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Harnessing citizen science through mobile phone technology to
screen for immunohistochemical biomarkers in bladder cancer
Peter Smittenaar1, Alexandra K. Walker2, Shaun McGill2, Christiana Kartsonaki3,4, Rupesh J. Robinson-Vyas1, Janette P. McQuillan1,
Sarah Christie1, Leslie Harris1, Jonathan Lawson1, Elizabeth Henderson2, Will Howat5, Andrew Hanby6, Gareth J. Thomas7,
Selina Bhattarai8, Lisa Browning9,10 and Anne E. Kiltie 2

BACKGROUND: Immunohistochemistry (IHC) is often used in personalisation of cancer treatments. Analysis of large data sets to
uncover predictive biomarkers by specialists can be enormously time-consuming. Here we investigated crowdsourcing as a means
of reliably analysing immunostained cancer samples to discover biomarkers predictive of cancer survival.
METHODS: We crowdsourced the analysis of bladder cancer TMA core samples through the smartphone app ‘Reverse the Odds’.
Scores from members of the public were pooled and compared to a gold standard set scored by appropriate specialists. We also
used crowdsourced scores to assess associations with disease-specific survival.
RESULTS: Data were collected over 721 days, with 4,744,339 classifications performed. The average time per classification was
approximately 15 s, with approximately 20,000 h total non-gaming time contributed. The correlation between crowdsourced and
expert H-scores (staining intensity × proportion) varied from 0.65 to 0.92 across the markers tested, with six of 10 correlation
coefficients at least 0.80. At least two markers (MRE11 and CK20) were significantly associated with survival in patients with bladder
cancer, and a further three markers showed results warranting expert follow-up.
CONCLUSIONS: Crowdsourcing through a smartphone app has the potential to accurately screen IHC data and greatly increase the
speed of biomarker discovery.

British Journal of Cancer (2018) 119:220–229; https://doi.org/10.1038/s41416-018-0156-0

INTRODUCTION
Personalised medicine involves tailoring treatment to reflect a
patient’s individual tumour characteristics. For this to be used
routinely, we need to find biomarkers robustly associated with
cancer prognosis or predictive of outcome following therapy.
Immunohistochemistry (IHC) is widely used for biomarker

identification. To automate the staining and analysis process,
IHC is often combined with tissue microarray (TMA) technology.
TMAs position hundreds of small-diameter tissue samples in a
physical array, which can be stained and scanned as one unit. This
has made it possible to generate a large volume of IHC data from
many patients relatively quickly. The analysis of IHC stained tissue
is largely performed by the naked eye. Such ‘manual’ scoring of
IHC is time consuming and requires several trained researchers or
histopathologists to reach a consensus score. Automated analysis
software is quickly gaining ground especially for the most
common cancers and stain types. Though there is little doubt
that such algorithms will eventually improve beyond human
capability, currently automated IHC scoring algorithms are not
applicable to all samples, and manual intervention is required for

challenging or ambiguous cases.1–3 A major barrier to more
accurate algorithms is the availability of large labelled data sets to
train new generations of supervised algorithms. Crowdsourcing is
one commonly used approach to generate such labels, essentially
facilitating, rather than competing with, algorithms.
Recently, a number of projects have reported success in using

crowdsourcing for the analysis of large data sets within a range of
scientific disciplines, including biochemistry and biomedical
research.4–10 ‘Cell Slider’ is one such study which aimed to
address the rate-limiting step of IHC manual scoring (https://www.
cellslider.net/). Here, untrained members of the public were able
to accurately score IHC data, with participants achieving similar
results to trained pathologists in cancer cell identification,
oestrogen receptor (ER) status assignment and associations of
ER status with clinical outcome in breast cancer. However,
participants demonstrated a bias in terms of overestimating the
number of cancer cells in an image, thus compromising the
accuracy of IHC scoring.8 ‘Trailblazer’ was developed following Cell
Slider to further test the ability of the public to score IHC data and
to identify methodological improvements that could increase the
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accuracy of publicly generated scores. When given more
comprehensive tutorials, the public was highly accurate in their
detection of cancer and IHC scoring.10

Issues with crowdsourcing include the drop-off rate and
inactivity in user participation. Recent crowdsourcing projects
have attempted to increase the audience base to increase
participants’ activity by integrating scientific tasks into games.
Examples of such ventures include Foldit,5 Phylo,6 EteRNA7 and
Fraxinus.9 Such crowdsourcing games have led to bona fide
scientific discoveries and generated improvements in existing
computational algorithms.11

We identified a number of proteins worthy of assessment for
potential associations with clinical outcome in lung and bladder
cancer and conducted IHC on TMAs containing tissue from patient
tumour samples. Due to the use of radiotherapy as a treatment
modality in MIBC, a number of proteins involved in the repair of
DNA damage were assessed (RAD50, MRE11, p53, p21). CK20 and
CK5/6 were included in this study as these immunostains have
previously been used to distinguish basal and luminal MIBC
subtypes.12 MRE11, p53, p21, TIP60 and Ki67 IHC have previously
been investigated in MIBC and found to be potentially associated
with survival and/or cancer progression.13–20 However, there is
currently not enough evidence to conclude whether these
proteins are valid biomarkers for DSS in MIBC. We decided to
employ crowdsourcing scoring to analyse the large amount of
data generated. A key objective was to retain the accuracy of
manual scoring while being less time-consuming for the experts.
Scoring IHC data in its most basic form is a task involving

pattern recognition and determination of colour gradients. We
therefore hypothesised that, given a short tutorial, members of
the public as a group would be able to accurately assess the IHC
staining of cancerous tissue and that crowdsourcing could
increase the speed of scoring large sets of IHC data. Unlike
previous web-based crowdsourcing efforts in IHC scoring, we
input our IHC data into a mobile gaming app available to
members of the public. We first assessed the accuracy of the
crowdsourced data. Then, when the crowdsourced scores were
found to be accurate, we used these scores to look for associations
between protein staining and clinical outcome.

MATERIALS AND METHODS
User recruitment
We crowdsourced the analysis of bladder cancer TMA core
samples through the smartphone application (app) Reverse the
Odds (RTO), distributed through Google Play and the iTunes store.
Users in the app classified TMA samples as described below, and
every so often were offered a separate minigame based on
Reversi. TMA classifications were incentivised through powerups
that could be used in the minigame. As such, during TMA
classification there were no distractions, however the minigame
provided some variety to an otherwise highly repetitive task.
The majority of time was spent performing TMA classifications,
though exact figures are unavailable. We did not store personal
information about the users nor information regarding
which user provided each classification. The data reported
here were collected between 9th October 2014 and 28th
September 2016.

Tissue microarray samples
Ethical approval was obtained from London Bromley NRES (study
13/LO/0540), Leeds (East) Local Ethical Committee (studies 02/060
and 04/Q1206/62) and North West–Haydock Research Ethics
Committee (study 14/NW/1033). Patients whose samples were
collected from 2002 onwards gave informed consent for use of
their pre-treatment biopsies.
All bladder cancer tissue cores were collected from four cohorts

of patients. The first three were treated with radical radiotherapy

at the Leeds Cancer Centre, UK (1995–2000, 2002–2005 and
2006–2009), and the remaining cohort was treated with radical
cystectomy at the Leeds Teaching Hospitals NHS Trust, UK
(1995–2005). The 1995–2005 cohorts have been previously
described in Choudhury et al. (2010),21 and the 2006–2009
radiotherapy patients (n= 47) were treated as per the 2002–2005
radiotherapy cohort.
Haematoxylin and eosin (H&E)-stained sections from formalin-

fixed paraffin embedded bladder tumour samples, taken at pre-
treatment transurethral tumour resection, were reviewed by a
consultant uropathologist (SB) and areas of invasive transitional
cell carcinoma were outlined. Using a Beecher tissue microarrayer,
1356 0.6 µm cores were taken from up to five muscle-invasive
areas per sample, and made into seven TMAs of up to 21 ×
18 samples, including barrier samples of placenta, liver or mouse
liver.

Immunohistochemical staining
Lung cancer samples were stained for scoring in Reverse the Odds
using anti-CD8 and AntiPDL1 antibodies and were entered into
the game but not analysed further due to small number of
responses and a shift in focus towards bladder cancer.
For bladder cancer, 11 different IHC stains were tested, using a

BOND autostainer or manual methods. Details of the staining are
given in Supplementary methods, with specific antibody condi-
tions listed in Table S1. Slides were scanned using an Aperio
ScanScope CS2 digital slide scanner at ×400 magnification and
viewed using Aperio Image Scope viewing software. TMAs were
then segmented using Aperio TMALab software. For use in the
RTO app, the colours of the images were transformed from DAB
and haematoxylin stained to inverted colours, to make scoring of
the samples more appealing to the general public (Fig. 1). Cores
were split into 36 segments to allow the user to comfortably
inspect individual cells. The running order is shown in Table S2
and the results for the bladder cancer samples presented.

Task design
Users were presented with a brief tutorial explaining how to spot
cancerous tissue/cells, how to assess the proportion of cancer cells
that were stained, and how to assess the intensity of staining
(Fig. S1A-C). They were then presented with a segment and asked
to score it (Fig. 1 and Fig. S1D, E). We only asked for the proportion
of staining if cancer was indicated in the first question, and we
only asked for intensity of staining if proportion was indicated as
>0%. For the ‘proportion of cancer cells stained’ question we used
5 numerical ranges but used three different sets of ranges
depending on the specific stain (Table 1): Category 1: 0, 1–25,
25–50, 50–75, 75–95, 95–100%; category 2: 0, 1–10, 10–25, 25–50,
50–75, 75–100%; category 3: 0, 1–10, 10–25, 25–65, 65–95,
95–100%. Users could access the instructions at any point during
this process.

Gold standard scoring
Experts (AK and SMcG, with AW where consensus could not be
achieved between two scorers) assessed the presence of cancer
and proportion and intensity of staining in DAB-stained whole
cores from TMAs to assess the performance of the crowdsourcing
method. Gold standard scores were provided for whole TMA cores
for approximately 10 to 15% of the data (Table 1).

Statistical analysis
Aggregation of scores. We aggregated individual scores to arrive
at a single proportion and intensity score for each core. Each core
was scored between 81 and 3676 times across all of its segments
(mean: 405, SD: 455, median: 124, IQR: [97, 1030]). Rather than
aggregate responses first by segment and then by core, we took
the mean across all proportion and intensity scores respectively
for a core, ignoring any responses where the participant indicated
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there was no cancer. When a response indicated “no cancer”, this
might be because they were shown a piece of the TMA without
cancer cells. In that case we were correct to exclude their response
from the aggregate. If the user did erroneously report “no cancer”
for a sample with cancer, their response was incorrect and we
were also correct to exclude it. As the dataset in some cases
contained multiple cores per patient, we combined cores for each
patient by taking the mean for proportion and intensity.

Linear correction of scores. Taking the (weighted) arithmetic
mean across users and then segments, as done here, is an
appropriate way of averaging out noisy scores, but only if errors
are symmetrically distributed around the true mean. However,
because the scores are bounded in this experiment, we would
expect to consistently overestimate scores that are close to zero,
and underestimate scores that are close to the maximum. For
example, if the true proportion of cancer cells stained by the
marker is 0, then ‘noisy’ individual users can only overestimate the
score. As such, there are no underestimates—because a user
cannot provide an answer that is smaller than 0—and the average
user score is biased in a positive direction, i.e., it can only be ≥0.
To correct for this bias in proportion and intensity scores

respectively, we applied a linear correction with clipping at the
minimum and maximum values (e.g., any scores corrected by the
linear model that ended up below 0 were set to 0). For the cores
that had no expert scores, we could use all expert-scored cores to
determine the intercept and slope between cores scored by both
citizen scientists and experts. To correct the cores also scored by
experts, we could not use the data that needed correction in the
calculation of the very correction. This would lead to overly
accurate crowdsourced scores. We therefore applied 10-fold
cross-validation, using sklearn.cross_validation.cross_val_predict,
described in Pedregosa et al. (2011)22 with a linear regression

estimator. Any scores that were out-of-bounds of the original
range were set to the bound (e.g., a corrected proportion of −5%
was set to 0%). Critically, this approach ensures that the correction
applied to a score was never based on the error of that score in
the first place, such that any subsequent comparisons of expert
and user scores were still valid.
After correcting the intensity and proportion metrics we

calculated an H-score for each core as described in McCarty
et al. (1985).23 We calculated this semi-quantitative score by
multiplying the proportion of cancer cells stained by the marker (0
to 100%) by the average intensity of the staining (0 to 3). The H-
score is therefore between 0 and 300, with 0 indicating no cancer
cells positive for the marker, and 300 indicating all cancer cells
positive with maximum intensity.

Comparison of user and expert scores. We calculated Spearman’s
rank correlation between expert and crowdsourced scores for the
H-score and proportion of cancer cells stained. For intensity of
staining we used quadratic-weighted kappa.24

Associations with clinical outcomes. We used Kaplan–Meier curves
and Cox proportional hazards models to estimate the associations
between crowdsourced scores and disease-specific survival (DSS,
time from treatment to death due to bladder cancer). For each
marker, we examined the associations of the proportion of cancer
cells staining positive, of the intensity of staining and of the H-
score with DSS. Associations between H-score and survival were
assessed using the numerical value of the H-score and quartiles for
the H-scores. Quartiles were calculated on the combined dataset
of all cohorts to ensure comparability of estimates for different
cohorts. In the 2006–9 radiotherapy cohort, a significant number
(>2/3rds) of cores were unusable due to diathermy artefacts
within the tissue, created at the time of transurethral resection of

Fig. 1 Typical 0.6 um TMA core, stained with DAB and haematoxylin counterstain, and split into 6 × 6 grid. Upper left panel shows contents of
red bound square colour transformed for use in the app by citizen scientists
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the bladder tumour, therefore patient scores were unlikely to be
representative, hence the 2006–9 cohort was not included in
further analysis. The analysis was done separately in the
cystectomy cohort and the two radiotherapy cohorts
(1995–1999 and 2002–2005). The proportional hazards assump-
tion was assessed by examining scaled Schoenfeld residuals. The
main analyses were done using the aggregated scores. We carried
out the analysis with and without adjustment for age, T stage, N
stage, grade, sex and hydronephrosis. As a sensitivity analysis we
repeated the main analyses with all observations of crowdsourced
scores (from all individuals who used the app), taking into account
that there are multiple observations per patient. We also
investigated the associations of each marker with DSS in
subgroups defined by low/high CK5 and CK20 expression, in the
cystectomy cohort and in the combined radiotherapy cohort
(1995–1999 and 2002–2005).

RESULTS
Public engagement
The game went live on 9th October 2014 and data reported here
are those deposited up to 28th September 2016. Data were
collected over 721 days, with 148,349 app downloads. The total
number of classifications was 4,744,339 (excluding lung and test
cases), and the mean number of classifications per day was 6580.
The average time per classification was approximately 15 s, an
estimate based on the app analytics data. The total time
contributed (# classifications × time per classification)—excluding
the gaming element of the app—was approximately 20,000 h.
As typically observed for projects of this type, the rate of

classifications altered markedly over the two years of play,
increasing in response to marketing activity before returning to
a low level “baseline” of activity. Marketing activity included paid-
for social media and television advertising, as well as spontaneous
news coverage and celebrity endorsements (Fig. 2). Activity level
dropped in response to any technical issues preventing normal
game function. In-game messaging or “push notifications” were
employed to improve classification rate following the resolution of
such issues. Generally, the classification rate lowered over time
with over half of all classifications being scored in the first
4 months.

Improving efficiency of crowdsourced scoring
In early 2015, there was concern that users were finding it difficult
to score the outer squares of a TMA core, which often contained
only a handful of cells and therefore lacked the tissue structure
that often helps distinguish cancer from non-cancer tissue. An
analysis was performed using an MRE11 test set to assess the
effect of scoring only the central 16 squares compared to all
36 squares. This revealed that these mostly empty segments could
be discarded from analysis without detrimental effect on accuracy.
Additionally, an interim analysis was performed in August 2015 to
calculate accuracy of scoring as a function of the number of
ratings per image. This was to see whether the datasets could be
processed more quickly by reducing the number of raters from 25
per segment (Fig. 3a). Based on this figure it was decided that
obtaining more than 5 ratings per segment, i.e., 80 ratings across
the 16 segments of a core, would yield minimal additional
accuracy. For example, with 80 raters per core the p21 stain is
scored with an accuracy of 0.85. Having 1000 raters per core
would yield an accuracy of 0.89. The trade-off, then, is to sacrifice
0.04 in accuracy to be able to analyse 12 times more stain types.
Hence, we decided to use these additional ratings to analyse
additional stains.

Comparison of crowdsourced scores to expert scores
Proportion of cancer cells stained and intensity of staining.
Although the H-score is the primary outcome ofTa
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immunohistochemical analysis, examining citizen scientists’ accu-
racy on the proportion of cancer cells stained and the intensity of
staining is instructive. We observed a wide range of correlations
for both proportion and intensity, from 0.17 to 0.87 for proportion
and 0.19 to 0.86 for intensity (Fig. S2 and Table 1). For example,
estimating the proportion of cancer cells stained for TIP60 was
difficult (Spearman correlation of 0.17 between crowdsourced and
expert estimates), whereas the intensity of staining was poorly
estimated for Ki67 (quadratic-weighted Kappa of 0.19 between
crowdsourced and expert estimates). Other markers seemed
considerably easier to score for the public, such as CK20 which
was scored at an accuracy of >0.8 for both intensity of staining
and proportion of cancer cells stained.

H-score accuracy. The H-score is a combination of the intensity
and proportion estimates, and we calculated the correlation in H-
score between expert and crowdsourced estimates (Fig. 3b and
Fig. S3). There was no clear correlation with the time of the sample
set entering into the game (Table S3). The correlation between
crowdsourced and expert H-scores varied from 0.65 to 0.92 across
the markers tested here, with six of 10 correlation coefficients at
least 0.80.

Associations between marker scores and disease-specific survival
Having established that crowdsourcing can yield reasonably
accurate classifications of IHC scores, we then moved to see if
any of these scores predicted disease-specific survival. Details of
cohorts are shown in Tables S4 and S5. We fitted univariable Cox
proportional hazards models for each of the stains. Statistically
significant associations between H-score and DSS were found for
MRE11, CK20, p21, 53BP1, p53 and Ki67 IHC (Table S6). Due to
multiple testing some significant associations may be due to
chance. However, MRE11 and CK20 displayed consistent relation-
ships between IHC and DSS.
Similar to previously reported findings,16, 21 high MRE11 levels

were found to be significantly associated with DSS in the
radiotherapy cohorts but not the cystectomy cohort. Significance
was observed in both the 1995–1999 and 2002–2005 radiotherapy
cohorts when comparing the 1st quartile of H-scores to the 4th
quartile (Table S6). Furthermore, when using a numeric H-score,
rather than comparing quartiles, there was a significant

association between MRE11 staining and DSS in the 1995–1999
cohort (HR per unit increase in H-score 0.991, 95% CI: 0.986–0.997,
p= 0.004) and borderline-significant association in the 2002–2005
cohort (HR 0.994, 95% CI: 0.987–1.000, p= 0.060, Table S6, Figs. 4
and 5). High MRE11 expression (above its median) was not
significantly associated with DSS in the cystectomy cohort. It
was significantly associated with a lower risk of death due to
bladder cancer in the radiotherapy 1995–1999 cohort (HR for
high vs. low 0.30, 95% CI: 0.13–0.69, p= 0.004), but not in
the 2002–2005 radiotherapy cohort, although in the same
direction.
For CK20 staining, H-score was significantly associated with DSS

in the cystectomy and 1995–1999 RT with a hazard ratio per unit
increase for the 2002–2005 cohort of 0.998, 95% CI: 0.994–1.001, p
= 0.20. CK20 levels above the median H-score were associated
with improved survival in the cystectomy (HR: 0.454, 95% CI:
0.227–0.909, p= 0.026) and the 1995–9 (HR: 0.292, 95% CI:
0.134–0.638, p= 0.002, n= 65) cohorts (Figs. 4, 5 and S4).
Multivariable Cox proportional hazards models were fitted on

the 1995–9 and 2002–5 radiotherapy cohorts for MRE11 and
CK20 stains using age, T stage, N stage, grade, sex and
hydronephrosis as covariables. The cystectomy cohort was
excluded from multivariable analysis due to missing data. Results
from multivariable analysis were in accordance with univariable
analysis. In multivariable analysis for MRE11 staining in the 1995–9
cohort (n= 61) significant associations with DSS were identified
for MRE11 H-score for unit increase (HR: 0.992, 95% CI:
0.984–1.000, p= 0.05) and hydronephrosis (HR: 3.101, 95% CI:
1.154–8.335, p= 0.02). In the 2002–2005 cohort (n= 73) only
MRE11 H-score was significantly associated with DSS (HR: 0.990,
95% CI: 0.981–0.998, p= 0.02). In multivariable analysis of
CK20 staining in the 1995–1999 cohort (n= 59), a significant
association was observed for CK20 H-score and DSS (HR: 0.993,
95% CI: 0.990–1.000, p= 0.02). In the 2002–2005 cohort (n= 74)
no significant association was found for CK20 or any of the
variables analysed.
In the combined radiotherapy cohort, in the group with low CK5

expression (less than its median) CK20 and MRE11 were associated
with a lower risk of bladder cancer death (HR per unit increase 0.994,
95% CI: 0.990–0.998, p= 0.003, and 0.991 95% CI: 0.985–0.996, p=
0.0007, respectively). In the high CK5 subgroup the associations
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were similar in direction and magnitude but only borderline
significant. In the high CK20 subgroup, 53BP1 was associated with
a lower risk of bladder cancer death (HR: 0.992, 95% CI: 0 .985=
0.999), p= 0.02). MRE11 was also associated with a lower risk (HR:
0.989, 95% CI: 0.981–0.997, p= 0.007). None of the markers were
significantly associated with outcome in the low CK20 group.

DISCUSSION
Reverse the Odds was a novel approach aimed at improving the
speed of IHC scoring. Mobile gaming technology was combined
with crowdsourcing to bring citizen science to a wider user-base
than other projects such as Cancer Research UK’s Cell Slider and
Trailblazer. We observed moderate to high agreement between

crowdsourced and expert scores, and crowdsourced scores
successfully identified at least two markers as predictive of
survival in bladder cancer.
As implemented in this study, our approach did not increase the

speed of IHC scoring, as initially anticipated. It took just under 2
years to score 16 IHC markers, far longer than it would have taken
researchers. However, the use of crowdsourcing embedded in
mobile phone technology is in its infancy, and throughout the
course of RTO lessons were learnt that would speed up analysis
more than 10-fold for future projects.
In early 2015, there was concern that users were finding it

difficult to score the outer squares of a TMA core, which often
contained only a handful of cells and therefore lacked the tissue
structure that often helps distinguish cancer from non-cancer
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tissue. Reducing the number of segments to be scored for each
core to the 16 central segments did not affect the accuracy of core
scoring and increased the speed at which a core could be scored
by the public. Furthermore, accurate results could be achieved
with fewer users than initially thought. With these adjustments, it
is estimated that RTO could have analysed all 11 bladder cancer
stains in the first 2 weeks after release of the game, which would
amount to a significant increase in scoring efficiency over
traditional scoring methods.
One problem identified in RTO was the drop-off in user

participation over time. Indeed, half of all image analysis was
conducted in the first 4 months of the game’s release (Fig. 2). This
pattern has been observed in other crowdsourcing ventures such
as Galaxy Zoo, Milky Way Project, Fraxinus, EteRNA, Foldit and Phylo.
It is often found that a small group of dedicated individuals

contribute the bulk of classifications, with the majority of users
only contributing transiently, and with some registered users
never actually participating.9, 11, 25 To exploit the high uptake and
number of analyses conducted in crowdsourcing applications
after initial release, good systems need to be in place upfront, and
it is important that a robust user engagement plan for the
promotion of a project is in place from the outset.
A major issue in using crowdsourcing in molecular pathology

studies is its reliability. In RTO we found the accuracy of public
scoring to vary between immunostains. The lowest accuracy in
public scores was seen in stains which were classed by experts as
more difficult. Some stains were particularly challenging, e.g.,
MRE11 and TIP60 which were scored with the lowest accuracy
when compared to experts. MRE11 and TIP60 both show
heterogeneous staining and can have weak non-specific staining
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in negative cells. Additionally, TIP60 IHC can also produce high
levels of non-specific background staining in some cores. This
reflects the potential need for improving contributor skills and
ongoing quality assurance in such crowdsourcing projects.
Previous work suggests that though tutorials can have short-
term beneficial effects, a more critical predictor of accuracy is
long-term engagement and training through experimentation and
ongoing feedback.26, 27

Similar to Cell Slider,8 in RTO the public were asked to score an
isolated segment of a TMA core. This step was taken to allow easy
viewing of individual cells on a smartphone and eliminated the
poor user experience of having to pinch-zoom. However, this user
interface had the potential to limit the accuracy of scores
generated by participants. The density of cancer cells can vary
markedly across a TMA core. Using segmentation, the score from

an area containing relatively few cancer cells is equal to the score
derived from an area with a large number of cancer cells and has
the potential to skew results, especially in cores where staining is
heterogeneous. In this study we accepted this as additional noise,
but future studies could account for such effects of segmentation
through segment weighting. Furthermore, in viewing a whole
tissue core, a scorer can get a ‘global’ view of the staining across
the whole core and what level of staining most of the cancer cells
exhibit, which can aid in the accuracy of scoring. Another benefit
of viewing a complete tissue core is that it can help in
distinguishing cancer from normal tissue and infiltrative lympho-
cytes. Despite these drawbacks of using a small mobile screen, we
considered the trend from desktop- and laptop-based internet use
towards mobile use sufficiently strong to explore the viability of a
smartphone-based solution.
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In our analysis of the association of public scores with clinical
outcome we observed that there were multiple unusable cores in
our 2006–9 radiotherapy cohort. This was due to the TMA block
having been used for previous studies, unlike the others. The
result of previous sectioning from the TMA was a loss of total
cores from the TMA, an increase in cores lacking tumour tissue
and an increase in cores affected by diathermy artefacts arising
from the transurethral bladder tumour resection. Corresponding
to this, when MRE11 staining was re-optimised and new sections
stained, there were only 524 cores suitable for analysis compared
to the 831 originally stained cores cut from less depleted blocks.
We therefore question the utility of TMAs for muscle-invasive
bladder cancer, as it is likely that only the top sections of a TMA
will give reliable, representative results.
In terms of the association of public scores with clinical

outcome, MRE11 and CK20 staining showed the strongest
associations with DSS. This is an encouraging result as these two
proteins have been linked to DSS in MIBC previously.
MRE11 IHC has been directly reported to associate to DSS in

MIBC by two independent research groups.16, 21 Both studies
identified high levels of MRE11 (greater than the 1st quartile of the
data) to be associated with improved DSS in MIBC following
radiotherapy-based treatment but with no association with
outcome following cystectomy. While the results of this present
analysis only found MRE11 levels above the 4th quartile to be
significantly associated with improved DSS, the public scores were
accurate enough to at least identify MRE11 as a candidate marker
for further investigation.
CK20 has been used to identify the luminal subtype of MIBC.

Luminal MIBC is associated with better DSS compared to basal
MIBC12 and hence CK20 may be a potential prognostic biomarker
for MIBC. In this study, the crowdsourced CK20 scores identified a
significant association between higher levels of CK20 and
improved patient outcome in both the cystectomy and the
1995–1999 radiotherapy cohort in keeping with CK20 being a
prognostic marker for MIBC. In contrast, crowdsourced scores for
the basal marker CK5/6 were not associated with DSS in this
analysis, despite good agreement between experts and crowd-
sourced scores. This is surprising given that high levels of CK5/6
being previously associated with poor DSS.28–30

In this study, we have gained insight into the potential
advantages and disadvantages of using crowdsourcing for the
analysis of molecular pathology studies. A major advantage of
using crowdsourcing to analyse IHC data is the potential time a
well-planned and optimised method could save for skilled
researchers. For crowdsourcing, researchers would only be
required to score a small subset of data to generate tutorial
images and 10% comparison data, thus freeing up time for other
work. Although RTO did not achieve improvements in scoring
efficiency, a number of steps could have been taken to
dramatically speed up analysis. First, all datasets can be prepared
in advance (preprocessing, segmentation, colour inversion, and
hosting) to rapidly switch to a new dataset once a previous set is
completed. Such completions happen in sometimes unpredictable
bursts e.g., due to media coverage. Second, prior to any media
launch every effort should be made to optimise the number of
ratings that are necessary per sample. Many ratings happen upon
initial launch, and these are in effect wasted if too many ratings
are collected per sample. In RTO, prior optimisation of number of
raters as outlined in the results would have seen all datasets
analysed within the first 14 days of launch. Third, a community
should be fostered to encourage learning and continued
engagement, dramatically increasing retention of users obtained
through marketing. Fourth, microtasks could be distributed to
users based on their ability as assessed through scoring expert-
scored samples. If the lessons learnt from RTO and Trailblazer are
applied to future projects, crowdsourcing has the potential to

accurately screen IHC data and greatly increase the speed of
biomarker discovery from large IHC data sets.
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