (iii) does not hold, then
θ j ∼ θk and I′ = I ∪ { j, k} satisfies θi ∼ θi′ for i ∈ I′, contradicting the maximality
of I.

Notice that Proposition 1 guarantees we can find a relation to add to the partial
order and that repeating the process must give homogeneous subsets that partition
{1, . . . , n}, because each step either finds a partition or adds one of finitely many
remaining relations. While it is not essential that we choose a relation satisfying
(i)–(iii), it helps us avoid creating more homogeneous subsets than necessary.

In the example, the process will add whichever of D → C or C → B has
smallest p-value corresponding to its hypothesis test.

Typically multiple comparison procedures use t-tests to compare pairs of means
(assume normality) and assume the tests are independent. These assumptions do
not hold for assets. So, as Lamb and Tee (2012) suggest, we use bias-corrected
accelerated bootstrap tests (Efron and Tibshirani, 1998). If asset i has unknown
mean µi and variance σi these allow us to construct subsets homogeneous in µi,
σi or µi − Rσ2

i . The last of these is sensible in the more general model (3).
We use the bootstrap data generating process described at the end of Sec-

tion 2.4 to generate replications R1, . . . ,RB of the asset returns. And for each
estimator (e.g. mean) θ of interest, we estimate the empirical distribution of θi

(i = 1, . . . , n) as θi,1, . . . , θi,B. Thus we get paired estimates θi,b, θ j,b for each pair
i, j in {1, . . . , n} and so can compare paired differences to get a more powerful test
that does not ignore the correlation between asset returns. We use B = 2000, a
typical value for the bootstrap. The the choice of B has less impact on the selec-
tion of homogeneous subsets than the value T , which depends on the available
data. If T is too small, we cannot use the bootstrap at all, while the number of
homogeneous subsets tends to n as T → ∞: the more data we have the more
confident we are that observed differences are real.

We use equation (7) (right) in the multiple comparison procedure, though this
has little effect on the choice of homogeneous subsets. The procedure is, however,
sensitive to the choice of experimentwise significance level α. Since our purpose
is to test rather than calibrate a procedure we do not investigate this further here
and set α = 0.05, a common choice.

Note that estimation risk does does not affect pairwise comparisons (Stein,
1955) and the multiple comparison procedure is designed not to reject differences
due to the risk that shrinkage is designed to reduce. That is, we can think of
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homogeneous subsets as an alternative to shrinkage.

3.2. An optimisation heuristic with homogeneous subsets

Suppose we wish to use model (3) or (4) to optimise a portfolio over assets
A = {a1, . . . , an}. We cannot assume the asset means and covariance matrix are
known accurately enough for Markowitz optimisation to work. So we propose
Heuristic 1 instead of pure Markowitz optimisation.

(a) Choose a familywise significance level α and statistic θ for homogeneous sub-
sets and find subsets of H1, . . . ,Hk homogeneous in θ
(b) For i = 1, . . . , k, for the assets {a j : a j ∈ Hi}, let ai be either

(ewp) the equally-weighted portfolio
(min) the minimum-variance portfolio

(c) Solve model (3) or (4) over virtual assets a1, . . . , ak

Heuristic 1 Optimisation with homogeneous subsets

Note that when the assets are independent and identically distributed, heuris-
tic 1 reduces to choosing the ewp. And if the means and standard deviations are
known exactly it reduces to Markowitz optimisation. In both cases it selects the
portfolio we know to be optimal.

We have ignored here time dependency in asset returns. We noted in Sec-
tion 2.4 that we could substitute the bootstap method we use with a time-series
bootstrap method. Early tests, using the maximum-entropy bootstrap method of
Vinod (2004) combined with arima and garch suggest that when we account for
time-series effects, we sometimes get a small increase in the number of homoge-
neous subsets for a data set. This is what we should expect.

3.3. Application of homogeneous subsets to simulated data

We test Heuristic 1 on simulated data to check that it performs as expected
when we know the optimal solution to a problem. As in Sections 2.4 and 2.5 we
test sets of n = 20 and n = 50 assets with independent normally distributed returns
and generate data sets of T = 300 periods. We choose familywise significance
α = 0.05 in step (a) and test here the ewp variant in step (b).

We consider first the case where all means are 1 and standard deviations 0.5.
In this case the optimal portfolio for all strategies is the ewp with portfolio mean
1 and standard deviation 0.112 (n = 20) or 0.071 (n = 50). We compute subsets
homogeneous in mean for max and in standard deviation for min.
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Table 4 Summary simulation results with homogeneous subsets

n Strategy x s m wmin wmax

ewp 1.000 0.112 20 0.05 0.05
20 max 1.001 0.113 19.65 0.042 0.511

min 1.000 0.112 20 0.050 0.052
ewp 1 0.071 50 0.02 0.02

50 max 1.003 0.173 37.25 0.009 0.24
min 0.999 0.071 50 0.019 0.021

Table 4 summarises the results of the tests. It shows averages over 100 simu-
lations of the portfolio mean and standard deviation, number of assets with non-
negligible weights and smallest and largest portfolio weight. The min strategy
performs well, as it did with shrinkage estimators (Table 3) but not with standard
Markowitz optimisation (Table 1). The improvement in max is, however, striking.
It has excellent performance for n = 20 and good for n = 50.

What is not obvious in the table is that the results for max are mixed. When n =

50, 25 of the tests optimised over homogeneous subsets of one or two assets and
the rest optimised over homogeneous subsets of 46–50 assets. In this extreme case
we can improve performance by increasing the number of bootstrap replications
or the experimentwise significance used to generate the homogeneous subsets.

In practice we expect some variation in asset mean values. So we test this
case. Specifically, we test cases where there are 4 or 10 assets with each of the
mean values in {1, . . . , 5}. We simulate T = 300 normally distributed independent
random variates, all with standard deviation 0.05 as before. We test the max and
min strategies and also a new strategy cmax-24, which is model (3) with R = 24.
The ewp is no longer optimal, but we can compute the true optimal portfolio in
each case. We label it as ideal in Table 5.

We compare min, max and cmax-24 also using optimisation with the shrink-
age estimators of Section 2.5. Table 5 summarises the results averaged over 100
simulations. Column HS is the number of homogeneous subsets found. As before
we use subsets homogeneous in mean for max and standard deviation for min. For
cmax-24 we use subsets homogeneous in

mean − 24 × variance,

because this is what model (3) minimises.
We find that using homogeneous subsets works very well for max and min
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Table 5 Results for simulated data with inhomogeneous means

n Strategy Method x s m wmin wmax HS
HS 5.000 0.256 3.95 0.000 0.254 5.2

max J, NL 5.029 0.501 1.15 0.000 1.000
ideal 5 0.25 4 0 0.25 5

HS 3.000 0.114 20 0.050 0.052 1.1
20 min J, NL 3.000 0.113 20 0.048 0.051

ideal 3 0.112 20 0.05 0.05 1

HS 4.314 0.168 10.25 0.000 0.115 2.6
cmax-24 J, NL 4.660 0.187 10.2 0.000 0.170

ideal 4.667 0.186 8 0 0.167 5
HS 4.999 0.161 9.85 0.000 0.102 5.4

max J, NL 5.043 0.500 1 0.000 1.000
ideal 5 0.158 10 0 0.1 5

HS 3.000 0.071 50 0.019 0.025 1.7
50 min J, NL 2.999 0.071 50 0.019 0.021

ideal 3 0.071 50 0.02 0.02 1

HS 4.503 0.118 18.35 0.000 0.056 3.0
cmax-24 J, NL 4.914 0.146 20 0.000 0.095

ideal 4.917 0.146 20 0 0.092 5

strategies, as in Table 4. We also find the shrinkage estimators work well for min
but not max, as they did in Table 3. By contrast, shrinkage estimators work well
for cmax-24.

These results suggest that using homogeneous subsets for means and a shrink-
age estimator for variances should work well. Since mean maximisation is un-
usual, we test this with strategies min-c and max-c (problems (4) and (5)). We use
bounds 4 for min-c and 0.625 for max-c. Table 6 summarises the results in the
same format as Table 5. Where the method is labelled standard, we use Markowitz
optimisation without shrinkage or homogeneous subsets. Although shrinkage es-
timators work well for min-c, it is notable that the combination of homogeneous
subsets for means and a shrinkage estimator for variances works well in all cases,
giving lower standard deviation when n = 50 and better estimates of the optimal
coefficients when n = 20 or 50.
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Table 6 Further results for simulated data with inhomogeneous means

n Strategy Method x s m wmin wmax HS
standard 4.000 0.134 17.1 0.000 0.117

min-c
HS, NL 4.000 0.137 17.65 0.000 0.100 5.28
J, NL 4.000 0.137 17.43 0.000 0.101

.5
20

ideal 4 0.137 16 0.000 0.1 5

standard 4.994 0.250 4.68 0.000 0.314

max-c
HS, NL 4.996 0.249 5.57 0.000 0.250 5.2
J, NL 4.997 0.250 4.77 0.000 0.274
ideal 5 0.25 4 0 0.25 5
standard 4.000 0.802 40.1 0.000 0.058

min-c
HS, NL 4.000 0.087 42.58 0.000 0.040 6.08
J, NL 4.000 0.087 42.73 0.000 0.041

.5
50

ideal 4 0.087 40 0 0.04 5

standard 5.029 0.250 6.04 0.000 0.371

max-c
HS, NL 5.002 0.162 9.56 0.000 0.106 6.32
J, NL 5.028 0.25 6.15 0.000 0.361
ideal 5 0.158 10 0 0.1 5

4. Empirical results

We now investigate the performance of the homogeneous subsets methods on
real data. We consider the max-c, min-c and cmax strategies used in Section 3.3.
We no longer know what the optimal portfolios should be; so we use an out-of-
sample test (DeMiguel et al. (2009), Hwang et al. (2018)) to compare different
strategies combined with our method. That is, we construct portfolios using the
first half of each sample of asset returns and compare how well the portfolios
perform on the second half. As before, we consider returns of samples of n = 20
and n = 50 assets.

4.1. Data and construction of homogeneous subsets

The data we use are monthly percentage returns of random samples of 20 or
50 stocks from the S&P 500, Nikkei 225, FTSE 100, and DAX market indices,
obtained from Datastream (2019) None of these sets gave us more than one homo-
geneous subset of means. So we also use random samples of 20 and 50 monthly
percentage returns of hedge funds obtained from Refinitiv (2018).
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Table 7 summarises the data: n is the number of stocks or funds and T is the
number of monthly returns available. We want stock data for as long as possible
and have comparable data for 300 months for the first three indices. The DAX
index comprises 30 major German companies. Since only 18 of them have data
for 300 months and we need at least 20 we select the 20 oldest assets.

Table 7 Summary of data

Data set Mean Sd Skewness Kurtosis n T Time span

FTSE 0.837 8.151 0.131 0.151 61 300
30/05/1994 –
30/04/2019

S&P 500 1.207 9.143 0.226 0.796 326 300
02/06/1994 –
02/05/2019

DAX 0.923 9.033 0.085 −0.186 20 280
01/02/1996 –
01/05/2019

Nikkei 225 0.577 9.805 0.370 −0.294 184 300
01/06/1994 –
01/05/2019

HF 0.531 3.711 −0.386 1.580 375 168
31/01/2005 –
31/12/2019

We construct homogeneous subsets using Heuristic 1(a) with α = 0.05 and
θ either sample mean or sample standard deviation using samples of n = 20 and
(where available) n = 50 assets from each of the five data sets. Table 8 summarises
the homogeneous subsets obtained from the first half of each sample. The first
column indicates the data set used. The remaining columns show the number of
subsets obtained that are homogeneous in mean or in standard deviation (sd).

Table 8 Homogeneous subsets

Mean Sd Mean Sd
n = 20 n = 50

FTSE 1 4 1 4
S&P 1 4 1 4
DAX 1 4 – –
Nikkei 1 3 1 6
HF 2 6 3 7

Figure 4 show the means and standard deviations of the stocks used to create
homogeneous subsets using different symbols for different homogeneous subsets.
We show only subsets homogeneous in standard deviation because in every case
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Figure 4 Homogeneous standard-deviation subsets for four asset classes

there was only one subset homogeneous in mean. We do not have 50 DAX stocks
and so Figure 4 shows 20 assets for DAX and 50 for the other three asset classes.

Figure 5 shows the means and standard deviations of the sample of 50 hedge
funds. The charts on the left use different symbols for the subsets homogeneous
in mean. The charts on the right use different symbols for subsets homogeneous
in standard deviation.

4.2. Empirical tests

We now test Heuristic 1 on the data of Section 4.1. We consider three opti-
misation strategies, min-c, max-c and cmax (problems (4), (5) and (3)), because
we expect these to behave differently. The first two need a bound. For max-c and
min-c we choose the bound to be the mean and the variance of the data. We need
need a parameter R for cmax and choose R = µ̂>w/(w>Σ̂w), where w is the ewp.
Then the objective of problem (3) for the whole data set will be 0 for the ewp and
larger values of the objective indicate better performing portfolios.

We test Heuristic 1 with α = 0.05 in step (1) and with both ewp and min in
step (b) for samples of 20 and 50 assets from each of the five asset classes of Sec-
tion 4.1. As before, we compare with the ewp and naive Markowitz optimisation.
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Figure 5 Homogeneous subsets for portfolios of hedge funds

We also compare the effects of using shrinkage estimators for mean or covariance.
As in Section 3.3 we find using homogeneous subsets of standard deviations is no
more effective than using shrinkage estimators for covariance. And when we use
subsets homogeneous subsets in mean together with ewp in step (b) of Heuristic 1
we get an equally-weighted portfolio of all, or in the case of hedge funds the best
homogeneous subset of, the assets. So we report only the min case. Similarly,
the results for samples of 20 and 50 assets similar and so we report only those for
samples of 50 assets.

Tables 9–11 summarise the results of tests for 50 assets. HF is the hedge funds.
We write naive for Markowitz optimisation without shrinkage or homogeneous
subsets, J or HS if we use Jorion or subsets homogeneous in mean and NL or
LW for nonlinear or linear covariance shrinkage. We always try to use NL, but
occasionally this makes the covariance matrix ill-conditioned and then we use LW.

Table 9 shows the results for the min-c strategy. The asterisks indicate where
the bound on mean is met. The bounds for FTSE and HF are 0.837 and 0.532. All
other methods perform better out-of-sample than ewp. There is no clear difference
in performance among the other methods, though naive Markowitz gives less good
diversification. And the minimum-variance portfolio satisfies the bound on mean
when we use Jorion shrinkage or homogeneous subsets. So, in these cases the last
two methods give the same portfolio.

Table 10 shows the results for the min-c strategy. Covariance shrinkage negli-
gibly influences the results and using homogeneous subsets gives results close to
ewp, with strong diversification but weaker performance out-of-sample.

Table 11 shows the results for the cmax strategy. The values of R are 0.0429
(FTSE), 0.0545 (S&P), 0.0166 (Nikkei) and 0.1506 (HF). The obj columns of the
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Table 9 Results for the portfolios of n = 50 assets: min-c

In-sample Out-of-sample
Assets Method x s x s m wmin wmax

ewp 1.017 4.408 0.664 4.903 50 0.02 0.02

FTSE
naive 0.933 3.034 0.405 3.813 19 0.008 0.127
J/LW 0.989 2.963 0.439 3.759 22 0.002 0.109
HS/LW 1.017 2.963 0.439 3.759 22 0.002 0.109
ewp 1.437 3.926 0.791 5.039 50 0.02 0.02

S&P
naive 1.207∗ 2.701 0.657 4.178 22 0.001 0.212
J/NL 1.297 2.716 0.604 4.013 22 0.003 0.133
HS/NL 1.437 2.716 0.604 4.013 22 0.003 0.133
ewp 0.74 5.801 0.421 6.314 50 0.02 0.02

Nikkei
naive 0.577∗ 3.102 0.195 5.453 15 0.003 0.255
J/NL 0.641 3.119 0.204 5.082 17 0.006 0.258
HS/NL 0.74 3.119 0.204 5.082 17 0.006 0.258
ewp 0.673 2.329 0.441 1.262 50 0.02 0.02

HF
naive 0.711 0.701 0.466 0.778 11 0.003 0.362
J/NL 0.68 0.776 0.387 0.791 17 0.001 0.215
HS/NL 0.594 0.776 0.387 0.791 17 0.001 0.215
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Table 10 Results for the portfolios of n = 50 assets: max-c

In-sample Out-of-sample
Assets Method x s x s m wmin wmax

ewp 1.017 4.408 0.664 4.903 50 0.02 0.02
naive 2.371 8.43 ∗ 1.197 5.695 4 0.058 0.547

FTSE J/LW 1.5 8.43 ∗ 1.224 5.832 4 0.037 0.569
HS 1.017 4.402 0.663 4.91 49 0.014 0.023
HS/LW 1.017 4.197 0.664 4.937 50 0.013 0.022
ewp 1.437 3.926 0.791 5.039 50 0.02 0.02
naive 2.88 9.595∗ 1.462 8.734 3 0.05 0.825

S&P J/NL 1.978 9.595∗ 1.47 9.167 2 0.112 0.888
HS 1.437 3.867 0.787 5.006 50 0.016 0.025
HS/NL 1.437 3.781 0.789 5.03 50 0.018 0.022
ewp 0.74 5.801 0.421 6.314 50 0.02 0.02
naive 1.671 10.063∗ 0.819 8.994 4 0.031 0.495

Nikkei J/NL 1.065 10.063∗ 0.886 9.181 4 0.02 0.547
HS 0.74 5.714 0.418 6.265 50 0.018 0.025
HS/NL 0.74 5.672 0.422 6.309 50 0.018 0.021
ewp 0.673 2.329 0.441 1.262 50 0.02 0.02
naive 1.925 4.752∗ 0.915 2.426 3 0.095 0.46

HF J/NL 1.613 4.752∗ 0.905 2.46 3 0.092 0.471
HS 0.93 2.482 0.44 1.343 28 0.025 0.041
HS/NL 0.93 2.44 0.439 1.34 28 0.025 0.04
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Table 11 Results for the portfolios of n = 50 assets: cmax

In-sample Out-of-sample
Assets Method x obj x obj m wmin wmax

ewp 1.017 0.183 0.664 −0.368 50 0.02 0.02

FTSE
naive 1.559 0.902 0.699 0.083 10 0.045 0.172
J/LW 1.091 0.665 0.524 −0.087 19 0.003 0.11
HS/LW 1.017 0.64 0.439 −0.167 22 0.002 0.109
ewp 1.437 0.597 0.791 −0.592 50 0.02 0.02

S&P
naive 1.844 1.103 0.826 −0.37 17 0.011 0.21
J/NL 1.427 0.959 0.701 −0.253 25 0.01 0.157
HS/NL 1.437 1.035 0.604 −0.273 22 0.003 0.133
ewp 0.74 0.183 0.421 −0.239 50 0.02 0.02

Nikkei
naive 1.251 0.762 0.343 −0.456 12 0.009 0.269
J/NL 0.769 0.544 0.235 −0.263 19 0.007 0.158
HS/NL 0.74 0.579 0.204 −0.224 17 0.006 0.258
ewp 0.673 −0.144 0.441 0.201 50 0.02 0.02

HF
naive 1.34 1.023 0.858 0.586 7 0.04 0.447
J/NL 1.112 0.836 0.718 0.496 8 0.01 0.331
HS/NL 0.93 0.776 0.334 0.139 13 0.002 0.201
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table show the optimal value of the objective function of the optimisation problem.
We chose R to give a value of 0 for ewp over the complete set of assets, in-sample
and out-of-sample. So the larger the value of obj, the better the performance of
the portfolio. We note that all other methods do better than ewp, none is better
than others out-of-sample in all cases and homogeneous subsets and covariance
shrinkage both improve diversification.

4.3. Bootstrap tests

We now consider bootstrap replications of the tests of Section 4.2. We have
two reasons to do this. First, it gives more robust conclusions. Second, it allows
some evaluation of the bootstrap method of Michaud and Michaud (2007).

We need a data generation process for bootstrap replication. We write Rin

and Rout for the matrices whose (t, i)th entries are rt,i and rT/2+t,i (t = 1, . . . ,T/2,
i = 1, . . . , n. Then we use the method described at the end of Section 2.4 with
τ = T/2, which is always an integer in our data, to generate B = 2000 replications
of the in-sample data (Rin). We compute optimal portfolios from Rin

b (b = 1, . . . , B)
by various methods and compute the in-sample and out-of-sample means and stan-
dard deviations from Rin

b and Rout. We test samples of n = 20 and 50 assets but, as
in Section 4.2, report results only for 50, because the results are not very different.
We also omit the ewp results. For each test we show two rows showing lower and
upper 95% bootstrap percentile confidence bounds (Efron and Tibshirani, 1998)
for each column.

Table 12 summarises the results for min-c and should be compared with Ta-
ble 9. In some cases the virtual assets of Heuristic 1 step (c) had mean greater
than the optimisation bound and so there was no feasible solution. Column val in-
dicates the number of cases where a feasible solution was found. In this case it is
striking that there is very little difference in the out-of-sample confidence intervals
for naive Markowitz and Markowitz with covariance shrinkage and homogeneous
subsets.

Table 13 summarises the results for max-c and should be compared with Ta-
ble 10. This time all the resampled in-sample data sets have feasible solutions.
Standard Markowitz performs much better in-sample, as we should expect. But
the combination of homogeneous subsets with covariance shrinkage gives nar-
rower out-of-sample confidence intervals and better diversification in each case.

We end this Section by investigating how a bootstrap aggregation (Breiman,
1996; Frahm, 2015) method can be combined and compared with the method
we develop. This method is simple and similar to that of Michaud and Michaud
(2007). It applies an optimisation strategy to B bootstrap resampled data sets
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Table 12 Confidence intervals for portfolios of n = 50 assets: min-c

In-sample Out-of-sample
Assets Method x s x s m wmin wmax HS val

naive
0.837∗ 2.427 0.304 3.598 13 0.001 0.115

2000
FTSE

1.478 3.264 0.638 4.238 22 0.02 0.237

HS/NL
0.285 2.424 0.296 3.604 13 0.001 0.115 1

1507
1.691 3.223 0.642 4.238 22 0.019 0.247 2

naive
1.207∗ 2.111 0.54 3.78 13 0.001 0.135

2000
S&P

1.551 2.938 0.732 4.653 22 0.015 0.282

HS/NL
0.754 2.09 0.532 3.763 13 0.001 0.137 1

1679
1.947 2.829 0.694 4.597 21 0.015 0.287 3

naive
0.577∗ 2.524 0.098 4.921 9 0.001 0.213

2000
Nikkei

0.875 3.626 0.3 6.374 17 0.024 0.528

HS/NL
−0.165 2.452 0.088 4.98 9 0.001 0.228 1

1344
1.621 3.262 0.292 6.362 16 0.022 0.549 2

naive
0.557 0.533 0.356 0.638 8 0.001 0.18

2000
HF

0.899 0.731 0.525 1.166 14 0.035 0.559

HS/NL
0.187 0.534 0.328 0.641 8 0.001 0.171 2

1846
1.154 0.833 0.524 1.22 14 0.036 0.55 4
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Table 13 Confidence intervals for portfolios of n = 50 assets: max-c

In-sample Out-of-sample
Assets Method x s x s m wmin wmax HS

naive
1.817 7.384 0.073 4.736 1 0.004 0.324

FTSE
4.033 8.43 ∗ 1.652 13.15 6 1 1

HS/NL
0.35 3.762 0.332 4.713 2 0.004 0.023 1
1.84 6.913 0.911 6.57 50 0.359 0.733 2

naive
2.494 8.923 0.384 5.149 1 0.003 0.322

S&P
4.942 9.595∗ 1.645 9.761 6 1 1

HS/NL
0.921 3.452 0.77 4.918 6 0.009 0.024 1
2.352 5.927 1.03 6.21 50 0.074 0.291 3

naive
1.418 8.306 −0.151 7.033 1 0.004 0.314

Nikkei
3.959 10.063∗ 1.038 12.201 7 1 1

HS/NL
−0.083 5.05 0.328 6.132 2 0.007 0.024 1

1.838 8.38 0.501 8.187 50 0.26 0.825 2

naive
1.499 2.533 −0.046 2.227 1 0.006 0.35

HF
3.17 4.752∗ 1.643 3.802 5 1 1

HS/NL
0.345 1.984 0.382 1.172 9 0.015 0.033 2
1.758 3.41 0.642 1.945 36 0.065 0.163 4

Table 14 Bootstrap aggregation combined with other methods: min-c

In-sample Out-of-sample
Assets Method x s x s m wmin wmax HS

ewp 1.017 4.408 0.664 4.903 50 0.02 0.02
FTSE naive 0.96 3.068 0.46 3.765 33 0.002 0.108

HS/NL 0.936 3.066 0.456 3.761 33 0.001 0.107 1.91
ewp 1.437 3.926 0.791 5.039 50 0.02 0.02

S&P naive 1.161 2.715 0.63 4.103 38 0.001 0.177
HS/NL 1.091 2.686 0.608 4.057 37 0.001 0.165 1.99
ewp 0.74 5.801 0.421 6.314 50 0.02 0.02

Nikkei naive 0.481 3.034 0.192 5.44 30 0.001 0.297
HS/NL 0.403 2.976 0.184 5.532 25 0.001 0.339 1.89
ewp 0.673 2.329 0.441 1.262 50 0.02 0.02

HF naive 0.703 0.719 0.444 0.766 20 0.001 0.332
HS/NL 0.714 0.726 0.437 0.784 23 0.002 0.309 3.12
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Table 15 Bootstrap aggregation combined with other methods: max-c

In-sample Out-of-sample
Assets Method x s x s m wmin wmax HS

ewp 1.017 4.408 0.664 4.903 50 0.02 0.02
FTSE naive 1.944 6.233 0.991 5.445 36 0.001 0.295

HS/NL 1.043 4.417 0.667 4.934 50 0.017 0.024 1.91
ewp 1.437 3.926 0.791 5.039 50 0.02 0.02

S&P naive 2.447 6.476 1.289 6.001 26 0.001 0.215
HS/NL 1.549 4.136 0.836 5.231 50 0.011 0.025 1.99
ewp 0.74 5.801 0.421 6.314 50 0.02 0.02

Nikkei naive 1.287 7.025 0.447 7.587 35 0.001 0.123
HS/NL 0.75 5.718 0.423 6.302 50 0.014 0.024 1.89
ewp 0.673 2.329 0.441 1.262 50 0.02 0.02

HF naive 1.697 3.745 0.836 1.935 12 0.003 0.386
HS/NL 0.966 2.535 0.473 1.366 41 0.002 0.053 3.12

to generate B resampled optimal portfolios. Then it uses the average of these
portfolios as the estimate of the optimal portfolio.

Since we have already generated B = 2000 resampled in-sample data sets
for each of the strategies and methods we test, we can use these for bootstrap
aggregation. We construct an optimal portfolio estimate w as the average of the
2000 resampled in-sample optimal portfolios. Then we calculate the mean and
standard deviation of the returns in-sample and out-of-sample using w. When
we use a method that includes homogeneous subsets and covariance shrinkage
we recalculate the shrinkage covariances for each resampled data set rather than
resample from a data set with shrinkage covariances. We currently have no way
to generate such a data set.

Table 14 summarises the performance of the average optimal portfolio with
a min-c strategy and 50 assets. Columns m, wmin and wmax show the number of
non-negligible weights, the smallest non-negligible weight and the largest weight
in the average portfolio. Column HS shows that average number of homogeneous
subsets found in 2000 resamples. The unsurprising result is that the average (boot-
strap aggregated) portfolio out-of-sample performance is about the same when
we use naive Markowitz and when we use homogeneous subsets and covariance
shrinkage. Both achieve lower standard deviation than the ewp.

The results of Table 15 are more interesting. It summarises the performance
of the average optimal portfolio with a max-c strategy and 50 assets. Both naive

31

                  



Markowitz optimisation and homogeneous subsets with covariance shrinkage give
higher out-of-sample mean than the ewp. But the naive average portfolio gives a
higher mean in each case without exceeding the bound on standard deviation.

5. Discussion and conclusions

Perhaps the greatest challenge in portfolio optimisation based on historic data
is that we are trying to optimise over a small amount of information in the presence
of a large amount of noise. The noise includes uncertainty in the true values
of statistics such as mean and variance that we wish to optimise over. And it
is complicated by the fact that real assets have time-series effects and are not
normally distributed.

When statistics works it is because the average effect of noise is zero. So, it is
tempting to attribute the failure of Markowitz portfolio optimisation to time-series
effects, asymmetry of distributions or estimation risk. We have demonstrated that
Markowitz portfolio optimisation can fail badly even in the absence of such is-
sues. Rather than averaging out the effects of noise, quadratic or quadratically
constrained optimisation can select on noise alone and be an extreme case of fit-
ting the data better than the population. We have also shown that, while covari-
ance shrinkage can be helpful, Markowitz optimisation is too sensitive to small
differences in mean values for the currently-known mean shrinkage estimators to
prevent it from choosing a portfolio that is far from the true optimum.

If we hope to use optimisation to control the level of risk in a portfolio we must
find better ways to identify when differences, especially in mean return, are more
plausibly due to information than noise. We introduce a method of homogeneous
subsets that can help. In essence, it allows us to cluster assets into subsets so
that assets within a subset are plausibly indistinguishable on some statistic such
as mean return, while assets in different subsets are plausibly distinguishable.

We find homogeneous subsets in means to be the most informative. There
are two reasons for this. First, Markowitz optimisation is more sensitive to the
effects of noise in the mean than in variances. Second, homogeneity of variance
is complicated by the fact that when two assets have indistinguishable variance,
their covariance still matters: a convex combination of the assets may still reduce
variance. Our tests suggest that it is better to use covariance shrinkage which deals
with both variances and covariances to limit the effects of noise on covariance.

When we construct homogeneous subsets from historic asset data we find new
and informative results. First, while all asset sets vary in standard deviation, our
selections from the FTSE, Standard and Poor, DAX and Nikkei all plausibly have
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indistinguishable mean returns, at least over an in-sample period. We had to look
at hedge-fund returns, which use a range of investment strategies, to find distin-
guishable means. This limits how much improvement we may expect to find by
using the method (Heuristic 1) we develop to deal with homogeneous subsets.

When we test Heuristic 1 on historic asset returns we find it is more robust
than naive Markowitz optimisation, but still allows us to select a portfolio with
lower risk or higher return than the ewp. It works best on mean maximisation,
though a bootstrap aggregation method, similar to that of Michaud and Michaud
(2007), appears to perform better and is also computationally less expensive.

It is tempting to conclude that the empirical evidence favours bootstrap ag-
gregation as a generic portfolio selection strategy. However, we should note that
bootstrap aggregation should work best when, as we found, differences in mean
value are mostly due to noise (Frahm, 2015). Heuristic 1 has clearer theoretical
justification and may perform better if we can adjust it to deal with complicating
issues such as time-series effects, which can be done by replacing the bootstrap
with time-series bootstrap methods. The selection of homogeneous subsets de-
pends on the choice of an experimentwise significance level α. We chose α = 0.05
and a less conservative choice might allow us a better balance between eliminating
noise and preserving information. More generally, we might be able to develop
our methods from one where we make a binary decision about whether a subset
is homogeneous or not to one where we optimise based on some estimate of how
likely it is assets are homogeneous in some statistic.

All of these require further research. But while there is no clear evidence
(see the discussion in Frahm (2015)) in favour of any particular portfolio selec-
tion strategy, identifying plausibly homogeneous subsets may be useful in helping
choose which strategy or combination of strategies to use.
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