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Abstract: The presence and extent of permafrost in the Himalaya, which is a vital component of
the cryosphere, remains severely under-researched with its future climatic-driven trajectory only
partly understood and the future consequences on high-altitude ecosystem tentatively sketched
out. Previous studies and available permafrost maps for the Himalaya relied primarily upon the
modelled meteorological inputs to further model the likelihood of permafrost. Here, as a maiden
attempt, we have quantified the distribution of permafrost at 30 m grid-resolution in the Western
Himalaya using observations from multisource satellite datasets for estimating input parameters,
namely temperature, potential incoming solar radiation (PISR), slope, aspect and land use, and
cover. The results have been compared to previous studies and have been validated through field
investigations and geomorphological proxies associated with permafrost presence. A large part
of the study area is barren land (~69%) due to its extremely resistive climate condition with ~62%
of the total area having a mean annual air temperature of (MAAT) <1 ◦C. There is a high inter-
annual variability indicated by varying standard deviation (1–3 ◦C) associated with MAAT with
low standard deviation in southern part of the study area indicating low variations in areas with
high temperatures and vice-versa. The majority of the study area is northerly (~36%) and southerly
(~38%) oriented, receiving PISR between 1 and 2.5 MW/m2. The analysis of permafrost distribution
using biennial mean air temperature (BMAT) for 2002-04 to 2018-20 suggests that the ~25% of the
total study area has continuous permafrost, ~35% has discontinuous permafrost, ~1.5% has sporadic
permafrost, and ~39% has no permafrost presence. The temporal analysis of permafrost distribution
indicates a significant decrease in the permafrost cover in general and discontinuous permafrost
in particular, from 2002-04 to 2018-20, with a loss of around 3% for the total area (~8340.48 km2).
The present study will serve as an analogue for future permafrost studies to help understand the
permafrost dynamics associated with the effects of the recent abrupt rise in temperature and change
in precipitation pattern in the region.

Keywords: permafrost; Western Himalaya; MODIS; temperature; remote sensing

1. Introduction

Permafrost, or perennially frozen ground (soil or rock) with temperature less or equal
to 0 ◦C for at least two years [1], is an integral component of the cryosphere and covers ~24%
of the land surface of the northern hemisphere [2]. This integral cryospheric component has
been distinguished as one of the important indicators of global climate change within the
international framework of the Global Climate Observing System in World Meteorological
Organization [3]. Permafrost regulates soil moisture and consequently the landscapes
as well as an ecosystem over large regions as the seasonally freezing and thawing of the
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active layer controls the hydrological, biological, and geomorphic processes and affects the
anthroposphere [4,5]. However, in response to the increase in annual average temperature,
the permafrost is depleting in many regions globally, including the Himalaya. The thawing
of permafrost can have diverse and widespread impacts on society, such as an increase
in landslides and land degradation due to destabilization of slopes [6–9], ground subsi-
dence [10–12], changes in subsurface hydrology [13–15], damage to infrastructure [16,17],
and change in sediment load of rivers [18]. More importantly, as the permafrost thaws,
it releases greenhouse gases from the stored soil organic carbon, which creates positive
feedback and further amplifies the rate of rise in annual average temperature [19–21].
Keeping the above facts in view, the Intergovernmental Panel on Climate Change (IPCC)
(2014) suggested that climate change will bring about unexpected permafrost phenomena
and societal impacts in the future [22,23].

While a wealth of studies are available on the status of Himalayan glaciers (e.g., [24–32]),
glacier dynamics (e.g., [33,34]), glacier mapping (e.g., [33–37]), crevasse mapping (e.g., [38]),
glacial lake mapping (e.g., [39–41]), melt-water geochemistry (e.g., [42,43]), and discharge
reconstruction (e.g., [44,45]), the permafrost distribution and the potential impact of its
thaw is largely unknown for the most part of the Himalaya [46]. In recent years, several
studies have investigated permafrost in the Tibetan plateau [47,48], Hindu Kush-Himalaya
(HKH) [49], and Nepalese Himalaya [50]. However, in the case of North-western Himalaya,
only fragmented information exists [6,7,51–54]. A global Permafrost Zonation Index (PZI)
at ~1 km resolution was provided by Gruber (2012) using an empirical relationship be-
tween permafrost and mean annual air temperature (MAAT), which can be considered as a
first order estimate of permafrost. However, PZI was broadly based on the boundaries of
continuous and isolated permafrost on the International Permafrost Association (IPA) map
provided by Brown et al. [55], including the reanalysis of digital elevation model (DEM),
and did not consider field validation [56]. PZI uses modelled MAAT, which has its own
limitations in high mountain regions, and by using the modelled MAAT further to model
permafrost has the potential to introduce further magnified biases in the results. Although
PZI is more useful in outlining the overall spatial pattern of permafrost occurrence, it may
fail in capturing the small-scale variations and heterogeneity of permafrost existence since
it uses temperature as a single predictive variable. Another global study by Obu et al. [57]
provides the permafrost map of the northern hemisphere at ~1 km resolution but does not
account for permafrost variability in steep mountains, primarily due to inability of their
model to include the slope and aspect.

One of the major difficulties in studying permafrost using remote sensing is that unlike
other cryospheric components such as snow and ice, permafrost cannot be directly observed
through remote sensors [58]. The existence of permafrost depends on certain environmental
conditions that can be expressed through surface information which can further be assessed
using remotely sensed observations. Mean annual air temperature (MAAT), potential
incoming solar radiation (PISR), and slope aspect are the principal factors that administer
and regulate the presence and absence of permafrost in the mountainous environments [22].
In the present study, as a maiden attempt, we comprehensively used remote sensing data
and techniques for permafrost mapping along with ground validation in the parts of
Western Himalaya. The major objectives of our work are: (1) to systematically analyze
the key climatic and topographic parameters controlling occurrence of permafrost such as
temperature, precipitation, incoming solar radiation, slope and aspect derived from multi-
source multi-temporal remote sensing data; (2) to collectively integrate these variables in
analytical hierarchy process (AHP)-based framework to get a robust spatial distribution of
permafrost; (3) to compare and validate the results with ground/field observations and
available published results in the study area and; (4) to create a permafrost distribution map
for the parts of the Western Himalaya. In the end of the discussion section, we also argue
the limitations associated with our methodology and results. The present study will serve
as an analogue for future permafrost studies that will help in understanding the dynamics
of permafrost in a changing environment and has implications for discerning the impacts of
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permafrost thawing on the evolution of potential natural hazards that may affect the high
mountain communities. This becomes critical considering the higher rates of warming than
the global averages [59–62] and increasing frequency of disasters in permafrost areas [9,63]
observed in the Himalaya.

2. Study Area

The permafrost probability mapping was carried out for an area of ~278,016 km2, in the
parts of Western Himalaya, spanning from Baltistan in the northwest to Himachal Pradesh
in the southeast (Figure 1). The area constituted of five mountains ranges of Karakoram-
Himalaya viz. the Karakoram Range, Ladakh range, Zanskar range, Pir-Panjal range,
and Greater Himalayan range. The background for the selection of the study area was to
include the most possible climatological diversity and geographical or geomorphological
vividness of the Himalaya. The area under investigation forms a transitional climatic
zone, where the moist and lush lowlands and foothills of southern parts ascend and meet
the cold and dry highlands of Western Himalaya. Climatologically, two major weather
systems operate in this part of the Himalayan region, viz. the Indian Summer Monsoon
(ISM) and the midlatitude Westerlies or the Western Disturbances (WD) [30,64–66]. The
Western Himalayan region (Karakoram Range) lies in the trajectory of the midlatitude
westerlies that brings moisture and cold winds and produces heavy snowfall during
the winter; however, the influence of mid-latitude westerlies decreases towards further
south and east [65,66]. Contrarily, the southern and south-eastern parts of the study
area are dominantly influenced by the ISM and receive heavy summer (June–September)
rainfall and hence experience a humid to sub-humid climate [65,67]. As this wind system
approaches the north-western and north-eastern region, they experience a progressive
decline in the precipitation at an expanse of topography and winter snowfall [68–70].
Therefore, the tropical character of the south and southeast region and the semi-arid
‘cold desert’ character of the north-west and north-east region is largely a consequence of
topography-climate interactions. The unique climatological, as well as geomorphological
setting of the study area, has resulted in microclimatic conditions along a climatic gradient
ranging from sub-tropical humid towards the south-eastern parts at altitudes <2000 m asl
to alpine valleys above ~3500 m asl to progressively tundra-type at altitudes above ~4000 m
asl (Figure 1). Keeping the influence of the two weather systems under consideration, four
different climatic zones (ISM dominated, WD dominated, transition zone, and precipitation
shadow zone) are proposed for the study area, which basically reflect the dominance of
these weather systems [71].Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 1. The map showing the (a) location of the study area (highlighted in red) in the HKH region (inset boundary by 
ICIMOD [72]) with elevation after Shuttle Radar Topographic Mission (SRTM), glaciers [73], water bodies [74] and ground 
validation sites in (b) Ladakh and (c) Himachal Pradesh. 
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tion Imagining Spectroradiometer (MODIS) onboard Terra (MOD11A2 available from 
February 2000) and Aqua (MYD11A2 available from July 2002), were used to derive an-
nual land surface temperature (LST). The Terra and Aqua products provide an average of 
an 8-day period LST in a 1200 × 1200 km grid. It is not ideal to employ remotely sensed 
LST directly for permafrost mapping because of the insulating effect provided by the win-
ter snow cover [75]. Furthermore, the thermal offset on annual scale, caused by differing 
thermal conductivities of the permafrost active layer when frozen and thawed, can intro-
duce irregularities in the spatiotemporal relationship between annual average ground 
temperatures and annual average LST [57]. Therefore, the average of 8-day LST (arithme-
tic average daytime and night-time values of MOD11A2 and MYD11A2) were first used 
to calculate the monthly average and subsequently to calculate the annual average LST 
for each hydrological year (September to October of the consecutive year) to reduce the 
biasness associated with missing values in a particular month.  

The average annual LST were then converted to the mean annual air temperature 
(MAAT) following the statistically significant equations developed by Singh et al. [71] for 
the different elevation and precipitation zones of the Western Himalaya. Singh et al. [71] 
used 8-day LST from the arithmetic mean of MOD11A2 and MYD11A2 and compared 
them with the 8-day air temperature from eleven high-altitude stations to derive statisti-
cally robust (R2 = 0.80, root mean square difference = 5.7 °C, n = 3552, p-value < 0.01 at 99% 
confidence level) relationships between air and surface temperatures across various cli-
matic regimes of the Western Himalaya, as shown in Table 1. The relationship between 
LST and air temperature is largely dictated by availability of moisture in near surface at-

Figure 1. The map showing the (a) location of the study area (highlighted in red) in the HKH region
(inset boundary by ICIMOD [72]) with elevation after Shuttle Radar Topographic Mission (SRTM),
glaciers [73], water bodies [74] and ground validation sites in (b) Ladakh and (c) Himachal Pradesh.
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3. Materials and Methods
3.1. Temperature

The 8-day night and daytime temperature observations from the Moderate Reso-
lution Imagining Spectroradiometer (MODIS) onboard Terra (MOD11A2 available from
February 2000) and Aqua (MYD11A2 available from July 2002), were used to derive an-
nual land surface temperature (LST). The Terra and Aqua products provide an average
of an 8-day period LST in a 1200 × 1200 km grid. It is not ideal to employ remotely
sensed LST directly for permafrost mapping because of the insulating effect provided by
the winter snow cover [75]. Furthermore, the thermal offset on annual scale, caused by
differing thermal conductivities of the permafrost active layer when frozen and thawed,
can introduce irregularities in the spatiotemporal relationship between annual average
ground temperatures and annual average LST [57]. Therefore, the average of 8-day LST
(arithmetic average daytime and night-time values of MOD11A2 and MYD11A2) were first
used to calculate the monthly average and subsequently to calculate the annual average
LST for each hydrological year (September to October of the consecutive year) to reduce
the biasness associated with missing values in a particular month.

The average annual LST were then converted to the mean annual air temperature
(MAAT) following the statistically significant equations developed by Singh et al. [71] for
the different elevation and precipitation zones of the Western Himalaya. Singh et al. [71]
used 8-day LST from the arithmetic mean of MOD11A2 and MYD11A2 and compared them
with the 8-day air temperature from eleven high-altitude stations to derive statistically
robust (R2 = 0.80, root mean square difference = 5.7 ◦C, n = 3552, p-value < 0.01 at 99%
confidence level) relationships between air and surface temperatures across various climatic
regimes of the Western Himalaya, as shown in Table 1. The relationship between LST and
air temperature is largely dictated by availability of moisture in near surface atmosphere,
which is controlled by precipitation. Therefore, the Tropical Rainfall Measuring Mission
(TRMM) of precipitation product [76] was obtained for the period of 1 January 1998 to
31 December 2020, and plotted for December to February, March to May, June to August,
and September to November (Figure 2) for the categorization of the four precipitation
zones [77] (Table 1), which are ISM dominated (Equation (4), WD dominated (Equation (3),
transition zone (Equation (2) and the precipitation shadow zone (Equation (1). The monthly
rate of precipitation in millimeters per month (mm/Month) was used to estimate seasonal
average (Figure 2). The precipitation is higher in the southern part of the study area during
the ISM dominant months (Figure 2c) and the peak shifts to the north-western part of the
study area, although at lower magnitude, during the WD dominants months (Figure 2a).

Table 1. Details of relationship used to convert mean annual land surface temperature (LST) to
mean annual air temperature (MAAT) for different precipitation zones (R2 = coefficient of regression
between LST and MAAT; n = number of observations) (modified after Singh et al. [71]).

Precipitation Zone R2 n Equation Used

Precipitation shadow zone 0.85 1418 MAAT = 0.80 LST − 5.06 (1)
Transition zone 0.88 1317 MAAT = 0.74 LST + 2.27 (2)

WD dominated zone 0.97 699 MAAT = 0.91 LST − 0.69 (3)
ISM dominated zone 0.96 118 MAAT = 0.96 LST + 1.31 (4)

Following the methodology explained above and equations listed in Table 1, the
annual mean LST for all the eighteen hydrological years between September 2002 and
October 2020 were converted to MAAT. After the conversion, the arithmetic mean of
MAAT for two consecutive hydrological years were used to calculate the biennial mean air
temperature (BMAT) to be used as an input for AHP for the determination of occurrence of
continuous (below −5 ◦C) and discontinuous (−5 ◦C to 0 ◦C) permafrost [78–80]. Although
the transition between continuous and discontinuous permafrost occurs between −6 ◦C
and −8 ◦C [80], the snow cover can significantly increase the temperature of permafrost
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surface [81]. For sporadic permafrost, which is defined as the area where the temperature
fluctuates above and below 0 ◦C isotherm, we used maximum and minimum value of each
pixel in MAAT between two consecutive years (which varied between −1.3 ◦C and 1.64 ◦C)
and used in AHP to classify the sporadic permafrost area. The pixels with value >0 ◦C
which do not qualify for sporadic were classified as no permafrost area. Finally, we used
the maximum value of BMAT for each pixel between 2002-04 and 2018-20 and used it in
AHP to create a robust permafrost map for the study area.
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Figure 2. Tropical Rainfall Measuring Mission (TRMM) derived precipitation maps [76] of the study area showing
dominance of precipitation during (a) December–January–February; (b) March–April–May; (c) June–July–August and;
(d) September–October–November.

3.2. Land Cover and Use

Permafrost occurrence is a complex ground characteristic with intricate correlation
with surface temperature, surface topography, geology, vegetation, and soil moisture [4,22].
The complexities involved in the conditions of occurrence of permafrost makes it difficult
to directly observe remotely and can only be inferred from proxy geophysical variables and
surface features derived from remotely sensed data [58]. These geophysical and geomor-
phic parameters can be extracted from freely available multi source remote sensing datasets.
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The land cover was obtained from cloud free Landsat 8 [82] datasets available between 2017
and 2019. The presence of prominent features, such as rock glaciers, gelifluctions, perennial
snow patches, modification, the degradation of slopes, and thermokarst lakes manifest
the presence of permafrost [40,83–85]. However, the areas covered by the glaciers, lakes,
and water bodies are generally considered to be an indicator of permafrost absence. These
surface indicators were identified using freely available 30 m spatial resolution Landsat
images for the years 2017/18/19 (ablation season) from the U.S. Geological Survey (USGS)
and the National Aeronautics and Space Administration (NASA) [82]. The glaciers were
extracted for the study area using glacier outlines obtained from the Randolph Glacier
Inventory, Version 6 [73]. The optical images were further used to classify the surface
features into barren land, vegetation, settlement, glacier cover and water bodies. Since
the probability of permafrost occurrence based on where BMAT is highest in the areas
located above the transient tree line [86], the vegetation cover has not been further divided
into different forest types. We have used unsupervised classification technique to classify
the surface features because of the large study area [87]. A confusion or error matrix and
Kappa coefficient (K) has been used to perform the accuracy assessment [88]. A set of
261 random points were created for accuracy assessment, which were then overlaid on
the Google Earth image for cross checking the unsupervised classification result with the
actual ground feature. The overall accuracy and Kappa coefficient of our unsupervised
classification is 91.57% and 85.00% respectively (Table 2).

Table 2. The table showing the surface feature accuracy assessment.

Classified Data Barren Land Glacier Settlement Vegetation Water Total Accuracy (%)

Barren Land 150 3 0 6 0 159 94.34
Glacier 0 28 0 0 0 28 100.00
Settlement 1 0 4 0 0 5 80.00
Vegetation 6 0 5 53 0 64 82.81
Water 1 0 0 0 4 5 80.00
Total 158 31 9 59 4 261
Accuracy (%) 94.94 90.32 44.44 89.83 100.00
Overall Accuracy (%) 91.57
Total Sum 261
Total Correct Sample 239
Kappa Statistics (K) 85.00%

3.3. Ground Terrain Variables

After temperature, the solar radiation, slope, and aspect are the principal variables in-
fluencing the formation and existence of permafrost in the mountainous regions [22,89–91].
The potential incoming solar radiation (PISR) affects the ground temperature through
subsurface energy flux [92]. The distribution of PISR is predominantly influenced by
surface topography, elevation, slope, and relief, and plays a crucial role in the formation
of permafrost by influencing the microclimate and hence ground temperature [84,93,94].
Hoelzle [84] suggested that, on a local scale, direct solar radiation is probably the most
important factor for the distribution of mountain permafrost, because MAAT determines
large scale distribution patterns of permafrost. According to Hoelzle [84], permafrost could
exist at low altitudes, i.e., far below the 0 ◦C isotherm in case of strongly reduced radiation.
In the present study, we derived the ground terrain variables such as PISR, slope, and
aspect from Shuttle Radar Topographic Mission (SRTM) DEM, as used in several other
similar studies [22,49,95]. We used SRTM DEM (~30 m) and the ‘Area Solar Radiation’
tool in ArcMap 10.4 to create a PISR grid of about 30 m resolution for the late summer
months (1 June to 30 September) with relatively low snow cover [96,97]. A sky size value
of 200 was given as an input, which is sufficient for large day interval setting (>14 days)
along with the default value for other parameters in the ArcMap tool [98]. The PISR has
further been reclassified into four classes varying from 0 to 2.5 MW/m2. We did not
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consider PISR above 2.5 MW/m2 as the areas receiving more solar radiation does not
indicate permafrost [83]. The upper limit was estimated for the period (June–September)
when the solar radiation is maximum in the region and was considered to ensure the
robustness of the permafrost mapping. Aspect and slope play dominant roles in the like-
lihood of permafrost by influencing radiative forcing. Both the terrain parameters were
derived in the GIS environment from 30 m SRTM DEM. The aspect was further classified
into four classes which are north (303.75◦–0◦ and 0◦–33.75◦), east (33.75◦–123.75◦), south
(123.75◦–213.75◦) and west (213.75◦–303.75◦), and slopes were categorized into four classes
11.1◦–19◦, 19.1◦–27◦, 27.1◦–35◦ and <11◦–>35◦ [7,83,99,100] (Table 3).

Table 3. Weights and ratings of permafrost variables in the Analytical Hierarchy Process (AHP).

Variables Weights Categories Rating Importance

BMAT (◦C) 0.5579

<−5 ◦C 9 Extreme Importance
−5 ◦C to −1.3 ◦C 7 Strong Importance
−1.3 ◦C to 1.6 ◦C 3 Moderate Importance

1.6 ◦C< 2 Less Importance

PISR
(MWh/m2) 0.2633

0–0.87 9 Extreme Importance
0.87–1.6 7 Strong Importance
1.6–2.5 3 Moderate Importance

>2.5 2 Less Importance

Aspect 0.1219

303.75◦–0◦ and 0◦–33.75◦ 9 Extreme Importance
213.75◦–303.75◦ 7 Strong Importance
33.75◦–123.75◦ 3 Moderate Importance

123.75◦–213.75◦ 2 Less Importance

Slope (◦C) 0.0269

19.1–27 9 Extreme Importance
27.1–35 7 Strong Importance
11.1–19 3 Moderate Importance

<11 and >35 2 Less Importance

Surface
features

Barren Land 9 Extreme Importance
Vegetation 7 Strong Importance
Settlement 3 Moderate Importance

Glacier and Waterbodies 2 Less Importance

3.4. Resampling and Analytical Hierarchy Process (AHP)

In total, we have five different types of datasets, four (PISR, Slope, Aspect, and Surface
Feature) having 30 m and one (BMAT) with 1 km resolution. Since resampling of one
dataset to the resolution of other four was a better option, instead of the vice-versa (to
reduce the uncertainties generated during the resampling), we used an ArcGIS bilinear
resampling technique to resample BMAT to 30 m resolution [101]. The purpose of the
resampling was not to increase the resolution of the output rather to bring all the different
datasets to the same resolution so that they can be used as an input to the AHP. The AHP
is a semi-quantitative, multi-criterion, subjective and objective decision-making method in
which decisions are taken using weights through pair-wise relative comparisons [102]. The
concept of AHP is based on three factors which are disintegration, comparative judgment,
and the integration of priorities [103–106]. It breaks down a complex decision problem
into factors, arranges them hierarchically, and assigns weights according to their subjective
relevance and relative importance by setting up a comparison matrix. The AHP method
for permafrost mapping was adopted owing to the advantages of using AHP as an expert-
based method in which a variety of information influencing the permafrost development
can be incorporated subjectively as well as objectively. In AHP, when a consensus is
reached, the weights for each component are obtained automatically by an eigenvector
calculation of the comparison matrix and inconsistencies can be corrected if needed using
consistency index values [102,103,107]. The only shortcoming of the method is that the
subjective preference in the ranking of factors may differ from one expert to another [103].
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In this study, the relative value of each pair of factors was determined based on extensive
literature review and after rigorous sensitivity analysis for the factors for which little
or no information was available. In AHP, the comparison of factors is made by using
a scale ranging from one to nine if the factors have direct relationship, and the values
varies between 1/2 to 1/9 if they have inverse relationship [108]. The calculation of the
comparison matrix gives factor weight in terms of eigenvector.

Based on the LST derived BMAT, the study region was divided into four temper-
ature classes, which are <−5 ◦C; −5 ◦C to −1.3 ◦C; −1.3 ◦C to 1.64 ◦C and >1.64 ◦C
(Table 3) [55,77,78] which has been discussed in detail in Section 3.1. These classes were
assigned the ratings of 9, 7, 3, and 2, respectively, for the AHP modelling. It has been
emphasized that in the mountainous regions, such as Alps and Himalaya, permafrost
can exist even below 0 ◦C isotherm line at most topographically suitable locations such
as shaded reliefs receiving reduced solar radiation [7,84,109]. Considering this argu-
ment, we have performed a sensitivity analysis with BMAT and considered a temperature
range (−1.3 ◦C to 1.64 ◦C) with a lower rating in the model, so that the sporadic area
of permafrost is not underestimated. The PISR has been reclassified into four classes
varying from 0 to 2.5 MW/m2 and the lower value of PISR was assigned higher ratings
on a 1–9 scale (Table 3). The Aspect was given weights lesser than PISR but greater than
the slope angle. From the existence of rock glaciers in this region [110], it was evident
that the permafrost favoured the northern slopes than the western slopes, and lesser solar
radiation on the northern slopes of the northern hemisphere may be implicated [46,49,111].
Therefore, the northern slopes were allocated a maximum rating of 9 and the southern
slopes were allocated a minimum rating of 2. Following the suggestions of Allen et al. [7]
and Arenson and Jakob [83], slopes flatter than 10◦ and steeper than 35◦ were considered
insignificant for the occurrence of permafrost. Before assigning ratings (weight) to the
slopes, a sensitivity analysis was carried out to find the slope range influencing the per-
mafrost occurrence most significantly. Based on the sensitivity analysis, the slope between
19◦ to 35◦ was given the highest ratings.

3.5. The Model for Permafrost Mapping

For permafrost occurrence probability mapping, all the four variables which are BMAT,
PISR, aspect, and slope were reclassified into four classes, and each class was assigned a
rating on a scale of 1 to 9 (Table 4) conditional to their importance for permafrost occurrence.
Four different variables were weighted and added to create the final permafrost occurrence
map. All the variables were given a weight value ‘w’ with which the variable ratings
were multiplied.

X = Wm ∗ Rm + Wp ∗ Rp + Wa ∗ Ra + Ws ∗ Rs (5)

where, X = model output, Wm, Wp, Wa, Ws are the weights of MAAT, PISR, Aspect,
and slope respectively and Rm, Rp, Ra, Rs are the BMAT, PISR, Aspect and Slope with
their ratings. The ratings of the BMAT and Aspect were assigned based on previous stud-
ies [55,78,79,83,99,100]. The ratings of PISR and Slope were assigned on the professional
judgment after carrying out several sensitive analyses.

The final permafrost distribution then was obtained by multiplying the model results
with the ground surface covering information.

PE = X ∗ GSC (6)

where, PE = Permafrost existence, GSC is ground surface covering. GSC also contained
four layers, each layer having ratings from 1 to 9.

We estimated biennial change in permafrost occurrence from 2002-04 to 2018-20 based
on the Equations (5) and (6) for the spatiotemporal variation in permafrost distribution
in the region. The PE was subjected to sensitivity analysis based on the field validation
to estimate the continuous, discontinuous, and no permafrost cover. The maximum and
minimum of MAAT were used to identify the pixels with values fluctuating around 0 ◦C
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isotherm and were classified as the sporadic permafrost cover. To ensure the robustness
of the final permafrost map over the period September 2002 to October 2020, we used the
maximum of BMAT (from 2002-04 to 2018-20) for mapping the distribution of continuous,
discontinuous, and no permafrost zones and maximum and minimum of BMAT (from
2002-04 to 2018-20) for mapping the sporadic permafrost zone.

Table 4. The table summarizing the permafrost area in different categories with the number of rock glaciers found in each
category which has been considered for accuracy assessment.

Permafrost Zones Area (km2) Area (%)
Number of Rock Glaciers Mapped in the Area

Schmid et al. [49] Pandey [110] Hassan et al. [112]

Continuous permafrost 69,563.01 25.02 165 240 325
Discontinuous permafrost 96,097.86 34.57 102 252 257

Sporadic permafrost 4251.92 1.53 0 0 0
No permafrost 108,103.60 38.88 10 24 15

Total 278,016.40 100 279 516 597

4. Results
4.1. Temperature

The mean of near-surface air temperature varies between −17.65 ◦C to 10.15 ◦C
(Figure 3) with minimum of maximum and minimum temperature below −16 ◦C and
−18 ◦C (Supplementary Figures S1 and S2), respectively. There is a high interannual
variability associated with mean annual air temperature with a standard deviation varying
between 0.1 ◦C and 3 ◦C (Supplementary Figure S3). Interestingly, the variability is lower
on the southern side of the study area and higher on areas with high elevation. The result
from the present study shows that out of the total study area, ~33.12% of the total study
area has MAAT lesser than −5 ◦C, indicating a large part of the study area with cold
climate. About 28.94% of the overall study area has MAAT ranging between −5 ◦C to
−1.3 ◦C, ~13.02% area has −1.3 ◦C to 1.64 ◦C and ~24.92% has MAAT more than 1.64 ◦C
(Figure 3). The results show that apart from the southern side of the study area, other
parts with higher temperature range and high interannual variability have potential of
permafrost occurrence (Figure 3).

4.2. Land Cover and Ground Variables

The primary remote sensing inputs for identification and mapping of spatial distribu-
tion of permafrost are BMAT, PISR, aspect, slope, and surface features (Figure 4). The final
grid resolution of the generated permafrost map is 30 m after resampling. The PISR distri-
bution is relatively uniform with ~50% of the study area receiving solar radiation between
1.76 and 2.5 MWh/m2 and 48% of the area receiving between 0.88 and 1.76 MWh/m2.
Of the total study area, ~36% are northerly and ~38% southerly oriented. The PISR of a
specific area is directly associated with the topographic shading, which is comprised of two
components which are shaded relief which occurs when the solar radiation is blocked due
to its own relief and cast shadows, which occurs when solar radiations casts shadows from
another topographic feature mostly steep valley walls [113]. The higher reaches of valleys
in Himalaya with north and south aspect are mostly influenced by cast shadows [113], and
since ~78% of the study area is either northerly or southerly oriented (Figure 4d), the cast
shadow is the most influential topographic shading in the present study area.
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4.3. Validation and Accuracy Assessment

The primary driver of the permafrost occurrence is BMAT, which again is controlled
by topographic and surface characteristics. By logically amalgamating geophysical and
geomorphic parameters in ArcGIS, the spatial distribution and mapping of permafrost
zones were carried out for the Western Himalaya. To ensure the robustness of the model,
we firstly used the maximum of BMAT from 2002-04 to 2018-20 to map the occurrence of
permafrost (Figure 5). Due to the use of maximum value recorded by each pixel in the
study area as an input, the permafrost area occurrence mapped shows the minimum area in
each category with statistically high confidence. The results showed ~25.02% of the study
area has continuous permafrost, about ~34.57% has discontinuous permafrost, ~1.53% has
sporadic permafrost, and ~38.88% has no permafrost.
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Figure 4. Maps of the study area showing the ground variables (a) Potential incoming solar radiation (PISR) from Shuttle
Radar Topographic Mission (SRTM), (b) Aspect from SRTM, (c) Slope from SRTM, and (d) Land use and land cover mapped
on Landsat 8, used in analytical hierarchy process (AHP).

Except for ice-cored rock glaciers, rock glaciers are a periglacial process [114] which
implies that they are a non-glacial landform linked to cold climates especially with different
types of frozen ground. Therefore, the presence of rock glaciers can be used as a proxy for
the presence of permafrost because they are accepted as visible indicators of permafrost [49].
We compared the assessment of permafrost presence mapped using BMAT from 2002-04 to
2018-20 with rock glaciers mapped in the study area (Table 4). The accuracy assessment
with rock glacier data showed a good consistency. There are total of 279, 516, and 597 rock
glaciers mapped by Schmid et al. [49], Pandey [110], Hassan et al. [112] respectively, that
fall inside the present study area. Out of these 1392 glaciers, only 49 happen to be located
outside the continuous or discontinuous permafrost zones (Table 4).
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The modelled permafrost distribution was validated with independent ground truth
by field observations at two different locations present within completely different climatic
and topographic setting (location shown in Figure 1). The first location used for the
validation of our result was Chang La Pass near Leh, Ladakh. The permafrost occurrences
have been suggested to occur at a shallow depth throughout Taglang La and Chang La
Passes [40]. To validate our results, we have chosen the northern slopes of Chang La, as our
results indicated presence of continuous permafrost at this location (Figure 6). The field
validation work was carried out in July 2019. We excavated pits at three different locations
with gradually increasing elevation (~4838, 4970 and 4990 m asl) using an excavation
machine (Figure 6) and, interestingly, the evidence of depth wise permafrost existence was
found. A completely frozen ground (permafrost) at a depth of ~1.5 m was observed in
the pit made at an elevation of ~4838 m asl, while the same was observed at less than 1 m
and 0.5 m depth for the other two pits at elevations of ~4970 and 4990 m asl respectively
(Figure 6). It is evident from the field observations that the permafrost occurrence becomes
shallower with an increase in the elevation. Besides this, permafrost mounds that are
suggested to be the geomorphological expression of changes due to permafrost activity are
also observed in these areas.
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Figure 6. (a) Google Earth Pro image showing the location of pits excavated on the north slope of Chan La pass, (b–e) field
photographs showing the pit site (~4838 m asl), permafrost depth, permafrost surface, and ice crystals respectively,
(f–h) field photographs of the second pit (~4970 m asl) showing the synoptic view of pit site, permafrost depth and
permafrost surface, and (i,j) field photographs of the third pit (~4990 m asl) showing permafrost depth and ice crystals, and
(k) permafrost zone classification in the area.

The second location for the ground validation was near Chandra Taal Lake in Spiti
valley, Himachal Pradesh at an elevation of ~4300 m asl (location shown in Figure 1),
where pit/trenching could not be done due to logistic difficulties. Between Chandra
River and Chandra Taal Lake, the formation of periglacial geomorphological features,
which includes thermokarst lakes, mounds, and channels, are visible indicators of the
presence of permafrost in the region (Figure 7). Several thawed depressions filled with
water (thermokarst lakes) and small frost mounds have formed in the locations, which
are a good indicator of ice-rich permafrost in the region [40]. It has been observed that
in some continuous permafrost zones, beaded drainage develops when small, thawed
pools join [115–117] (Figure 7). This feature can be seen in the synoptic view of the
location obtained from Google Earth. The presence of thermokarst lakes, mounds, and
beaded streams indicated and validated the results obtained from our model for permafrost
mapping in the Chandra valley also.
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and (e) permafrost zone classification in the area.

4.4. Distribution of Permafrost

After the development of the permafrost distribution map, with a minimum extent
of permafrost occurrence using the maximum of BMAT for 2002-04 to 2018-20, we also
looked at the temporal change in the permafrost area during the last two decades. As
the permafrost distribution has been mapped primarily based on BMAT, the pixels with
fluctuation in BMAT will result in the change of the category of permafrost distribution
the pixels are identified as, giving information about the spatial change in permafrost
distribution over time. This is particularly important because the change in biennial
temperature over two decades will directly affect the active layer thickness, and therefore
the transition between different permafrost zones, rather than the existence of permafrost.
For the temporal analysis, nine different permafrost maps were created using the nine
BMAT’s between 2002-04 and 2018-20, out of which four (for 2002-04, 2008-10, 2014-16
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and 2018-20) are presented in Figure 8 for selected areas of Ladakh and Himachal Pradesh
where the changes were found to be more prominent. The results suggest that there is a
significant and rather systematic decrease in permafrost area (combining both continuous
and discontinuous) from 56% of the overall study area in 2002-04 to 55% in 2018-20.
Interestingly, there is no significant change in the sporadic permafrost cover, which requires
seasonal change in temperature rather than biennial average of near-surface temperature
for detection of any spatiotemporal change. The maps of the overall study area showing
the permafrost extent for different years are given in Supplementary Figures S8–S16. The
comparison of the permafrost cover mapped using BMAT of 2002-04 (Supplementary
Figure S8) and maximum of BMAT from 2002-04 and 2018-20 (Figure 5), shows that there
is significant difference (3%) in discontinuous permafrost mapped.
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5. Discussion

Temperature is the most important climatic parameter due to its ability to represent
the near-surface energy exchange and has longest record of instrumentation observation
due to logistical simplicity [30]. It primarily controls the variation in occurrence and
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dynamics of all the components of cryosphere [118]. However, the in-situ temperature
observations available in the Himalayan region are scarce and uneven due to extreme
weather conditions and difficult terrain, which compels significant logistic and financial
obligations for the installation and maintenance of weather stations [30]. The results of
the land cover mapping suggest that a major portion of the study area (69%) is barren
land without any surface cover, mostly due to the orographic shadow which restricts the
precipitation influence in large part of the study area (Figure 2). The vegetation cover is
~20.47% of the total study area, mostly distributed on the southern slopes with higher
precipitation. The data from RGI V6 suggest that ~10% of the total study area is covered by
glaciers and water bodies that regulate the flow of water in the rivers. Due to the hostile
climatic conditions, large part of the study area has fragmented human settlement and
cover only ~0.55% of the total area. The variation in near surface temperature derived from
remotely observed land surface temperature primarily controls the land use, especially
the distribution of cryosphere, vegetation and human settlements, which is evident from
the results given in Figures 3 and 4. Therefore, near-surface air temperature derived from
spatially continuous land surface temperature provides with an unparalleled option for
modelling the different components of cryosphere in relation to different climatic and
elevation zones [71].

We validated our results with field observations at two different sites located in
different climatic and elevation zones and with different geomorphological proxies of
permafrost presence mapped in the study area. The validation of the modelled results
shows strong consistence with observed presence of permafrost and its geomorphological
proxies. Around 96.5% of the total of 1392 rock glaciers mapped by three different studies
carried out by independent research groups are mapped within the continuous or dis-
continuous permafrost zone modelled in the present study. Our results show that a large
part of the study area (~61%) has permafrost presence with ~25% of the total study area
with continuous permafrost presence and other ~31% with discontinuous and sporadic
permafrost. The recent studies about change in temperature in Western Himalaya suggest
a significant rise in temperature particularly in recent decades [30], which is manifested by
the area covered by permafrost in the region. The results suggest that the area with the least
probability of occurrence of any kind of permafrost increased from ~40% of the total study
area in 2002-04 to ~43% in 2018-20. It is also interesting to note that the area covered by
continuous permafrost shows more decline in comparison to the discontinuous permafrost.
The Ladakh regions, Aksai Chin region, Kargil area, Gilgit-Baltistan and Pir-Panjal range
showed presence of continuous permafrost areas. In general, the dominance of permafrost
was strongly affected by temperature, as the areas with low temperatures (excluding
glaciated areas) exhibited a prevalence of permafrost. Temperature is strongly influenced
by other atmospheric (for example humidity) and surface topographical conditions, which
further affect PISR, and therefore form another important factor controlling permafrost
dominance. The higher reaches of the study area with a very cold and arid environment
were found to be favourable locations for existence of permafrost. However, the humid
ISM dominated region showed restricted permafrost cover (Figures 3 and 5). The sporadic
permafrost, which is classified as the areas with fluctuation of temperature above and
below 0 ◦C, are dominant in the higher reaches of valleys in the study area.

Apart from the point validation, we also compared our results to global and local scale
studies of permafrost presence in the study area. The PZI map provided by Gruber [22] is
a significant contribution towards permafrost mapping on a global scale (Figure 9). For
comparing our result with PZI, we created an unclassified permafrost map of the study
area and defined the values from high to low. The PZI is based on a model that was applied
globally with a spatial resolution of ~1 km using high-resolution elevation data and air
temperature obtained from NCAR-NCEP reanalysis and CRU TS 2.0. The value of PZI
ranges from 0.01 to 1 and is an index representing a comprehensive spatial pattern of
permafrost occurrence. However, PZI does not necessarily provide the actual permafrost
extent or probability of permafrost [49]. The comparison of our results with that of the PZI
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map [22] shows that that both the maps are in strong agreement with each other. It also
reveals the importance of topography in controlling the existence of permafrost along with
temperatures. Also, our result shows the absence of permafrost in glaciated terrain and near
water bodies, while in PZI, even glaciated regions and water bodies show a high value of
the index. The present results can be taken as the topographically corrected, high-resolution
version of map provided by Gruber [22]. As in the present study, remotely observed surface
temperature has been used as an input instead of reanalysis datasets, which have been
proven to have large uncertainties in high mountainous regions [71]. Another global
permafrost map created by Obu et al. [57] provides extensive information about permafrost
variability in the Northern Hemisphere using MODIS LST and ERA-Interim reanalysis
temperature data as input (Figure 9c). One of the main limitations of the model used in
this global study is the inability to account for permafrost variability in steep mountain
slopes due to preclusion of crucial parameters like slope, aspect, and PISR, which is clearly
visible in Figure 9d where we have represented the results of Obu et al. [57] in one of the
areas where field work was done (as shown in Figure 8). Another interesting inference
from the comparison with the present study is that, similar to Gruber [22] (Figure 9b), the
permafrost presence is identified as continuous in glaciated regions (Figure 9d), which
is acceptable if the glacial ice is considered as permafrost [119]. To have a quantitative
perspective, we compared the results of Obu et al. [57] with the present study for the
watershed catchment (2320 sq. km) of the Samudra Tapu glacier (show in Figure 9d) and
thermoskarts pools and mounds (shown in Figures 8 and 9c). The comparison shows that
around 538 sq. km (23%) and 256 sq. km (11%) of the total catchment area is classified
as continuous permafrost and discontinuous permafrost, respectively, by Obu et al. [57]
while our results show that around 805 sq. km (35%) and 800 sq. km (35.5%) of the total
catchment area is continuous and discontinuous permafrost, respectively. Out of the total
area classified as continuous and discontinuous permafrost by Obu et al. [56], around
40% is covered by glaciers. In the present study, we have not considered glacier area as
permafrost [119], as the response of permafrost and glaciers to the variation in temperature
are different and must be considered separately for glacio-hydrological investigations
(Figure 9). In addition, as stated explicitly in Obu et al. [57], their model does not account
for permafrost variability in steep mountains, which is the predominant topography in
this region, primarily due to inability of their model to include the slope and aspect. In
addition, they also did not consider the potential incoming solar radiation in their model
(PISR) which is another crucial factor responsible for permafrost variability in the region.
In another local comparison (Kullu region of Himachal Pradesh) with the study carried
out by Allen et al. [7], we find a significant consistency. Allen et al. [7] has discussed
the importance of topography in influencing the permafrost occurrence in the monsoon
dominated regions, which is also evident from the present study. Our results further show
a good agreement with that of Wani et al. [54] for Ganglass catchment in Ladakh, Himalaya.
The result of our model showed that most of the Ganglass catchment area falls under
continuous permafrost zone, which has also been reported by Wani et al. [54] through
field investigation.
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There are two main limitations of the present study. The first is the use of soil water
content or soil moisture data, which is due to the unavailability of an appropriate spatially
continuous dataset. However, we have used the land use data mapped on 30 m resolution
Landsat 8 images, which can harbor information about the soil constitution of the area [56].
In addition, the areas with a high probability of permafrost occurrence in the region are
mostly located above 3000 m ASL, which is beyond the tree line elevation in most parts
of the northwestern Himalaya [86]. The second limitation is the uncertainties associated
with the resampling of the BMAT to 30 m resolution. The main objective of the resampling
process was to bring all the datasets to the same resolution so that they could be utilized as
an input in the AHP, and resampling one dataset to the resolution of all other datasets was
an obvious choice. There are primarily three approaches used for resampling, which are
closest neighbour, bilinear interpolation, and cubic convolution. The comparison of these
three standard resampling methods revealed that the MAAT performs well with smooth
resampling methods (e.g., Bilinear and Cubic), but the Nearest Neighbor method produces
less acceptable results [101], and therefore the bilinear technique was used in the present
study. The resampling in heterogenous conditions can be improved by the incorporation of



Remote Sens. 2021, 13, 4403 19 of 24

further ground based meteorological observations, which are either missing or fragmented
at large spatiotemporal scale in the region.

6. Conclusions

The present study is an attempt to map the permafrost occurrence in the seldom-
studied Western Himalayan region using BMAT derived from spatially continuous LST
using statistically robust relationship established for different precipitation zones of the
region and integrating it with temperature controlling topographic variables such as solar
radiation, slope, aspect, and ground cover. The results have been validated using the field
validation and geomorphological proxies associated with the occurrence of permafrost.
Also, other studies from the sub-catchments of the study area show consistency with
our results. We have not considered glaciated regions, such as permafrost areas, as they
need to be treated separately for glacio-hydrological investigations and they respond
differently to the changing climate. Regardless of the uncertainties associated with use
of different datasets of varying spatial resolution, the model shows good performance in
terms of capturing the properties defining the permafrost presence when compared to
field-observations and previously published local studies. The results show the anticipated
extensive cover of permafrost (~59%) in the overall study area combining both continuous
and discontinuous permafrost. The occurrence of permafrost is predominantly controlled
by temperature variability directly and other ground variables like land cover, surface
properties, and the potential incoming solar radiation indirectly. The temporal analysis of
change in permafrost area suggests a systematic and significant decrease in the permafrost
area in all categories as a reflection of the systematic increase in temperature, particularly in
recent decades. The decrease in continuous permafrost cover is more in comparison to the
discontinuous permafrost cover suggesting a systematic rise in the minimum temperature
with time.

The unprecedented rise in the near surface temperature in the region with rate higher
than global or regional average [30] has associated impacts on socioeconomic individualities
of the region due to impacts on different components of the cryosphere, including an
obvious impact on the distribution of permafrost [120]. Thus, a spatially continuous
distribution of permafrost is required as an input for the glacio-hydrological models
to estimate and understand the contribution of permafrost thawing in the hydrological
regime of the region. The contribution of permafrost to the discharge in downstream
areas has been completely missing in the region leading to uncertainties associated with
application glacio-hydrological models in large catchments [121]. The present study will
also help the local stakeholders in precipitation shadow areas with an understanding of the
different components of cryosphere for site suitability studies for construction of artificial
glaciers [122].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13214403/s1, Figure S1: Maps of the study area showing the maximum of mean annual air
temperature (MAAT) from 2002-04 to 2018-20 in ◦C, Figure S2: Maps of the study area showing the
minimum of mean annual air temperature (MAAT) from 2002-04 to 2018-20 in ◦C, Figure S3: Maps of
the study area showing the standard deviation in mean annual air temperature (MAAT) from 2002-04
to 2018-20 in ◦C, Figure S4: Map of the study area showing the distribution of continuous permafrost
zone based on the maximum of BMAT from 2002-04 to 2018-20, Figure S5: Map of the study area
showing the distribution of discontinuous permafrost zone based on the maximum of BMAT from
2002-04 to 2018-20, Figure S6: Map of the study area showing the distribution of sporadic permafrost
zone based on the maximum of BMAT from 2002-04 to 2018-20, Figure S7: Bar chart showing the
temporal extent of permafrost zones in the study area, Figure S8: Map of the study area showing the
permafrost extent for 2002-04, Figure S9: Map of the study area showing the permafrost extent for
2004-06, Figure S10: Map of the study area showing the permafrost extent for 2006-08, Figure S11:
Map of the study area showing the permafrost extent for 2008-10, Figure S12: Map of the study area
showing the permafrost extent for 2010-12, Figure S13: Map of the study area showing the permafrost
extent for 20012-14, Figure S14: Map of the study area showing the permafrost extent for 2014-16,
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Figure S15: Map of the study area showing the permafrost extent for 2016-18, Figure S16: Map of the
study area showing the permafrost extent for 2018-20, Figure S17: Pie charts showing the temporal
(2002-04 to 2018-20) variation in the distribution of permafrost extent in the study area.
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