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Summary 29 

Crustal rocks undergo repeated cycles of stress over time. In complex tectonic 30 

environments where stresses may evolve both spatially and temporally, such as 31 

volcanoes or active fault zones, these rocks may experience not only cyclic loading 32 

and unloading, but also rotation and/or reorientation of stresses. In such situations, 33 

any resulting crack distributions form sequentially and may therefore be highly 34 

anisotropic. Thus, the tectonic history of the crust as recorded in deformed rocks may 35 

include evidence for complex stress paths, encompassing different magnitudes and 36 

orientations. Despite this, the ways in which variations in principal stresses influence 37 

the evolution of anisotropic crack distributions remain poorly constrained. In this 38 

work, we build on the previous non-linear anisotropic damage rheology model by 39 

presenting a newly developed poroelastic rheological model which accounts for both 40 

coupled anisotropic damage and porosity evolution. The new model shares the main 41 

features of previously developed anisotropic damage and scalar poroelastic damage 42 

models, including the ability to simulate the entire yield curve through a single 43 

formulation. In the new model, the yield condition is defined in terms of invariants of 44 

the strain tensor, and so the new formulation operates with directional yield 45 

conditions (different values for each principal direction) depending on the damage 46 

tensor and triaxial loading conditions. This allows us to discern evolving yield 47 

conditions for each principal stress direction and fit the measured amounts of 48 

accumulated damage from previous loading cycles. Coupling between anisotropic 49 

damage and anisotropic compaction along with the damage-dependent yield condition 50 

produces a reasonable fit to the experimentally obtained stress-strain curves. 51 

Furthermore, the simulated time-dependent cumulative damage is well correlated with 52 

experimentally observed acoustic emissions during cyclic loading in different 53 

directions. As such, we are able to recreate many of the features of the experimentally 54 

observed directional 3D Kaiser ‘damage memory’ effect. 55 

 56 

Keywords: Mechanics, theory, and modelling; Elasticity and anelasticity; Creep and 57 

deformation; Fracture and flow.  58 

 59 

 60 

 61 
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1. Introduction 62 

It is well-established that crack damage is generated in brittle rocks that are 63 

subjected to a level of stress above some crack initiation threshold, and that this 64 

cracking results in the output of elastic wave energy in the form of acoustic emissions 65 

(AEs) (e.g., Meredith et al. 1990, Holcomb 1993, Lockner 1993a). During cyclic 66 

loading, cracks close elastically during unloading and re-open elastically during re-67 

loading. If the level of stress during re-loading remains below the peak stress level 68 

attained in any previous loading cycle, then no new cracking occurs and no further 69 

cracking-related AE is generated. However, on any loading cycle where the previous 70 

peak stress is reached or exceed, new cracks are formed and are accompanied by 71 

concommittant AE output (Kurita & Fujii 1979, Holcomb & Costin 1986, Li & 72 

Nordlund 1993, Lockner 1993a, Pestman & Van Munster 1996, Lavrov 2001, 2003, 73 

Browning et al. 2017, 2018). This observation of AE output only recommencing 74 

when the previous maximum stress level is exceeded is known as the Kaiser effect 75 

(Kaiser 1953) and is related to the ability of a material to accumulate and reproduce 76 

information about previously experienced stress states. However, most experiments 77 

that have probed aspects of the Kaiser effect to date have been conducted during 78 

either uniaxial or conventional triaxial compression experiments and so have not been 79 

able to probe fully for any directionality in crack damage accumulation related to the 80 

orientation of principal stresses.  81 

More recently, Browning et al. (2017, 2018) investigated the occurrence of a 82 

Kaiser effect in samples of Darley Dale sandstone subjected to both conventional and 83 

true triaxial stress conditions. Samples were loaded sequentially to increasing levels 84 

of peak stress, both with the maximum principal stress maintained in the same 85 

orientation and with the maximum principal stress rotated and applied sequentially in 86 

three orthogonal orientations. Their results showed that, under true triaxial loading, 87 

crack damage is a distinctly directional phenomenon, such that rocks can exhibit a 88 

three-dimensional, directionally-dependent Kaiser effect, with AE only being 89 

generated when the previous peak stress in any specific orientation was exceeded. 90 

They therefore concluded that the Kaiser effect should more accurately be described 91 

as a damage memory effect rather than a stress memory effect. 92 

Traditionally, the analysis of rock deformation and failure criteria has been 93 

formulated by, for example, a classical Coulomb-Mohr condition that defines brittle 94 
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failure, and by a yield cap criterion that defines cataclastic flow (e.g., Issen & 95 

Rudnicki 2000). However, these formulations usually ignore any connection between 96 

yield stress and the amount of inelastic damage in the form of microcracks, voids, or 97 

other flaws that leave the yield stress unchanged, and in doing so, ignore the 98 

underlying principle of the Kaiser effect. Laboratory experiments on porous rocks 99 

demonstrate evidence of overall strain hardening and yield cap growth attributed to 100 

plasticity and porosity loss (Baud et al. 2006, Tembe et al. 2008, Bedford et al. 2018). 101 

Several models have been developed for elasto-plastic deformation of isotropic soils, 102 

which are commonly formulated in a framework of continuum mechanics and can be 103 

successfully applied to model rock behavior with complex yield conditions.  104 

For example, the original Cam-Clay model (Roscoe & Burland 1968) provides 105 

a description for the stress versus inelastic strain behavior for yield envelopes of any 106 

shape defined in stress space (Muir Wood 1990). Modified Cam‐Clay yield functions 107 

were successively used in geo-mechanical modelling of hydrocarbon reservoirs (Chan 108 

et al. 2004, Crawford et al. 2011) and in more generic studies of inelastic sandstone 109 

deformation (Schultz & Siddharthan 2005, Skurtveit et al. 2013). In the modified 110 

Cam‐clay formulation, the stress conditions required for yield are described by the 111 

elliptical function of differential and mean effective stress values. Grueschow & 112 

Rudnicki (2005) discussed the various models that incorporate different shapes of the 113 

evolving yield caps rather than the elliptic function and compared their model with 114 

previous suggested by DiMaggio & Sandler (1971) and Carroll (1991). These studies 115 

demonstrated that inelastic behavior of porous rocks are well described by various 116 

plasticity models. Pijnenburg et al. (2019) quantified the elastic and inelastic 117 

contributions to the total deformation behavior of Slochteren sandstones and 118 

concluded that not only the expanding yield envelopes, but also change in the elastic 119 

moduli should be considered in order to obtain a proper fit to  the experimental stress-120 

strain data. Damage rheology models are able to incorporate changes in both the local 121 

elastic properties and the form of the porosity-induced yield cap such that deformation 122 

patterns and modes of failure can be analyzed alongside the yield cap growth (e.g., 123 

Bercovici et al. 2001, Stefanov et al. 2011, Lyakhovsky et al. 2015, Vorobiev 2019). 124 

It has been suggested that the observed Kaiser effect in rocks indicates strain 125 

hardening in consecutive cycles such that the phenomena can be attributed to changes 126 

in yield surface due to damage accumulation (Holcomb 1993). Damage and yield 127 

surface growth are then likely coupled, and constraints on this coupling can aid 128 
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interpretation of damage localization patterns and the Kaiser effect (Gajst et al. 2020). 129 

Damage evolution and time-dependent behavior in low porosity sandstones have been 130 

investigated (Choens et al. 2021) through creep and conventional triaxial experiments, 131 

and numerical analyses. Such quasi-static and creep experiments have been 132 

successfully simulated using the modified poroelastic damage model of Lyakhovsky 133 

et al. (2015). As damage accumulates in the samples, the yield cap evolves to keep 134 

pace with the strain accumulation. 135 

True triaxial experiments reported by Browning et al. (2017, 2018) 136 

demonstrated that the orientation of distributed microcracks in Darley Dale sandstone 137 

samples are essentially anisotropic and therefore require an extension of isotropic 138 

damage models using a scalar damage parameter and a more complex formulation 139 

that introduces a second-order damage tensor (Panteleev et al. 2021). The goal of this 140 

paper is, therefore, to provide a complete quantitative description of the rheological 141 

model with directional yield conditions (i.e., different values for each principal 142 

direction) depending on the damage tensor and triaxial loading conditions. The new 143 

model combines and extends the results of the previously developed anisotropic 144 

damage model of Panteleev et al. (2021) and the scalar poroelastic damage model of 145 

Lyakhovsky et al. (2015). The new analysis includes the ability to simulate yield 146 

curves through a single formulation and recreates many of the features of the 147 

experimentally observed directionally-dependent Kaiser damage memory effect 148 

reported by Browning et al. (2018). 149 

 150 

2. Anisotropic Poroelastic Damage model  151 

2.1 Damage and porosity 152 

Rock deformation is associated with the formation and growth of internal 153 

flaws. From a mechanical point of view, these flaws can be divided into two classes: 154 

1) microcracks (damage) contained in the matrix of a porous rock which act as 155 

primary stress raisers or stress concentrators and hence contribute to brittle failure, 156 

and 2) pores which can deform and before their collaps act to dissipate or 157 

accommodate stress and hence contribute to distributed flow. For an isotropic rock 158 

with a sufficiently large number of microcracks and pores, one can define a 159 

representative volume in which the flaw density is uniform and described by two 160 

scalar variables, damage (α) and porosity (φ). The damage variable is a mechanical 161 
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variable, which is responsible for the change in material stiffness and brittle failure at 162 

a critical level of damage. For anisotropic rocks, we can consider a damage tensor, 163 

Ω𝑖𝑘, which represents not only the density of microcracks, but also their orientations. 164 

The porosity variable is a geometrical property representing the volume fraction of 165 

pores during and after deformation. As an alternative to porosity, we define a 166 

compaction-strain tensor, ψ𝑖𝑗, which is equal to the accumulated irreversible strain 167 

resulting from loading and unloading. This tensor then represents not only the pore 168 

volume change, but also deviations in the shape of the pores.  169 

In the following sub-sections we describe the general thermodynamic 170 

approach used to construct the scalar damage and poroelastic damage model, and 171 

provide the main equations of the new anisotropic poroelastic damage model. 172 

Detailed thermodynamic relations are provided in Appendix A and specific relation 173 

for the isotropic and anisotropic model formulations are provided in Appendixes B 174 

and C.  175 

 176 

2.2 General thermodynamic approach 177 

We derive the main equations of the poroelastic damage model using the basic 178 

relations of irreversible thermodynamics, which provide constraints on the rates of 179 

dissipative processes (e.g., (Onsager 1931, Biot 1955, Prigogine 1955, Truesdell & 180 

Noll 2004, DeGroot & Mazur 2013). This approach has been applied successfully to 181 

understand the kinetics of chemical reactions and phase transitions (e.g., Fitts 1962; 182 

DeGroot and Mazur 2013), and as the basis for variational methods of continuous 183 

media models (e.g., Sedov 1968, 1997, Malvern 1969, Berdichevsky 2009). The 184 

constitutive behavior of the material, and flow rules controlling the kinetics of related 185 

irreversible processes, is then entirely defined by specification of two potentials. The 186 

first is the free energy, F, and the second is the dissipation function or local entropy 187 

production, . This approach has been used as the basis for other damage models (e.g. 188 

Valanis 1990, Hansen & Schreyer 1994, Lyakhovsky et al. 1997, 2015, Bercovici et 189 

al. 2001, Hamiel et al. 2004a,b, Gaede et al. 2013). Following Onsager (1931), who 190 

theoretically generalized the empirical laws of Fourier, Ohm, Fick, and Navier (see 191 

review by Martyushev & Seleznev 2006) , we represent the specific local entropy 192 

production as a product of thermodynamic fluxes and thermodynamic forces. For 193 

small deviations from equilibrium, the Onsager principle can be obtained from the 194 
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maximum entropy production principle, the maximum dissipation rate of mechanical 195 

energy, or the von Mises principle (e.g., Martyushev & Seleznev 2006, Ziegler 2012). 196 

We now discuss the different forms of the energy function, beginning with the scalar 197 

isotropic damage formulation, then the coupling isotropic damage and porosity model, 198 

and finally we formulate the anisotropic model. The energy and entropy balance 199 

equations and general thermodynamic relations are provided in Appendix A. 200 

 201 

2.3 Scalar damage and poroelastic damage model 202 

The free energy of a solid (F) in the local damage model of Lyakhovsky et al. 203 

(1997) is assumed to be a function of the state variables, which are the temperature T, 204 

the elastic strain tensor 𝜀𝑖𝑗 = 𝑔𝑖𝑗
(𝑡)
− 𝑔𝑖𝑗

(0)
 (the difference between the total strain 205 

tensor 𝑔𝑖𝑗
(𝑡)

 and the irreversible strain tensor 𝑔𝑖𝑗
(0)

), and the scalar damage variable : 206 

𝐹 = 𝐹(𝑇, ε𝑖𝑗 , α)     (1) 207 

Using the balance equations for the energy and entropy, the Gibbs relation and the 208 

Murnaghan (1937) definition of the stress tensor, part of local entropy (𝛤) production 209 

associated with evolving damage is: 210 

𝛤 = −
𝜕𝐹

𝜕α

𝑑α

𝑑𝑡
≥ 0     (2) 211 

The complete thermodynamic derivations are presented in the Appendix A, where all 212 

the dissipation processes are discussed. Following the Onsager (1931) principle, the 213 

kinetic relation for damage evolution is: 214 

𝑑α

𝑑𝑡
= −𝐶 

𝜕𝐹

𝜕α
      (3) 215 

where C is the positive kinetic coefficient, which may be either constant or depend on 216 

the state variables. 217 

Hamiel et al. (2004b) and then Lyakhovsky et al. (2015) and extended the 218 

scalar damage model to permit coupling of damage and porosity in their formulations. 219 

They followed  Biot’s theory of poroelasticity (Biot 1941, 1956) representing the free 220 

energy of a poroelastic medium as a sum of the elastic energy, and the Biot 221 

poroelastic coupling terms of the saturated medium. The free energy (1) is extended to 222 

be a function of two additional state variables, fluid volume content, ζ, and material 223 

porosity, : 224 

𝐹 = 𝐹(𝑇, ε𝑖𝑗 , α, φ, ζ)     (4) 225 
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As both porosity and damage can evolve with time during deformation, their coupled 226 

kinetic equations are derived using a similar balance equation leading to the following 227 

local entropy production (Hamiel et al. 2004b, Lyakhovsky et al. 2015):  228 

𝛤 = −
𝜕𝐹

𝜕α

𝑑α

𝑑𝑡
− (

𝜕𝐹

𝜕φ
+ 𝜎𝑚)

𝑑φ

𝑑𝑡
≥ 0    (5) 229 

where, 𝜎𝑚 = −𝜎𝑘𝑘/3 is the mean stress. Once more, adopting the relations from 230 

Onsager (1931) gives a set of two coupled differential equations (Malvern 1969, 231 

DeGroot & Mazur 2013) which define the damage and porosity evolution: 232 

𝑑φ

𝑑𝑡
= −𝐶φφ (

𝜕𝐹

𝜕φ
+ 𝜎𝑚) − 𝐶φα

𝜕𝐹

𝜕α
    (6a) 233 

𝑑α

𝑑𝑡
= −𝐶αφ (

𝜕𝐹

𝜕φ
+ 𝜎𝑚) − 𝐶αα

𝜕𝐹

𝜕α
     (6b) 234 

These phenomenological kinetic equations guarantee the non-negative value of 235 

entropy production if the matrix of the kinetic coefficients; 236 

𝐶𝑖𝑗 = |
𝐶φφ 𝐶φα
𝐶αφ 𝐶αα

|     (7) 237 

meets the following conditions (Malvern 1969, DeGroot & Mazur 2013): the diagonal 238 

cells (𝐶φφ, 𝐶αα) must be positive, and the off-diagonal terms are usually taken to be 239 

either symmetric or antisymmetric. Following the poroelastic damage model of 240 

Hamiel et al. (2004b) and Lyakhovsky et al. (2015) we adopt an antisymmetric 241 

structure (𝐶φα = −𝐶αφ = 𝐷) of the kinetic matrix (7). These conditions assure 242 

positive dissipation, as in eq. 5. Larger D-values then lead to an earlier onset of 243 

damage and enhanced accumulation under the same confinement conditions. Hamiel 244 

et al. (2004b) and Lyakhovsky et al. (2015) discussed slightly different forms of the 245 

stress- or strain-dependent D-value and demonstrated how their scalar poroelastic 246 

model reproduces a yield cap and its evolution (see Appendix B for details). Recently 247 

Gajst et al. (2020) suggested a model with exponential damage-dependent D-value: 248 

𝐷(𝛼) = 𝐷1𝑒
−𝐷2𝛼  (−𝐼1)

𝑁√𝐼2     (8) 249 

where the first coefficient D1 stands for the initial D-value of the damage-free 250 

material, and the second coefficient D2 controls its decrease with increasing damage. 251 

The role of the exponent N>1 is to control the shape of the yield cap; and this is 252 

further discussed in the supplementary materials. Gajst et al. (2020) demonstrated that 253 

the decrease in the D-value with accumulated damage shifts the yield condition or 254 

onset of damage to higher stress values and successfully reproduces the Kaiser effect. 255 

Since the model is formulated in terms of scalar damage and strain invariants, it 256 
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accurately reproduces the isotropic Kaiser damage-memory effect, but does not 257 

consider the effect of microcrack orientation and stress rotation. The experimentally 258 

observed directionally-dependent Kaiser damage-memory effect (Browning et al. 259 

2018) hence requires an anisotropic formulation. 260 

 261 

2.4 Anisotropic poroelastic damage model 262 

Recently Panteleev et al. (2021) extended the scalar isotropic damage model 263 

by developing a theoretical model for materials with orthotropic symmetry which 264 

describes the material damage using a second rank symmetric tensor, Ω𝑖𝑘, in which 265 

the principal directions match the orientation of the principal loading axes. This 266 

assumption is supported by results of true triaxial experiments (Browning et al. 2017, 267 

2018) which demonstrated that the  orientation of distributed microcracks was related 268 

to the level and orientation of the principal stresses. Therefore, most of the equations 269 

that follow are written with respect to the principal loading directions and stresses, 270 

while the complete three-dimensional formulation is presented in Appendix C. 271 

The scalar damage variable  in the free energy form of equation (1) and the 272 

poroelastic model with the energy form from equation (4) is substituted by a damage 273 

tensor, Ω𝑖𝑘. For the case of an isotropic material (Ω𝑖𝑗 = Ω 𝛿𝑖𝑗), the anisotropic 274 

formulation reduces to the scalar model with the damage 𝛼 equal to a squared value, 275 

𝛼 = Ω2. In addition, (Lyakhovsky et al. (2022)showed that the deformation of pore 276 

space is inherently three dimensional and, as such, the compaction-strain strain tensor, 277 

ψ𝑖𝑗, should replace porosity in the governing equations. The suggested energy 278 

function includes these two tensor state variables; the damage tensor Ω𝑖𝑘, and the 279 

compaction-strain tensor ψ𝑖𝑗: 280 

𝐹 = 𝐹(𝑇, ε𝑖𝑗 , Ω𝑖𝑗 , ψ𝑖𝑗 , ζ)    (9) 281 

The elastic strain tensor 𝜀𝑖𝑗 = 𝑔𝑖𝑗
(𝑡)
− ψ𝑖𝑗 is now defined as a difference between the 282 

total strain tensor 𝑔𝑖𝑗
(𝑡)

 and the tensor ψ𝑖𝑗. The diagonal part of this tensor, 𝜑 = ψ𝑖𝑗𝛿𝑖𝑗 283 

represents the material porosity, while the deviatoric components (ψ𝑖𝑗 −
1

3
𝜑 𝛿𝑖𝑗) are 284 

associated with anisotropic compaction and other mechanisms related to the 285 

irreversible strain accumulation. Using the energy form (9), the dissipation associated 286 

with evolving tensors Ω𝑖𝑗 , ψ𝑖𝑗, consists of two terms which are proportional to the 287 

their rate of change (see Appendix C for detailed derivations):  288 
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𝛤 = −
𝜕𝐹

𝜕𝛺𝑖𝑗

𝑑𝛺𝑖𝑗

𝑑𝑡
+ (σ𝑖𝑗 −

𝜕𝐹

𝜕𝜓𝑖𝑗
)
𝑑𝜓𝑖𝑗

𝑑𝑡
> 0   (10) 289 

The phenomenological kinetic equations share the same structure with the poroelastic 290 

formulation (6), but connect the tensor quantities as follows:  291 

𝑑𝜓𝑖𝑗

𝑑𝑡
= 𝐶𝑖𝑗𝑛𝑚

𝜓𝜓
(σ𝑖𝑗 −

𝜕𝐹

𝜕𝜓𝑖𝑗
) − 𝐶𝑖𝑗𝑛𝑚

𝜓𝛺 𝜕𝐹

𝜕𝛺𝑖𝑗
   (11a) 292 

𝑑𝛺𝑛𝑚

𝑑𝑡
= 𝐶𝑖𝑗𝑛𝑚

𝛺𝜓
(σ𝑖𝑗 −

𝜕𝐹

𝜕𝜓𝑖𝑗
) − 𝐶𝑖𝑗𝑛𝑚

𝛺𝛺 𝜕𝐹

𝜕𝛺𝑖𝑗
   (11b) 293 

Instead of the matrix (7) of the kinetic coefficients, every matrix term becomes a 294 

fourth-rank tensor that can be written as: 295 

𝐶𝑖𝑗𝑛𝑚 = |
𝐶𝑖𝑗𝑛𝑚
𝜓𝜓

𝐶𝑖𝑗𝑛𝑚
𝜓𝛺

𝐶𝑖𝑗𝑛𝑚
𝛺𝜓

𝐶𝑖𝑗𝑛𝑚
𝛺𝛺

|    (12) 296 

The kinetic equations (11) guarantee a non-negative value of entropy production if the 297 

cells of the matrix of the kinetic coefficients meet conditions like those of the 298 

poroelastic model: 1) matrices of the diagonal cells (𝐶𝑖𝑗𝑛𝑚
𝜓𝜓

, 𝐶𝑖𝑗𝑛𝑚
𝛺𝛺 ) must be positively 299 

defined; and 2) we also adopt an antisymmetric structure (𝐶𝑖𝑗𝑛𝑚
𝛺𝜓

= −𝐶𝑖𝑗𝑛𝑚
𝜓𝛺

) for the 300 

off-diagonal terms, as was done previously for the poroelastic model. 301 

In the next section, we specify the energy function (9) and kinetic coefficients 302 

(12), and then demonstrate the main model features. 303 

 304 

2.5 Energy function and kinetic equations, anisotropic model 305 

The energy function for the anisotropic damage model includes a damage 306 

tensor 𝛺𝑖𝑗 and so cannot be formulated only in terms of invariants of the strain tensor: 307 

𝐼1 = ε𝑖𝑗δ𝑖𝑗
𝐼2 = ε𝑖𝑗ε𝑖𝑗

     (13) 308 

Following Murti et al., (1991) and Zhang and Cai, (2010), Panteleev et al. (2021) 309 

incorporated invariants 𝐼1
(Ω)

 and 𝐼2
(Ω)

 of the tensor 𝜀𝑖𝑗
(Ω)
=
1

2
(𝜀𝑖𝑘Ω𝑘𝑗 + 𝜀𝑗𝑘Ω𝑘𝑖). In the 310 

coordinate system of the principal damage values, these invariants are (see Appendix 311 

C for the general case): 312 

𝐼1
(Ω)
= 𝜀11Ω1 + 𝜀22Ω2 + 𝜀33Ω3      313 

𝐼2
(Ω) = (𝜀11Ω1)

2 + (𝜀22Ω2)
2 + (𝜀33Ω3)

2 +    (14) 314 

+
1

2
𝜀12
2 (Ω1 + Ω2)

2 +
1

2
𝜀13
2 (Ω1 + Ω3)

2 +
1

2
𝜀23
2 (Ω2 + Ω3)

2   315 
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We extend the energy function of Panteleev et al. (2021) using additional terms of 316 

Biot’s theory of poroelasticity (Biot 1941, 1956); see also Hamiel et al. (2004b) and 317 

Lyakhovsky et al. (2015):  318 

𝐹 = [
𝜆0

2
𝐼1
2 + 𝜇0𝐼2] + [𝜇1𝐼2

(Ω)
− 𝛾𝐼1

(Ω)√𝐼2
(Ω)
] +

𝑀

2
[𝛽𝐼1 − 𝜁 + ψ𝑖𝑗𝛿𝑖𝑗]

2
+ 𝐶ℎ

𝛾

2
Ω𝑖𝑗Ω𝑖𝑗  319 

(15) 320 

The energy function for nonlinear poroelastic damaged media includes two Hookean 321 

terms with the Lamé drained moduli of the intact (damage-free) rock 𝜆0, 𝜇0 and two 322 

second order terms with strain invariants 𝐼1
(Ω)

 and 𝐼2
(Ω)

. The modulus 𝜇1 controls the 323 

reduction of the effective shear modulus, and the coupling modulus  is responsible 324 

for enhanced nonlinearity with damage accumulation (Panteleev et al. 2021). The 325 

third term in squared brackets, with Biot modulus 𝑀 and coefficient 𝛽, differs from 326 

the classical poroelasticity only by the term ψ𝑖𝑗𝛿𝑖𝑗, that represents the porosity. 327 

Similarly to the scalar model (Appendix B), we introduce the damage-dependent term 328 

with the coefficient Ch (Gajst 2020), which allows us to account for the cohesive 329 

forces that influence rock fracture under low confining pressures. 330 

Following the definitions of the scalar damage model, we use 𝜇1 = 𝜉0𝛾 with 331 

critical ratio 𝜉0 = 𝐼1/√𝐼2 of the strain invariants (13). The 𝜉0 value is related to the 332 

internal friction angle of the intact rock (Agnon & Lyakhovsky 1995) and controls the 333 

onset of damage accumulation in the scalar damage model as well as in the 334 

anisotropic model for the material with isotropic damage (Ω𝑖𝑗 = Ω 𝛿𝑖𝑗). With this 335 

notation, the stress-strain constitutive relation for for k-component of the principal 336 

stress and damage values is (see Appendix C for complete relation): 337 

𝜎𝑘 = 𝜆0𝐼1 + 2𝜇0𝜀𝑘 − 𝛾Ω𝑘√𝐼2
(Ω) + 𝛾(2𝜉0 −

𝐼1
(Ω)

√𝐼2
(Ω)
)𝜀𝑘Ω𝑘

2 + 𝛽𝑀 (𝛽𝐼1 − 𝜁 + ψ𝑘)338 

 (16) 339 

and the fluid pressure is: 340 

𝑝𝑓 =
𝜕𝐹

𝜕𝜁
=  𝑀 (−𝛽𝐼1 + 𝜁 − ψ𝑛)   (17) 341 

Similarly to the Biot poroelasticity, the effective stress is defined as: 342 

𝜎𝑖𝑗
𝑒𝑓𝑓

= 𝜎𝑖𝑗 −
𝜕𝐹

𝜕ψ𝑖𝑗
      (18) 343 
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Kinetic coefficients (12) should be defined in order to provide the complete 344 

form of the kinetic equations (11). The matrix 𝐶𝑖𝑗𝑛𝑚
𝛺𝛺  multiplied by 𝜕𝐹 𝜕𝛺𝑖𝑗⁄  defines 345 

the damage accumulation rate, driven by the thermodynamic force associated with the 346 

damage-dependent energy change. The most conservative assumption to define the 347 

components of this matrix is the absence of any interaction between different damage 348 

components on their kinetics:  349 

𝐶𝑖𝑗𝑛𝑚
𝛺𝛺 =

𝐿

√Ω𝑖𝑗Ω𝑖𝑗
 (𝛿𝑖𝑘 𝛿𝑗𝑛 + 𝛿𝑖𝑛 𝛿𝑗𝑘)   (19) 350 

This form of damage kinetics was verified by Panteleev et al. (2021) using results 351 

from true triaxial rock mechanics experiments, and is therefore adopted here for the 352 

poroelastic model. 353 

The off-diagonal antisymmetric coefficient, noted here as 𝐷𝑖𝑗𝑘𝑛 = 𝐶𝑖𝑗𝑛𝑚
𝛺𝜓

=354 

−𝐶𝑖𝑗𝑛𝑚
𝜓𝛺

  , controls the coupling between irreversible strain (porosity) and damage 355 

accumulation. Extending the Gajst et al. (2020) model with an exponential damage-356 

dependent D-value (8) to the tensor form and using the same type of strain 357 

dependency, we suggest the following form of the coupling kinetic coefficient 𝐷𝑖𝑗𝑘𝑛: 358 

𝐷𝑖𝑗𝑘𝑛 = 𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑖𝑗] 𝛿𝑘𝑛 (−𝐼1)
𝑁√𝐼2   (20) 359 

where we use the standard definition of the exponent of the tensor 𝑿𝑖𝑗 by means of its 360 

series representation (Hirsch et al. 1974): 361 

𝑒𝑥𝑝(𝑿𝑖𝑗) =  ∑
𝑿𝑖𝑗
𝑚

𝑚!
∞
𝑚=0      (21) 362 

Note that the principal values of the tensor 𝑒𝑥𝑝(𝑿𝑖𝑗) are equal to the exponent of the 363 

principal value 𝑒𝑥𝑝(𝑿𝑘).  364 

Given the kinetic coefficients (19, 20), the equation for the damage evolution 365 

(11b) for principal components becomes (see Appendix C for complete relation):  366 

𝑑𝛺𝑘
𝑑𝑡

= 𝐾 𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑘] (−𝐼1)
𝑁+1√𝐼2  + 367 

+
𝐿

√Ω𝑙Ω𝑙
[𝜀𝑘√𝐼2

(Ω) + (
𝐼1
(Ω)

√𝐼2
(Ω)
− 2𝜉0)𝜀𝑘

2Ω𝑘 − 𝐶ℎ Ω𝑘]  (22) 368 

The effective mean stress (𝜎𝑚
𝑒𝑓𝑓

= −𝜎𝑘𝑘
𝑒𝑓𝑓
/3) in (11b) was substituted here by the 369 

volumetric strain multiplied by the bulk modulus K (𝜎𝑚
𝑒𝑓𝑓

= −𝐾 𝐼1) leading to the 370 

power index N+1.  371 
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The equation for the irreversible strain accumulation (11a) includes two terms. 372 

The first term, 𝐶𝑖𝑗𝑛𝑚
𝜓𝜓

𝜎𝑛𝑚
𝑒𝑓𝑓

, describes compaction/dilation with the rate proportional to 373 

the effective stress. The second is the damage-related coupling term multiplied to 374 

𝐷𝑖𝑗𝑘𝑛 (20), and describes the compaction or dilation associated with the formation and 375 

growth of damage. Representing the effective stress as a superposition of the 376 

volumetric (𝜎𝑚
𝑒𝑓𝑓

) and deviatoric (𝜏𝑖𝑗) components allows us to describe the different 377 

mechanisms of the irreversible strain accumulation, or ψ𝑖𝑗 kinetics. The pressure 378 

driven compaction in the isotropic case becomes a well-known porosity reduction to 379 

its pressure-dependent equilibrium value, or Athy's (1930) law. (Lyakhovsky et al. 380 

(2022)modified the scalar Athy relation and suggested that the 3-D equilibrium 381 

compaction depends on both pressure and deviatoric stress components: 382 

ψ𝑖𝑗
(𝑒𝑞)

= 𝐵0 [𝛿𝑖𝑗 −  𝑒𝑥𝑝 (−
𝜎𝑚
𝑒𝑓𝑓

𝐵1
𝛿𝑖𝑗 −

𝜏𝑖𝑗

𝐵2
)]    (23) 383 

which further suggested the kinetics of the pressure-driven 3-D compaction has the 384 

form 385 

𝑑ψ𝑖𝑗

𝑑𝑡
= 𝐴 (ψ𝑖𝑗

(𝑒𝑞)
− ψ𝑖𝑗) 𝜎𝑚

𝑒𝑓𝑓
     (24) 386 

The equations (23, 24) consider not only the closure of voids or changes in the pore 387 

space (isotropic porosity reduction), but also changes in void shape under non-388 

hydrostatic loading. Neglecting the term with deviatoric stress, or taking 𝐵2 → ∞ in 389 

(23), reduces both the equilibrium compaction and kinetic equation to the traditional 390 

scalar form formulated in terms of material porosity. 391 

Experimental studies suggest that permanent inelastic deformation is not only 392 

caused by pressure driven compaction, but also starts to accumulate at the onset of  393 

microcracking (as evidenced by the output of AE) and increases all the way up to the 394 

point of brittle failure (e.g., Lockner 1993, 1998, Martin & Chandler 1994). This 395 

process is usually associated with the growth of microcracks and frictional sliding 396 

between grains, rather than closure of voids or space between grains. For similar 397 

reasons, Hamiel et al. (2004a) related the rate of irreversible strain accumulation with 398 

the rate of their scalar damage growth. Keeping in mind that the scalar damage 399 

variable is equivalent to the squared damage tensor, we extend their relation to: 400 

𝑑

𝑑𝑡
𝜀𝑖𝑗
(𝑖𝑟)

= {
𝐶𝑉

𝑑(Ω𝑖𝑛Ω𝑗𝑚)

𝑑𝑡
𝜏𝑛𝑚 ,    

𝑑(Ω𝑖𝑛Ω𝑗𝑚)

𝑑𝑡
> 0

0,           
𝑑(Ω𝑖𝑛Ω𝑗𝑚)

𝑑𝑡
≤ 0

   (25) 401 
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The final kinetic equation (11) for the 𝜓𝑖𝑗 tensor incorporates all of the discussed 402 

mechanisms and to avoid a lengthy expression, is written for principal components: 403 

𝑑𝜓𝑘
𝑑𝑡

=  𝐴 (ψ𝑘
(𝑒𝑞) −ψ𝑘) 𝜎𝑚

𝑒𝑓𝑓
+ 𝐶𝑉

𝑑(𝛺𝑘
2)

𝑑𝑡
𝜏𝑘 + 404 

+𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑘] (−𝐼1)
𝑁√𝐼2  [𝜀𝑘√𝐼2

(Ω) + (
𝐼1
(Ω)

√𝐼2
(Ω)
− 2𝜉0)𝜀𝑘

2Ω𝑘 − 𝐶ℎ Ω𝑘] (26) 405 

The first term of (26) represents the compaction prior to the onset of damage 406 

accumulation, which is a three-dimensional extension of the scalar Athy’s compaction 407 

law. According to this term, the compaction approaches its stress-dependent 408 

equilibrium value with the rate proportional to the effective pressure. The second term 409 

is the three-dimensional equivalent of the damage-dependent irreversible strain 410 

accumulation with inverse of the effective viscosity or fluidity proportional to the rate 411 

of damage accumulation. This term describes extension or compaction depending on 412 

the sign of the deviatoric stress component. The last term represents the coupling 413 

between damage and porosity kinetics. Its sign, extension or compaction, is defined 414 

by the expression in the square brackets and depends on the loading and damage 415 

values.  416 

The kinetic expressions for damage (22) and irreversible strain (26) provide 417 

the closed system of equations defining the three-dimensional evolution of the 418 

material properties.  419 

 420 

2.6 Yield cap evolution 421 

The new anisotropic poroelasic damage model shares the main features of the 422 

previously developed isotropic model of Lyakhovsky et al. (2015), including the 423 

ability to simulate the entire yield curve through a single formulation. Their model 424 

addressed several different deformation regimes including elastic deformation and 425 

pressure-driven compaction, brittle failure, and cataclastic flow. Loading of a rock 426 

sample to a level of stress beyond the initial yield surface caused an accumulation of 427 

damage and resulted in a porosity change (causing either compaction or dilation). In 428 

this case, the modeled yield cap grows. Consequently, if the sample is unloaded and 429 

then reloaded, the new yield cap is found to occur at a higher stress state, which is in 430 

agreement with the Kaiser effect. These general features of the model yield cap are 431 

shown in strain space, i.e., differential strain (𝜀1 − 𝜀3) versus volumetric strain (Fig. 432 
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1) instead more common stress space representation (differtential stress vs. pressure). 433 

Several authors formulated yield conditions in terms of strains and demonstrated 434 

significant advantages of this approach for materials with evolving yield conditions as 435 

a function of material properties and loading history (Naghdi & Trapp 1975, Yoder & 436 

Iwan 1981, Han & Chen 1986, Puzrin & Houlsby 2001). Although there are some 437 

similarities between stress-space and strain-space formulations, they are not 438 

equivalent when material weakening is considered (Casey & Naghdi 1983, Einav 439 

2004, 2005). The yield surface (heavy black line in Fig. 1) represents the onset of the 440 

damage accumulation according to kinetic equation (22) reduced to the model version 441 

for the isotropic material (Ω𝑖𝑗 = Ω 𝛿𝑖𝑗) and non-cohesive material (Ch=0): 442 

𝑑𝛼

𝑑𝑡
= 𝐶𝑑[𝐷1𝑒

−𝐷2𝛼(−𝐼1)
𝑁+1√𝐼2 + 𝐼2(𝜉 − 𝜉0)]   (27) 443 

This form of the damage kinetic equation predicts the onset of damage accumulation 444 

(𝑑𝛼 𝑑𝑡⁄ = 0), or the yield condition expressed in terms of strain invariants: 445 

√𝐼2 = [𝐷1𝑒
−𝐷2𝛼(−𝐼1)

𝑁+𝐼1]/ 𝜉0   (28) 446 

The entire yield curve (heavy black line in Figure 1) is calculated for compactive 447 

volumetric strain (𝐼1) between zero and a certain critical value 𝐼1
∗, corresponding to the 448 

onset of damage under hydrostatic compaction. The differential strain (𝜀1 − 𝜀3) were 449 

calculated using strain invariants and assuming triaxial loading conditions.The critical 450 

value (𝐼1
∗) is defined from the damage onset or yield condition (28) under hydrostatic 451 

loading corresponding to the strain invariant ratio 𝐼1/√𝐼2 = −√3: 452 

𝐼1
∗ = −(

√3+𝜉0

√3∙𝐷1𝑒
−𝐷2𝛼

)
1/𝑁

    (29) 453 

The detailed discussion of the size and shape of the yield envelope and the senscitivity 454 

to the model parameters, including material cohesion, is presented in Appendix B. 455 

The red line in Fig. 1 schematically represents the proportional load path with 456 

constant strain invariant ratio (𝜉 = 𝐼1/√𝐼2 = 𝐶𝑜𝑛𝑠𝑡.). At the initial stage of loading, 457 

when the stress level is beneath the yield cap (Regime I), quasi-elastic deformation is 458 

accompanied by material strengthening associated with crack closure and compaction 459 

(porosity decrease). When the load reaches the yield condition (red star), the damage 460 

accumulation starts. Distributed microcracking and grain crushing enable sliding 461 

along newly created internal surfaces, collapse of the pore space, and changes in grain 462 

packing arrangements leading to an overall porosity decrease. This deformational 463 
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Regime II is most prominent under high confining pressures and is usually treated as 464 

cataclastic flow associated with compaction. Damage accumulation as well as 465 

porosity reduction leads to the decrease of the coupling coefficient D, which in the 466 

presented version is considered as damage-dependent only (eq. 8). The damage 467 

kinetics affects the yield condition (28) and the yield cap evolves as strain is 468 

accumulated. This feature allows the Kaiser effect to be reproduced, such that the 469 

onset of damage (and its associated AE) occurs at increasingly higher stress levels, if 470 

the sample is unloaded and reloaded along the same loading path. 471 

Under elevated values of the differential strain, the loading path crosses the 472 

compaction-dilation transition (dashed line in Fig. 1) separating the deformational 473 

Regime II with compaction and Regime III with inelastic porosity increase 474 

(dilatancy). This transition coincides with the Coulomb-Mohr failure criterion and 475 

meets the condition 𝜉 = 𝜉0. When the loading is pushed beyond the compaction-476 

dilation transition, intensive damage accumulation, along with significant differential 477 

strains, lead to material dilation (porosity increase). Damage increase is then bounded 478 

by a certain critical value which eventually corresponds with macroscopic brittle 479 

failure, a dynamic stress drop, and a rapid conversion of the differential elastic strain 480 

into plastic strain components. 481 

The damage kinetic equation (22) of the anisotropic model shares a similar 482 

structure to the scalar model (27). It also consists of two competing terms, but their 483 

values depend not only on the strain invariants, but also on the direction of loading 484 

relative to the principal values of the damage tensor. We re-write these terms 485 

assuming that the principal directions of the damage tensor (Ω𝑘) match the orientation 486 

of the principal loading axes with principal strain values 𝜀𝑘:  487 

𝑡𝑒𝑟𝑚1 = 𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑘] (−𝐼1)
𝑁+1√𝐼2   (30) 488 

𝑡𝑒𝑟𝑚2 =
1

√Ω𝑙Ω𝑙
[𝜀𝑘√𝐼2

(Ω) + (
𝐼1
(Ω)

√𝐼2
(Ω)
− 2𝜉0)𝜀𝑘

2Ω𝑘 − 𝐶ℎ Ω𝑘]  (31) 489 

We take out two constants, K and L, and rescale D1 to preserve the same proportion 490 

between these terms. Figure 2 demonstrates the evolution of these terms and their 491 

sums for the conventional loading, where Ω1 is oriented in the direction of the axial 492 

load and 𝜀1 is the axial strain in the same direction. In this case, Ω2, Ω3 are oriented in 493 

the direction of the transverse loads with two equal values of strain 𝜀2 = 𝜀3. For the 494 

initially isotropic material (Ω1 = Ω2 = Ω3), the first term (30) is isotropic, since it 495 
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depends on the damage and strain invariants. Its value strongly increases with the 496 

volumetric deformation (confinement) and weakly depends on the differential strain 497 

(Fig. 2a). Values of the second term (31) are however different depending on whether 498 

the axial or transverse directions are observed. This is the case even for the isotropic 499 

material (Fig. 2 b1 and  2 b2 since the value explicitly depends on the strain 500 

components. The axial values (Fig. 2) are always negative and increase (i.e., become 501 

more negative) with both volumetric and differential components. Thus, the sum of 502 

the first (30) and second (31) terms for the axial direction is negative for most of the 503 

strain values except for a small area in the right bottom corner of the map Fig. 2 c1. 504 

This implies that damage is not likely to occur in the axial direction. For most of the 505 

loading cases, except under high volumetric stress (strain) above critical value, 𝐼1
∗ 506 

(29), the axial damage component remains unchanged or even decreases. 507 

Mechanically, this implies that microcracks which are oriented normal to the axial 508 

load direction become closed.  509 

The transverse values of the second term (31) are positive at relatively low 510 

volumetric strains and elevated differential strains (upper left corner of Fig. 2b1). 511 

They become negative with volumetric strain increase. This change is indicated by a 512 

heavy red line separating the negative and positive values in Figure 2b2. The 513 

summation of the positive and negative values of the first (Fig. 2a) and second (Fig. 514 

2b2) terms forms the yield cap (black heavy line in Fig. 2c2) which separates areas 515 

corresponding to damage accumulation (positive values) and healing or microcrack 516 

closure (negative values) for the transverse components Ω2, Ω3.  517 

The obtained shape of the yield cap for transverse damage components (red 518 

line in Fig. 3c2) is very similar to those predicted by the scalar model (see Figs B1-3 519 

in Appendix B). At low volumetric strains (with low level confinement) the yield cap 520 

is slightly shifted up depending on the cohesive force values (See Fig B3 in Appendix 521 

B for effect of cohesion). Loading above the yield cap leads to gradual accumulation 522 

of two transverse damage components, Ω2, Ω3, that form at the same rate while the 523 

axial damage value, Ω1, remains unchanged. This situation creates a stress-induced 524 

cylindrical transverse damage anisotropy observed in triaxial experimernts (Browning 525 

et al. 2018). The damage can be schematically shown as two families of microcracks 526 

(insert in Fig. 3). One family (blue cracks in Fig. 3) is oriented parallel to the axial 527 

loading direction and opening in the transverse directions. Another family (black 528 
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cracks in Fig. 3) normally oriented to the axial loading direction is closed . The axial 529 

damage value, Ω1, remains unchanged until large hydrostatic volumetric strains above 530 

certain critical value, 𝐼1
∗ close to 0.8%, are applied. This value is similar to that 531 

predicted by the scalar model (29) and describes the onset of pore space collapse. The 532 

anisotropic model predicts that the axial damage increases under the loading 533 

conditions in the area on the right of the black dashed line in Fig. 3.   534 

Accumulation of the transverse damage components increases the size of the 535 

yield cap which is related to exponential damage-dependence in the first term (30). If 536 

the sample is then reloaded, along the same loading path, the damage commences at 537 

the point of the previous maximum stress value. This corresponds to the previously 538 

mentioned enlargement of the yield cap. This Kaiser effect is schematically shown in 539 

Fig. 4 as a “no rotation” cyclic loading. During the first loading cycle (blue path and 540 

envelope), the onset of damage occurs at relatively low differential strain (strain 541 

values and model parameters will be specified in the next section comparing with 542 

experimental results). During the second cycle (purple path and envelope), the onset 543 

of damage occurs at a significantly higher value of strain (or stress), close to the 544 

maximum level of stress in the previous cycle. The quality of the Kaiser effect then 545 

depends on how close the yield cap keeps pace with the strain accumulation. This 546 

feature dramatically changes if the loading direction is rotated between consecutive 547 

loading cycles. Only a small change between the blue, green, and red yield envelopes 548 

is predicted for the case “rotation of the loading direction between cycles”. Similar to 549 

the previous case, the starting material has an essentially isotropic distribution of 550 

microcracks and flaws at the beginning of the first loading cycle (blue path and 551 

envelope in Fig. 4). However, after unloading at the end of the first cycle, the sample 552 

is no longer isotropic since new anisotropic microcrack damage has been formed, 553 

with the cracks growing parallel to the maximum loading direction (Ω2, Ω3) and 554 

closure in the plane normal to the maximum loading direction (Ω1,). For the second 555 

loading cycle (red line), the loading orientations are rotated on the same sample that 556 

contains the previously formed anisotropic damage, such that the maximum loading 557 

direction is  parallel to the previous  Ω2,. The low 1 and one of the high 3 damage 558 

components are now associated with the transverse direction, while another high 559 

component 2 is axial. The onset of accumulation of the new 1 damage component 560 

occurs at almost exactly the same level of stress as in the first cycle.  There is no 561 
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observation of any Kaiser effect, and this  suggests that a completely new family of 562 

microcracks are generated normal to those generated on diring the first cycle. An 563 

exactly similar scenario is observed during the third loading cycle when the sample is 564 

re-loaded with the loading orientation again rotated such that the  Ω3 component 565 

becomes parallel to the new maximum loading direction (the green path). The onset of 566 

damage again occurs at essentially the same level of stress and strain as in cycle 1 and 567 

cycle 2. Again, no Kaiser effect is observed. Analysis of Figure 4 explains why there 568 

is apparently no Kaiser effect. The blue, red and green lines related to the first, second 569 

and third sequential cycles exhibit very similar yield caps which suggests that the new 570 

damage on each cycle is independent of the damage formed during earlier cycles. We 571 

would therefore not expect to encounter a Kaiser effect under these conditions. It is 572 

only when the sample is loaded to a higher level of stress in the same orientation, as 573 

demonstrated by the purple line, that would expect to observe a manifestation of the 574 

Kaiser effect.  575 

To explain this model prediction further, Figure 5 shows the distribution of 576 

damage kinetics terms for the two transverse low 1 and high 3 damage components 577 

during the second load cycle for the sample with anisotropic damage 1<2=3. In 578 

spite of the elevated damage in the axial direction, similar to the isotropic sample, the 579 

axial damage component, 2, remains unchanged or even decreased or healed (maps 580 

are not shown). Values of the first (Fig. 5a1 and a2) and the second (Fig. 5b1 and b2) 581 

terms (30, 31) are similar. However, the first term for the 1 component (Fig. 5a2) is 582 

slightly larger than for the 3 (Fig. 5a1). The values of the second term show the 583 

opposite tendency (Fig. 5b1 and b2). Finally, the sum of these terms controlling the 584 

damage kinetics (Fig. 5c1 and c2), gives significantly different yield cap (red heavy 585 

lines in Fig. 5 c1,2). Figure 6 summarizes the shape and size of the yield envelope for 586 

the anisotropic material (red lines) and compares them with yield caps for the initially 587 

isotropic case (dotted lines). The yield cap of the low transverse damage component 588 

(red line for 1) is essentially coincident with the yield cap for the isotropic material. 589 

However, the yield cap for the high transverse damage component 3 is significantly 590 

enlarged. If the loading is not large enough and it is only slightly above the red line 591 

for 1 component, the high transverse component 3 remains unchanged and only 592 

minor total damage is accumulated in the sample. The yield for the axial 2 593 

component is shifted to significantly higher values of volumetric strain, value, 𝐼1
∗ 594 
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above 1.0%, but retaining the same shape as the yield for the axial component of the 595 

isotropic material.  596 

 597 

3. Model verification 598 

3.1 Materials and experimental settings 599 

In order to verify the ability of our new model to reproduce the features of the 600 

experimentally observed three-dimensional Kaiser effect, we use results from two sets 601 

of tests reported by Browning et al. (2018), namely; the sequential rotational 602 

conventional triaxial (SRCT) loading test, and the cyclic sequential rotational 603 

conventional triaxial (CSRCT) loading test. The experiments were conducted on dry 604 

samples of the relatively homogeneous Darley Dale sandstone, which is a feldspathic 605 

sandstone with a moderate porosity of ~13% and a grain size range from 0.08 to 0.8 606 

mm (Wu et al. 2000, Heap et al. 2009). The deformation apparatus, based at the 607 

laboratories of Koninklijke Shell Exploratie en Produktie Laboratoriu (KSEPL), 608 

Rijswijk, Netherlands, consists of a three-axis stressing frame constructed of flanged 609 

steel beams, one of which was removable to allow the insertion of the cubic rock 610 

samples (edge length of 50 mm). Loading was performed with three pairs of servo-611 

controlled hydraulic rams with a loading capacity of 300 kN. Hemispherical seatings 612 

were used along orthogonal axes perpendicular to the faces of the cubic samples and 613 

loading platens, with an edge length of 47.5 mm were interposed between the rams 614 

and the sample faces to provide the contact surfaces.  615 

In order to keep the sample centered within the apparatus and to ensure good 616 

acoustic contact between the sample and the loading platens, a small pre-load of 4 617 

MPa was applied along each of the three axes prior to testing. The load in each of the 618 

three directions was measured using electronic load cells with an accuracy of ±0.2%, 619 

and the displacement in each direction was measured using linear variable differential 620 

transformers (LVDTs) mounted between the loading platens. AE was monitored using 621 

a piezo-electric transducer located in a recess within one of the platens. 622 

 623 

3.2 Sequential rotational conventional triaxial (SRCT) loading 624 

The SRCT loading test consisted of three loading cycles (Fig. 7a). Prior to the 625 

first loading cycle, the sample was pre-loaded hydrostatically up to 4 MPa. Then, in 626 

the first loading cycle, the differential stress (blue lines in Figure 7a) was increased in 627 
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the 1-direction to a maximum value of 80 MPa at a rate of 0.018 MPa/s and then 628 

unloaded at the same rate, while both transverse stresses were held constant at 4 MPa. 629 

To relate the experimental results to our model formulation, the axial loading 630 

direction during the first cycle is associated with the first damage component 1, 631 

while the transverse damage components are 2 and 3. In the second cycle, the 632 

differential stress was rotated to the 2-direction (red lines in Figure 7a), and the new 633 

damage then corresponds to damage component 2, while the transverse components 634 

become 1 and 3. The loading protocol was the same as in the first cycle such that 635 

the differential load was increased at a rate of 0.018 MPa/s to a maximum value of 80 636 

MPa and then unloaded at the same rate. Again, the two transverse stresses were held 637 

constant at 4 MPa. Finally, the same loading protocol was applied in the third cycle 638 

following a further rotation of the differential to the 3-direction (green lines in Figure 639 

7a), such that 3 now corresponds to the axial component and 1 and 2 correspond 640 

to the transverse components. 641 

Figure 7b (black line) demonstrates that the onset of AE occurs at 642 

approximately the same level of stress in each cycle; between 35 and 45 MPa. This 643 

suggests that no manifestation of the Kaiser effect is observed in this test. However, 644 

while the onset of AE occurs at approximately the same level of stress in each cycle, 645 

it is significant to note that the amount of AE (plotted as cumulative AE hits in Figure 646 

7b), decreases with each new sequential loading cycle. The model-simulated 647 

accumulated damage curves recreate this tendency for the three loading cycles 648 

(colored lines for each cycle in Fig. 7b). The simulation commences with an initially 649 

small amount of isotropic damage, Ω2 = Ω1
2 + Ω2

2 + Ω3
2 ≈ 1.5%. During the first 650 

loading cycle, the two transverse damage components, 2 and 3, grow at the same 651 

rate (as shown in Fig. 7c) leading to a damage increase, Ω2 ≥ 4%. However, during 652 

the second and third loading cycles, the two transverse damage components (1 and 653 

3 in cycle 2, 1 and 2 in cycle 3) grow at different rates. This is entirely as 654 

expected, because the rock is no longer isotropic following the anisotropic damage 655 

formed during the first cycle. The overall amount of damage increase during cycles 2 656 

and 3 together add only slightly more than 1% to the total amount of damage. Finally, 657 

the simulated stress-strain curves from the model are shown in Figure 8 (colored 658 

lines) and provide a very good fit to the experimental curves (black lines). However, it 659 

should be noted that the fitting procedure is done by eye and the search for model 660 
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parameters is therefore non-unique. There are then several uncertainties and trade-offs 661 

between the model parameters. For example, the stresses and strains prior to the onset 662 

of damage accumulation (AE output) for the low damage starting material are 663 

expected to be linearly elastic, and hence permit the calculation of elastic moduli. 664 

However, for this specific test, on a relatively porous sandstone, a significant amount 665 

of the total strain is irreversible and associated with material compaction (eq. 23, 24). 666 

Panteleev et al., (2021), who processed results for similar experiments on samples of  667 

Darley Dale sandstone, also noted this feature. We therefore use Lamé moduli 𝜆0 =668 

5 𝐺𝑃𝑎, 𝜇0 = 7 𝐺𝑃𝑎 for the starting material. These values are in agreement with the 669 

measured seismic wave velocities of  Vp ~ 3.4 km/s and Vs ~ 2.1 km/s reported by 670 

Browning et al. (2017) for this material. Since all tests were performed under the 671 

same hydrostatic confining pressure of  4 MPa, it is impossible to constrain the shape 672 

of the yield curve. With this uncertainty we use the power index, N=1, in (20); 𝜉0 =673 

−0.1 and Ch=2 10-7 in (22) which corresponds to about 15 MPa of cohesive force 674 

(Appendix B). Scaling the range of the damage value, Ω2, from zero to 100% for total 675 

failure (e.g., Lyakhovsky et al. 1997) gives 𝛾 = 10 𝐺𝑃𝑎. Simultaneous fitting of the 676 

stresses and strains in the three cycles and the noted similarity between the 677 

accumulated damage and the cumulative acoustic emission output led to the following 678 

parameters: compaction equilibrium, B0=0.5%, B1=20 MPa, B2=15 MPa in (23), Cv= 679 

3 10-2 (MPa s)-1 in (25), rate coefficient in (24) A=10-5 (MPa s)-1, together with L=7 s-680 

1, KD1=7103 s-1, and D2=30 in (22). The relatively high D2 value corresponds to the 681 

high sensitivity of the yield curve to the change in damage required to reproduce the 682 

Kaiser effect (e.g., Gajst et al. 2020).  683 

 684 

 685 

 686 

3.3 Cyclic sequential rotational conventional triaxial (CSRCT) loading 687 

CSRCT loading was performed using the same starting material and with the 688 

same initial pre-loading of 4 MPa along each of the three sample axes. In the first 689 

phase of this test, the differential stress was initially raised to 75 MPa along the 1-690 

direction (i.e., the direction of the 1 damage component) using the same loading rate 691 

as for the SRCT test, and the sample was then unloaded instantaneously (Figure 9a). 692 

The sample was subsequently reloaded in the same orientation but to a higher 693 
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differential stress of 80 MPa (blue lines in Fig. 9a), before again being unloaded 694 

instantaneously. Then, during the second phase, the differential stress was rotated and 695 

applied in the 2-direction (i.e., the direction of the 2 damage component) to a level 696 

of 65 MPa in the first cycle and 80 MPa in the second cycle (red lines in Fig. 9a). 697 

Finally, in the third phase, the differential stress was rotated again and applied in the 698 

3-direction (i.e., the direction of the 3 damage component). During this phase, the 699 

sample was loaded to 55 MPa in the first cycle and 80 MPa in the second cycle (green 700 

lines in Fig. 9a). Once again, we see that the model simulated damage curves obtained 701 

using the same material properties as for the SRCT test, are very similar in form to the 702 

cumulative AE output recorded during the experiment (Fig. 9b). Similarly to the 703 

SRCT test, the two transverse damage components, 2 and 3, grow at the same rate 704 

(Fig. 9c) during the loading in the 1-direction, as expected for the isotropic sample. 705 

However, during the loading in 2- and 3-directions the rock is no longer isotropic 706 

following the anisotropic damage formed during the loading in 1-direction. After 707 

stress was rotated, the two transverse damage components 1 and 3, and then, after 708 

another rotation, components 1 and 2 grow at different rates. The modeled onsets 709 

of damage for each loading cycle, are in very good agreement with the measured 710 

onsets of AE output for each cycle during the experiment. The colored markers (stars) 711 

on the loading curves of Figure 9a indicate the value of stress at the onset of AE, and 712 

hence the onset of new damage. We note that both the experimental data and the 713 

model simulations exhibit a distinct Kaiser effect when the samples were reloaded in 714 

the same direction, but no such effect when the differential stress was rotated. Again, 715 

this suggests that the onset of damage is, at best, only weakly affected by damage 716 

accumulated during earlier phases when the differential stress was applied in different 717 

orientations. 718 

 719 

4. Discussion and Concluding Remarks 720 

Here we build on the previous non-linear anisotropic damage rheology model 721 

(Panteleev et al. 2021) by presenting a newly developed poroelastic rheological model 722 

which accounts for both coupled anisotropic damage and porosity evolution. The new 723 

model shares the main features of our previously developed anisotropic damage and 724 

scalar poroelastic damage models, including the ability to simulate the entire yield 725 

curve through a single formulation. In the new model, the yield condition is defined in 726 
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terms of invariants of the strain tensor, and so the new formulation operates with 727 

directional yield conditions (different values for each principal direction) depending 728 

on the damage tensor and triaxial loading conditions. This allows us to discern 729 

evolving yield conditions for each principal stress direction and fit the measured 730 

amounts of accumulated damage from previous loading cycles. Coupling between 731 

anisotropic damage and anisotropic compaction along with the damage-dependent 732 

yield condition produces a reasonable fit to the experimentally obtained stress-strain 733 

curves. Furthermore, the simulated time-dependent cumulative damage is well 734 

correlated with experimentally observed acoustic emissions during cyclic loading in 735 

different directions. As such, we are able to recreate many of the features of the 736 

experimentally observed directional 3D Kaiser ‘damage memory’ effect. 737 

The main finding from this formulation is that each independent direction will 738 

posses its own yield envelope. The state of each envelope then depends on the 739 

direction, magnitude and history of loading. Yield in the transverse components are 740 

similar in shape but not necessarily in value to the conventional scalar criterion and 741 

the yield criterion in the axial direction has an entirely different shape. As such, 742 

damage accumulation in the axial direction is possible only under high volumetric 743 

stresses. 744 

These results are important in nature since rocks in complex tectonic 745 

environments, such as volcanoes or active fault zones, experience stresses that evolve 746 

both spatially and temporally and experience not only cyclic loading and unloading, 747 

but also rotation and/or reorientation of stresses. The resulting crack natural 748 

distributions will then form sequentially and may be highly anisotropic. Thus, the 749 

tectonic history of the crust as recorded in deformed rocks may include evidence for 750 

complex stress paths, encompassing different magnitudes and orientations. Geodetic 751 

and seismic data from periods of inflation and deflation at Krafla volcano in Iceland 752 

demonstrates that the rate of seismicity increases only after the amount of inflation in 753 

a previous cycle has been reached or exceeded (Heimisson et al. 2015). These, and 754 

similar observations, point to a potential crustal scale Kaiser effect but the 755 

directionality of fracture populations formed has received less attention. The data 756 

from Heimisson et al. (2015) were interpreted assuming a conventional Kaiser effect 757 

such that the orientation ofloading and unloading of all of the episodes were assumed 758 

to stress the crustal rocks in the same direction. It is noted that, prior to many cyclic 759 

inflation episodes at active volcanoes, the level of inflation has often been at a higher 760 
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level the than the first cycle of a new episode. In such circumstances, the first cycle 761 

should not produce seismicity, as the previous level of inflation has not been reached 762 

or exceeded. This has traditionally been explained as related to crack healing 763 

processes between cycles (Kim et al. 2014) but it can also be explained by our new 764 

three-dimensional model. As the orientation and magnitude of crustal stresses can 765 

vary enormously between different rock layers (Gudmundsson 2011) the new 766 

inflation episode may have loaded the rocks under a slightly different axis and hence 767 

triggered seismicity at lower stresses, similar to as demonstrated in Figure 9a. 768 

Recent experimental results have shown that damage, under true triaxial 769 

loading, is a distinctly directional phenomenon, and these results have also revealed a 770 

3D directionally dependent Kaiser ‘damage memory’ effect. The developments of this 771 

study provide an internally consistent framework for simulating evolving crustal rock 772 

damage under repeated cycles of stress in complex tectonic environments where 773 

stresses may evolve both spatially and temporally. 774 
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Fig. 1. Three different deformational regimes and growing yield surface neglecting 1006 

the cohesive force 1007 
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Fig. 2 Damage kinetics for initially isotropic damage (
1 

= 
2 

= 
3
) under 1027 

conventional triaxial loading. (a) The 1
st
 term is the same for all damage components. 1028 

The 2
nd

 term for axial component (b1) significantly differs from the  values for the 1029 

transversal components (b2).  The damage kinetics in the axial direction (c1) differs 1030 

from the transversal components(c2) which is similar in shape but not necessarily in 1031 

values to the conventional scalar criterion. 1032 
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Fig. 3. Yield envelope for initially isotropic material. 1044 
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Fig. 4. Evolving yield envelope for loading cycles in which the maximum load is 1060 

applied in the same direction cyclically and in which the maximum loading direction 1061 

is sequentially rotated with respect to the sample. 1062 
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 1078 

Fig. 5. Kinetics of the transverse damage components (1 , 3) for initially 1079 

anisotropic initial damage (1 <2 = 3). Upper raw represents the values for the 1080 

larger (3) component and the lower raw for the smaller (1 ) component. The pattern 1081 

for both components, 1st (a1, a2) and 2nd  (b1, b2) terms are similar, but their different 1082 

values leads to significantly different size of the yield envelope (c1, c2). 1083 
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 1099 

Fig. 6. Yield envelope for initially anisotropic material (1 <2 = 3). The envelope 1100 

for the smallest transverse (1) component (red line) is almost the same as for the 1101 

initially isotropic material (dotted blue line).  The envelope for larger transversal 1102 

component (3 ) is significantly larger than for the component 1 . The axial damage 1103 

component (2 ) is accumulated only under high confining conditions. 1104 

 1105 

 1106 
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 1109 

Fig. 7. Comparison between experimental results and modelling. (a) Sequential 1110 

rotational conventional triaxial loading; markers show the onset of the observed AE 1111 

(black line in (b)). Colored line in (b) shows the simulated damage accumulated 1112 

during the loading. (c) rate of damage accumulation. 1113 

 1114 

 1115 

 1116 

Fig. 8. Comparison between observed (colored lines) and simulated (grey lines) 1117 

stress-strains for three loading cycles (blue, red, green).  1118 

 1119 
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 1127 

Fig. 9. Comparison between experimental results and modelling. (a) Cyclic sequential 1128 

rotational conventional triaxial loading; the markers show the onset of the observed 1129 

AE (black line in (b)). Colored line in (b) shows the simulated damage accumulated 1130 

during the loading. (c) rate of damage accumulation. 1131 

 1132 

 1133 

 1134 
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Figure Captions 1135 

Figure 1. Three different deformational regimes and growing yield surface 1136 

neglecting the cohesive force. 1137 

Figure 2. Damage kinetics for initially isotropic damage (1 = 2 = 3) under 1138 

conventional triaxial loading. (a) The 1st term is the same for all damage components. 1139 

The 2nd term for axial component (b1) significantly differs from the  values for the 1140 

transversal components (b2).  The damage kinetics in the axial direction (c1) differs 1141 

from the transversal components(c2) which is similar in shape but not necessarily in 1142 

values to the conventional scalar criterion. 1143 

Figure 3. Yield envelope for initially isotropic material. 1144 

Figure 4. Evolving yield envelope for loading cycles in which the maximum 1145 

load is applied in the same direction cyclically and in which the maximum loading 1146 

direction is sequentially rotated with respect to the sample 1147 

Figure 5. Kinetics of the transverse damage components (1 , 3) for initially 1148 

anisotropic initial damage (1 <2 = 3). Upper raw represents the values for the 1149 

larger (3) component and the lower raw for the smaller (1 ) component. The pattern 1150 

for both components, 1st (a1, a2) and 2nd  (b1, b2) terms are similar, but their different 1151 

values leads to significantly different size of the yield envelope (c1, c2).  1152 

Figure 6. Yield envelope for initially anisotropic material (1 <2 = 3). The 1153 

envelope for the smallest transverse (1) component (red line) is almost the same as 1154 

for the initially isotropic material (dotted blue line).  The envelope for larger 1155 

transversal component (3 ) is significantly larger than for the component 1 . The 1156 

axial damage component (2 ) is accumulated only under high confining conditions 1157 

Figure 7. Comparison between experimental results and modelling. (a) 1158 

Sequential rotational conventional triaxial loading; markers show the onset of the 1159 

observed AE (black line in (b)). Colored line in (b) shows the simulated damage 1160 

accumulated during the loading. (c) rate of damage accumulation 1161 

Figure 8. Comparison between observed (colored lines) and simulated (grey 1162 

lines) stress-strains for three loading cycles (blue, red, green).  1163 

Figure 9. Comparison between experimental results and modelling. (a) Cyclic 1164 

sequential rotational conventional triaxial loading; the markers show the onset of the 1165 

observed AE (black line in (b)). Colored line in (b) shows the simulated damage 1166 

accumulated during the loading. (c) rate of damage accumulation.  1167 
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Appendix A 1168 

Thermodynamic relations 1169 

The presented formulation is based on balance equation of the irreversible 1170 

thermodynamics of the continuum media with internal variables (Malvern 1969, 1171 

Coussy 1995). We consider the system with density of the free energy, F, to be a 1172 

function of: 1173 

𝐹 = 𝐹(𝑇, ε𝑖𝑗 , Ω𝑖𝑗 , ψ𝑖𝑗 , ζ)     (1) 1174 

where T – temperature, ε𝑖𝑗 – elastic strain tensor, ψ𝑖𝑗 – compaction tensor, Ω𝑖𝑗 – the 1175 

damage tensor, and ζ is the change in volume fluid content defined by Biot (1941) 1176 

(see also Detournay & Cheng 1993). Since each variable can vary independently of 1177 

the other variables, Gibbs relation can be written as (Gibbs 1961): 1178 

𝑑𝐹 = −𝑆𝑑𝑇 +
𝜕𝐹

𝜕𝜀𝑖𝑗
𝑑𝜀𝑖𝑗 +

𝜕𝐹

𝜕𝛺𝑖𝑗
𝑑𝛺𝑖𝑗 +

𝜕𝐹

𝜕𝜓𝑖𝑗
𝑑𝜓𝑖𝑗 +

𝜕𝐹

𝜕𝜁
𝑑𝜁   (2) 1179 

where 𝑆 = −
𝜕𝐹

𝜕𝑇
 is entropy density (Einstein’s summation convention is assumed). 1180 

The balance equation for the density of the internal energy, U, includes three 1181 

source terms associated with shear heating (stress, σ𝑖𝑗, times strain rate or time 1182 

derivative of the total strain rate tensor, e𝑖𝑗 ), energy dissipation due to heat flux, 𝑄𝑖, 1183 

and the advective flux due to fluid flow (eq. 71 from Coussy et al. 1998): 1184 

𝑑𝑈

𝑑𝑡
=

𝑑

𝑑𝑡
(𝐹 + 𝑇𝑆) = σ𝑖𝑗e𝑖𝑗 − ∇𝑖𝑄𝑖 − ∇𝑖[ (ℎ𝑓 + 𝑇𝑠𝑓)𝑞𝑖]   (3) 1185 

where 𝑞𝑖 is fluid flux, ℎ𝑓 is the enthalpy or Gibbs potential of the fluid, which is a 1186 

function of the fluid pressure, 𝑝𝑓, and temperature; 𝑠𝑓 is the entropy of the fluid. 1187 

Similarly, the entropy balance equation includes positive entropy production, 𝛤, 1188 

divergence of the heat flux, and similar advective term due to fluid flow (eq. 72 from 1189 

Coussy et al. 1998): 1190 

𝑑𝑆

𝑑𝑡
=
𝛤

𝑇
− ∇𝑖 (

𝑄𝑖

𝑇
) − ∇𝑖(𝑞𝑖 𝑠𝑓)     (4) 1191 

The stress tensor and the fluid pressure are defined as (Malvern 1969, Coussy 1995): 1192 

σ𝑖𝑗 =
𝜕𝐹

𝜕𝜀𝑖𝑗
      (5) 1193 

𝑝𝑓 =
𝜕𝐹

𝜕𝜁
      (6) 1194 

Fluid mass conservation is:  1195 

𝑑𝜁

𝑑𝑡
= − ∇𝑖(𝑞𝑖)      (7) 1196 
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Combining (2, 3, 4) and using (5, 6, 7) we get a final expression for the local entropy 1197 

production in a form: 1198 

𝛤 = −
𝑄𝑖

𝑇
∇𝑖𝑇 − 𝑞𝑖∇𝑖𝑝𝑓 + σ𝑖𝑗 (e𝑖𝑗 −

𝑑𝜀𝑖𝑗

𝑑𝑡
) −

𝜕𝐹

𝜕𝛺𝑖𝑗

𝑑𝛺𝑖𝑗

𝑑𝑡
−

𝜕𝐹

𝜕𝜓𝑖𝑗

𝑑𝜓𝑖𝑗

𝑑𝑡
  (8) 1199 

First and second terms represent dissipation associated with heat transport and fluid 1200 

flow. The Fourier and Darcy laws establish linear relations between temperature and 1201 

fluid pressure gradients with corresponding fluxes: 1202 

𝑄𝑖 = −𝐾𝑖𝑗
𝑇∇𝑗𝑇      (9a) 1203 

and  1204 

𝑞𝑖 = −𝐾𝑖𝑗
𝐹∇𝑗𝑝𝑓     (9b) 1205 

where 𝐾𝑖𝑗
𝑇 and 𝐾𝑖𝑗

𝐹 are positively defined thermal conductivity and permeability 1206 

tensors. 1207 

The elastic strain tensor is the difference between total, 𝑔𝑖𝑗, and irreversible 1208 

compaction, ψ𝑖𝑗, tensors: 1209 

ε𝑖𝑗 = 𝑔𝑖𝑗 − ψ𝑖𝑗     (10) 1210 

Taking the time derivative of (10) and substituting the total strain rate tensor, e𝑖𝑗 =1211 

𝑑𝑔𝑖𝑗 𝑑𝑡⁄ , into (8), the part of the total dissipation, 𝛤𝐷𝐶, associated with evolving 1212 

damage and compaction (three last term of Eq. 8) is expressed as a sum of two terms 1213 

proportional to the damage and compaction rates: 1214 

𝛤𝐷𝐶 = −
𝜕𝐹

𝜕𝛺𝑖𝑗

𝑑𝛺𝑖𝑗

𝑑𝑡
+ (σ𝑖𝑗 −

𝜕𝐹

𝜕𝜓𝑖𝑗
)
𝑑𝜓𝑖𝑗

𝑑𝑡
> 0    (11) 1215 

For small deviations from equilibrium, the entropy production or dissipation potential 1216 

may be approximated as a quadratic function of the rate of the internal variables. In 1217 

this case constitutive equations give the thermodynamic fluxes as a linear function of 1218 

the thermodynamic forces (Malvern 1969, DeGroot & Mazur 2013) also known as the 1219 

Onsager's (1931) relations:  1220 

𝑑𝜓𝑖𝑗

𝑑𝑡
= 𝐶𝑖𝑗𝑛𝑚

𝜓𝜓
(σ𝑖𝑗 −

𝜕𝐹

𝜕𝜓𝑖𝑗
) − 𝐶𝑖𝑗𝑛𝑚

𝜓𝛺 𝜕𝐹

𝜕𝛺𝑖𝑗
   (12a) 1221 

𝑑𝛺𝑛𝑚

𝑑𝑡
= 𝐶𝑖𝑗𝑛𝑚

𝛺𝜓
(σ𝑖𝑗 −

𝜕𝐹

𝜕𝜓𝑖𝑗
) − 𝐶𝑖𝑗𝑛𝑚

𝛺𝛺 𝜕𝐹

𝜕𝛺𝑖𝑗
   (12b) 1222 

These phenomenological kinetic equations guarantee the non-negative entropy 1223 

production if the cells of the matrix of the kinetic coefficients 1224 

𝐶𝑖𝑗𝑛𝑚 = |
𝐶𝑖𝑗𝑛𝑚
𝜓𝜓

𝐶𝑖𝑗𝑛𝑚
𝜓𝛺

𝐶𝑖𝑗𝑛𝑚
𝛺𝜓

𝐶𝑖𝑗𝑛𝑚
𝛺𝛺

|     (13) 1225 
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meet several conditions (Malvern 1969, DeGroot & Mazur 2013). Matrixes of the 1226 

diagonal cells (𝐶𝑖𝑗𝑛𝑚
𝜓𝜓

, 𝐶𝑖𝑗𝑛𝑚
𝛺𝛺 ) must be positively defined. Off-diagonal terms are 1227 

usually taken to be either symmetric or antisymmetric. Following poroelastic damage 1228 

model of Hamiel et al. (2004b) and Lyakhovsky et al. (2015) we adopt antisymmetric 1229 

structure (𝐶𝑖𝑗𝑛𝑚
𝛺𝜓

= −𝐶𝑖𝑗𝑛𝑚
𝜓𝛺

) of the kinetic matrix (13). These conditions assure 1230 

positive dissipation (11). 1231 

Further model formulation, demonstrating its main features as well as its 1232 

calibration, verification, and application to specific problems require definition of the 1233 

energy function (1) and kinetic coefficients (13). In the Appendix B we briefly discuss 1234 

the isotropic, scalar formulation, which instead of the tensorial damage-compaction 1235 

variables operates with the scalar damage, 𝛼, equal to the squared value, 𝛼 = Ω2, 1236 

derived by Panteleev et al. (2021), and porosity, 𝜑. Scalar Ω and 𝜑 variables are 1237 

connected with the tensor variables as:  1238 

Ω𝑖𝑗 = Ω 𝛿𝑖𝑗      (14a) 1239 

ψ𝑖𝑗 = 𝜑 𝛿𝑖𝑗      (14b) 1240 

The complete anisotropic formulation is presented in the Appendix C. 1241 

 1242 

Appendix B 1243 

Scalar poroelastic damage model 1244 

Following Biot’s theory of poroelasticity (Biot 1941, 1956) the free energy of 1245 

a poro-elastic medium, F, is a sum of the elastic energy and the poroelastic coupling 1246 

term of the saturated medium with the Biot modulus, M, and the Biot coefficient for 1247 

porous media, 𝛽: 1248 

𝐹 =
𝜆(𝛼,𝜑)

2
𝐼1
2 + 𝜇(𝛼, 𝜑)𝐼2 − 𝛾(𝛼, 𝜑)𝐼1√𝐼2 +

1

2
𝑀[𝛽𝐼1 − 𝜁 + 𝜑]

2 + 𝐶ℎ 𝛾𝑚 𝛼1249 

 (15) 1250 

In the literature discussing Biot poroelasticity, this coefficient is often noted as 1251 

α. To avoid a duplicate notation we use 𝛼 for the scalar damage and change the 1252 

notation for the Biot coefficient to 𝛽. 1253 

Since the target model is isotropic, the energy function may depend only on 1254 

invariants of the elastic strain tensor, ε𝑖𝑗 (𝐼1 = ε𝑖𝑖 , 𝐼2 = ε𝑖𝑗ε𝑖𝑗). Following (Hamiel, et 1255 

al. 2004b, Lyakhovsky et al. 2015) the elastic energy for nonlinear damaged media 1256 

includes two Hookean terms with the Lame drained moduli    and an additional 1257 
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non-linear term with strain coupling modulus . Value of this additional modulus 1258 

varies from zero for damage free material with 𝛼 = 0 to 𝛾 = 𝛾𝑚 at material failure 1259 

with 𝛼 = 1 (Lyakhovsky et al. 1997). Following Gajst (2020), we introduce the 1260 

damage-dependent term with the non-dimensional coefficient Ch. Below we will 1261 

show that this term allows accounting for the cohesive force which is important for 1262 

loading conditions with low confining pressures. 1263 

Differentiation of the poroelastic energy (15) according to the constitutive 1264 

relations (5, 6), the stress tensor, σij, and fluid pressure, pf, are: 1265 

σ𝑖𝑗 =
𝜕𝐹

𝜕𝜀𝑖𝑗
= (𝜆 −

𝛾

𝜉
) 𝐼1δ𝑖𝑗 + (2𝜇 − 𝛾𝜉)ε𝑖𝑗 + 𝛽𝑀(𝛽𝐼1 − 𝜁 + 𝜑)  (16) 1266 

𝑝𝑓 =
𝜕𝐹

𝜕𝜁
=  𝑀(−𝛽𝐼1 + 𝜁 − 𝜑)     (17) 1267 

where 𝜉 = 𝐼1/√𝐼2 is the strain invariant ratio changing from 3−=  for isotropic 1268 

compaction to 3=  for isotropic dilation. Using the assumption that 𝜆 = 𝐶𝑜𝑛𝑠𝑡.   1269 

and both 𝜇, 𝛾 linearly depend on the damage (Agnon & Lyakhovsky 1995), the 1270 

derivatives of the energy function (15) are the effective stress: 1271 

𝜎𝑖𝑗 −
𝜕𝐹

𝜕𝜑
 𝛿𝑖𝑗 = 𝜎𝑖𝑗

𝑒𝑓𝑓
     (18) 1272 

and damage induced energy change: 1273 

𝜕𝐹

𝜕𝛼
= 𝛾𝑚(− 𝐼2 (𝜉 − 𝜉0) + 𝐶ℎ)    (19) 1274 

where 𝜉0 is the critical value of the strain invariant ratio corresponding to the 1275 

conditions of the Coulomb failure criteria (see Lyakhovsky et al. 1997 for details). 1276 

Substituting the derivatives (18, 19) into kinetic equations (12) and accounting to the 1277 

scalar nature of the damage, 𝛼, and porosity, 𝜑, variables (14), and using the mean 1278 

stress( 𝜎𝑚 = −𝜎𝑘𝑘/3), the coupled kinetic equations are reduced to (see Hamiel et al. 1279 

2004b, Lyakhovsky et al. 2015, and references therein): 1280 

𝑑𝜑

𝑑𝑡
= −𝐴 𝜎𝑚 − 𝐷 [𝐼2(𝜉 − 𝜉0) − 𝐶ℎ]    (20) 1281 

𝑑𝛼

𝑑𝑡
= 𝐷 𝜎𝑚 + 𝐶𝑑[𝐼2(𝜉 − 𝜉0) − 𝐶ℎ]    (21) 1282 

Hamiel et al. (2004b) suggested that the coupling coefficients D is a power-law 1283 

expression of the effective pressure, 𝐷 ~ 𝜎𝑚
𝑁. They demonstrated that the transition 1284 

from positive to negative values of the slope of the yield curve (yield cap) is a general 1285 

feature of the model. Here we modify the previous formulation using strain invariants 1286 
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𝐼1, √𝐼2 and  𝜎𝑚 = −𝐾 𝐼1 (K is a bulk modulus); and also following Gajst et al. (2020) 1287 

D-value exponentially decreases with damage: 1288 

𝐷 = 𝐶𝑑   𝐷1𝑒
−𝐷2𝛼 (−𝐼1)

𝑁√𝐼2/𝐾     (22) 1289 

N>0, D1 and D2 values define the shape of the yield envelope. The form (22) is 1290 

defined only for compaction (𝐼1 ≤ 0); D1 is either constant or function of the porosity 1291 

constrained using strain-defined yielding envelope. With this assumption, the kinetic 1292 

for damage accumulation (21) is: 1293 

𝑑𝛼

𝑑𝑡
= 𝐶𝑑[𝐷1𝑒

−𝐷2𝛼(−𝐼1)
𝑁+1√𝐼2 + 𝐼2(𝜉 − 𝜉0) − 𝐶ℎ]   (23) 1294 

This form of the damage kinetic equation predicts the onset of damage accumulation 1295 

(
𝑑𝛼

𝑑𝑡
= 0) for the intact material (𝛼 = 0), or the yield condition: 1296 

𝐷1(−𝐼1)
𝑁+1√𝐼2 + 𝐼2(𝜉 − 𝜉0) − 𝐶ℎ = 0   (24) 1297 

Under shear load needed to overcome the cohesive force (𝜏ℎ = 2𝜇0𝜀ℎ) with zero 1298 

volumetric strain (𝐼1 = 0, 𝜉 = 0, and 𝐼2 = 2𝜀ℎ
2), the coefficient Ch is equal to: 1299 

𝐶ℎ = −𝜉0
𝜏ℎ
2

2𝜇0
2      (25a) 1300 

Under large hydrostatic volumetric strains, neglecting the cohesive force, the onset of 1301 

damage occurs at:  1302 

𝐼1
∗ = −(

√3+𝜉0

√3∙𝐷1
)
1/𝑁

     (25b) 1303 

The equations (25a, b) define two endmember yield values. The entire yield shape 1304 

may be calculated for any given volumetric strain between zero and 𝐼1
∗ by solving (24) 1305 

as a quadratic equation for √𝐼2: 1306 

√𝐼2 =
𝐷1(−𝐼1)

𝑁+𝐼1+√(𝐷1(−𝐼1)𝑁+𝐼1)2−4 𝜉0 𝐶ℎ

2 𝜉0
   (25c) 1307 

The positive radical sign provides correct solution for 𝐶ℎ = 0. Figures B1-B3 show 1308 

sensitivity of the shape and size of the yield envelope to the change of the model 1309 

parameters D1, N, and Ch values calculated using (25c). For N=1 and non-cohesive 1310 

material (Ch=0) the envelope increases with decrease D1 value keeping roughly self-1311 

similar shape (Fig. B1). Changing power index value N affects the shape of the 1312 

envelope (Fig. B2). In these cases, D1 values were rescaled to get the same volumetric 1313 

strain 𝐼1
∗ = −3.5% according to Eq. (25b). Non-zero Ch value for the cohesive 1314 

material with N=1 and D1=15 shifts envelope to larger differential strain values under 1315 

low volumetric strains (Fig. B3). The shown set of surfaces for Ch =0−1.0 10-6 1316 
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corresponds to cohesive force values changing from zero to ~15 MPa for rock with 1317 

shear modulus 𝜇0 = 10 GPa. For typical cohesive force values of a few MPa, this 1318 

model modification is important under relatively low confining pressures but may be 1319 

neglected when confining pressures are higher (of the order of tens of MPa). 1320 

 1321 

Appendix C 1322 

Anisotropic poroelastic damage model 1323 

The energy function of the anisotropic material with the damage tensor, Ω𝑖𝑗, 1324 

cannot be formulated only in terms of strain invariants I1, I2 of the elastic strain 1325 

tensor, ε𝑖𝑗 (𝐼1 = ε𝑖𝑖 , 𝐼2 = ε𝑖𝑗ε𝑖𝑗) used for the scalar model (eq. 15). Following Murti 1326 

et al. (1991) and Zhang & Cai (2010) the energy function should also depend on the 1327 

invariants of the tensor, 𝜀𝑖𝑗
(Ω)

, which is the symmetrized product of the elastic strain 1328 

and damage tensors:  1329 

𝜀𝑖𝑗
(Ω) =

1

2
(𝜀𝑖𝑘Ω𝑘𝑗 + 𝜀𝑗𝑘Ω𝑘𝑖)     (26) 1330 

The invariants 𝐼1
(Ω)

 and 𝐼2
(Ω)

 of this tensor are: 1331 

𝐼1
(Ω)
= 𝜀𝑖𝑘Ω𝑘𝑗𝛿𝑖𝑗 = 1332 

= 𝜀11Ω11 + 𝜀22Ω22 + 𝜀33Ω33 + 2𝜀12Ω12 + 2𝜀23Ω23 + 2𝜀13Ω13 1333 

(27) 1334 

𝐼2
(Ω) = 𝜀𝑖𝑗

(Ω)𝜀𝑖𝑗
(Ω) = 1335 

= (𝜀11Ω11 + 𝜀12Ω12 + 𝜀13Ω13)
2 + 1336 

+(𝜀12Ω12 + 𝜀22Ω22 + 𝜀23Ω23)
2+ 1337 

+(𝜀13Ω13 + 𝜀23Ω23 + 𝜀33Ω33)
2 + 1338 

+(𝜀11Ω12 + 𝜀22Ω12 + 𝜀23Ω13 + 𝜀13Ω23 + 𝜀12(Ω11 + Ω22))
2
+ 1339 

+(𝜀23Ω12 + 𝜀11Ω13 + 𝜀33Ω13 + 𝜀12Ω23 + 𝜀13(Ω11 + Ω33))
2
+ 1340 

+(𝜀13Ω12 + 𝜀12Ω13 + 𝜀22Ω23 + 𝜀33Ω23 + 𝜀23(Ω22 + Ω23))
2
 1341 

 1342 

We extend energy function of the Panteleev et al. (2021) non-linear anisotropic 1343 

damage rheology model by additional Biot terms similar to (15): 1344 

𝐹 = [
𝜆0

2
𝐼1
2 + 𝜇0𝐼2] + 𝛾 [𝜉0𝐼2

(Ω)
− 𝐼1

(Ω)√𝐼2
(Ω)
] +

1

2
𝑀[𝛽𝐼1 − 𝜁 + ψ𝑖𝑗𝛿𝑖𝑗]

2
+ 𝐶ℎ 

𝛾

2
 Ω𝑖𝑗Ω𝑖𝑗1345 

 (28) 1346 
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The definitions (26-28) mean that the energy is the second order function of both 1347 

elastic strain and damage tensors. Substituting energy function (28) into (5) and (6) 1348 

the stress tensor is expressed as: 1349 

𝜎𝑖𝑗 =
∂𝐹

𝜕𝜀𝑖𝑗
= 𝜆0𝐼1𝛿𝑖𝑗 + 2𝜇0𝜀𝑖𝑗 − 𝛾

𝜕𝐼1
(𝛺)

𝜕𝜀𝑖𝑗
√𝐼2

(Ω) + 𝛾

(

 𝜉0 −
𝐼1
(Ω)

2√𝐼2
(Ω)

)

 
𝜕𝐼2
(Ω)

𝜕𝜀𝑖𝑗
+ 1350 

+𝛽𝑀 (𝛽𝐼1 − 𝜁 + ψ𝑘𝑛𝛿𝑘𝑛)𝛿𝑖𝑗   (29) 1351 

 1352 

where 1353 

𝜕𝐼1
(𝛺)

𝜕𝜀𝑙𝑚
= Ω𝑙𝑚, 1354 

𝜕𝐼2
(𝛺)

𝜕𝜀𝑙𝑚
=
1

2
(𝛺𝑙𝑖𝜀𝑖𝑘𝛺𝑘𝑚 + 𝛺𝑚𝑖𝜀𝑖𝑘𝛺𝑘𝑙) +

1

2
(𝛺𝑙𝑗𝜀𝑚𝑘𝛺𝑘𝑗 + 𝛺𝑚𝑗𝜀𝑙𝑘𝛺𝑘𝑗).    1355 

 1356 

The fluid pressure is almost identical to (17) 1357 

𝑝𝑓 =
𝜕𝐹

𝜕𝜁
=  𝑀 (−𝛽𝐼1 + 𝜁 − ψ𝑘𝑛𝛿𝑘𝑛)    (30) 1358 

Similarly to (18) the effective stress is defined as: 1359 

𝜎𝑖𝑗 −
𝜕𝐹

𝜕ψ𝑖𝑗
 = 𝜎𝑖𝑗

𝑒𝑓𝑓
     (31) 1360 

In order to evaluate the energy dissipation and write the couples damage-compaction 1361 

kinetic relations (12), the damage induced energy change should be calculated: 1362 

𝜕𝐹

𝜕𝛺𝑖𝑗
= 𝛾 [(𝜉0 −

𝐼1
(Ω)

2√𝐼2
(Ω)
)
𝜕𝐼2
(Ω)

𝜕𝛺𝑖𝑗
− 𝜀𝑖𝑗√𝐼2

(Ω) + 𝐶ℎ Ω𝑖𝑗]   (32) 1363 

Formulating the tensor kinetic coefficients, we keep in mind that the coupling 1364 

kinetic coefficient 𝐷𝑖𝑗𝑘𝑛 = 𝐶𝑖𝑗𝑛𝑚
𝛺𝜓

  of eq. (13) should decrease with damage 1365 

accumulation and expect that this will allow reproducing the directional Kaizer Effect 1366 

observed under true triaxial loading (Browning et al. 2018). Similarly to the 1367 

exponential relation (22), we suggest that the matrix 𝐷𝑖𝑗𝑘𝑛 of the kinetic coefficients 1368 

exponentially decrease with damage accumulation. Extending this idea to the 1369 

complete tensor form and using the same dependency of the coupling term as in the 1370 

scalar model (22), we suggest the following form of the coupling kinetic coefficient 1371 

𝐷𝑖𝑗𝑘𝑛: 1372 

𝐷𝑖𝑗𝑘𝑛 = 𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑖𝑗] 𝛿𝑘𝑛 (−𝐼1)
𝑁√𝐼2   (33) 1373 
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where we use the standard definition of the exponent of the tensor X by means of its 1374 

series representation (Hirsch et al. 1974) 1375 

𝑒𝑥𝑝(𝑿) = ∑
𝑿𝑚

𝑚!
∞
𝑚=0      (34) 1376 

Note that the principal values of the tensor 𝑒𝑥𝑝(𝑿) are equal to the 𝑒𝑥𝑝(𝑋𝑘).  1377 

The most conservative assumption to define the components of the matrix 1378 

𝐶𝑖𝑗𝑛𝑚
𝛺𝛺  in (13) is the absence of the interaction between different components, i.e., 1379 

𝐶𝑖𝑗𝑛𝑚
𝛺𝛺 = 𝐿 (𝛿𝑖𝑘 𝛿𝑗𝑛 + 𝛿𝑖𝑛 𝛿𝑗𝑘), and L is proportional to 1 √Ω𝑖𝑗Ω𝑖𝑗⁄  as it was suggested 1380 

by verified by Panteleev et al. (2021) using results of true-triaxial rock mechanics 1381 

experiments ignoring effects of compaction. With these kinetic coefficients, the 1382 

equation (12b) for the damage evolution has the same structure as the damage kinetic 1383 

equation (23) of the scalar model. 1384 

𝑑𝛺𝑖𝑗

𝑑𝑡
= 𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑖𝑗]  (−𝐼1)

𝑁√𝐼2 𝜎𝑚
𝑒𝑓𝑓

+ 1385 

+ 
𝐿

√Ω𝑘𝑛Ω𝑘𝑛
[𝜀𝑖𝑗√𝐼2

(Ω) + (
𝐼1
(Ω)

2√𝐼2
(Ω)
− 𝜉0)

𝜕𝐼2
(Ω)

𝜕𝛺𝑖𝑗
− 𝐶ℎ Ω𝑖𝑗]  (35) 1386 

The equation for the evolving compaction (12a) includes two terms. The first 1387 

term, equal to 𝐶𝑖𝑗𝑛𝑚
𝜓𝜓

𝜎𝑛𝑚
𝑒𝑓𝑓

 describe compaction/extension with the rate proportional to 1388 

the effective stress. The second one is the damage-related coupling term, which is the 1389 

𝜕𝐹

𝜕𝛺𝑖𝑗
 multiplied to 𝐷𝑖𝑗𝑘𝑛, and describes the compaction or dilation induced by the 1390 

damage growth. Representing the effective stress as a superposition of the volumetric 1391 

(𝑃𝑒) and deviatoric (𝜏𝑖𝑗) components allows to describe different mechanisms of the 1392 

irreversible strain accumulation or ψ𝑖𝑗 kinetics. The pressure driven compaction under 1393 

hydrostatic load is described by a well-known porosity reduction to its pressure-1394 

dependent equilibrium value or Athy's (1930) law. Lyakhovsky et al. (2021) modified 1395 

the scalar Athy relation accounting not only for volumetric effects, but also 1396 

directional effects associated with changes of the shape of pore space and 1397 

accumulation of irreversible deviatoric strain components. The suggested 3-D 1398 

equilibrium compaction strain, ψ𝑖𝑗
(𝑒𝑞)

, depends on both pressure and deviatoric stress 1399 

components: 1400 

ψ𝑖𝑗
(𝑒𝑞)

= 𝐵0 [𝛿𝑖𝑗 −  𝑒𝑥𝑝 (−
𝜎𝑚
𝑒𝑓𝑓

𝐵1
𝛿𝑖𝑗 −

𝜏𝑖𝑗

𝐵2
)]    (36) 1401 

and suggested kinetics of the pressure-driven 3-D compaction in the form 1402 
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𝑑ψ𝑖𝑗

𝑑𝑡
= 𝐴 (ψ𝑖𝑗

(𝑒𝑞)
− ψ𝑖𝑗) 𝜎𝑚

𝑒𝑓𝑓
     (37) 1403 

Neglecting the term with deviatoric stress or taking 𝐵2 → ∞ in (36) reduces both 1404 

equilibrium compaction (36) and kinetic equation (37) to the traditional scalar  Athy's 1405 

(1930) law formulated in terms of material porosity. 1406 

Experimental studies suggest that permanent inelastic deformation is 1407 

accumulated in high porosity rocks, but also is related to the damage accumulation. It 1408 

starts accumulating with the onset of the acoustic emission and increases all the way 1409 

up to brittle failure (e.g., Lockner 1993, 1998, Martin & Chandler 1994). This process 1410 

is usually associated with the growth of microcracks and frictional sliding between 1411 

grains, rather than closure of voids or open space between grans. For similar reasons, 1412 

Hamiel et al. (2004a) related the rate of irreversible strain accumulation with the rate 1413 

of their scalar damage growth. Keeping in mind that the scalar damage variable is 1414 

equivalent to the squared damage tensor, we extend their relation to the tensor form 1415 

keeping the same structure of functional relations: 1416 

𝑑

𝑑𝑡
𝜀𝑖𝑗
(𝑖𝑟)

= {
𝐶𝑉

𝑑(Ω𝑖𝑛Ω𝑗𝑚)

𝑑𝑡
𝜏𝑛𝑚 ,    

𝑑(Ω𝑖𝑛Ω𝑗𝑚)

𝑑𝑡
> 0

0,           
𝑑(Ω𝑖𝑛Ω𝑗𝑚)

𝑑𝑡
≤ 0

    (38) 1417 

Here we combine both mechanisms and represent the static value of the tensor ψ𝑖𝑗
(𝑆)

 as 1418 

a sum of  1419 

ψ𝑖𝑗
(𝑆)
= ψ𝑖𝑗

(𝑒𝑞)
+ 𝜀𝑖𝑗

(𝑖𝑟)
      (39) 1420 

The Final final kinetic equation (12a) for the 𝜓𝑖𝑗 tensor incorporates all the discussed 1421 

mechanisms (to avoid very length equation 𝐷𝑖𝑗𝑘𝑛 and 
𝜕𝐹

𝜕𝛺𝑘𝑛
 are not substituted here): 1422 

𝑑𝜓𝑖𝑗

𝑑𝑡
=  𝐴 (ψ𝑖𝑗

(𝑒𝑞)
− ψ𝑖𝑗) 𝜎𝑚

𝑒𝑓𝑓
+ 𝐶𝑉

𝑑(Ω𝑖𝑛Ω𝑗𝑚)

𝑑𝑡
𝜏𝑛𝑚 −𝐷𝑖𝑗𝑘𝑛

𝜕𝐹

𝜕𝛺𝑘𝑛
  (40) 1423 

The kinetic equation for damage (35) and compaction (40) provide the close system 1424 

of equations defining the 3-D evolution of the material properties. To study some 1425 

basic model properties, we follow the assumption of Panteleev et al. (2021) that the 1426 

principal directions of the damage tensor match the orientation of the principal 1427 

loading axes. This assumption is supported by results of true-triaxial experiments 1428 

(Browning et al. 2017, 2018) demonstrating orientation of distributed micro-cracks in 1429 

the sample volume under limited load, well before their localization into narrow fault 1430 

zones. Adopting the above assumptions, we re-write the stress-strain and damage 1431 

kinetic relations for principal values in k-direction (no summation): 1432 
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𝜎𝑘 = 𝜆0 𝐼1 + 2𝜇0𝜀𝑘 + 2𝜇1Ω𝑘
2𝜀𝑘 − 𝛾Ω𝑘√𝐼2

(Ω) − 𝛾𝜉(Ω)Ω𝑘
2𝜀𝑘 + 𝛽 𝑝𝑓 1433 

 (41) 1434 

and 1435 

𝑑𝛺𝑘

𝑑𝑡
= 𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑘] (−𝐼1)

𝑁√𝐼2 𝜎𝑚
𝑒𝑓𝑓

+
𝐿

√Ω𝑙Ω𝑙
[𝜀𝑘√𝐼2

(Ω) + (
𝐼1
(Ω)

√𝐼2
(Ω)
− 2𝜉0)𝜀𝑘

2Ω𝑘 −1436 

𝐶ℎ Ω𝑘]   (42) 1437 

We note that for the isotropic damage (Ω1 = Ω2 = Ω3) summation of free damage 1438 

rate components gives the same equation as for the scalar damage with the same 1439 

damage-dependent yield envelope. 1440 

𝑑𝜓𝑘
𝑑𝑡

=  𝐴 (ψ𝑘
(𝑒𝑞) −ψ𝑘) 𝜎𝑚

𝑒𝑓𝑓
+ 𝐶𝑉

𝑑(𝛺𝑘
2)

𝑑𝑡
𝜏𝑘 + 1441 

+𝐷1𝑒𝑥𝑝[−𝐷2Ω𝑘] (−𝐼1)
𝑁√𝐼2  [𝜀𝑘√𝐼2

(Ω) + (
𝐼1
(Ω)

√𝐼2
(Ω)
− 2𝜉0)𝜀𝑘

2Ω𝑘 − 𝐶ℎ Ω𝑘] 1442 

 (43) 1443 

The first term of eq. (43) represents the compaction prior to the onset of the damage 1444 

accumulation, which is 3-D extension of the scalar Athy’s law compaction. According 1445 

to this term the compaction approaches to its stress-dependent equilibrium value with 1446 

the rate proportional to the effective pressure. The second term is 3-D equivalent to 1447 

the damage-dependent irreversible strain accumulation with inverse of the effective 1448 

viscosity or fluidity proportional to the rate of the damage accumulation. This term 1449 

describes extension or compaction depending on the sign of the deviatoric stress 1450 

component. The last term represents the coupling between damage and porosity 1451 

kinetics. Its sign, extension or compaction, is defined by the expression in the square 1452 

brackets and depends on the loading and damage values.   1453 

 1454 

 1455 

 1456 

 1457 

 1458 

 1459 
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 1464 

Fig. B1. Yield envelope size increase with decrease in D-value (N=1) 1465 
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Fig. B2. Shape of the yield envelope for N-values changing between 0.5 and 2.0 1483 
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 1497 

Fig. B3. The yield envelope is shifted up to higher differential strain values 1498 

with increased Ch value (N=1 and D=15). 1499 
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Figure Captions (Appendix B) 1504 

Figure B1. Yield envelope size increase with decrease in D-value (N=1) 1505 

 1506 

Figure B2. Shape of the yield envelope for N-values changing between 0.5 and 2.0 1507 

 1508 

Figure B3. The yield envelope is shifted up to higher differential strain values with 1509 

increased Ch value (N=1 and D=15) 1510 

 1511 


