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Abstract
Introduction Data processing is one of the biggest problems in metabolomics, given the high number of samples analyzed 
and the need of multiple software packages for each step of the processing workflow.
Objectives Merge in the same platform the steps required for metabolomics data processing.
Methods KniMet is a workflow for the processing of mass spectrometry-metabolomics data based on the KNIME Analytics 
platform.
Results The approach includes key steps to follow in metabolomics data processing: feature filtering, missing value imputa-
tion, normalization, batch correction and annotation.
Conclusion KniMet provides the user with a local, modular and customizable workflow for the processing of both GC–MS 
and LC–MS open profiling data.
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1 Introduction

Among the several analytical techniques employed within 
metabolomics, gas and liquid chromatography coupled 
with mass spectrometry (GC– and LC–MS) are the most 
commonly used in metabolomics studies as they allow the 
identification of a large number of diverse molecular spe-
cies. However, the plethora of samples analyzed during 
high-throughput screenings, the number of processing steps, 
and the required computational competences and resources 
often represent a bottleneck that renders these analyses slow 

and potentially inaccurate. Hence, utilization of standard-
ized procedures is fundamental for reliable and reproducible 
results (Meier et al. 2017; Rocca-Serra et al. 2016; Sandve 
et al. 2013). Several protocols have been proposed or are 
currently being developed (Beisken et al. 2014; Di Guida 
et al. 2016; Dunn et al. 2011a; Giacomoni et al. 2015; Guit-
ton et al. 2017; Rocca-Serra 2017; Southam et al. 2017; 
Weber et al. 2017). However, they are not free from pitfalls, 
the main ones being related to a high level of computational 
expertise needed for their local installation, utilization and 
implementation. The alternative provided by web-based 
services can be affected by inadequate stability, security 
and performance in handling a large number of samples, or 
sensitive data.

For these reasons, the KNIME Analytics Platform 
(Berthold et al. 2007) was used to build a vendor-independ-
ent processing workflow. KniMet (Liggi 2017) joins several 
steps required to process GC– and LC–MS metabolomics 
data, outputting a data matrix normalized, annotated and 
filtered from inconsistently detected features in a semi-auto-
mated, documented and reproducible analysis.
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2  KniMet features

The steps performed by KniMet comprise data deconvolu-
tion, feature filtering, missing value imputation, normaliza-
tion and features annotation. For each one of these steps 
there are several options, as shown in Fig. 1 and described 
below, allowing users to utilize the most appropriate tool for 
the specific case study at hand.

2.1  Data deconvolution

GC– and LC–MS data in mzXML or CDF format (previ-
ously converted with, for instance, Proteowizard [14]) can 
be deconvoluted internally with the R (R Core Team 2014) 
library XCMS (Smith et al. 2006), or by integrating into 
KniMet the OpenMS nodes (Pfeuffer et al. 2017). Alterna-
tively, this step can be performed externally with either the 
locally installed R instance, XCMS online [17] or a vendor 
software. In this case, the obtained data matrix can then be 
imported in the pipeline and subjected to further analysis. 
For instance, a dataset obtained using the Agilent 6560 Ion 

Mobility Q-TOF LC–MS was deconvoluted with MassPro-
filer from the MassHunter Workstation Software suite (Agi-
lent Technologies, Santa Clara, USA), fed into KniMet and 
then subsequently processed using downstream tools.

2.2  Feature filtering

Periodic injections of pooled samples, also known as quality 
controls (QCs) are used to account and correct for analytical 
variation, based on the assumption that QCs should contain 
all the signals present in the samples. Hence, if the instru-
ment performance is stable, these signals should be consist-
ently detected across the run, while only unstable metabo-
lites or contaminants would be detected inconsistently (Dunn 
et al. 2011a). According to these principles, all features 
whose signal is missing in more than a given percentage of 
QCs (defined by the user, default 50%) and whose Relative 
Standard Deviation across the QCs is higher than a threshold 
(set by the user, default 20%) are deleted. An alternative 
method not based on pooled samples was implemented to 
account for experimental setups in which QCs are missing 
and/or the user would rather perform feature filtering based 

Fig. 1  The KniMet pipeline comprises different steps for the post-
processing of metabolomics data each one enclosed in a square in this 
representation. Most of these steps can be performed with multiple 

tools, allowing the user to combine them in the most appropriate way 
for the specific dataset studied
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on other samples, such as blanks. In this case, only features 
whose average intensity in the samples is higher than their 
average intensity in blanks multiplied by a user-defined fac-
tor are retained. Moreover, features are filtered if they are 
missing in more than a user-defined percentage of samples.

2.3  Missing values handling

Missing values in the data matrix can occur for several rea-
sons, such as (i) missingness of a feature in one (class of) 
sample(s) and not in another, (ii) concentration of a metabo-
lite in a sample lower than the analytical limit of detection 
(iii), or inaccurate pre-processing with lack of deconvolu-
tion of a feature. An appropriate evaluation of the reasons 
behind the presence of missing values in the data matrix, 
and their consecutive imputation, is fundamental to avoid 
biased statistical results (Di Guida et al. 2016; Gromski et al. 
2014). In this application, missing values imputation can be 
performed with either Random Forest (RF) or K-Nearest 
Neighbour (KNN) algorithms, implemented as R scripts 
using the libraries missForest (Stekhoven and Buhlmann 
2012) and impute (Hastie et al. 2016) respectively, or Small 
Value replacement (SV), i.e. half of the minimum value 
found for a given feature in given sample.

2.4  Normalization

Among the several normalisation methods available, Proba-
bilistic Quotient Normalization (PQN) (Dieterle et al. 2006) 
and Sum Normalisation have been implemented in KniMet 
as they are the most commonly used in MS-based metabo-
lomics data (Di Guida et al. 2016). PQN consists of: (i) cal-
culation of a reference spectrum (or vector) as the median of 
each signal in the entire set of samples or, if available, in the 
QCs; (ii) division of each signal found in the samples by the 
value for the same signal in the reference spectrum to obtain 
a list of quotients; (iii) division of the original data matrix 
for the median of these quotients. On the other hand, in Sum 
normalization each feature in a given sample is divided by 
the sum of all features in that sample and multiplied by 100.

Peak drift is an issue in metabolomics data obtained from 
LC–MS instruments, as a number of factors which vary with 
time can affect the results. In the case of batch-effects being 
present, batch-correction normalization can be performed 
to merge samples measured in different analytical blocks. 
Among the several methods available, the robust locally 
estimated scatterplot smoothing (LOESS) signal correction 
(RLSC) method based either on QCs or all samples (Dunn 
et al. 2011b; Thévenot et al. 2015) were implemented utiliz-
ing the R scripts developed by the Workflow4metabolomics 
team (Giacomoni et al. 2015).

2.5  Metabolite annotation

Metabolite annotation based on accurate mass match with 
the Human Metabolome Database (Wishart et al. 2017) 
and the LIPID MAPS database (Fahy et al. 2007; Sud et al. 
2006) was implemented by integrating the AccurateMass-
Search functionality of OpenMS.

3  Conclusions

KniMet is a KNIME-based pipeline for the analysis of 
metabolomics MS data. This platform is easy to install 
and run locally, providing the user with full control of 
the analysis. Indeed, the modular structure of the platform 
allows the pipeline to be modified based on the nature of 
the data to be processed, and hence be applied to datasets 
derived from different analytical and/or experimental set-
ups. The resulting tables containing all the analyzed sam-
ples and the detected metabolic features can be exported 
and are ready for further statistical analysis. A recent and 
published example of its application is the processing of 
both GC– and LC–MS data of fecal samples from patients 
affected by Inflammatory Bowel Diseases compared with 
a population of healthy subjects, with the aim to identify 
new biomarkers for the disease (Santoru et al. 2017).

Moreover, KniMet is fast and does not require particu-
larly high computational power: the post-processing of 
the R data package faahKO (Saghatelian et al. 2004) as 
described in the user guide, takes less than 10 s and a peak 
of 1331.65 MB of memory consumption on a PC with 
Intel® Core™ i7.

In conclusion, with the KniMet application we provide 
the user with a highly flexible, fully customizable and 
user-friendly platform which includes the key processing 
steps of metabolomics data.

4  Availability and implementation

KniMet is freely available under the 3-Clause BSD 
License at https ://githu b.com/sonia l/KniMe t along with 
usage instructions and example data.
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