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The synthesis and characterisation of an homologous series of bent odd-membered mesogenic dimers,
the 40-(6-{4-[(E)-{[4-(alkylthio)phenyl]imino}-methyl]phenoxy}hexyl)[1,10-biphenyl]-4-carbonitriles
(CB6O.Sm) is reported. This general class of materials, despite being achiral, has a strong tendency to form
helical structures, and here, for the first time we report three such chiral phases in a single homologous
series. Specifically, the heliconical twist-bend nematic (NTB) phase for short terminal thioalkyl chains, and
its smectic equivalent - the twist-bend smectic C (SmCTB) phase for longer chains. All the dimers showed
the helical filament B4 phase, which is typically seen for rigid bent-core mesogens, but has only rarely
been reported for flexible dimeric molecules. In addition, on increasing chain length, smectic behaviour
emerges including the smectic A and the smectic CTB phases. We also show that these materials have the
potential for their morphology to be controlled through surface interactions. The presence of the little-
studied thio-linkage in the terminal chain, and the wide range of properties present in this single group
of homologues, with promise of broad applicability in optics, photonics, as well as fundamental signifi-
cance as a case study to achieve a better understanding of chirality and symmetry breaking in liquid crys-
tals, ensures the importance of this new series of mesogens.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

How chirality originates in the absence of a chiral inductor is
amongst the most important and topical of scientific questions,
cutting across all disciplines, and having clear fundamental and
technological relevance (see for example [1]). In this context, liquid
crystals provide a wonderful test-bed for studying spontaneous
mirror symmetry breaking in fluids [2]. Indeed, the first example
of spontaneous mirror symmetry breaking in a fluid with no spatial
ordering was the twist-bend nematic, NTB, phase [3–6]. In a con-
ventional nematic phase, the molecules all tend to align in the
same direction, known as the director, whereas their centers of
mass are randomly distributed. In the NTB phase, the director forms
a helix and is tilted with respect to the helical axis (a heliconical
structure); the pitch length of the helix is very short, typically
�10 nm. i.e. just a fewmolecular lengths. The formation of chirality
is spontaneous and so equal numbers of left- and right-handed
helices are expected and overall, the system is racemic. This degen-
eracy may be removed by the introduction of intrinsic molecular
chirality, leading to the NTB* phase [7]. The vast majority of mate-
rials that show the NTB phase may be described as odd-membered
dimers, in which two mesogenic units are attached by a flexible
spacer containing an odd number of atoms, and such molecules
have a bent molecular shape [8–11], however this phase has also
been observed for rigid bent-core mesogens [12] as well as for oli-
gomers including both, linear and bent-core segments [13].
Recently it was shown that odd-membered dimers not only exhibit
the NTB phase but also show twist-bend smectic phases [14–17]. In
these fascinating heliconical lamellar phases consisting of achiral
molecules up to four levels of structural chirality were observed:
layer chirality, helicity of a basic repeating unit, a mesoscopic helix
and helical filaments. Another phase with a spontaneously chiral
structure built of achiral molecules is the helical nanofilament
phase (HNF, B4), most commonly observed for rigid bent core
mesogens [18,19] and only rarely for bent dimers [20].

In our search for new examples of chiral systems made of achi-
ral building blocks, here we report the synthesis and characteriza-
tion of non-symmetric dimeric mesogens consisting of a
cyanobiphenyl core, an odd-membered spacer and a benzylidene
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aniline unit terminated with an alkylthio chain, the 40-(6-{4-[(E)-
{[4-(alkylthio)phenyl]imino}-methyl]phenoxy}hexyl)[1,10-biphe
nyl]-4-carbonitriles (Fig. 1) and refer to them using the acronym
CB6O.Sm, in which m denotes the number of carbon atoms in the
terminal chain. The flexible hexyloxy spacer linking the two meso-
genic units contains seven atoms, and ensures the necessary
molecular curvature required for twist-bend phases to be observed
[21,22]. Liquid crystals with terminal alkylthio chains are extre-
mely topical due to their high values of birefringence arising from
the polarisable sulfur atom [23–25]. Highly birefringent nemato-
gens have the potential not only to improve liquid crystal display
technology, but also have an important role to play in emerging
fields such as liquid crystal lasers and lenses [26,27]. Fundamen-
tally, the introduction of the thio linkage is providing a demanding
challenge to our understanding of the relationships between
molecular structure and liquid crystalline behaviour [28–31].

The CB6O.Sm series exhibits a rich range of phase behaviour
depending on the length of the terminal chain including twist-
bend phases, and the B4 phase [18,19] at room temperature, a crys-
talline phase with an unusual morphology of twisted filaments.
The properties of the CB6O.Sm series are compared to those of
the analogous materials having alkyl CB6O.m [32] and alkyloxy
CB6O.Om [33] terminal chains.
2. Experimental section

2.1. Synthesis

The synthetic route used to prepare the CB6O.Sm series is
shown in Scheme SI1 in the ESI along with detailed descriptions
of their synthesis, including the structural characterization data
for all intermediate and final products.
2.2. Methods

The phase behaviour of the CB6O.Sm series was studied by dif-
ferential scanning calorimetry (DSC) using a Mettler Toledo DSC1
calorimeter equipped with a TSO 801RO sample robot and cali-
brated using indium and zinc standards. The optical studies of
the phases were conducted using a Zeiss Axio Imager A2m
polarised light microscope with a Linkam heating stage. The sam-
ples were placed either between two untreated thin glass slides or
in glass cells with planar anchoring induced by a thin inner layer of
polymer. The cells were filled by capillary action with the material
in the isotropic phase. Birefringence was measured using a setup
based on a photoelastic modulator (PEM-90, Hinds) working at a
modulation f ¼ 50kHz; as a light source a halogen lamp (Hama-
matsu LC8) was used, equipped with a narrow band pass filter
(532 nm). The transmitted light intensity was measured with a
photodiode (FLC Electronics PIN-20) and deconvoluted with a
lock-in amplifier (EG&G 7265) into 1f and 2f components to yield
a retardation induced by the sample. The dielectric permittivity
was measured using a Wayne Kerr Precision Component Analyzer
6425, at the frequency 12 kHz, and with the applied voltage ampli-
tude (V) ranging from 0.1 to 5.0 V. The splay elastic constant K11

was determined from the threshold voltage Vth at which the direc-
tor reorientation starts, and thus the effective permittivity (e)

starts to grow as:K11 ¼ Dee0
V2
th
p2

� �
. The bend elastic constant, K33
Fig. 1. Chemical structure of the CB6O.Sm series, m = 1–13, 15, 17, 18, 22.
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was estimated by fitting the eðVÞ dependence far above the thresh-
old voltage using [34]:
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and j ¼ K33�K11
K11

.

For X-ray measurements three different set-ups were used, the
Bruker D8 Discover, Bruker GADDS and Bruker Nanostar systems,
all using CuKa radiation, k = 1.54 Å. The samples for these mea-
surements were prepared in the form of a thin film or a droplet
on a heated surface. For AFM measurements, a Bruker Dimension
Icon Microscope was used in tapping or scan assist mode. The can-
tilevers with elastic constant of 0.4 N/cm2 were applied. The SEM
measurements were performed using a FE-SEM Zeiss Merlin elec-
tron microscope operating at 5 keV utilizing an in-lens detector
of secondary electrons. Samples were sputter coated with gold
and palladium before imaging. To align the B4 phase, the material
was filled into porous anodic aluminium oxide (AAO) with a 60 nm
pore size provided by Prof. Dong Ki Yoon’s group from the Korea
Advanced Institute of Science and Technology; the nanoconfine-
ment prompted the formation of highly ordered nanostructures
[35]. The CD spectra were recorded using a Chirascan Plus Applied
Photophysics spectrometer. Samples with large domains of B4 crys-
tals were grown by placing material on a quartz slide, heating it to
the isotropic liquid and cooling to room temperature.

3. Results and discussion

The phase transition temperatures and associated scaled
entropy changes for the CB6O.Sm series are given in Table S1 in
ESI. The dependence of the transition temperatures on the length
of the terminal alkylthio chain m is shown in Fig. 2. The homo-
logues with m = 1–11 show the conventional nematic phase and,
the twist-bend nematic phase below, apart from compounds
m = 9 and m = 10, the observed mesophases are monotropic. For
CB6O.S3 crystallization precluded the observation of the NTB phase,
and a virtual N-NTB transition temperature was estimated from a
phase diagram constructed using binary mixtures of CB6O.S3 and
CB7CB [6]. The longer homologues,m � 12, showed smectic phases
below the nematic phase.

The N - NTB phase transition was accompanied by the appear-
ance of the characteristic stripe texture (Fig. 3(a) and (b)), that is
formed due to the pseudo-layer undulation in a confined cell
Fig. 2. The dependence of the transition temperatures on the length of the terminal
alkylthio chain, m, for the CB6O.Sm series, the temperatures were registered on
cooling. The inset shows an expanded region of the phase diagram for m = 13–18.



Fig. 3. Optical textures of the (a) N phase and (b) NTB phase for CB6O.S9 observed in
a 1.6-mm thick planar cell. Textures of the SmX phase for CB6O.S18 observed in (c) a
1.6-mm thick planar cell and (d) a cell with homeotropic anchoring. In an
homeotropic cell the SmX phase forms a texture with a regular array of stripes.
Thin darker lines visible in panel (c) are the regions of slightly higher birefringence.
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geometry [36]. The X-ray patterns of the nematic and twist-bend
nematic phases are almost indistinguishable. In the low diffraction
angle range, despite the presence of the heavy sulfur atom in the
molecular structure, there are broad signals of very weak intensity
as also seen for the corresponding dimers having alkyloxy terminal
chains, the CB6O.Om series [33]. For the short homologues, the low
angle diffraction signal corresponds to half the molecular length,
and on increasing the terminal chain length a signal related to
the full molecular length appears and grows in intensity (Fig. 4).
For the longest homologues, the X-ray diffraction pattern of the
nematic phase contains a signal corresponding to twice the molec-
ular length, which on cooling narrows and becomes apparatus-
resolution limited in the smectic phase. This indicates that the
smectic phases have a repeating structural unit composed of a
molecular bilayer.
Fig. 4. Low angle X-ray diffraction patterns recorded in the nematic phase of CB6O.
Sm homologues with different lengths of terminal chain. Real space distances
corresponding to the signal positions are indicated.
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Formation of the NTB phase, in which the molecules are tilted
with respect to the helical axis, is accompanied by a deviation of
the optical birefringence, Dn, from its power law temperature
dependence observed in the nematic phase (Fig. 5). By analyzing
the Dn decrease, the conical angle in the twist-bend nematic phase
was determined according to the procedure described by Meyer
et al. [37] to be �20 deg. far from the N-NTB transition. Interest-
ingly, the measured optical birefringence starts to deviate from
the power law dependence several degrees above the N-NTB tran-
sition temperature, and this has been attributed to pretransitional
fluctuations, specifically the formation of an instantaneous heli-
conical structure in the N phase [38].

The value of the optical birefringence expected for the nematic
phase with ideal orientational order, S = 1, Dnmax, decreases on
increasing the length of the terminal chain; for CB6O.S9
Dnmax ¼ 0:355 and for CB6O.S17, Dnmax ¼ 0:302. This decrease
may be attributed to the reduction in the polarizability anisotropy
of the molecule on changing the ratio between the strongly aniso-
tropic mesogenic cores and the less anisotropic alkyl chains. The
static dielectric anisotropy, De, in the nematic phase is small and
positive (Fig. S8). This implies that the dimers are locally arranged
head-to-head, such that the longitudinal dipole moments associ-
ated with the cyano groups are almost compensated. The bend
elastic constant is smaller than the splay elastic constant,
K33 < K11, over almost the entire temperature range of the nematic
phase (Fig. S8), and this is typical behavior for bent dimers [34]. K33

decreases strongly upon approaching the twist-bend nematic
phase whereas K11 increases monotonically with decreasing tem-
perature and increasing order parameter.

For the longer homologues, a smectic A phase was formed on
cooling the nematic phase (m = 12, 13, 15, 17) or directly from
the isotropic liquid (m = 18, 22). In planar cells no change of the
extinction direction upon the transition from the nematic to smec-
tic A phase was found, the optical axis remains along the rubbing
direction and only a small increase of the birefringence was
detected (Fig. 5), revealing that the smectic phase is orthogonal.
In one-free-surface samples, a homeotropic texture was found,
confirming the optical uniaxiality of the smectic A phase (Fig. 6).
For dimers with m = 13–18, below the narrow temperature range
of the SmA phase, two additional smectic phases were observed,
the upper one (SmX) exhibiting a birefringent texture and the
lower (SmCTB) a homeotropic texture (Fig. 6) in one-surface-free
samples. In a wedge cell with homeotropic anchoring, the upper
Fig. 5. Optical birefringence of CB6O.S9 (black circles) and CB6O.S17 (red circles).
Lines show the power law temperature dependence Dn ¼ DnmaxðTc�T

Tc
Þb , with Dnmax

being 0.355 and 0.302 for CB6O.S9 and CB6O.S17, respectively, and critical
exponent b ¼ 0:21 for both compounds. The decrease in the measured birefringence
in the NTB phase of compound CB6O.S9 allowed for the determination of the
heliconical tilt angle, h (blue circles).



Fig. 6. Optical textures observed on cooling a one-free-surface sample of CB6O.S15.
Fig. 7. Weakly birefringent, optically active domains of the B4 phase of CB6O.S15,
observed between crossed and slightly de-crossed (by 3 deg.) polarizers. Scale bar
corresponds to 200 lm.

Fig. 8. CD spectra for two samples of CB6O.S18, with opposite chirality macroscopic
domains of the B crystal phase, thin films measured on quartz.
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phase texture is decorated with dynamically moving stripes
(Fig. 3d), such a texture was ascribed to the biaxial smectic A
phase, SmAb [39], an orthogonal smectic phase in which molecular
rotation around the long axis is restricted. However, the birefrin-
gent texture of the SmX phase could also evidence a tilted SmC-
like structure.

In a planar cell, careful observation of the SmX phase texture
revealed the presence of lines on a uniform background (Fig. 3c),
associated with regions of slightly higher birefringence. To deter-
mine whether SmX is an orthogonal SmAb phase or tilted SmC
phase we performed an experiment with doping the CB6O.S15
compound with small amount of chiral additive. As a result the
SmX became optically uniaxial, giving perfect homeotropic tex-
ture. We concluded therefore that the SmX phase is tilted SmC-
like phase, because the chiral doping promoted a helix formation
and consequently the uniaxiality of the phase. The SmAb phase
would have been insensitive to chirality [40]. A similar phase
sequence and associated textural changes were found for the
CB6O.m series [41], suggesting that both tilted phases observed
below SmA phase have heliconical structure (SmCTB-type). How-
ever, the monotropic nature of all the smectic phases and rapid
recrystallization precluded their detailed characterization.

Interestingly, when cooled rapidly in thin cells, all the dimers
studied recrystallized into the B4 phase (‘blue crystal’), the charac-
teristic feature of which is a twisted ribbon morphology [19]. It
should be pointed out, however, that whereas for the longer homo-
logues the B4 crystal was stable at room temperature for months,
the shorter homologues often displayed ‘blue’ crystals coexisting
with other strongly birefringent crystalline phases and heating
the sample resulted in a polymorphic transition from the meta-
stable B4 phase to the birefringent crystal. In calorimetric measure-
ments B4 phase was detected regardless of applied cooling rate (1–
50 K min�1), its formation was accompanied by enthalpy change of
order of 50 kJ mol�1. On heating, B4 phase undergoes exothermic
transition into another crystalline phase. The lamellar character
of the B4 phase was confirmed by X-ray diffraction studies
(Fig. S1). The periodicity of the layered structure was found to be
close to twice the molecular length, showing that the molecules
are arranged in an antiparallel fashion in consecutive layers. The
width of the diffraction signals was considerably broader than
the instrumental resolution, and this is attributed to the limited
width of the ribbons forming the helical filaments [20]. The B4

phase showed a weakly birefringent (due to the not completely
random orientation of the molecular layers), but an optically active
texture (Fig. 7), and domains with opposite signs of the optical
rotation were formed with equal probability. Given that these
domains could be grown with dimensions comparable to the sam-
ple size, it was possible to prepare samples having a strong imbal-
4

ance between opposite chirality domains enabling the
measurement of circular dichroism (CD) spectra, see Fig. 8, and Figs
S2 and S3 in the ESI. A strong CD signal was observed at the wave-
length of the absorption edge of the compound in the solid state,
�400 nm (Fig. S2).

In order to correlate the optical rotatory power (ORP) and CD
signal with the structure/morphology of the B4 phase, the almost
homochiral sample was further studied using AFM, which revealed
membranes made of molecular layers with a number of strongly
saddle-splay deformed areas randomly distributed in space
(Fig. 9), resembling the morphology of the dark conglomerate
phase [42]. No areas with clear helical filaments could be seen.
The almost random distribution of the layer orientation is consis-
tent with the low optical birefringence of the sample. The absence
of a clear helical morphology also suggests that the chiral nature of
the phase, which gives rise to optical activity, originates from the
layer chirality [43] rather than from a helical morphology. To
obtain more information about the phase morphology, the sample
was aligned using porous anodic aluminium oxide (AAO) and
imaged with SEM, and under such conditions helical twisted rib-
bons, with a helical pitch of �120 nm, were observed (Fig. 9).
Apparently, the morphology of the sample, i.e. filaments vs dark
conglomerate phase, may be controlled, at least to some extent,
by surface interactions, despite the crystalline nature of the phase.
It has been recently reported [44] that limiting space for the
nucleation of saddle-splay deformed layers promotes the forma-
tion of helical filaments growing along the AAO channel axis over
4



Fig. 9. (a, b) SEM images of helical filaments of B4 phase of CB6O.S17 grown in an
AAO template, each pore of the template has a 60 nm diameter, the pitch of both
right- and left-handed filaments is approximately 120 nm. (c) AFM height image of
the B4 phase of CB6O.S18 on quartz, the randomly distributed strongly deformed
membranes made of molecular layers (marked with arrows) are visible.
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the formation of the 3-dimensional deformed dark conglomerate
structures.

Comparing the thioalkyl CB6O.Sm dimers studied here with the
corresponding alkyloxy CB6O.Om [33] and alkyl CB6O.m series
[32,41] reveals that the N-Iso transition temperatures, TNI, are low-
est for the mesogens having an alkylthio chain and highest for
those with an alkyloxy chain. This may be attributed to the
changes of bond angle between the mesogenic unit and the termi-
nal chain, and the position of the chain with respect to the plane of
the mesogenic unit. Thus, an alkyloxy chain lies more or less in the
plane of the mesogenic core whereas the alkylthio and alkyl chains
protrude at some angle. In addition, C-S-C is the smallest of the
three bond angles and this reduces the overall molecular shape
anisotropy. The exceptions to this behavior are CB6O.S1 and
CB6O.S2, for which the isotropisation temperatures are consider-
ably higher than expected. It has been suggested that this may
be attributed to chalcogen bonding in these compounds [45].
Although such an interaction cannot be excluded in the liquid crys-
talline state, our X-ray diffraction studies show no direct S-S con-
tact interactions in the crystalline state, while crystal packing
appeared to maximize the amount of C-H. . .S interactions
(Fig. S3-S6). Although the N-Iso transition temperatures of the
CB6O.Sm series tend to be lower, their melting points are higher
than for the corresponding alkyl and alkyloxy series, resulting in
the monotropic nature of the liquid crystalline phases that have
a strong tendency to crystallize, this behavior can be attributed
to presence of relatively strong C-H. . .S interactions (see SI). All
three series, CB6O.Sm, CB6O.Om and CB6O.m, show bilayer struc-
tures for long terminal chains, and intercalated structures for the
shorter chains, with a gradual evolution of the molecular packing
as the terminal chain length is changed. It should be stressed that
for all three series, smectic phases were observed; for the CB6O.Sm
series for m � 13 and for CB6O.m series for m � 10. By comparison,
the CB6O.Om series shows smectic behaviour only for intermediate
length compounds, with m = 3, 4 and 5 [33]. The observation of
smectic phase behavior for intermediate chain lengths only in
the CB6O.Om series is thought to be related to the ability of these
5

dimers to better pack into an intercalated structure, and this arises
from both the alkyloxy chain lying in the plane of the benzylide-
neanline unit and the larger C-O-C bond angle compared to C-S-C.

4. Conclusions

We report the first series of flexible mesogenic dimers for which
NTB and B4 phases are observed for a single compound as a function
of temperature. Although the NTB phase is relatively common in
bent, flexible dimers, the formation of the B4 phase for such mole-
cules is unusual [20,46], this phase is normally observed for rigid
bent core molecules [18,19,47]. The dimers reported here also form
another type of helical phases, SmCTB-type, which is the smectic
analogue of the NTB phase. Unfortunately, the monotropic nature
of the smectic phases precluded their further investigation.
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[16] M. Salamończyk, N. Vaupotič, D. Pociecha, R. Walker, J.M.D. Storey, C.T. Imrie,
C. Wang, C. Zhu, E. Gorecka, Multi-level chirality in liquid crystals formed by
achiral molecules, Nat. Commun. 10 (2019) 1922, https://doi.org/10.1038/
s41467-019-09862-y.

[17] J.K. Vij, Y.P. Panarin, S.P. Sreenilayam, M. Alaasar, C. Tschierske, Investigation of
the heliconical smectic <math xmlns, Phys. Rev. Mater. 3 (2019) 045603,
https://doi.org/10.1103/PhysRevMaterials.3.045603.

[18] T. Sekine, T. Niori, J.Watanabe, T. Furukawa, S.W. Choi, H. Takezoe, Spontaneous
helix formation in smectic liquid crystals comprisingachiral molecules, J. Mater.
Chem. 7 (1997) 1307–1309, https://doi.org/10.1039/A702026K.

[19] L.E. Hough, H.T. Jung, D. Krüerke, M.S. Heberling, M. Nakata, C.D. Jones, D.
Chen, D.R. Link, J. Zasadzinski, G. Heppke, J.P. Rabe, W. Stocker, E. Körblova, D.
M. Walba, M.A. Glaser, N.A. Clark, Helical nanofilament phases, Science. 325
(5939) (2009) 456–460.
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[43] J. Matraszek, N. Topnani, N. Vaupotič, H. Takezoe, J. Mieczkowski, D. Pociecha,
E. Gorecka, Monolayer filaments versus multilayer stacking of bent-core
molecules, Angew. Chemie Int. Ed. 55 (10) (2016) 3468–3472, https://doi.org/
10.1002/anie.201510123.

[44] L. Foley, W. Park, M. Yang, E. Carlson, E. Korblova, D.K. Yoon, D.M. Walba,
Nanoconfinement of the low-temperature dark conglomerate: structural
control from focal conics to helical nanofilaments, Chem. – A Eur. J. 25
(2019) 7438–7442, https://doi.org/10.1002/CHEM.201900653.

[45] E. Cruickshank, G.J. Strachan, J.M. Storey, C.T. Imrie, Chalcogen bonding and
liquid crystallinity: Understanding the anomalous behaviour of the 40-
(alkylthio)[1,10-biphenyl]-4-carbonitriles (nSCB), J. Mol. Liq. (2021) 117094,
https://doi.org/10.1016/J.MOLLIQ.2021.117094.

[46] A. Zep, K. Sitkowska, D. Pociecha, E. Gorecka, Photoresponsive helical
nanofilaments of B4 phase, J. Mater. Chem. C. 2 (13) (2014) 2323–2327.

[47] E. Tsai, J.M. Richardson, E. Korblova, M. Nakata, D. Chen, Y. Shen, R. Shao, N.A.
Clark, D.M. Walba, A modulated helical nanofilament phase, Angew. Chemie.
52 (20) (2013) 5254–5257.

https://doi.org/10.1016/j.molliq.2020.114391
https://doi.org/10.1002/cphc.202000993
https://doi.org/10.1016/j.molstruc.2019.126913
https://doi.org/10.1103/PhysRevE.89.022506
https://doi.org/10.1103/PhysRevE.89.022506
https://doi.org/10.1039/C4CE02502D
https://doi.org/10.1039/C4CE02502D
https://doi.org/10.1038/ncomms11369
https://doi.org/10.1038/s41467-017-02626-6
https://doi.org/10.1038/s41467-019-09862-y
https://doi.org/10.1038/s41467-019-09862-y
https://doi.org/10.1103/PhysRevMaterials.3.045603
https://doi.org/10.1039/A702026K
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0095
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0095
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0095
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0095
https://doi.org/10.1080/02678290801906052
https://doi.org/10.1080/02678290801906052
https://doi.org/10.1039/c6sm00537c
https://doi.org/10.1039/c6sm00537c
https://doi.org/10.1080/02678292.2017.1366075
https://doi.org/10.1080/02678292.2019.1590744
https://doi.org/10.1080/02678292.2017.1385103
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0125
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0125
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0125
https://doi.org/10.1073/pnas.1612212113
https://doi.org/10.1073/pnas.1612212113
https://doi.org/10.1002/adma.201500340
https://doi.org/10.1002/chem.201905208
https://doi.org/10.1002/chem.201905208
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0145
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0145
https://doi.org/10.1080/02678292.2019.1641638
https://doi.org/10.1080/02678292.2019.1641638
https://doi.org/10.1080/02678292.2011.641753
https://doi.org/10.1080/02678292.2011.641753
https://doi.org/10.1039/c9sm00026g
https://doi.org/10.1080/02678292.2018.1525503
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0170
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0170
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0170
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0170
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0170
https://doi.org/10.1021/acs.langmuir.5b01620
https://doi.org/10.1021/acs.langmuir.5b01620
https://doi.org/10.1103/PhysRevE.102.032704
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0185
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0185
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0185
https://doi.org/10.1103/PhysRevE.98.052706
https://doi.org/10.1039/b109546c
https://doi.org/10.1002/asia.201600918
https://doi.org/10.1002/ADMA.202103288
https://doi.org/10.1002/ADMA.202103288
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0210
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0210
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0210
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0210
https://doi.org/10.1002/anie.201510123
https://doi.org/10.1002/anie.201510123
https://doi.org/10.1002/CHEM.201900653
https://doi.org/10.1016/J.MOLLIQ.2021.117094
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0230
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0230
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0235
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0235
http://refhub.elsevier.com/S0167-7322(21)02905-6/h0235

	Helical phases assembled from achiral molecules: Twist-bend nematic and helical filamentary B4 phases formed by mesogenic dimers
	1 Introduction
	2 Experimental section
	2.1 Synthesis
	2.2 Methods

	3 Results and discussion
	4 Conclusions
	Funding
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Supplementary data
	References


